JPH05168924A - Steam reforming catalyst - Google Patents

Steam reforming catalyst

Info

Publication number
JPH05168924A
JPH05168924A JP3244228A JP24422891A JPH05168924A JP H05168924 A JPH05168924 A JP H05168924A JP 3244228 A JP3244228 A JP 3244228A JP 24422891 A JP24422891 A JP 24422891A JP H05168924 A JPH05168924 A JP H05168924A
Authority
JP
Japan
Prior art keywords
carrier
zirconia
catalyst
steam reforming
reforming catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3244228A
Other languages
Japanese (ja)
Inventor
Takao Hashimoto
孝雄 橋本
Tomoko Iijima
朋子 飯島
彰 ▲さい▼合
Akira Saigou
Satoshi Sakurada
智 櫻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP3244228A priority Critical patent/JPH05168924A/en
Publication of JPH05168924A publication Critical patent/JPH05168924A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To enhance the catalytic activity and life of a steam reforming catalyst by supporting a catalytically active component selected from rhodium, ruthenium, palladium, platinum or an alloy of them on a carrier wherein an alumina substance is compounded with a zirconium carrier component. CONSTITUTION:For example, a mixture of a tetragonal zirconia powder containing 3mol% of yttria and an alumina cement powder is baked to form a carrier which is, in turn, impregnated with a ruthenium chloride solution and the impregnated carrier is dried to form a steam reforming catalyst. As mentioned above, partially stabilized or stabilized zirconia is used as a zirconla carrier component. Yttrium-containing zirconia is produced by a method for baking a powder mixture of yttria and zirconia, a coprecipitation method using a yttrium compound and a zirconium compound, a hydrolysis method or an alkoxylation method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素の水蒸気改質
触媒に関するものである。さらに詳しくいえば、本発明
は、良好な触媒活性及び触媒の長寿命化を維持したまま
ジルコニア系担体を該担体成分にアルミナ系物質を配合
した担体に代えた、高強度、低価格の水蒸気改質触媒に
関するものである。この水蒸気改質触媒は特に燃料電池
用改質触媒として有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrocarbon steam reforming catalyst. More specifically, the present invention provides a high-strength, low-cost steam reformer in which a zirconia-based carrier is replaced with a carrier in which an alumina-based substance is mixed with the carrier component while maintaining good catalytic activity and long catalyst life. Quality catalyst. This steam reforming catalyst is particularly useful as a reforming catalyst for fuel cells.

【0002】[0002]

【従来の技術】炭化水素の水蒸気改質は炭化水素と水蒸
気を触媒の存在下高温で反応させることにより、水素と
酸化炭素類からなるガスを製造する方法であり、水素の
製造方法として周知である。従来の代表的な水蒸気改質
触媒としては、アルカリ金属酸化物、アルカリ土類金属
酸化物、シリカなどを含有してもよいアルミナ系担体に
ニッケル、鉄、コバルト、白金、ロジウム、ルテニウ
ム、パラジウムなどの触媒を担持させたものがよく知ら
れている。また、ジルコニア担体に担持したコバルト触
媒(特公昭43−12410号公報)や同じくロジウム
触媒(特公昭56−91844号公報)が炭化水素の水
蒸気改質反応において優れた性能を有することが報告さ
れている。
2. Description of the Related Art Hydrocarbon reforming of hydrocarbons is a method for producing a gas consisting of hydrogen and carbon oxides by reacting hydrocarbons and steam at high temperature in the presence of a catalyst, which is well known as a method for producing hydrogen. is there. Typical conventional steam reforming catalysts include nickel, iron, cobalt, platinum, rhodium, ruthenium, palladium, etc. on an alumina-based carrier that may contain alkali metal oxides, alkaline earth metal oxides, silica, etc. It is well known that the above catalyst is supported. Further, it has been reported that a cobalt catalyst (Japanese Patent Publication No. 43-12410) and a rhodium catalyst (Japanese Patent Publication No. 56-91844) supported on a zirconia carrier have excellent performance in a steam reforming reaction of hydrocarbons. There is.

【0003】さらに本発明者らは先にイットリアを含有
したジルコニア担体にロジウム、ルテニウム、パラジウ
ム、白金を担持させることにより、改質活性が高く、炭
素の生成の少ない長期の安定性に優れた触媒系を提案し
た(特開平2−2878号公報)。
Further, the present inventors previously supported rhodium, ruthenium, palladium, and platinum on a zirconia carrier containing yttria, thereby having a high reforming activity and a catalyst excellent in long-term stability with less carbon formation. A system was proposed (JP-A-2-2878).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この改
良触媒は担体に高価なジルコニア系のものを必要とする
ので、触媒活性成分も高価な貴金属系のものであること
も相俟って触媒コストがかかり過ぎるという欠点を有す
る。
However, since this improved catalyst requires an expensive zirconia-based carrier as a carrier, the catalyst cost is also high because the catalytically active component is also an expensive noble metal-based one. It has the drawback of taking too much.

【0005】本発明は、このような従来の水蒸気改質触
媒のもつ欠点を克服し、良好な触媒活性及び触媒の長寿
命化を維持したまま、コスト低減を図りうる水蒸気改質
触媒を提供することを目的としてなされたものである。
The present invention provides a steam reforming catalyst which can overcome the drawbacks of the conventional steam reforming catalyst and can reduce the cost while maintaining good catalytic activity and long catalyst life. It was made for that purpose.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記の好
ましい特徴を有する水蒸気改質触媒を開発するために種
々研究を重ねた結果、上記ジルコニア系担体に特定貴金
属を担持させた触媒における高価なジルコニア系担体を
該担体成分に安価なアルミナ系物質を配合した担体に代
えることにより、その目的を達成しうることを見出し、
さらにアルミナ系物質の配合により触媒の機械的強度が
大幅に向上するという予期しない効果をも見出し、これ
らの知見に基づいて本発明を完成するに至った。
The inventors of the present invention have conducted various studies to develop a steam reforming catalyst having the above-mentioned preferable characteristics, and as a result, in a catalyst in which a specific noble metal is supported on the zirconia-based carrier. It was found that the purpose can be achieved by replacing the expensive zirconia-based carrier with a carrier prepared by blending an inexpensive alumina-based substance in the carrier component,
Furthermore, an unexpected effect that the mechanical strength of the catalyst is significantly improved by blending the alumina-based substance was found, and the present invention has been completed based on these findings.

【0007】すなわち、本発明は、ロジウム、ルテニウ
ム、パラジウム、白金及びこれらの合金の中から選ばれ
た少なくとも1種の触媒活性成分をジルコニア系担体成
分にアルミナ系物質を配合した担体に担持させて成る炭
化水素の水蒸気改質触媒を提供するものである。
That is, according to the present invention, at least one catalytically active component selected from rhodium, ruthenium, palladium, platinum and alloys thereof is supported on a carrier prepared by mixing an alumina-based substance with a zirconia-based carrier component. And a steam reforming catalyst for hydrocarbons.

【0008】本発明の触媒においては担体として、ジル
コニア系担体成分にアルミナ系物質を配合したものを用
いることが必要である。ジルコニア系担体成分として
は、例えば部分安定化ジルコニア、安定化ジルコニアな
どが挙げられ、特にイットリアを含有するジルコニアが
有利に用いられる。イットリア含有ジルコニアにおい
て、イットリアの含有割合は0.5〜20モル%、好ま
しくは1.5〜10モル%の範囲で選ばれる。この割合
が0.5モル%未満ではその含有効果が十分ではない
し、また20モル%を超えると結晶系の安定化が不十分
となる。
In the catalyst of the present invention, it is necessary to use, as a carrier, a zirconia-based carrier component mixed with an alumina-based substance. Examples of the zirconia-based carrier component include partially stabilized zirconia and stabilized zirconia. Particularly, zirconia containing yttria is advantageously used. In the yttria-containing zirconia, the yttria content is selected in the range of 0.5 to 20 mol%, preferably 1.5 to 10 mol%. If this proportion is less than 0.5 mol%, the effect of inclusion is not sufficient, and if it exceeds 20 mol%, the stabilization of the crystal system becomes insufficient.

【0009】イットリアを含有するジルコニアを製造す
るには、例えば所定割合のイットリアとジルコニアの粉
末混合物を焼成する方法、イットリウム化合物とジルコ
ニウム化合物を用いた共沈法、加水分解法又はアルコキ
シド法などの方法により行われる。中でも有利には共沈
法、特にYClのようなイットリウムハライドとZr
OClのようなジルコニウムオキシハライドを用いた
共沈法が用いられる。
To produce zirconia containing yttria, for example, a method of firing a powder mixture of yttria and zirconia in a predetermined ratio, a coprecipitation method using a yttrium compound and a zirconium compound, a hydrolysis method or an alkoxide method is used. Done by. Among them, the coprecipitation method is preferable, and particularly yttrium halide such as YCl 3 and Zr are used.
A coprecipitation method using zirconium oxyhalide such as OCl 2 is used.

【0010】アルミナ系物質としては、アルミナ又はア
ルミナに金属又は半金属元素の酸化物の中から選ばれた
少なくとも1種を配合したものが用いられる。上記金属
元素としては、Li、Kなどのアルカリ金属、Mg、C
a、Baなどのアルカリ土類金属、その他Ti、Cr、
Mn、Fe等が挙げられ、また半金属元素としては、S
i、B、P等が挙げられる。アルミナセメントはアルミ
ナ、酸化カルシウムを主成分とし、その他酸化ケイ素及
び少量の酸化鉄を含有するものであるが、好ましい物質
の1つである。
As the alumina-based substance, alumina or a mixture of alumina and at least one selected from oxides of metal or metalloid elements is used. Examples of the metal element include alkali metals such as Li and K, Mg and C
Alkaline earth metals such as a and Ba, other Ti, Cr,
Mn, Fe, etc. may be mentioned, and as the metalloid element, S
i, B, P and the like can be mentioned. Alumina cement, which contains alumina and calcium oxide as main components, and also contains silicon oxide and a small amount of iron oxide, is one of the preferable substances.

【0011】アルミナ系物質の割合は担体量全量に対し
て好ましくは10〜80重量%、より好ましくは20〜
70重量%の範囲で選ばれる。この割合が80重量%を
超えるとジルコニア系担体触媒の改質特性及びコーキン
グ抑制効果が低下するし、また10重量%未満では強度
の向上及び触媒価格の低減の効果が十分ではない。
The proportion of the alumina-based substance is preferably 10 to 80% by weight, more preferably 20 to 80% by weight based on the total amount of the carrier.
It is selected in the range of 70% by weight. If this proportion exceeds 80% by weight, the reforming characteristics and coking suppression effect of the zirconia-based carrier catalyst will deteriorate, and if it is less than 10% by weight, the effect of improving the strength and reducing the catalyst price will not be sufficient.

【0012】担体に担持させる触媒活性成分としての貴
金属(以下、触媒金属という)には、ロジウム、ルテニ
ウム、パラジウム、白金又はこれらの合金が用いられ、
特にロジウム、ルテニウムが好ましい。この触媒金属の
割合は特に限定されないが、触媒全量すなわち触媒金属
と上記担体の合計量に対して通常0.01〜10重量
%、好ましくは0.1〜3重量%の範囲で選ばれる。こ
の割合が少なすぎると触媒活性が低く炭化水素の改質が
十分ではないし、また多すぎても使用量に見合う改質効
果が得られないので不経済である。
Rhodium, ruthenium, palladium, platinum or alloys thereof are used as the noble metal (hereinafter referred to as catalyst metal) as a catalytically active component supported on the carrier.
Rhodium and ruthenium are particularly preferable. The proportion of the catalyst metal is not particularly limited, but is usually selected in the range of 0.01 to 10% by weight, preferably 0.1 to 3% by weight, based on the total amount of the catalyst, that is, the total amount of the catalyst metal and the carrier. If this ratio is too small, the catalytic activity is low and reforming of the hydrocarbon is not sufficient, and if it is too large, the reforming effect commensurate with the amount used cannot be obtained, which is uneconomical.

【0013】触媒金属を担体に担持させるには慣用の方
法が用いられるが、通常は含浸法でよい。担体の使用形
態は特に制限されず、円柱状、リング状、粒子状、繊維
状、ハニカム状などの三次元構造体の他、他の担体との
複合構造物でもよい。本発明の触媒を燃料電池用内部改
質触媒として用いる場合には、粒径の小さい粒状の担体
が好ましい。
A conventional method is used for supporting the catalyst metal on the carrier, but an impregnation method is usually used. The use form of the carrier is not particularly limited, and may be a three-dimensional structure such as a columnar shape, a ring shape, a particle shape, a fibrous shape, or a honeycomb shape, or a composite structure with another carrier. When the catalyst of the present invention is used as an internal reforming catalyst for a fuel cell, a granular carrier having a small particle size is preferable.

【0014】本発明の触媒を用いた水蒸気改質反応は通
常300〜1000℃で行われるが、本発明の触媒は7
00℃以下でもコーキングを生じにくいので、特に燃料
電池用の改質触媒として好適である。
The steam reforming reaction using the catalyst of the present invention is usually carried out at 300 to 1000 ° C., but the catalyst of the present invention is 7
Since coking hardly occurs even at a temperature of 00 ° C. or lower, it is particularly suitable as a reforming catalyst for fuel cells.

【0015】また、反応圧力は、通常0.01〜50k
g/cmG、好ましくは0.1〜30kg/cm
である。水蒸気と原料ガス中の炭素とのモル比(以下、
S/Cという)は反応にできるだけ余分の水蒸気を用い
ないのが経済的に有利なので小さい方が好ましいが、一
方S/Cを小さくしすぎるとコーキングを生じやすくな
るので、S/Cはコーキングの問題のない1.2以上、
好ましくは1.4以上とするのが好ましい。
The reaction pressure is usually 0.01 to 50 k.
g / cm 2 G, preferably 0.1 to 30 kg / cm 2 G
Is. The molar ratio of water vapor and carbon in the source gas (hereinafter,
S / C) is preferably small because it is economically advantageous not to use excess steam as much as possible for the reaction, but on the other hand, if S / C is too small, coking tends to occur, so S / C is less than that of coking. 1.2 or above without problems,
It is preferably 1.4 or more.

【0016】本発明の触媒が有効に用いられる水蒸気改
質反応は特に限定されず、例えばLNG、LPGのよう
な軽質炭化水素含有ガス、ナフサや灯油のような石油留
分や、石炭液化油など主として炭化水素、特に分子量の
あまり大きくない炭化水素(C〜C30程度)からな
る原料を水蒸気接触分解することにより、水素、一酸化
炭素、二酸化炭素、あるいはメタンを生成させる反応な
どが挙げられる。
The steam reforming reaction in which the catalyst of the present invention is effectively used is not particularly limited. For example, light hydrocarbon-containing gas such as LNG and LPG, petroleum fraction such as naphtha and kerosene, coal liquefied oil, etc. Examples include a reaction in which hydrogen, carbon monoxide, carbon dioxide, or methane is produced by catalytically cracking a raw material mainly composed of a hydrocarbon, particularly a hydrocarbon having a not so large molecular weight (about C 1 to C 30 ). ..

【0017】原料は炭化水素のみからなるのが好ましい
が、微量の異種成分を含有していてもよい。原料は、有
利には比重は0.80以下、好ましくは0.75以下
で、C/H重量比は6.5以下、好ましくは6.0以下
のものである。
The raw material is preferably composed of only hydrocarbons, but may contain a small amount of different components. The raw materials advantageously have a specific gravity of 0.80 or less, preferably 0.75 or less and a C / H weight ratio of 6.5 or less, preferably 6.0 or less.

【0018】異種成分がイオウ化合物の場合には、該化
合物は原料がナフサの場合0.5ppm以下に、また灯
油は通常50ppm程度のイオウ化合物を含有するが、
これを原料とする場合も0.5ppm以下に除去した後
使用するのが望ましい。除去手段としては水素化脱硫等
が採用される。
When the different component is a sulfur compound, the content of the compound is 0.5 ppm or less when the raw material is naphtha, and kerosene usually contains about 50 ppm of the sulfur compound.
When using this as a raw material, it is desirable to use it after removing it to 0.5 ppm or less. As the removing means, hydrodesulfurization or the like is adopted.

【0019】[0019]

【発明の効果】本発明の水蒸気改質触媒は、反応効率に
優れ、水素生成効率が高く、低いS/Cや1000℃ま
での例えば600〜700℃という高温下でも炭素生成
が抑制されるなど、良好な触媒活性及び触媒の長寿命化
を維持したまま、コスト低減及び高強度化を図りうると
いう顕著な効果を奏する。
EFFECTS OF THE INVENTION The steam reforming catalyst of the present invention has excellent reaction efficiency, high hydrogen production efficiency, low S / C and suppressed carbon production even at a high temperature up to 1000 ° C., for example 600 to 700 ° C. In addition, there is a remarkable effect that the cost can be reduced and the strength can be increased while maintaining the good catalytic activity and the long life of the catalyst.

【0020】[0020]

【実施例】次に、実施例によって本発明をさらに詳細に
説明する。
EXAMPLES Next, the present invention will be described in more detail by way of examples.

【0021】実施例、比較例 3モル%イットリアを含有する正方晶ジルコニア(以
下、3YSZという)粉末とアルミナセメント粉末(ア
ルミナ92.5重量%、酸化カルシウム7.5重量%)
を表1に示す組成割合で混合し、この混合物を5mm
径、5mm長の円柱状に錠剤成型した。次に、このペレ
ットを1000℃で3時間焼成したのち、BET法によ
り表面積測定を、また木屋式硬度計により強度測定を行
った。これらの測定結果を表1に示す。
Examples and Comparative Examples Tetragonal zirconia (hereinafter referred to as 3YSZ) powder containing 3 mol% yttria and alumina cement powder (alumina 92.5% by weight, calcium oxide 7.5% by weight).
Were mixed in the composition ratio shown in Table 1, and this mixture was mixed for 5 mm.
A tablet was formed into a cylindrical shape having a diameter of 5 mm. Next, after firing the pellets at 1000 ° C. for 3 hours, the surface area was measured by the BET method and the strength was measured by a Kiya type hardness meter. The results of these measurements are shown in Table 1.

【表1】 これより、いずれの担体試料の場合も従来のジルコニア
系担体と比較して高い強度を示すことが分った。
[Table 1] From this, it was found that any of the carrier samples showed higher strength than the conventional zirconia-based carrier.

【0022】このようにして得られた試料No.2の担
体に0.37%のルテニウムが担持されるように塩化ル
テニウム溶液による含浸処理を施し、100℃で3時間
乾燥し、水蒸気改質触媒とした。この触媒を反応管に
1.2cc充填し、還元処理を行ったのち、脱硫処理し
た軽質ナフサ(比重0.70、C/H重量比5.52、
イオウ分50wppb)を炭化水素原料として650℃
(反応管出口温度)0.2kg/cmGの条件下でS
/C約3.0及び原料供給空間速度(GHSV)を約8
000h−1として反応を行った。その結果を比較のた
めに担体を従来のジルコニア担体に代えたこと以外は上
記実施例と同様にして調製した触媒を用いて実施例と同
様に反応させた場合と共に表2に示す。
Sample No. thus obtained The second carrier was impregnated with a ruthenium chloride solution so that 0.37% of ruthenium was supported and dried at 100 ° C. for 3 hours to obtain a steam reforming catalyst. After 1.2 cc of this catalyst was packed in a reaction tube and subjected to reduction treatment, desulfurized light naphtha (specific gravity 0.70, C / H weight ratio 5.52,
Sulfur content of 50 wppb) as a hydrocarbon raw material at 650 ° C
(Reaction tube outlet temperature) S under the condition of 0.2 kg / cm 2 G
/ C about 3.0 and material supply space velocity (GHSV) about 8
The reaction was carried out at 000 h −1 . For comparison, the results are shown in Table 2 together with the case where the catalyst was prepared in the same manner as in the above-mentioned Example except that the carrier was changed to the conventional zirconia carrier and the reaction was carried out in the same manner as in the Example.

【0023】[0023]

【表2】 これより、安価なアルミナセメントを50%添加した担
体を用いた触媒でも、従来のジルコニア担体を用いた触
媒と比較してほぼ同様の高活性を示すことが分る。
[Table 2] From this, it can be seen that even a catalyst using a carrier to which 50% of inexpensive alumina cement is added exhibits almost the same high activity as a catalyst using a conventional zirconia carrier.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 櫻田 智 埼玉県入間郡大井町西鶴ケ岡一丁目3番1 号 東燃株式会社総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Satoshi Sakurada 1-3-1, Nishitsurugaoka, Oi-cho, Iruma-gun, Saitama Prefecture Tonen Corporation Research Institute

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ロジウム、ルテニウム、パラジウム、白
金及びこれらの合金の中から選ばれた少なくとも1種の
触媒活性成分をジルコニア系担体成分にアルミナ系物質
を配合した担体に担持させて成る炭化水素の水蒸気改質
触媒。
1. A hydrocarbon obtained by supporting at least one catalytically active component selected from rhodium, ruthenium, palladium, platinum and alloys thereof on a carrier in which an alumina-based substance is mixed with a zirconia-based carrier component. Steam reforming catalyst.
JP3244228A 1991-08-30 1991-08-30 Steam reforming catalyst Pending JPH05168924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3244228A JPH05168924A (en) 1991-08-30 1991-08-30 Steam reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3244228A JPH05168924A (en) 1991-08-30 1991-08-30 Steam reforming catalyst

Publications (1)

Publication Number Publication Date
JPH05168924A true JPH05168924A (en) 1993-07-02

Family

ID=17115650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3244228A Pending JPH05168924A (en) 1991-08-30 1991-08-30 Steam reforming catalyst

Country Status (1)

Country Link
JP (1) JPH05168924A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998002377A1 (en) * 1996-07-15 1998-01-22 Asahi Kasei Kogyo Kabushiki Kaisha Process for preparing hydrogen-containing gas for fuel cell
WO1998009727A1 (en) * 1996-09-05 1998-03-12 Japan Energy Corporation Solid acid catalyst and process for preparing the same
JP2001279271A (en) * 2000-03-29 2001-10-10 Idemitsu Kosan Co Ltd Method for producing fuel oil for fuel cell and hydrogen for fuel cell
JP2001279275A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Method for producing fuel oil for fuel cell and hydrogen for fuel cell
WO2002066153A1 (en) * 2001-02-19 2002-08-29 Toyota Jidosha Kabushiki Kaisha Catalyst for hydrogen generation and catalyst for purification of exhaust gas
JP2007098250A (en) * 2005-10-03 2007-04-19 Petroleum Energy Center Partial oxidation-reforming catalyst and partial oxidation-reforming method
EP1894622A1 (en) 2001-03-29 2008-03-05 Idemitsu Kosan Co., Ltd. Catalytic processes for reforming a hydrocarbon
JP2008507389A (en) * 2004-07-09 2008-03-13 ズードケミー インコーポレイテッド Promoted calcium-aluminate supported catalysts for synthesis gas generation
JP2009078267A (en) * 1998-07-14 2009-04-16 Idemitsu Kosan Co Ltd Autothermal reforming catalyst and method for producing hydrogen or synthesis gas

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190430B1 (en) 1996-07-15 2001-02-20 Asahi Kasei Kogyo Kabushiki Kaisha Method for producing hydrogen-containing gas for fuel cell
WO1998002377A1 (en) * 1996-07-15 1998-01-22 Asahi Kasei Kogyo Kabushiki Kaisha Process for preparing hydrogen-containing gas for fuel cell
CN1100613C (en) * 1996-09-05 2003-02-05 株式会社日本能源 Solid acid catalyst and process for preparing the same
WO1998009727A1 (en) * 1996-09-05 1998-03-12 Japan Energy Corporation Solid acid catalyst and process for preparing the same
JP2009078267A (en) * 1998-07-14 2009-04-16 Idemitsu Kosan Co Ltd Autothermal reforming catalyst and method for producing hydrogen or synthesis gas
JP2001279271A (en) * 2000-03-29 2001-10-10 Idemitsu Kosan Co Ltd Method for producing fuel oil for fuel cell and hydrogen for fuel cell
JP2001279275A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Method for producing fuel oil for fuel cell and hydrogen for fuel cell
WO2002066153A1 (en) * 2001-02-19 2002-08-29 Toyota Jidosha Kabushiki Kaisha Catalyst for hydrogen generation and catalyst for purification of exhaust gas
US7220702B2 (en) 2001-02-19 2007-05-22 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification catalyst
US7229947B2 (en) 2001-02-19 2007-06-12 Toyota Jidosha Kabushiki Kaisha Catalyst for hydrogen generation and catalyst for purifying of exhaust gas
EP1894622A1 (en) 2001-03-29 2008-03-05 Idemitsu Kosan Co., Ltd. Catalytic processes for reforming a hydrocarbon
JP2008507389A (en) * 2004-07-09 2008-03-13 ズードケミー インコーポレイテッド Promoted calcium-aluminate supported catalysts for synthesis gas generation
JP2007098250A (en) * 2005-10-03 2007-04-19 Petroleum Energy Center Partial oxidation-reforming catalyst and partial oxidation-reforming method

Similar Documents

Publication Publication Date Title
US4743576A (en) Catalyst for the production of synthesis gas or hydrogen and process for the production of the catalyst
EP1093852B1 (en) Process for the autothermal reforming of hydrocarbon feedstock
JP5141765B2 (en) Carbon dioxide reforming method
JP4648567B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JPH06182201A (en) Catalyst stable at high temperature, its preparation, and method for effecting chemical reaction using this catalyst
JPH05168924A (en) Steam reforming catalyst
JP2004209408A (en) Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
EP1208062A1 (en) Hydrocarbon fuel processor catalyst
JP4418063B2 (en) Method for producing hydrogen
JP2625170B2 (en) Steam reforming catalyst for fuel cells
JP4514419B2 (en) Hydrocarbon partial oxidation catalyst, method for producing the same, and method for producing hydrogen-containing gas
JPH10192708A (en) Catalyst for reforming of carbon dioxide and reforming method
JP2001172651A (en) Fuel oil for fuel cell
JPH05208133A (en) Steam reforming catalyst
JP5207755B2 (en) Method for producing hydrocarbon reforming catalyst
KR20150076362A (en) Cokes oven gas reforming catalyst for manufacturing synthesis gas, method for preparing the same and method for manufacturing synthesis gas from cokes oven gas using the same
JP4168230B2 (en) Dimethyl ether reforming catalyst and method for producing hydrogen-containing gas using the catalyst
JP3276679B2 (en) Steam reforming catalyst and hydrogen production method
JP3226556B2 (en) Catalyst for steam reforming of hydrocarbons
WO2023277188A1 (en) Catalyst for liquefied petroleum gas synthesis and method for producing liquefied petroleum gas
WO2005056179A1 (en) Reforming catalyst
JP2733784B2 (en) Hydrocarbon steam reforming reactor
EP3300800A1 (en) Process for preparing a nickel-based catalyst, the nickel-based catalyst, and use thereof in a steam reforming process
JP2004322001A (en) Catalyst for hydrocarbon partial oxidation, production method therefor, and production method for hydrogen-containing gas using the catalyst