JP2001279275A - Method for producing fuel oil for fuel cell and hydrogen for fuel cell - Google Patents

Method for producing fuel oil for fuel cell and hydrogen for fuel cell

Info

Publication number
JP2001279275A
JP2001279275A JP2000099111A JP2000099111A JP2001279275A JP 2001279275 A JP2001279275 A JP 2001279275A JP 2000099111 A JP2000099111 A JP 2000099111A JP 2000099111 A JP2000099111 A JP 2000099111A JP 2001279275 A JP2001279275 A JP 2001279275A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel oil
hydrogen
fuel
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000099111A
Other languages
Japanese (ja)
Inventor
Mitsuru Osawa
満 大澤
Tetsuya Fukunaga
哲也 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2000099111A priority Critical patent/JP2001279275A/en
Publication of JP2001279275A publication Critical patent/JP2001279275A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing the subject fuel oil capable of effectively producing hydrogen by reforming treatment through suppressing the deterioration of a reforming catalyst due to carbon deposition, and to provide a method for producing hydrogen for fuel cells by using the above fuel oil. SOLUTION: The fuel oil for fuel cells is <=1.0 vol.% in polycyclic aromatic compound content. The method for producing hydrogen for fuel cells comprises catalyzing the above fuel oil with a reforming catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池用燃料油
及び燃料電池用水素の製造方法に関する。さらに詳しく
は、本発明は、改質処理による水素の製造において、改
質触媒の炭素析出による劣化を抑制して、触媒の長寿命
化を図り、効果的に水素を製造し得る燃料電池用燃料
油、及びこの燃料油を用い、改質処理により燃料電池用
水素を製造する方法に関するものである。
The present invention relates to a method for producing fuel oil for fuel cells and hydrogen for fuel cells. More specifically, the present invention relates to a fuel cell for a fuel cell, which can suppress the deterioration of a reforming catalyst due to carbon deposition in the production of hydrogen by a reforming treatment, prolong the life of the catalyst, and effectively produce hydrogen. The present invention relates to an oil and a method for producing hydrogen for a fuel cell by a reforming process using the fuel oil.

【0002】[0002]

【従来の技術】近年、環境問題から新エネルギー技術が
脚光を浴びており、この新エネルギー技術の一つとして
燃料電池が注目されている。この燃料電池は、水素と酸
素を電気化学的に反応させることにより、化学エネルギ
ーを電気エネルギーに変換するものであって、エネルギ
ーの利用効率が高いという特徴を有しており、民生用、
産業用あるいは自動車用などとして、実用化研究が積極
的になされている。この燃料電池には、使用する電解質
の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物
型、固体高分子型などのタイプが知られている。一方、
水素源としては、メタノール、メタンを主体とする液化
天然ガス、この天然ガスを主成分とする都市ガス、天然
ガスを原料とする合成液体燃料、さらには石油系のLP
G、ナフサ、灯油などの炭化水素の使用が研究されてい
る。
2. Description of the Related Art In recent years, new energy technologies have been spotlighted due to environmental problems, and fuel cells have attracted attention as one of the new energy technologies. This fuel cell converts chemical energy into electric energy by electrochemically reacting hydrogen and oxygen, and has the feature of high energy use efficiency.
Practical research is being actively conducted for industrial or automotive use. As the fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known according to the type of electrolyte used. on the other hand,
As a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of natural gas, synthetic liquid fuel composed of natural gas as raw material, and petroleum LP
The use of hydrocarbons such as G, naphtha, kerosene is being studied.

【0003】燃料電池を民生用や自動車用などに利用す
る場合、上記石油系炭化水素、特に灯油は常温常圧で液
状であって、保管及び取扱いが容易である上、ガソリン
スタンドや販売店など、供給システムが整備されている
ことから、水素源として有利である。石油系炭化水素を
用いて水素を製造する場合、一般に、該炭化水素を、改
質触媒の存在下に水蒸気改質又は部分酸化改質処理する
方法が用いられる。このような改質処理においては、上
記改質触媒の劣化を抑制し、長寿命化を図ることは、実
用面で極めて重要である。
When a fuel cell is used for consumer or automobile use, the above-mentioned petroleum hydrocarbons, especially kerosene, are liquid at normal temperature and normal pressure, and are easy to store and handle. It is advantageous as a hydrogen source because the supply system is in place. In the case of producing hydrogen using a petroleum hydrocarbon, a method is generally used in which the hydrocarbon is subjected to steam reforming or partial oxidation reforming treatment in the presence of a reforming catalyst. In such a reforming process, it is extremely important in practical use to suppress the deterioration of the reforming catalyst and extend the life.

【0004】該改質触媒の劣化の要因の一つとしては、
触媒上への炭素析出(コーク被毒)を挙げることができ
る。石油系炭化水素に含まれるコーク源としては、例え
ば芳香族化合物及び二環以上の環状飽和炭化水素化合物
が知られているが、改質触媒上への炭素析出を抑制し、
改質触媒の寿命を実用的に満足させる石油系炭化水素
は、これまで提供されていないのが実状である。
One of the causes of the deterioration of the reforming catalyst is as follows.
Carbon deposition (coke poisoning) on the catalyst. As a coke source contained in petroleum hydrocarbons, for example, aromatic compounds and cyclic saturated hydrocarbon compounds having two or more rings are known, but carbon deposition on the reforming catalyst is suppressed,
Petroleum hydrocarbons that practically satisfy the life of the reforming catalyst have not been provided so far.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
状況下で、改質処理による水素の製造において、改質触
媒の炭素析出による劣化を抑制して長寿命化を図り、効
果的に水素を製造し得る燃料電池用燃料油、及びこの燃
料油を用い、燃料電池用水素を製造する方法を提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION Under the above circumstances, the present invention suppresses the deterioration of the reforming catalyst due to carbon deposition in the production of hydrogen by the reforming treatment, thereby extending the life of the reforming catalyst. It is an object of the present invention to provide a fuel cell fuel oil capable of producing hydrogen, and a method for producing fuel cell hydrogen using the fuel oil.

【0006】[0006]

【課題を解決するための手段】本発明者らは、改質触媒
の炭素析出による劣化を抑制しうる燃料油を開発すべく
鋭意研究を重ねた結果、二環以上の芳香族化合物の含有
量がある値以下であり、好ましくは、さらに一環芳香族
化合物の含有量がある値以下の燃料油により、前記目的
を達成し得ることを見出した。本発明は、かかる知見に
基づいて完成したものである。すなわち、本発明は、二
環以上の芳香族化合物の含有量が1.0容量%以下であ
ることを特徴とする燃料電池用燃料油、好ましくは、さ
らに、一環芳香族化合物の含有量が16容量%以下であ
る燃料電池用燃料油を提供するものである。本発明はま
た、上記燃料油を改質触媒と接触させることを特徴とす
る燃料電池用水素の製造方法をも提供するものである。
Means for Solving the Problems The present inventors have conducted intensive studies to develop a fuel oil capable of suppressing the deterioration of a reforming catalyst due to carbon deposition. As a result, the content of aromatic compounds having two or more rings was found. It has been found that the above-mentioned object can be achieved by a fuel oil having a certain value or less, and more preferably, a content of the partial aromatic compound being a certain value or less. The present invention has been completed based on such findings. That is, the present invention provides a fuel oil for a fuel cell, wherein the content of the aromatic compound having two or more rings is 1.0% by volume or less, and preferably the content of the aromatic compound is 16% or less. It is intended to provide a fuel oil for a fuel cell having a capacity of not more than%. The present invention also provides a method for producing hydrogen for a fuel cell, which comprises contacting the fuel oil with a reforming catalyst.

【0007】[0007]

【発明の実施の形態】本発明の燃料油としては、常温、
常圧で液体である石油系のガソリン、ナフサ、灯油、軽
油などが用いられるが、これらの中で灯油が好ましく、
特に硫黄分含有量が80重量ppm以下のJIS1号灯
油が燃料電池用燃料油として必要な低硫黄濃度まで脱硫
しやすい点から好適である。このJIS1号灯油は、原
油を常圧蒸留して得た粗灯油を脱硫することにより得ら
れる。脱硫方法としては、一般に工業的に実施されてい
る水素化精製法で脱硫処理するのが好ましい。さらに、
核水添や水素化分解処理によっても得ることができる。
これらの処理方法の一例として、触媒として、通常ニッ
ケル、コバルト、モリブデン、タングステンなどの遷移
金属を適当な割合で混合したものを金属、酸化物、硫化
物などの形態でアルミナを主成分とする担体に担持させ
たものやゼオライト系の水素化分解触媒等を用いる方法
が挙げられる。反応条件は、例えば反応温度250〜4
00℃、圧力2〜10MPa・G、水素/油モル比2〜
10、液時空間速度(LHSV)1〜5h-1などの条件
が用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION The fuel oil of the present invention is at room temperature,
Petroleum-based gasoline that is liquid at normal pressure, naphtha, kerosene, light oil, etc. are used, among which kerosene is preferred,
In particular, JIS No. 1 kerosene having a sulfur content of not more than 80 ppm by weight is suitable because it is easy to desulfurize to a low sulfur concentration required as fuel oil for fuel cells. This JIS No. 1 kerosene is obtained by desulfurizing crude kerosene obtained by distilling crude oil at normal pressure. As the desulfurization method, desulfurization treatment is preferably performed by a hydrorefining method generally used industrially. further,
It can also be obtained by nuclear hydrogenation or hydrocracking.
As an example of these treatment methods, as a catalyst, a carrier mainly composed of alumina in the form of a mixture of transition metals such as nickel, cobalt, molybdenum and tungsten at an appropriate ratio, in the form of a metal, oxide, sulfide or the like. And a method using a zeolite-based hydrocracking catalyst or the like. The reaction conditions are, for example, a reaction temperature of 250 to 4
00 ° C., pressure 2 to 10 MPa · G, hydrogen / oil molar ratio 2 to 2
10, conditions such as liquid hourly space velocity (LHSV) 1 to 5 h -1 are used.

【0008】本発明の燃料油においては、二環以上の芳
香族化合物の含有量は1.0容量%以下、好ましくは
0.7容量%以下、より好ましくは0.5容量%以下で
ある。この含有量が1.0容量%を超えると改質触媒上
に著しく炭素が析出し、触媒が急激に劣化して、本発明
の目的が達せられない。本発明においては、さらに、燃
料油中の一環芳香族化合物の含有量は、好ましくは16
容量%以下、より好ましくは14容量%以下である。こ
の含有量が16容量%を超えると改質触媒上に著しく炭
素が析出し、触媒が急激に劣化するおそれが生じる。
In the fuel oil of the present invention, the content of the aromatic compound having two or more rings is 1.0% by volume or less, preferably 0.7% by volume or less, more preferably 0.5% by volume or less. When the content exceeds 1.0% by volume, carbon is remarkably precipitated on the reforming catalyst, and the catalyst is rapidly deteriorated, so that the object of the present invention cannot be achieved. In the present invention, the content of the partial aromatic compound in the fuel oil is preferably 16
% By volume or less, more preferably 14% by volume or less. When the content exceeds 16% by volume, carbon is remarkably precipitated on the reforming catalyst, and the catalyst may be rapidly deteriorated.

【0009】また、該燃料油中の二環以上の環状飽和炭
化水素化合物の含有量は7.0容量%以下が好ましく、
より好ましくは5.0容量%以下である。二環以上の環
状飽和炭化水素化合物は芳香族化合物に変換しやすいた
め、7.0容量%より多く含有していると炭素析出を促
進するおそれがある。このような性状を有する本発明の
燃料油は、改質処理による水素の製造において、改質触
媒上への炭素析出を抑制するので、触媒の長寿命化を図
ることができる。
Further, the content of the bicyclic or higher cyclic saturated hydrocarbon compound in the fuel oil is preferably 7.0% by volume or less,
It is more preferably at most 5.0% by volume. Since bicyclic or higher cyclic saturated hydrocarbon compounds are easily converted to aromatic compounds, carbon content may be accelerated if contained in more than 7.0% by volume. Since the fuel oil of the present invention having such properties suppresses carbon deposition on the reforming catalyst in the production of hydrogen by the reforming treatment, the life of the catalyst can be extended.

【0010】本発明の燃料電池用水素の製造方法におい
ては、前述の燃料油を改質触媒と接触させて水素を製造
する。この際、燃料油中の硫黄による改質触媒の被毒を
抑制するために、該燃料油中の硫黄分濃度を0.2重量
ppm以下、好ましくは0.1重量ppm以下にするこ
とが肝要である。したがって、燃料油中の硫黄分濃度が
上記範囲よりも多い場合には、脱硫処理を施し、硫黄分
濃度を低下させる処置をとることができる。この際、脱
硫剤としては、適当な担体上にニッケルが担持されたニ
ッケル系脱硫剤が好ましく用いられる。このニッケル系
脱硫剤におけるニッケルの担持量は、脱硫剤全量に基づ
き、金属ニッケルとして30重量%以上であることが好
ましい。この金属ニッケルの量が30重量%未満では脱
硫性能が充分に発揮されないおそれがある。また、担持
量があまり多すぎると担体の割合が少なくなって、脱硫
剤の機械的強度や脱硫性能が低下する原因となる。脱硫
性能及び機械的強度などを考慮すると、このニッケルの
より好ましい担持量は40〜80重量%、更に好ましい
担持量は50〜70重量%の範囲である。
In the method for producing hydrogen for a fuel cell according to the present invention, hydrogen is produced by bringing the aforementioned fuel oil into contact with a reforming catalyst. At this time, in order to suppress the poisoning of the reforming catalyst by the sulfur in the fuel oil, it is important that the sulfur concentration in the fuel oil be 0.2 ppm by weight or less, preferably 0.1 ppm by weight or less. It is. Therefore, when the sulfur content in the fuel oil is higher than the above range, desulfurization treatment can be performed to take measures to reduce the sulfur content. At this time, as the desulfurizing agent, a nickel-based desulfurizing agent in which nickel is supported on a suitable carrier is preferably used. The amount of nickel carried in the nickel-based desulfurizing agent is preferably at least 30% by weight as metallic nickel based on the total amount of the desulfurizing agent. If the amount of the metallic nickel is less than 30% by weight, the desulfurization performance may not be sufficiently exhibited. On the other hand, if the supported amount is too large, the ratio of the carrier is reduced, which causes a decrease in the mechanical strength and desulfurization performance of the desulfurizing agent. In consideration of desulfurization performance, mechanical strength, and the like, the more preferable amount of nickel is 40 to 80% by weight, and the more preferable amount of nickel is 50 to 70% by weight.

【0011】また、担体としては、多孔質担体が好まし
く、特に多孔質の無機酸化物が好ましい。このようなも
のとしては、例えばシリカ、アルミナ、シリカ−アルミ
ナ、チタニア、ジルコニア、マグネシア、酸化亜鉛、白
土、粘土及び珪藻土などを挙げることができる。これら
は単独で用いてもよく、二種以上を組み合わせて用いて
もよい。これらの中で、特にシリカ−アルミナが好適で
ある。また、この脱硫剤においては、ニッケルに、必要
に応じ、銅、コバルト、鉄、マンガン、クロムなどの他
の金属を混在させてもよい。
As the carrier, a porous carrier is preferable, and a porous inorganic oxide is particularly preferable. Such materials include, for example, silica, alumina, silica-alumina, titania, zirconia, magnesia, zinc oxide, clay, clay and diatomaceous earth. These may be used alone or in combination of two or more. Among these, silica-alumina is particularly preferred. In this desulfurizing agent, other metals such as copper, cobalt, iron, manganese, and chromium may be mixed with nickel, if necessary.

【0012】上記ニッケル系脱硫剤を用いて、燃料油を
脱硫処理する方法としては、例えば以下に示す方法を用
いることができる。まず、該ニッケル系脱硫剤が充填さ
れた脱硫塔に、予め水素を供給し、150〜400℃程
度の温度において、ニッケル系脱硫剤の還元処理を行
う。次に、燃料油を脱硫塔中を上向き又は下向きの流れ
で通過させ、温度:常温〜400℃程度、圧力:常圧〜
1MPa・G程度、液時空間速度(LHSV):0.0
2〜10hr-1程度の条件で脱硫処理する。この際、必
要により、少量の水素を共存させてもよい。
As a method for desulfurizing a fuel oil using the nickel-based desulfurizing agent, for example, the following method can be used. First, hydrogen is supplied in advance to a desulfurization tower filled with the nickel-based desulfurizing agent, and the nickel-based desulfurizing agent is reduced at a temperature of about 150 to 400 ° C. Next, the fuel oil is passed through the desulfurization tower in an upward or downward flow, and the temperature is from ordinary temperature to about 400 ° C. and the pressure is from ordinary pressure to
About 1 MPa · G, liquid hourly space velocity (LHSV): 0.0
The desulfurization treatment is performed under the condition of about 2 to 10 hr -1 . At this time, if necessary, a small amount of hydrogen may be allowed to coexist.

【0013】本発明の燃料電池用水素の製造方法におい
ては、水蒸気改質法と部分酸化改質法のいずれも用いる
ことができるが、本発明においては、水蒸気改質法が好
ましい。水蒸気改質法で用いる触媒としては特に制限は
なく、従来炭化水素の水蒸気改質触媒として知られてい
る公知のものの中から、任意のものを適宜選択して用い
ることができる。このような水蒸気改質触媒としては、
例えば適当な担体に、ニッケルやジルコニウム、あるい
はルテニウム、ロジウム、白金などの貴金属を担持した
ものを挙げることができる。上記担持金属は一種担持さ
せてもよく、二種以上を組み合わせて担持させてもよ
い。これらの触媒の中で、ルテニウムを担持させたもの
(以下、ルテニウム系触媒と称す。)が好ましい。
In the method for producing hydrogen for a fuel cell according to the present invention, both the steam reforming method and the partial oxidation reforming method can be used, but in the present invention, the steam reforming method is preferable. The catalyst used in the steam reforming method is not particularly limited, and any catalyst may be appropriately selected and used from known catalysts conventionally known as hydrocarbon steam reforming catalysts. As such a steam reforming catalyst,
For example, a carrier in which a noble metal such as nickel, zirconium, ruthenium, rhodium, and platinum is supported on a suitable carrier can be used. One of the above-mentioned supported metals may be supported, or two or more may be supported in combination. Among these catalysts, those supporting ruthenium (hereinafter referred to as ruthenium-based catalyst) are preferable.

【0014】このルテニウム系触媒の場合、ルテニウム
の担持量は、担体基準で0.05〜20重量%の範囲が
好ましく、より好ましくは0.05〜15重量%、特に
好ましくは0.1〜2重量%の範囲である。このルテニ
ウムを担持する場合、所望により、他の金属と組み合わ
せて担持することができる。該他の金属としては、例え
ばジルコニウム、コバルト、マグネシウムなどが挙げら
れる。
In the case of this ruthenium-based catalyst, the supported amount of ruthenium is preferably in the range of 0.05 to 20% by weight, more preferably 0.05 to 15% by weight, and particularly preferably 0.1 to 2% by weight, based on the carrier. % By weight. When the ruthenium is supported, it can be supported in combination with another metal, if desired. Examples of the other metal include zirconium, cobalt, and magnesium.

【0015】一方、担体としては、無機酸化物が好まし
く、具体的にはアルミナ、シリカ、ジルコニア、マグネ
シア及びこれらの混合物などが挙げられる。これらの中
で、特にアルミナ及びジルコニアが好適である。水蒸気
改質処理における反応条件としては、水蒸気と燃料油に
由来する炭素との比S/C(モル比)は、通常2〜5、
好ましくは2〜4、より好ましくは2〜3の範囲で選定
される。
On the other hand, the carrier is preferably an inorganic oxide, and specific examples include alumina, silica, zirconia, magnesia, and mixtures thereof. Of these, alumina and zirconia are particularly preferred. As the reaction conditions in the steam reforming treatment, the ratio S / C (molar ratio) between steam and carbon derived from fuel oil is usually 2 to 5,
Preferably, it is selected in the range of 2 to 4, more preferably 2 to 3.

【0016】また、水蒸気改質触媒層の入口温度を63
0℃以下、さらには600℃以下に保って水蒸気改質を
行うのが好ましい。なお、触媒層出口温度は特に制限は
ないが、650〜800℃の範囲が好ましい。反応圧力
は、通常常圧〜3MPa、好ましくは常圧〜1MPaの
範囲であり、また、LHSVは、通常0.1〜100h
-1、好ましくは0.2〜50h-1の範囲である。このよ
うにして、燃料電池用水素を効率よく製造することがで
きる。
Further, the inlet temperature of the steam reforming catalyst layer is set to 63
It is preferable to carry out steam reforming at a temperature of 0 ° C. or lower, more preferably 600 ° C. or lower. The outlet temperature of the catalyst layer is not particularly limited, but is preferably in the range of 650 to 800 ° C. The reaction pressure is usually in the range of normal pressure to 3 MPa, preferably normal pressure to 1 MPa, and the LHSV is usually 0.1 to 100 h.
-1 , preferably in the range of 0.2 to 50 h -1 . In this way, hydrogen for a fuel cell can be efficiently produced.

【0017】[0017]

【実施例】次に、本発明を実施例により、さらに詳細に
説明するが、本発明は、これらの例によってなんら限定
されるものではない。 調製例1 ニッケル系脱硫剤の調製 水500ミリリットルに塩化ニッケル50.9gを溶解
し、これに担体(アルミナ)0.6gを加えたのち、1
モル/リットル濃度の硝酸水溶液20ミリリットルを加
え、pH1に調整し、(A)液を調製した。一方、水5
00ミリリットルに炭酸ナトリウム33.1gを溶解し
たのち、水ガラス11.7g(SiO2 濃度29重量
%)を加え、(B)液を調製した。次に、上記(A)液
と(B)液を、それぞれ80℃に加熱したのち、両者を
瞬時に混合し、混合液の温度を80℃に保持したまま1
時間撹拌した。その後、蒸留水60リットルを用いて生
成物を充分に洗浄したのち、ろ過し、次いで固形物を1
20℃送風乾燥機にて12時間乾燥し、さらに300℃
で1時間焼成処理することにより、シリカ−アルミナ担
体上にニッケルが63重量%担持された脱硫剤を得た。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Preparation Example 1 Preparation of nickel-based desulfurizing agent 50.9 g of nickel chloride was dissolved in 500 ml of water, and 0.6 g of a carrier (alumina) was added thereto.
A solution (A) was prepared by adding 20 ml of an aqueous nitric acid solution having a concentration of mol / liter to adjust the pH to 1. On the other hand, water 5
After dissolving 33.1 g of sodium carbonate in 00 ml, 11.7 g of water glass (SiO 2 concentration: 29% by weight) was added to prepare solution (B). Next, after the above solution (A) and solution (B) were heated to 80 ° C., respectively, they were instantaneously mixed, and the mixture was kept at 80 ° C. for 1 hour.
Stirred for hours. Thereafter, the product was thoroughly washed with 60 liters of distilled water, filtered, and then the solid was removed.
Dry for 12 hours in a blast dryer at 20 ° C, then 300 ° C
For 1 hour to obtain a desulfurizing agent in which 63% by weight of nickel was supported on a silica-alumina carrier.

【0018】実施例1〜3及び比較例1,2 調製例1で得た脱硫剤15ミリリットルを、内径17m
mのステンレス鋼製反応管に充填した。次いで、常圧
下、水素気流中にて120℃に昇温し、1時間保持した
のち、さらに昇温し、380℃で1時間保持することに
より、脱硫剤を活性化した。次に、反応管の温度を15
0℃に保持し、第1表に示す組成の灯油A〜Eそれぞれ
を、常圧下、LHSV2h-1で反応管を通過させ、さら
に、下流にルテニウム系改質触媒(ルテニウム担持量
0.5重量%)6.0ミリリットルが充填された改質器
(内径18mmの石英反応管)により、水蒸気改質処理
した。改質処理条件は、圧力:大気圧、水蒸気/炭素
(S/C)モル比2、LHSV:2.3h-1、平均温
度:650℃である。
Examples 1 to 3 and Comparative Examples 1 and 2 15 ml of the desulfurizing agent obtained in Preparation Example 1
m stainless steel reaction tube. Next, the temperature was raised to 120 ° C. in a hydrogen stream under normal pressure, and the temperature was maintained for 1 hour. Then, the temperature was further raised and the temperature was maintained at 380 ° C. for 1 hour to activate the desulfurizing agent. Next, the temperature of the reaction tube was reduced to 15
While maintaining the temperature at 0 ° C., each of kerosene A to E having the composition shown in Table 1 was passed through a reaction tube under normal pressure at LHSV2h −1 , and further downstream, a ruthenium-based reforming catalyst (ruthenium loading 0.5 wt. %) Was subjected to steam reforming treatment using a reformer (quartz reaction tube having an inner diameter of 18 mm) filled with 6.0 ml. The reforming treatment conditions are as follows: pressure: atmospheric pressure, a steam / carbon (S / C) molar ratio of 2, LHSV: 2.3 h −1 , and average temperature: 650 ° C.

【0019】下記の転化率が反応初期の50%に低下し
た時点までの時間を求め、第1表に示した。この反応期
間中の脱硫処理灯油の硫黄分濃度は、いずれも0.2重
量ppm以下であった。なお、ルテニウム系改質触媒と
して、α−アルミナ担体に、担体基準で、ルテニウム
0.5重量%、コバルト1.0重量%、ジルコニア5重
量%及びマグネシア2重量%が担持された触媒を用い
た。 <転化率> 転化率(%)=100×B/A (ただし、Aは時間当たりの供給灯油中の全炭素量(モ
ル流量)であり、Bは時間当たりの改質器出口ガス中の
C1化合物の全炭素量(モル流量)でB=CO+CO2
+CH4 である。)によって算出した値である。なお、
分析はガスクロマトグラフィー法による。
The time required until the following conversion decreased to 50% at the beginning of the reaction was determined and is shown in Table 1. The sulfur content of the desulfurized kerosene during this reaction period was 0.2 ppm by weight or less. As the ruthenium-based reforming catalyst, a catalyst in which 0.5% by weight of ruthenium, 1.0% by weight of cobalt, 5% by weight of zirconia, and 2% by weight of magnesia were supported on an α-alumina carrier on a carrier basis was used. . <Conversion rate> Conversion rate (%) = 100 × B / A (where A is the total carbon amount (molar flow rate) in the supplied kerosene per hour, and B is C1 in the reformer outlet gas per hour. B = CO + CO 2 in the total carbon amount (molar flow rate) of the compound
+ CH 4. ). In addition,
The analysis is by gas chromatography.

【0020】[0020]

【表1】 第1表から明らかなように、実施例1〜3は、転化率が
反応初期の50%に低下するまでの時間が、比較例に比
べて著しく長い。
[Table 1] As is clear from Table 1, in Examples 1 to 3, the time until the conversion decreases to 50% of the initial stage of the reaction is significantly longer than that in Comparative Examples.

【0021】[0021]

【発明の効果】本発明の燃料電池用燃料油は、改質処理
による水素の製造において、改質触媒上への炭素析出を
抑制するので、触媒の長寿命化を図ることができる。
According to the fuel oil for a fuel cell of the present invention, carbon production on the reforming catalyst is suppressed in the production of hydrogen by the reforming treatment, so that the life of the catalyst can be extended.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 二環以上の芳香族化合物の含有量が1.
0容量%以下であることを特徴とする燃料電池用燃料
油。
(1) The content of an aromatic compound having two or more rings is 1.
A fuel oil for a fuel cell, wherein the content is 0% by volume or less.
【請求項2】 さらに、一環芳香族化合物の含有量が1
6容量%以下である請求項1記載の燃料電池用燃料油。
2. The method according to claim 1, wherein the content of the partial aromatic compound is 1
The fuel oil for a fuel cell according to claim 1, wherein the content is 6% by volume or less.
【請求項3】 請求項1又は2記載の燃料油を改質触媒
と接触させることを特徴とする燃料電池用水素の製造方
法。
3. A method for producing hydrogen for a fuel cell, comprising contacting the fuel oil according to claim 1 with a reforming catalyst.
【請求項4】 改質触媒がルテニウム系触媒である請求
項3記載の燃料電池用水素の製造方法。
4. The method for producing hydrogen for a fuel cell according to claim 3, wherein the reforming catalyst is a ruthenium-based catalyst.
JP2000099111A 2000-03-31 2000-03-31 Method for producing fuel oil for fuel cell and hydrogen for fuel cell Pending JP2001279275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000099111A JP2001279275A (en) 2000-03-31 2000-03-31 Method for producing fuel oil for fuel cell and hydrogen for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000099111A JP2001279275A (en) 2000-03-31 2000-03-31 Method for producing fuel oil for fuel cell and hydrogen for fuel cell

Publications (1)

Publication Number Publication Date
JP2001279275A true JP2001279275A (en) 2001-10-10

Family

ID=18613503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000099111A Pending JP2001279275A (en) 2000-03-31 2000-03-31 Method for producing fuel oil for fuel cell and hydrogen for fuel cell

Country Status (1)

Country Link
JP (1) JP2001279275A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279269A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Method for producing fuel oil for fuel cell and hydrogen for fuel cell
JP2009149762A (en) * 2007-12-20 2009-07-09 Japan Energy Corp Fuel oil for hydrogen preparation, and hydrogen preparation using it

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340702A (en) * 1986-08-01 1988-02-22 Nippon Oil Co Ltd Production of hydrogen for fuel cell
JPH02113092A (en) * 1988-10-20 1990-04-25 Nippon Oil Co Ltd High-performance kerosine
JPH03182594A (en) * 1989-12-12 1991-08-08 Nippon Oil Co Ltd Kerosine
JPH05168924A (en) * 1991-08-30 1993-07-02 Tonen Corp Steam reforming catalyst
JPH0691173A (en) * 1992-09-16 1994-04-05 Sekiyu Sangyo Kasseika Center Catalyst for low pressure degradation-desulfurization and its utilization
JP2001279273A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Kerosene-based fuel oil for fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340702A (en) * 1986-08-01 1988-02-22 Nippon Oil Co Ltd Production of hydrogen for fuel cell
JPH02113092A (en) * 1988-10-20 1990-04-25 Nippon Oil Co Ltd High-performance kerosine
JPH03182594A (en) * 1989-12-12 1991-08-08 Nippon Oil Co Ltd Kerosine
JPH05168924A (en) * 1991-08-30 1993-07-02 Tonen Corp Steam reforming catalyst
JPH0691173A (en) * 1992-09-16 1994-04-05 Sekiyu Sangyo Kasseika Center Catalyst for low pressure degradation-desulfurization and its utilization
JP2001279273A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Kerosene-based fuel oil for fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279269A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Method for producing fuel oil for fuel cell and hydrogen for fuel cell
JP2009149762A (en) * 2007-12-20 2009-07-09 Japan Energy Corp Fuel oil for hydrogen preparation, and hydrogen preparation using it

Similar Documents

Publication Publication Date Title
EP1270069B1 (en) Use of a desulfurizing agent
JP2001279274A (en) Fuel oil for fuel cell, desulfurization method and method for producing hydrogen
JP2002322483A (en) Method for desulfurization of liquid oil containing organic sulfur compound
JP4531939B2 (en) Method for producing nickel-copper desulfurization agent
JP4322804B2 (en) Method for desulfurizing liquid hydrocarbon and method for producing hydrogen for fuel cell
JP4749589B2 (en) Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method
JP2001279257A (en) Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery
JP4388665B2 (en) Ni-Cu desulfurizing agent and method for producing hydrogen for fuel cell
JP4580070B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP2001279275A (en) Method for producing fuel oil for fuel cell and hydrogen for fuel cell
JP2001279259A (en) Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery
JP4490533B2 (en) Fuel oil for fuel cells
JP2002322482A (en) Method for desulfurization of liquid oil containing organic sulfur compound
JP4580071B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP2004075778A (en) Desulfurizing agent for hydrocarbon and method for producing hydrogen for fuel cell
JP2005095817A (en) Desulfurization agent and desulfurization method using the same
JP2001294874A (en) Fuel oil for kerosene-based fuel cell
JP2001279273A (en) Kerosene-based fuel oil for fuel cell
JP2001278602A (en) Desulfurization agent, method of desulfurization and method of manufacturing hydrogen for fuel cell
JP2001279269A (en) Method for producing fuel oil for fuel cell and hydrogen for fuel cell
JP2001276605A (en) Desulfurization agent and method of producing hydrogen for fuel cell
JP2001279261A (en) Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery
JP2002363574A (en) Method for desulfurizing hydrocarbon oil and method for producing hydrogen for fuel cell
JP4531917B2 (en) Method for producing nickel-based desulfurization agent
JP2003290660A (en) Desulfurizing agent and method for manufacturing hydrogen for fuel battery using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817