JPH05245379A - Cyclic gasification catalyst and production thereof - Google Patents

Cyclic gasification catalyst and production thereof

Info

Publication number
JPH05245379A
JPH05245379A JP4045652A JP4565292A JPH05245379A JP H05245379 A JPH05245379 A JP H05245379A JP 4045652 A JP4045652 A JP 4045652A JP 4565292 A JP4565292 A JP 4565292A JP H05245379 A JPH05245379 A JP H05245379A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
meo
carrier
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4045652A
Other languages
Japanese (ja)
Inventor
Hiroshi Uchida
洋 内田
Fumio Takashima
文雄 高島
Yasuo Nishioka
康雄 西岡
Toshio Matsuhisa
敏雄 松久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo CCI KK
Tokyo Gas Co Ltd
Original Assignee
Toyo CCI KK
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo CCI KK, Tokyo Gas Co Ltd filed Critical Toyo CCI KK
Priority to JP4045652A priority Critical patent/JPH05245379A/en
Publication of JPH05245379A publication Critical patent/JPH05245379A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To provide a cyclic gasification catalyst excellent in heat resistance, thermal shock resistance and durability, small in depositing quantity of carbon, economical and maintaining high activity. CONSTITUTION:This catalyst is obtained by depositing one or two or more kind of nickel oxide, cobalt oxide and a metal of platinum group on a catalytic carrier containing mainly aluminum oxide Al2O3 and a metal oxide expressed by MeO. The main component of the catalyst consists of about 25-40mol MeO per 100mol aluminum oxide, and Me is two or three kind of metals selected from group consisting of Ca, Ba and Sr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は都市ガス製造用のサイク
リック式ガス化装置に於ける炭化水素類のガス化のため
の触媒及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for gasifying hydrocarbons in a cyclic gasifier for producing city gas and a method for producing the same.

【0002】[0002]

【従来の技術】都市ガス製造に使用される炭化水素改質
によるガス化の方法をその操業方式によって分類する
と、サイクリック方法と連続法とに大別される。炭化水
素の改質触媒としては、アルミナ、シリカ、マグネシア
などをベースとした触媒担体上に、触媒活性成分として
のNi及び/又はCoを担持したものが広く使用されてい
る。活性成分としてはまたRh、Ruなどの白金族貴金属も
使用されるが、これらは高い活性を有するものの価格上
の難点があり、これ迄のところNiやCoほど広く使用され
てはいない。都市ガス工業に於ても、サイクリック法、
連続法を問わず、同様な状況にある。
2. Description of the Related Art The methods of gasification by hydrocarbon reforming used for city gas production are roughly classified into a cyclic method and a continuous method according to their operating methods. As a hydrocarbon reforming catalyst, a catalyst carrier based on alumina, silica, magnesia or the like on which Ni and / or Co as a catalytically active component is carried is widely used. Platinum group noble metals such as Rh and Ru are also used as active ingredients, but these have high activity but have a price drawback, and so far have not been used as widely as Ni and Co. Even in the city gas industry, the cyclic method,
Regardless of the continuous method, the situation is similar.

【0003】水蒸気改質触媒に使用される担体として
は、Mg, Ca, Sr, Ba, Al, Ce, Si, Ti, Zrなどの酸化物
又はこれらの酸化物の2種の組合せが知られているが、
機械的強度、耐熱性、化学的安定性等の見地からアルミ
ナ系担体が今日最も多く使用されている。また、この改
質触媒用アルミナ担体にアルカリ土類金属の酸化物を加
え、その性質を改良することは公知である。例えば特公
昭44−17337号には、触媒中にMg, Ca, Sr又はBa
を10〜20wt%加えた改質触媒が開示されており、反応中
の炭素析出が少ないことが謳われている。また、特開昭
63−141643号には、酸化アルミニウム100 モル
とMeO(MeはCa, Ba, Sr) で表わされる金属酸化物3〜25
モルの割合で含む担体上に、V,Cr, Fe, Co, Ni, Cu,
Mo, Ag, Cd, La, Ce、ペロブスカイト及び白金族貴金属
のうちの少なくとも1種を担持して成る触媒を開示して
いるが、この触媒は主として触媒燃焼用の触媒に関する
ものである。
As the carrier used for the steam reforming catalyst, oxides of Mg, Ca, Sr, Ba, Al, Ce, Si, Ti, Zr and the like, or a combination of two kinds of these oxides are known. But
From the standpoint of mechanical strength, heat resistance, chemical stability, etc., alumina-based carriers are most often used today. It is also known to add an alkaline earth metal oxide to the alumina carrier for the reforming catalyst to improve its properties. For example, JP-B-44-17337 discloses that Mg, Ca, Sr or Ba is contained in a catalyst.
A reforming catalyst containing 10 to 20 wt% of is disclosed, and it is claimed that carbon deposition during the reaction is small. Further, in JP-A-63-141643, 100 mol of aluminum oxide and a metal oxide represented by MeO (Me is Ca, Ba, Sr) 3-25
V, Cr, Fe, Co, Ni, Cu, on a carrier containing a molar ratio of
A catalyst comprising at least one selected from the group consisting of Mo, Ag, Cd, La, Ce, perovskite and a platinum group noble metal is disclosed, and the catalyst mainly relates to a catalyst for catalytic combustion.

【0004】炭化水素類の水蒸気改質触媒としては、特
開平2−75344号に於いて、酸化アルミニウム100
モルに対しMeO (Me はCa, Ba, Sr) で表わされる金属酸
化物を3〜25モルの割合で含み、これら成分が主として
MeO ・6Al2O3で表わされる複合酸化物として担体中に存
在している触媒担体上にNi, Co及び/又は白金族貴金属
を担持したものが開示され、さらにカルシウムアルミナ
セメント等の成形助剤の使用が優れた改質触媒担体の製
造に効果的であることが示されている。
As a steam reforming catalyst for hydrocarbons, aluminum oxide 100 is disclosed in JP-A-2-75344.
It contains a metal oxide represented by MeO (Me is Ca, Ba, Sr) in an amount of 3 to 25 mol, and these components are mainly contained.
A composite oxide represented by MeO.6Al 2 O 3 in which Ni, Co and / or a platinum group precious metal is supported on a catalyst carrier existing in the carrier is disclosed, and a molding aid such as calcium alumina cement is disclosed. Has been shown to be effective in producing excellent reforming catalyst supports.

【0005】[0005]

【発明が解決しようとする課題】都市ガス製造用のガス
化触媒としては工業的にはニッケル系触媒が用いられ、
その担体としては通常アルミナ、シリカ、マグネシア等
の耐火物が使用されている。然し、それらの触媒は耐熱
性、耐熱衝撃性、耐久性等の点に於て、必ずしも満足の
ゆくものではなく、(1) 活性及び強度の低下の原因とな
る炭素の析出量が大きい、(2) Ni又はCoなどの触媒活性
成分が担体成分例えばアルミナと反応して、ニッケルア
ルミネートNi Al2O4又はコバルトアルミネートCo Al2O4
を生成して活性を低下させる、等の難点を有している。
Industrially, nickel-based catalysts are used as gasification catalysts for city gas production.
As the carrier, a refractory material such as alumina, silica or magnesia is usually used. However, those catalysts are not always satisfactory in terms of heat resistance, thermal shock resistance, durability, etc., and (1) a large amount of carbon is deposited which causes a decrease in activity and strength. 2) A catalytically active component such as Ni or Co reacts with a carrier component such as alumina to form nickel aluminate Ni Al 2 O 4 or cobalt aluminate Co Al 2 O 4
Is generated to reduce the activity, and the like.

【0006】本発明者等はこれらの難点を解決する水蒸
気改質用触媒を追求した結果、前述の特開平2-75344 号
記述の触媒の開発を行ない、炭素析出も少なく、触媒成
分と担体成分の反応による活性劣化も少ない優れた改質
触媒を提案したが、この触媒を以てしても、サイクリッ
ク式ガス化の場合活性の劣化と強度の低下を完全に防ぐ
ことは困難であり、一層の改善が望ましいことが判明し
た。
As a result of pursuing a steam reforming catalyst which solves these problems, the present inventors have developed the catalyst described in the above-mentioned Japanese Patent Laid-Open No. 2-75344, which causes less carbon precipitation, a catalyst component and a carrier component. We have proposed an excellent reforming catalyst with little activity deterioration due to the reaction of, but even with this catalyst, it is difficult to completely prevent activity deterioration and strength reduction in the case of cyclic gasification. It turns out that improvement is desirable.

【0007】[0007]

【課題を解決するための手段】本発明は、酸化アルミニ
ウム Al2O3とMeO で表わされる金属酸化物とを主担体成
分とする触媒担体上に、酸化ニッケル、酸化コバルト及
び白金族貴金属のうちの1種又は2種以上を担持した触
媒であって、触媒担体主成分が酸化アルミニウム100 モ
ルに対してMeO を約25〜40モルの割合で含んで成り、Me
はCa, Ba及びSrから成る群から選択した2種又は3種の
金属であることを特徴とするサイクリック式ガス化触媒
である。
According to the present invention, a nickel oxide, a cobalt oxide and a platinum group noble metal among a nickel oxide, a cobalt oxide and a platinum group noble metal are formed on a catalyst carrier containing aluminum oxide Al 2 O 3 and a metal oxide represented by MeO as main carrier components. 1 or 2 or more of the above, wherein the main component of the catalyst support contains MeO in an amount of about 25 to 40 mol per 100 mol of aluminum oxide.
Is a cyclic gasification catalyst characterized by being two or three metals selected from the group consisting of Ca, Ba and Sr.

【0008】この触媒は触媒担体100 重量部に対し、酸
化ニッケル及び/又は酸化コバルトを1〜50重量部を担
持することが好ましく、少なくとも1種以上の白金族貴
金属を0.01〜3重量部担持することが好ましい。
The catalyst preferably carries 1 to 50 parts by weight of nickel oxide and / or cobalt oxide, and 0.01 to 3 parts by weight of at least one platinum group noble metal, per 100 parts by weight of the catalyst carrier. Preferably.

【0009】本発明者等はさらに、アルミニウムの酸化
物及び/又は水酸化物( Al2O3及び/又は Al2O3・nH
2O) とMe化合物と、必要量のカルシウム・アルミナセメ
ントなどの成形助剤とを、 Al2O3: MeO モル比としてて
100:(25 〜40) の割合に混合した後、所要に応じてこれ
を成形した後、焼成して触媒担体とし、この触媒担体に
ニッケル化合物、コバルト化合物、白金族貴金属化合物
の少なくとも1種以上を含む水溶液を含浸させ、然る後
これを加熱することにより本発明の触媒が得られること
を見出した。
The present inventors have further found that aluminum oxide and / or hydroxide (Al 2 O 3 and / or Al 2 O 3 .nH
2 O) and the Me compound and the necessary amount of molding aid such as calcium / alumina cement as Al 2 O 3 : MeO molar ratio.
After mixing in a ratio of 100: (25-40), if necessary, this is shaped and then calcined to obtain a catalyst carrier, and the catalyst carrier contains at least one of nickel compound, cobalt compound and platinum group noble metal compound. It has been found that the catalyst of the present invention can be obtained by impregnating an aqueous solution containing ## STR3 ## and then heating this.

【0010】本発明の触媒の製造方法は勿論前述の製造
方法に限られるものではなく、触媒の製造法として触媒
業界で通常用いられ又は知られている方法、例えば特開
平2−75344号等に記載の総ての方法が使用でき
る。
The method for producing the catalyst of the present invention is not limited to the above-mentioned production method, of course, and it is a method commonly used or known in the catalyst industry as a method for producing a catalyst, for example, JP-A-2-75344. All the methods described can be used.

【0011】本発明に係る触媒担体は、酸化アルミニウ
ム100 モルに対して約25〜40モル、好ましくは約25〜35
モルの割合でMeO を含むことが望ましい。MeO の割合が
この25モル未満の場合は、NiAl2O4 等の主成分による活
性劣化防止と強度の発現が充分ではなく、約40モルより
多量のMeO を含む場合は、耐熱性又は耐熱衝撃性が損な
われ易くなる。
The catalyst carrier according to the present invention is about 25-40 mol, preferably about 25-35 mol, per 100 mol of aluminum oxide.
It is desirable to include MeO in a molar ratio. If the proportion of MeO is less than 25 moles, the main components such as NiAl 2 O 4 will not sufficiently prevent activity deterioration and develop strength, and if it contains more than about 40 moles of MeO, heat resistance or thermal shock resistance will increase. It is easy to lose the sex.

【0012】本発明に於いて、MeはIIa 族のアルカリ土
類金属中のCa, Sr及びBaの少なくとも2種以上を表わし
ているが、アルカリ土類金属中でMgは充分に満足できる
触媒特性が得られず、Ca, Sr及びBa特にその2種以上の
組合わせが有効である。勿論これらの成分に小量のMgが
加わることを排除するものではない。Meの組合せのうち
Sr−Ca、Ba−Ca、Sr−Ba−Caの組合せは、市販のカルシ
ウムアルミナセメントが成形助剤として利用できること
から、技術的、経済的な意味に於て最も好ましい選択で
ある。
In the present invention, Me represents at least two kinds of Ca, Sr and Ba in the alkaline earth metal of Group IIa, and Mg in the alkaline earth metal has a sufficiently satisfactory catalytic property. Is not obtained, and a combination of Ca, Sr, and Ba is particularly effective. Of course, addition of a small amount of Mg to these components is not excluded. Out of the combination of Me
The combination of Sr-Ca, Ba-Ca, and Sr-Ba-Ca is the most preferable choice in the technical and economical sense because commercially available calcium alumina cement can be used as a molding aid.

【0013】本発明に係る触媒担体は、主成分として耐
熱性の優れたMeO ・6Al2O3結晶を多量に含んでいる。さ
らにX線解析によりMeO ・nAl2O3(nは1,2等の数)
及びα− Al2O3の結晶の存在が確認されていて、これが
触媒担体の強度、NiAl2O4 等の反応抑止能、耐久性等に
寄与しているものと思われるが、α− Al2O3の存在は極
力少なくすることが望ましい。
The catalyst carrier according to the present invention contains a large amount of MeO.6Al 2 O 3 crystals having excellent heat resistance as a main component. Furthermore, by X-ray analysis, MeO · nAl 2 O 3 (n is a number such as 1, 2)
The presence of α-Al 2 O 3 crystals has been confirmed, and it is considered that this contributes to the strength of the catalyst carrier, the reaction suppressing ability of NiAl 2 O 4, etc., the durability, etc. It is desirable to minimize the presence of 2 O 3 .

【0014】本発明に於いて、Ni及び/又はCoの含有量
は触媒担体に対し、NiO 及びCoO として1〜50wt%、特
に1〜25wt%の範囲であることが望ましい。触媒成分Ni
及び/又はCoの量が多過ぎても、また少な過ぎても、水
蒸気改質反応の活性が低くなる。触媒成分量が多過ぎる
場合に担体の優れた特性が触媒性能に生かされない惧れ
がある。
In the present invention, the content of Ni and / or Co is preferably in the range of 1 to 50% by weight, particularly 1 to 25% by weight as NiO and CoO with respect to the catalyst carrier. Catalyst component Ni
If the amount of Co and / or Co is too large or too small, the activity of the steam reforming reaction becomes low. If the amount of the catalyst component is too large, the excellent properties of the carrier may not be utilized for the catalyst performance.

【0015】白金族貴金属は単独又はNi及び/又はCoと
の併用の場合があるが、その担持量としては担体に対し
約0.01〜3重量%の範囲とすることが望ましい。約0.01
重量%未満では活性が充分ではなく、約3重量%より大
きくすることは経済的に得策ではない。
The platinum group noble metal may be used alone or in combination with Ni and / or Co, and the supported amount is preferably in the range of about 0.01 to 3% by weight based on the carrier. About 0.01
If it is less than about 3% by weight, the activity is not sufficient, and if it exceeds about 3% by weight, it is not economically advantageous.

【0016】本発明の触媒は粉粒体のまま使用しても良
いが、通常タブレット、リング、球、押出成形体などの
成形体として使用する。本発明の触媒又は触媒担体の成
形は、成形助剤を使用しないで行なってもよいが、この
場合成形操作はかなり難しく、適当な成形助剤を使用し
て成形することが好ましい。成形助剤としてはメチルセ
ルローズ、ポリビニルアルコール等の有機結合材、セメ
ント類などの無機結合材など、一般に触媒業界で使用す
る総ての結合材が使用できるが、カルシウムアルミナセ
メント等の使用が特に望ましく、この場合活性の著しい
向上が副次的効果として期待される。成形助剤の添加量
は用いる成形助剤の種類によって異なるが、カルシウム
アルミナセメントの場合、担体主成分に対し約10〜40重
量%とすることが望ましい。
The catalyst of the present invention may be used in the form of powder, but it is usually used as a molded product such as a tablet, a ring, a sphere, or an extrusion molded product. The catalyst or catalyst carrier of the present invention may be molded without using a molding aid, but in this case the molding operation is rather difficult, and it is preferable to mold using a suitable molding aid. As the molding aid, all binders generally used in the catalyst industry such as methyl cellulose, organic binders such as polyvinyl alcohol, inorganic binders such as cements can be used, but use of calcium alumina cement or the like is particularly desirable. In this case, a remarkable improvement in activity is expected as a secondary effect. The addition amount of the molding aid varies depending on the type of the molding aid used, but in the case of calcium alumina cement, it is preferably about 10 to 40% by weight based on the main component of the carrier.

【0017】本発明の触媒は、サイクリック式ガス化に
よる都市ガス製造に於ける水蒸気改質反応用に使用され
る。供給原料としてはメタン、エタン、プロパン、ブタ
ン及びこれらの混合物、LPG 、ナフサ、灯軽油、原油、
重油などの石油系の炭化水素類が使用される。
The catalyst of the present invention is used for a steam reforming reaction in city gas production by cyclic gasification. As feedstock, methane, ethane, propane, butane and mixtures thereof, LPG, naphtha, kerosene, crude oil,
Petroleum hydrocarbons such as heavy oil are used.

【0018】[0018]

【実施例】次に本発明を実施例につきさらに詳細に説明
するが、本発明がこれらの例のみに限定されるものでな
いこと勿論である。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but it goes without saying that the present invention is not limited to these examples.

【0019】〔実施例1〕水酸化ストロンチウム、水酸
化アルミニウム及びカルシウムアルミナセメントを、Sr
O ; CaO : Al2O3 モル比が10:17:100 となるように配
合した後、湿式にて30分混合した。使用したカルシウム
アルミナセメントは Al2O3を約80.5wt%、CaO を約19.5
wt%含んでいた。この混合物を400 ℃で4時間乾燥後、
プレス機にて外径1.9cm ×高さ1.9 cm×内径0.7 cm(3/
4 インチ×3/4 インチ×9/32インチ) のリング状に成形
し、一昼夜養生し、400 ℃で乾燥した後、1300℃で5時
間焼成して触媒担体を得た。この担体の圧壊強度は75
kgであり、X線回折測定の結果、この担体の組成物はSr
O ・6Al2O3, CaO ・6Al2O3, CaO ・2Al2O3及びα− Al2
O3の混晶であった。この担体に硝酸ニッケル水溶液を含
浸させ、さらに600 ℃で5時間焼成して本発明の触媒を
得た。この触媒のニッケル担持量は酸化ニッケルとして
5重量%であった。
[Example 1] Strontium hydroxide, aluminum hydroxide and calcium alumina cement were mixed with Sr.
O; CaO: Al 2 O 3 were mixed so that the molar ratio was 10: 17: 100, and then mixed by a wet method for 30 minutes. The calcium alumina cement used was Al 2 O 3 about 80.5 wt% and CaO about 19.5%.
It contained wt%. After drying this mixture at 400 ° C for 4 hours,
With a press machine, outer diameter 1.9 cm x height 1.9 cm x inner diameter 0.7 cm (3 /
It was molded into a ring shape of 4 inches × 3/4 inches × 9/32 inches), aged overnight, dried at 400 ° C., and then calcined at 1300 ° C. for 5 hours to obtain a catalyst carrier. The crush strength of this carrier is 75
X-ray diffraction measurement showed that the composition of this carrier was Sr.
O ・ 6Al 2 O 3 , CaO ・ 6Al 2 O 3 , CaO ・ 2Al 2 O 3 and α-Al 2
It was a mixed crystal of O 3 . This carrier was impregnated with an aqueous solution of nickel nitrate and further calcined at 600 ° C. for 5 hours to obtain a catalyst of the present invention. The amount of nickel supported on this catalyst was 5% by weight as nickel oxide.

【0020】〔比較例1〕SrO :CaO :Al2O3 モル比が
13:9:100 となるように原料の配合量を変えた他は、
実施例1と同様にして比較例1の触媒を得た。焼成後の
担体の圧壊強度は40Kgであった。この触媒は実施例1の
触媒に比べて遙かに強度が低い為、スチーミングテスト
は行わなかった。
[Comparative Example 1] SrO: CaO: Al 2 O 3 molar ratio
Other than changing the blending amount of the raw materials to be 13: 9: 100,
A catalyst of Comparative Example 1 was obtained in the same manner as in Example 1. The crush strength of the carrier after firing was 40 kg. Since this catalyst has much lower strength than the catalyst of Example 1, no steaming test was conducted.

【0021】〔比較例2〕水酸化ストロンチウムの代り
に硝酸マグネシウムを用いた他は、実施例1と同様にし
て比較例2の触媒を得た。触媒担体の組成はMgO :CaO
:Al2O3 モル比で19:14:100 であった。
Comparative Example 2 A catalyst of Comparative Example 2 was obtained in the same manner as in Example 1 except that magnesium nitrate was used instead of strontium hydroxide. The composition of the catalyst carrier is MgO: CaO
The molar ratio of Al 2 O 3 was 19: 14: 100.

【0022】〔比較例3〕工業的に現在使用されている
ムライト担体にニッケルを担持した触媒を比較例3の触
媒とした。
[Comparative Example 3] A catalyst in which nickel was supported on a mullite carrier which is currently used industrially was used as a catalyst of Comparative Example 3.

【0023】実施例1及び比較例1,2及び3の触媒の
夫々の物性値を次の表1に示す。
The physical properties of the catalysts of Example 1 and Comparative Examples 1, 2 and 3 are shown in Table 1 below.

【0024】[0024]

【表1】 [Table 1]

【0025】〔使用例1〕実施例1及び比較例2の触媒
を用いてスチーミングテストを行ない、次の表2に示す
如きテスト結果を得た。
[Example 1 of use] A steaming test was conducted using the catalysts of Example 1 and Comparative Example 2, and the test results as shown in the following Table 2 were obtained.

【0026】[0026]

【表2】 [Table 2]

【0027】スチーミングテストは、触媒活性に及ぼす
スチームの影響を調査する方法で、供試触媒を15時間、
スチーム雰囲気下に保持(スチーミング)し、スチーミ
ング前後の触媒を塩酸に漬け、溶出するニッケルの量の
差を測るものである。溶出量の減少は触媒活性を低下さ
せるニッケルアルミネート NiAl2O4の生成に依る為、減
少量が大きいほど活性低下が大であることを示す。
The steaming test is a method for investigating the effect of steam on the catalytic activity, and the test catalyst is tested for 15 hours.
It is held in a steam atmosphere (steaming), the catalyst before and after steaming is immersed in hydrochloric acid, and the difference in the amount of nickel to be eluted is measured. The decrease in the amount of elution depends on the formation of nickel aluminate NiAl 2 O 4 , which decreases the catalytic activity. Therefore, the larger the decrease is, the greater the decrease in activity is.

【0028】〔使用例2〕 (通常条件での活性試験)実施例1、比較例2、比較例
3で得た触媒の通常条件下での活性試験を、以下のよう
に行なった。
USE EXAMPLE 2 (Activity Test Under Normal Conditions) The catalysts obtained in Example 1, Comparative Example 2 and Comparative Example 3 were tested for activity under normal conditions as follows.

【表3】 原料 :ブタン98%以上のLPG LHSV :1.6 hr-1 スチーム比 :1.21 (但しパージ期とヒート期のスチーム量はメイク期の1
6.9%) 反応温度 :1023K 反応圧力 :常圧 サイクルタイム :240 s/サイクル ホットスタンバイ時の雰囲気:空気雰囲気(1023K)
[Table 3] Raw material: LPG with over 98% butane LHSV: 1.6 hr -1 Steam ratio: 1.21 (However, the steam amount during the purge period and the heat period is 1 during the make period)
6.9%) Reaction temperature: 1023K Reaction pressure: Normal pressure Cycle time: 240 s / cycle Hot standby atmosphere: Air atmosphere (1023K)

【0029】[0029]

【表4】 [Table 4]

【0030】表4から判る通り、実施例1で得た触媒は
比較例2,3で得た触媒に比較して産気量が多く、ブタ
ン分解率が高いことから高活性であることが明らかであ
る。また、カーボンバランスが大きいことから触媒上で
の炭素析出量が少ないことも明らかである。
As can be seen from Table 4, the catalyst obtained in Example 1 is more active than the catalysts obtained in Comparative Examples 2 and 3 because it has a larger amount of gas production and a higher butane decomposition rate. Is. It is also clear that the amount of carbon deposited on the catalyst is small because the carbon balance is large.

【0031】〔使用例3〕 (通常条件での耐久試験)使用例2の条件で203 時間の
耐久試験を行なった。結果を図1に示す。この試験を43
日間継続しても産気量、ガス化効率、ブタン分解率、カ
ーボンバランス、生成ガス発熱量の経時変化は認められ
なかった。
[Example 3 of use] (Durability test under normal conditions) A durability test of 203 hours was performed under the conditions of Example 2 of use. The results are shown in Figure 1. This exam 43
No change with time was observed in the production amount, gasification efficiency, butane decomposition rate, carbon balance, and calorific value of generated gas, even if continued for a day.

【0032】〔使用例4〕 (加速条件での耐久試験)使用例2の条件と実装置で
は、ホットスタンバイ時の雰囲気が異なる為、次のよう
な条件で実施例1、比較例2、比較例3で得た触媒の加
速耐久試験を行なった。
[Use Example 4] (Durability Test under Acceleration Conditions) Since the atmosphere of hot standby differs between the conditions of Use Example 2 and the actual device, Example 1, Comparative Example 2, and Comparison were performed under the following conditions. The accelerated durability test of the catalyst obtained in Example 3 was performed.

【表5】 原料 :ブタン98%以上のLPG LHSV :1.6 hr-1 スチーム比 :1.21 (但しパージ期とヒート期のスチーム量はメイク期と同
量) 反応温度 :1023K 反応圧力 :常圧 サイクルタイム :240 s/サイクル ホットスタンバイ時の雰囲気:スチーム雰囲気(1073
K) 結果を次の表6と図2に示す。図2で○印は実施例1で
得た触媒、●印は比較例2で得た触媒、△印は比較例3
で得た触媒を夫々示す。
[Table 5] Raw material: LPG with over 98% butane LHSV: 1.6 hr -1 Steam ratio: 1.21 (However, the steam amount in the purge period and the heat period is the same amount as the make period) Reaction temperature: 1023K Reaction pressure: Normal pressure Cycle time : 240 s / cycle Hot standby atmosphere: Steam atmosphere (1073
K) The results are shown in Table 6 below and FIG. In FIG. 2, ◯ indicates the catalyst obtained in Example 1, ● indicates the catalyst obtained in Comparative Example 2, and Δ indicates Comparative Example 3.
The catalysts obtained in step 1 are shown below.

【0033】[0033]

【表6】 スチーミング条件では、比較例2で得た触媒の活性低下
が顕著であり、実施例1で得た触媒はこの条件下でも高
活性を維持している。
[Table 6] Under steaming conditions, the activity of the catalyst obtained in Comparative Example 2 is significantly reduced, and the catalyst obtained in Example 1 maintains high activity even under these conditions.

【0034】[0034]

【発明の効果】かくて本発明に依れば、耐熱性、耐熱衝
撃性、耐久性及び経済的であり、高活性を維持するサイ
クリック式ガス化触媒を得ることができた。
As described above, according to the present invention, it is possible to obtain a cyclic gasification catalyst which is heat resistant, heat shock resistant, durable and economical and maintains high activity.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は実施例1で得た触媒の通常条件下での耐
久試験結果で産気量の経時変化を示す特性線図である。
FIG. 1 is a characteristic diagram showing the change over time in the amount of gas produced as a result of a durability test of the catalyst obtained in Example 1 under normal conditions.

【図2】図2は実施例、比較例2,3で得た触媒の加速
条件下での試験結果で産気量の経時変化を示す特性線図
である。
[Fig. 2] Fig. 2 is a characteristic diagram showing the change over time in the amount of gas produced by the test results of the catalysts obtained in Examples and Comparative Examples 2 and 3 under accelerated conditions.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西岡 康雄 山口県下関市彦島迫町3−5−6 (72)発明者 松久 敏雄 山口県下関市彦島迫町4−8−23 ─────────────────────────────────────────────────── (72) Inventor Yasuo Nishioka 3-5-6 Hikoshimasako-cho, Shimonoseki City, Yamaguchi Prefecture (72) Inventor Toshio Matsuhisa 4-8-23 Hikoshimasako-cho, Shimonoseki City, Yamaguchi Prefecture

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 酸化アルミニウムAl2O3 とMeO で表わさ
れる金属酸化物とを主担体成分とする触媒担体上に、酸
化ニッケル、酸化コバルト及び白金族貴金属のうちの1
種又は2種以上を担持した触媒であって、担体主成分が
酸化アルミニウム100 モルに対してMeO を約25〜40モル
の割合で含んで成り、MeはカルシウムCa、バリウムBa及
びストロンチウムSrから成る群から選択した2種又は3
種の金属であることを特徴とするサイクリック式ガス化
触媒。
1. A nickel oxide, a cobalt oxide, and a platinum group noble metal on a catalyst carrier containing aluminum oxide Al 2 O 3 and a metal oxide represented by MeO as a main carrier component.
One or two or more supported catalysts, the main component of which is MeO in an amount of about 25 to 40 mol per 100 mol of aluminum oxide, and Me is composed of calcium Ca, barium Ba and strontium Sr. 2 or 3 selected from the group
A cyclic gasification catalyst characterized by being a kind of metal.
【請求項2】 触媒担体100 重量部に対し、酸化ニッケ
ル及び/又は酸化コバルトを約1〜50重量部担持して成
る請求項1記載の触媒。
2. The catalyst according to claim 1, wherein about 1 to 50 parts by weight of nickel oxide and / or cobalt oxide is supported on 100 parts by weight of the catalyst carrier.
【請求項3】 触媒担体100 重量部に対し、少なくとも
1種以上の白金族貴金属を約0.01〜3重量部担持して成
る請求項1記載の触媒。
3. The catalyst according to claim 1, wherein about 0.01 to 3 parts by weight of at least one platinum group noble metal is supported on 100 parts by weight of the catalyst carrier.
【請求項4】 触媒担体100 重量部に対し酸化ニッケル
及び/又は酸化コバルトを約1〜50重量部担持し、且つ
白金族金属の1種又は2種以上を約0.01〜3重量部担持
して成る請求項1記載の触媒。
4. A catalyst carrier carrying 100 parts by weight of nickel oxide and / or cobalt oxide in an amount of about 1 to 50 parts by weight, and one or more platinum group metals in an amount of about 0.01 to 3 parts by weight. A catalyst according to claim 1 which comprises:
【請求項5】 担体主成分を形成する酸化アルミニウム
及びMeで表わされる金属酸化物が、主としてMeO ・6Al2
O3で表わされる複合酸化物として触媒中に存在する請求
項1,2,3又は4記載の触媒。
5. Aluminum oxide and a metal oxide represented by Me, which form the main component of the carrier, are mainly MeO.6Al 2
The catalyst according to claim 1, 2 or 3 which is present in the catalyst as a complex oxide represented by O 3 .
【請求項6】 触媒担体が担体主成分MeO ・6Al2O3の他
にMeO ・nAl2O3(nは1以上の整数)及びα− Al2O3
含んでいる請求項1,2,3,4,又は5記載の触媒。
6. Besides MeO · nAl the catalyst carrier support composed mainly MeO · 6Al 2 O 3 2 O 3 (n is an integer of 1 or more) and alpha-Al 2 O 3 according to claim 1 which contains , 3, 4, or 5 catalyst.
【請求項7】 アルミニウムの酸化物及び/又は水酸化
物と、Me化合物(MeはCa, Ba及びSrのうちの2種又は3
種を示す)と、成形助剤とを、 Al2O3;MeOモル比とし
て100 :(25〜40) の割合に混合した後、これを焼成し
て触媒担体とし、この触媒担体にニッケル化合物、コバ
ルト化合物及び白金族貴金属化合物の少なくとも1種以
上を含む水溶液に含浸させ、然る後これを加熱すること
を特徴とするサイクリック式ガス化触媒の製造方法。
7. An oxide and / or hydroxide of aluminum and a Me compound (Me is Ca, Ba or Sr of 2 or 3).
And a molding aid are mixed in a molar ratio of Al 2 O 3 ; MeO of 100: (25 to 40) and then calcined to form a catalyst carrier. A method for producing a cyclic gasification catalyst, which comprises impregnating an aqueous solution containing at least one of a cobalt compound and a platinum group noble metal compound, and then heating this.
【請求項8】 触媒担体の焼成に先立って、アルミニウ
ム酸化物及び/又は水酸化物とMe化合物との混合物に成
形助剤を添加し又は添加せずして成形を行なう請求項7
記載の方法。
8. The molding is carried out with or without the addition of a molding aid to the mixture of the aluminum oxide and / or hydroxide and the Me compound prior to calcination of the catalyst carrier.
The method described.
【請求項9】 成形助剤がカルシウムアルミナセメント
である請求項8記載の方法。
9. The method according to claim 8, wherein the molding aid is calcium alumina cement.
JP4045652A 1992-03-03 1992-03-03 Cyclic gasification catalyst and production thereof Pending JPH05245379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4045652A JPH05245379A (en) 1992-03-03 1992-03-03 Cyclic gasification catalyst and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4045652A JPH05245379A (en) 1992-03-03 1992-03-03 Cyclic gasification catalyst and production thereof

Publications (1)

Publication Number Publication Date
JPH05245379A true JPH05245379A (en) 1993-09-24

Family

ID=12725312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4045652A Pending JPH05245379A (en) 1992-03-03 1992-03-03 Cyclic gasification catalyst and production thereof

Country Status (1)

Country Link
JP (1) JPH05245379A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529359A (en) * 1998-11-10 2002-09-10 インターナショナル フュエル セルズ,エルエルシー Suppression of carbon deposition on the wall of fuel gas steam reformer
JP2002531363A (en) * 1998-11-10 2002-09-24 インターナショナル フュエル セルズ,エルエルシー Suppression of carbon deposition on the wall of a fuel gas steam reformer
JP2011255375A (en) * 2011-07-21 2011-12-22 Takuma Co Ltd Method for producing gasification catalyst, and gasification treatment system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529359A (en) * 1998-11-10 2002-09-10 インターナショナル フュエル セルズ,エルエルシー Suppression of carbon deposition on the wall of fuel gas steam reformer
JP2002531363A (en) * 1998-11-10 2002-09-24 インターナショナル フュエル セルズ,エルエルシー Suppression of carbon deposition on the wall of a fuel gas steam reformer
JP2011255375A (en) * 2011-07-21 2011-12-22 Takuma Co Ltd Method for producing gasification catalyst, and gasification treatment system

Similar Documents

Publication Publication Date Title
US3119667A (en) Process for hydrogen production
KR920000149B1 (en) High temperature stable catalyst and method for using thereof
EP1732688B1 (en) Nickel supported on titanium stabilized promoted calcium aluminate carrier
ZA200700172B (en) Promoted calcium-aluminate supported catalysts for synthesis gas generation
US20010036433A1 (en) Combustion catalyst and combustion process using such a catalyst
JPS592537B2 (en) Carbon monoxide conversion catalyst and method for producing the catalyst
JPH04227062A (en) Catalyst for steam-reforming of hydrocarbon
WO1996000613A1 (en) Catalyst and process for the production of hydrogen and/or methane
JPS63205142A (en) Catalyst for steam-reforming hydrocarbon
JPH06182201A (en) Catalyst stable at high temperature, its preparation, and method for effecting chemical reaction using this catalyst
EP0360554A1 (en) Catalysts
KR20010101612A (en) Catalyst Carrier Carrying Nickel Ruthenium and Lanthanum
JPS6138627A (en) Catalyst stable at high temperature, process for preparing the catalyst, and process for carrying out chemical reaction using the catalyst
JPS6232972B2 (en)
JPH05245379A (en) Cyclic gasification catalyst and production thereof
JPH0615172A (en) Steam reforming catalyst and its production
US3507811A (en) Catalyst for the reaction of hydrocarbons with steam
JPS60238146A (en) Heat resistant carrier composition
JPH05168924A (en) Steam reforming catalyst
JPS63248444A (en) Steam reforming and/or partial oxidation catalyst for hydrocarbon
JP4418063B2 (en) Method for producing hydrogen
JPH0435220B2 (en)
WO2003043962A1 (en) Heteregeneous catalyst compositions
JPS6128451A (en) Catalyst for steam reforming of hydrocarbon
US3709832A (en) Method for the preparation of a catalyst usable for catalytic cracking of hydrocarbons