JP4749589B2 - Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method - Google Patents
Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method Download PDFInfo
- Publication number
- JP4749589B2 JP4749589B2 JP2001119186A JP2001119186A JP4749589B2 JP 4749589 B2 JP4749589 B2 JP 4749589B2 JP 2001119186 A JP2001119186 A JP 2001119186A JP 2001119186 A JP2001119186 A JP 2001119186A JP 4749589 B2 JP4749589 B2 JP 4749589B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- agent
- sulfur compound
- organic sulfur
- silver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、有機硫黄化合物含有燃料油用脱硫剤及び燃料電池用水素の製造方法に関し、さらに詳しくは、有機硫黄化合物含有燃料油中の硫黄分を1ppm以下まで効率よく除去することができ、かつ寿命の長い有機硫黄化合物含有燃料油用脱硫剤、及びこの脱硫剤を用いて脱硫処理された有機硫黄化合物含有燃料油を、部分酸化改質処理、オートサーマル改質処理又は水蒸気改質処理し、燃料電池用水素を製造する方法に関する。
【0002】
【従来の技術】
近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目を集めている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換させるものであって、エネルギーの利用効率が高いという特長を有しており、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。
【0003】
この燃料電池には、使用する電解質の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物型、固体高分子型などのタイプが知られている。一方、水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料(GTL)、バイオフューエル(植物油メチルエステル類等)、廃プラスチック油、さらには石油系のナフサ、ガソリン、灯油などの石油系炭化水素油の使用の研究がなされている。
【0004】
燃料電池を民生用や自動車用などに利用する場合、上記石油系炭化水素油は、保管及び取扱いが容易である上、ガソリンスタンドや販売店など、供給システムが整備されていることから、水素源として有利である。
しかしながら、石油系炭化水素油は、メタノールや天然ガス系のものに比べて、硫黄分の含有量が多いという問題がある。また、GTL、バイオフューエル、廃プラスチック油などの燃料油も、輸送や保管中に硫黄分が混入する可能性がある。このような有機硫黄化合物含有燃料油を用いて水素を製造する場合、一般に、該燃料油を、改質触媒の存在下に水蒸気改質処理、部分酸化改質処理又はオートサーマル改質処理する方法が用いられる。このような改質処理においては、上記改質触媒は、燃料油中の硫黄分により被毒されるため、触媒寿命の点から、燃料油中の硫黄分を、通常1ppm以下に脱硫処理する必要がある。
【0005】
石油留分の脱硫方法として、硫黄化合物の一部を活性炭やゼオライトを用いて物理吸着により除去する方法が知られている(米国特許4188285号公報、特開平3−128989号公報、特開平6−154615号公報、米国特許5482617号公報、米国特許5807475号公報、国際公開98/51762号公報、米国特許5935422号公報等)。しかしながら、活性炭やゼオライトは硫黄化合物に対する吸着性能が低く、また、寿命の面で実用的なレベルに到っていない。
【0006】
また、米国特許5114689号公報、特表平7−504214号公報には、物理吸着により硫黄化合物の一部を除去した石油留分を更に別の脱硫剤と接触させる方法が開示されている。しかしながら、物理吸着により硫黄化合物の一部を除去した後に、水素存在下で、高温(250〜450℃)、高圧(15〜500psig)での処理を必要とし、複雑なシステムを構築する必要があり、燃料電池用水素製造法として効率が低く、実用なレベルに到っていない。
【0007】
【発明が解決しようとする課題】
本発明は、上記状況下でなされたもので、有機硫黄化合物含有燃料油中の硫黄分を1ppm以下まで効率よく除去することができ、かつ寿命も長い有機硫黄化合物含有燃料油用脱硫剤、及びこの脱硫剤を用いて脱硫処理された有機硫黄化合物含有燃料油を部分酸化改質処理、オートサーマル改質処理又は水蒸気改質処理し、燃料電池用水素を製造する方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、細孔直径が数〜数十Åの多孔性担体に銀を担持した脱硫剤が、灯油中の硫黄化合物の対象物として設定したアルキルジベンゾチオフェン類を選択的に吸着除去することを見出した。
【0009】
本発明は、かかる知見に基づいて完成したものである。すなわち、本発明の要旨は以下の通りである。
1.担体上に銀を担持してなる予備脱硫剤を用いて、温度−40〜100℃、圧力常圧〜1MPa(G)で有機硫黄化合物含有燃料油を脱硫した後、ニッケル、クロム、マンガン、鉄、コバルト、銅、亜鉛、パラジウム、イリジウム、白金、ルテニウム、ロジウム及び金から選ばれる少なくとも一種を含む第2の脱硫剤を用いて、温度40〜250℃で有機硫黄化合物含有燃料油を脱硫した後、部分酸化改質触媒、オートサーマル改質触媒、又は水蒸気改質触媒と接触させることを特徴とする燃料電池用水素の製造方法。
2.予備脱硫剤の担体が多孔質である前記1記載の燃料電池用水素の製造方法。
3.予備脱硫剤の 担体がアルミナもしくはシリカ−アルミナである前記1又は2に記載の燃料電池用水素の製造方法。
4.予備脱硫剤の銀の担持量が、金属銀として0.5〜50質量%である前記1〜3のいずれかに記載の燃料電池用水素の製造方法。
5.有機硫黄化合物含有燃料油が、灯油である前記1〜4のいずれかに記載の燃料電池用水素の製造方法。
6.部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒が、ルテニウム系触媒又はニッケル系触媒である前記1〜5のいずれかに記載の燃料電池用水素の製造方法。
【0010】
【発明の実施の形態】
以下に、本発明について詳細に説明する。
本発明の有機硫黄化合物含有燃料油用脱硫剤は、担体に銀を担持したものである。
担持される銀化合物として、硝酸銀、フッ化銀、塩化銀、酢酸銀、炭酸銀等を挙げることができる。中でも、入手のし易さと取扱い易さの点で硝酸銀が好ましい。
【0011】
本発明における担体としては、多孔質担体が好ましい。具体的に、シリカ、アルミナ、シリカ−アルミナ、ゼオライト、チタニア、ジルコニア、マグネシア、酸化亜鉛、白土、粘土、珪藻土、活性炭などを挙げることができ、単独でも、二種以上を組み合わせて用いてもよい。これらの中で、特にシリカ−アルミナ、アルミナが好ましい。
【0012】
本発明においては、銀の担持量は、脱硫剤全量に基づき、金属銀として0.5〜50質量%が好ましい。0.5質量未満であると、充分な脱硫性能が発揮されないおそれがある。50質量%を超えると、担持した銀の粒子径が増大し充分な脱硫性能が発揮されないおそれがあり好ましくない。より好ましくは、3〜30質量%の範囲である。
【0013】
担体への銀の担持方法については特に制限はなく、含浸法、共沈法、混練法、物理混合法、蒸着法、イオン交換法などの公知の方法を採用することができる。
中でも、含浸法、共沈法が好ましい。
本発明の脱硫剤の形状については、粉末状、粉砕状、ペレット状、錠剤状、ハニカム状を好適に挙げることができる。また、粉末を他のハニカムにコーティングしたものも、好適に用いることができる。
【0014】
本発明の脱硫剤は、有機硫黄化合物含有燃料油(以下、単に燃料油という。)の脱硫剤として用いられる。燃料油として特に制限はなく、天然ガス、アルコール、エーテル、LPG、ナフサ、ガソリン、灯油、軽油、重油、アスファルテン油、オイルサンド油、石炭液化油、石油系重質油、シェールオイル、GTL、廃プラスチック油、バイオフューエルなどを好適に挙げることができる。中でも灯油が好ましく、灯油の中でも、硫黄分含有量が80ppm以下のJIS1号灯油に適用するのが特に好ましい。このJIS1号灯油は、原油を常圧蒸留して得られた粗灯油を脱硫することにより得られる。該灯油は、そのままではJIS1号灯油とはならず、硫黄分を低減させる必要がある。この硫黄分を低減させる方法としては、一般に工業的に実施されている水素化精製法で脱硫処理するのが好ましい。
【0015】
本発明の脱硫剤を用いて、燃料油を脱硫する方法としては特に制限はなく、脱硫剤が充填された脱硫塔に燃料油を流通させる方法、脱硫剤を内部に固定したタンクなどの容器に燃料油を静置または攪拌する方法を好適に採用することができる。その場合、脱硫剤を使用する温度は、−40〜100℃の範囲が好ましい。−40℃未満では、燃料油の流動性が低下する場合があり、100℃を超えると、脱硫剤の吸着能が低下する場合があり好ましくない。より好ましくは、−20〜80℃の範囲である。また、脱硫剤を使用する圧力は、常圧〜1MPa(G)程度である。
【0016】
更に、本発明においては、本発明の脱硫剤を予備脱硫剤として用い、その後に第2の脱硫剤を使用することにより、燃料油の吸着脱硫を効率的に行うことができる。すなわち、第2の脱硫剤の吸着脱硫の温度低減又は破過時間の延長が可能となる。
該第2の脱硫剤としては特に制限はなく、予備脱硫剤以外の吸着脱硫剤又は水素化脱硫触媒を使用してもよい。その吸着脱硫剤として特に制限はなく、ニッケル、クロム、マンガン、鉄、コバルト、銅、亜鉛、パラジウム、イリジウム、白金、ルテニウム、ロジウム及び金から選ばれる少なくとも一種を含むものを挙げることができ、中でもそれらの金属が多孔質担体に担持されたものが好ましい。その多孔質担体として、前記のものを挙げることができる。特に、少なくともニッケルを含む金属が多孔質担体に担持されたものが好ましい。これらの吸着脱硫剤は予め水素還元することにより、脱硫性能を向上させることができる。また、水素化脱硫触媒を第2の脱硫剤として使用する場合には、水素を少量添加してもよい。なお、第2の脱硫剤を使用する温度は、40〜250℃が好ましい。
【0017】
第2の脱硫剤による脱硫方法としては、予備脱硫剤により脱硫された燃料油を直接第2の脱硫剤と接触させる方法が好ましい。また、別の場所で予備脱硫剤により燃料油を脱硫しておき、改質反応する直前に第2の脱硫剤と接触させてもよい。
本願の第二発明である燃料電池用水素の製造方法は、このようにして脱硫処理した燃料油を、部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒(以下、全てをまとめて、単に改質触媒ということもある。)と接触させることにより、水素を製造する方法である。
【0018】
本発明の方法において用いられる改質触媒としては特に制限はなく、従来から炭化水素の改質触媒として知られている公知のものの中から、任意のものを適宜選択して用いることができる。このような改質触媒としては、例えば適当な担体にニッケルやジルコニウム、あるいはルテニウム、ロジウム、白金などの貴金属を担持したものを挙げることができる。上記担持金属は一種でもよく、二種以上を組み合わせてもよい。これらの触媒の中で、ニッケルを担持させたもの(以下、ニッケル系触媒という。)とルテニウムを担持させたもの(以下、ルテニウム系触媒という。)が好ましく、部分酸化改質、オートサーマル改質又は水蒸気改質反応中の炭素析出を抑制する効果が大きい。
【0019】
このニッケル系触媒の場合、ニッケルの担持量は担体基準で3〜60質量%の範囲が好ましい。この担持量が3質量%未満では、部分酸化改質、オートサーマル改質又は水蒸気改質の活性が充分に発揮されないおそれがあり、一方、60質量%を超えると、その担持量に見合った触媒活性の向上効果があまり認められず、むしろ経済的に不利となる。触媒活性及び経済性などを考慮すると、このニッケルのより好ましい担持量は5〜50質量%であり、特に10〜30質量%の範囲が好ましい。
【0020】
また、ルテニウム系触媒の場合、ルテニウムの担持量は担体基準で0.05〜20質量%の範囲が好ましい。この担持量が0.05質量%未満では、部分酸化改質、オートサーマル改質又は水蒸気改質の活性が充分に発揮されないおそれがあり、一方、20質量%を超えると、その担持量に見合った触媒活性の向上効果があまり認められず、むしろ経済的に不利となる。触媒活性及び経済性などを考慮すると、このルテニウムのより好ましい担持量は0.05〜15質量%であり、特に0.1〜2質量%の範囲が好ましい。
【0021】
部分酸化改質処理における反応条件としては、通常、圧力は常圧〜5MPa、温度は400〜1,100℃、酸素(O2 )/カーボン(モル比)は0.2〜0.8、液時空間速度(LHSV)は0.1〜100hr-1の条件が採用される。
また、オートサーマル改質処理における反応条件としては、通常、圧力は常圧〜5MPa、温度は400〜1,100℃、スチーム/カーボン(モル比)は0.1〜10、酸素(O2 )/カーボン(モル比)は0.1〜1、液時空間速度(LHSV)は0.1〜2hr-1、ガス時空間速度(GHSV)は1,000〜100,000hr-1の条件が採用される。
【0022】
さらに、水蒸気改質処理における反応条件としては、水蒸気と燃料油に由来する炭素との比スチーム/カーボン(モル比)は、通常1.5〜10、好ましくは1.5〜5、より好ましくは2〜4の範囲で選定される。スチーム/カーボン(モル比)が1.5未満では、水素の生成量が低下するおそれがあり、また10を超えると、過剰の水蒸気を必要とし、熱ロスが大きく、水素製造の効率が低下するので好ましくない。
【0023】
また、水蒸気改質触媒層の入口温度を630℃以下、さらには600℃以下に保って水蒸気改質を行うのが好ましい。入口温度が630℃を超えると、燃料油の熱分解が促進され、生成したラジカルを経由して触媒あるいは反応管壁に炭素が析出して、運転が困難になる場合がある。なお、触媒層出口温度は特に制限はないが、650〜800℃の範囲が好ましい。650℃未満では水素の生成量が充分でないおそれがあり、800℃を超えると、反応装置は耐熱材料を必要とする場合があり、経済的に好ましくない。
【0024】
反応圧力は、通常、常圧〜3MPa(G)、好ましくは常圧〜1Ma(G)の範囲であり、また、LHSVは、通常0.1〜100hr-1、好ましくは0.2〜50hr-1の範囲である。
上記水素の製造方法においては、上記部分酸化改質、オートサーマル改質又は水蒸気改質により得られるCOが水素生成に悪影響を及ぼすため、これを反応によりCO2 としてCOを除くことが好ましい。
このようにして、燃料電池用水素を効率よく製造することができる。
【0025】
【実施例】
次に、本発明を実施例により具体的に説明するが、これらの実施例になんら制限されるものではない。
使用するJIS1号灯油、ガソリンの性状を第1表に示す。
【0026】
【表1】
【0027】
<脱硫剤の調製>
脱硫剤1(銀担持アルミナ)
硝酸銀2.49g(純度99.8質量%)を水15ミリリットルに溶解し、アルミナ担体(JRC−ALO−2,触媒学会参照触媒)30gに含浸させた。空気中で6時間風乾した後、120℃の送風乾燥機内で、12時間乾燥させた。乾燥終了後、電気炉を用いて、空気下400℃で3時間焼成し脱硫剤1を得た。銀の担持量は5質量%であった。
【0028】
脱硫剤2(銀担持シリカ−アルミナ)
硝酸銀11.8g(純度99.8質量%)を水30ミリリットルに溶解し、シリカ−アルミナ担体(N633L,日揮化学社製)30gに含浸させた。空気中で6時間風乾した後、120℃の送風乾燥機内で、12時間乾燥させた。乾燥終了後、電気炉を用いて、空気下400℃で3時間焼成し脱硫剤2を得た。銀の担持量は20質量%であった。
【0029】
脱硫剤3(銀担持シリカ−アルミナ)
2リットルのビーカーを用いて、硝酸銀11.8g(純度99.8質量%)を80℃の温水500ミリリットルに溶解し、硝酸銀水溶液を調製した。そこに、シリカ−アルミナ担体(N633L,日揮化学社製)30gを添加した(溶液A)。別の2リットルのビーカーを用いて炭酸ナトリウム5gを80℃の温水500ミリリットルに溶解させた(溶液B)。溶液Aを攪拌しながら溶液Bを添加し、1時間80℃で維持した。得られた固体成分を水洗・ろ別し、120℃の送風乾燥機内で、12時間乾燥させた。乾燥終了後、電気炉を用いて、空気下220℃で3時間焼成し脱硫剤3を得た。銀の担持量は20質量%であった。
【0030】
脱硫剤4(銀担持シリカ−アルミナ)
2リットルのビーカーを用いて、硝酸銀11.8g(純度99.8質量%)を温水500ミリリットルに溶解し、硝酸銀溶液を調製した。そこに、擬ベーマイトアルミナ(C−AP,触媒化成工業社製)6.49g(Al2 O3 濃度67質量%)を添加した(溶液C)。別の2リットルのビーカーを用いて炭酸ナトリウム5gを80℃の温水500ミリリットルに溶解し、更に水ガラス88g(SiO2 濃度29質量%)を添加した(溶液D)。溶液Cを攪拌しながら溶液Dを添加し、1時間80℃で維持した。得られた固体成分を水洗・ろ別し、120℃の送風乾燥機内で、12時間乾燥させた。乾燥終了後、電気炉を用いて、空気下220℃で3時間焼成し脱硫剤4を得た。銀の担持量は20質量%であった。
脱硫剤5(市販の活性アルミナ)
N633L,日揮化学社製
脱硫剤6(市販のシリカゲル)
Q−10,富士シリシア社製
【0031】
〔参考例1〕(静置試験)
脱硫剤1〜4を10gと前記JIS1号灯油100ミリリットルを500ミリリットルビーカーに収容し、室温で24時間放置した。その後、灯油と脱硫剤をろ過により分離した。得られた回収後の灯油の硫黄濃度を以下に示す。
脱硫剤1:0.6ppm
脱硫剤2:0.4ppm
脱硫剤3:0.5ppm
脱硫剤4:0.4ppm
【0032】
〔比較参考例1〕
脱硫剤5,6を10gと前記JIS1号灯油100ミリリットルを500ミリリットルビーカーに収容し、室温で24時間放置した。その後、灯油と脱硫剤をろ過により分離した。得られた回収後の灯油の硫黄濃度を以下に示す。
脱硫剤5:47ppm
脱硫剤6:32ppm
【0033】
〔参考例2〕
脱硫剤2を100gと前記JIS1号灯油1リットルを2リットルビーカーに収容し、室温で24時間放置した。その後、灯油と脱硫剤をろ過により分離した。次いで、第2の脱硫剤としてニッケル担持珪藻土(Ni50質量%、Ni担持珪藻土全体基準、Ni−5249,エンゲルハルド社製)を15ミリリットル秤量し、内径17mmのステンレス製反応管に充填した。常圧下、水素気流中120℃に昇温し、1時間保持した後、さらに昇温し、380℃で1時間保持しニッケル担持珪藻土を活性化した。その後、150℃に降温し、保持した。その反応管に、前記の回収した灯油を液空間速度10hr-1で流通させた。7時間経過後の灯油の硫黄濃度は0.1ppmであった。
【0034】
〔比較参考例2〕
参考例2において、脱硫剤2の代わりに脱硫剤6を使用したこと以外は同様に実施した。7時間経過後の灯油の硫黄濃度は7.2ppmであった。
【0035】
〔参考例3〕
参考例2において、JIS1号灯油をガソリンに変え、第2脱硫剤の使用温度を150℃から50℃に変えたこと以外は同様に実施した。7時間経過後のガソリンの硫黄濃度は0.2ppmであった。
【0036】
〔実施例1〕(水蒸気改質処理)
参考例2の第2の脱硫剤の下流にルテニウム系改質触媒(ルテニウム担持量0.5質量%、担体基準)20ミリリットルが充填された改質器により、水蒸気改質処理した。改質処理条件は、圧力:大気圧、スチーム/カーボン(モル比)2.5、LHSV:1.0hr-1、入口温度:500℃、出口温度:750℃である。その結果、200時間後の改質出口での転化率は100%であった。また、この反応期間中の脱硫処理灯油の硫黄分は0.2ppm以下であった。
【0037】
【発明の効果】
本発明の有機硫黄化合物含有燃料油用脱硫剤は、有機硫黄化合物含有燃料油中の硫黄分を1ppm以下まで効率よく吸着除去することができ、かつ寿命も長い。また、この脱硫剤を用いて脱硫処理された有機硫黄化合物含有燃料油を部分酸化改質、オートサーマル改質又は水蒸気改質することにより、燃料電池用水素を効果的に製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an organic sulfur compound-containing fuel oil desulfurization agent and a fuel cell hydrogen, and more specifically, the sulfur content in the organic sulfur compound-containing fuel oil can be efficiently removed to 1 ppm or less, and A long-life organic sulfur compound-containing fuel oil desulfurization agent, and an organic sulfur compound-containing fuel oil desulfurized using the desulfurization agent, are subjected to partial oxidation reforming treatment, autothermal reforming treatment, or steam reforming treatment, The present invention relates to a method for producing hydrogen for fuel cells.
[0002]
[Prior art]
In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and has the feature of high energy use efficiency. Alternatively, research into practical use is actively conducted for automobiles and the like.
[0003]
For this fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known depending on the type of electrolyte used. On the other hand, as a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of this natural gas, synthetic liquid fuel (GTL) using natural gas as a raw material, biofuel (vegetable oil methyl esters, etc.) ), Research on the use of waste plastic oil, and petroleum hydrocarbon oils such as petroleum naphtha, gasoline and kerosene.
[0004]
When fuel cells are used for consumer and automobile applications, the petroleum hydrocarbon oils are easy to store and handle, and supply systems such as gas stations and dealers have been established. As advantageous.
However, petroleum-based hydrocarbon oil has a problem that the content of sulfur is higher than that of methanol or natural gas. In addition, fuel oils such as GTL, biofuel, and waste plastic oil may be mixed with sulfur during transportation and storage. When producing hydrogen using such an organic sulfur compound-containing fuel oil, generally, a method of subjecting the fuel oil to steam reforming treatment, partial oxidation reforming treatment or autothermal reforming treatment in the presence of a reforming catalyst Is used. In such a reforming treatment, the reforming catalyst is poisoned by the sulfur content in the fuel oil, so that the sulfur content in the fuel oil is usually desulfurized to 1 ppm or less from the viewpoint of catalyst life. There is.
[0005]
As a method for desulfurization of petroleum fractions, methods are known in which a part of sulfur compounds is removed by physical adsorption using activated carbon or zeolite (US Pat. No. 4,188,285, JP-A-3-128899, JP-A-6-6 No. 154615, US Pat. No. 5,482,617, US Pat. No. 5,807,475, WO 98/51762, US Pat. No. 5,935,422). However, activated carbon and zeolite have low adsorption performance for sulfur compounds, and have not reached a practical level in terms of life.
[0006]
In addition, US Pat. No. 5,114,689 and Japanese Patent Publication No. 7-504214 disclose a method in which a petroleum fraction from which a part of a sulfur compound has been removed by physical adsorption is brought into contact with another desulfurization agent. However, after removing a part of the sulfur compound by physical adsorption, it is necessary to construct a complicated system that requires treatment at high temperature (250 to 450 ° C.) and high pressure (15 to 500 psig) in the presence of hydrogen. As a hydrogen production method for fuel cells, the efficiency is low and it has not reached a practical level.
[0007]
[Problems to be solved by the invention]
The present invention has been made under the above circumstances, and can efficiently remove the sulfur content in the organic sulfur compound-containing fuel oil to 1 ppm or less and has a long life, and a desulfurization agent for the organic sulfur compound-containing fuel oil, and An object of the present invention is to provide a method for producing hydrogen for a fuel cell by subjecting an organic sulfur compound-containing fuel oil desulfurized using this desulfurizing agent to partial oxidation reforming treatment, autothermal reforming treatment or steam reforming treatment. To do.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that a desulfurization agent in which silver is supported on a porous carrier having a pore diameter of several to several tens of kilometers is an object of a sulfur compound in kerosene. It was found that the alkyldibenzothiophenes set as as follows can be selectively adsorbed and removed.
[0009]
The present invention has been completed based on such findings. That is, the gist of the present invention is as follows.
1 . After desulfurizing the organic sulfur compound-containing fuel oil at a temperature of −40 to 100 ° C. and a pressure of normal pressure to 1 MPa (G) using a preliminary desulfurization agent having silver supported on a carrier , nickel, chromium, manganese, iron After desulfurizing an organic sulfur compound-containing fuel oil at a temperature of 40 to 250 ° C. using a second desulfurizing agent containing at least one selected from cobalt, copper, zinc, palladium, iridium, platinum, ruthenium, rhodium and gold A method for producing hydrogen for a fuel cell, comprising contacting with a partial oxidation reforming catalyst, an autothermal reforming catalyst, or a steam reforming catalyst.
2. 2. The method for producing hydrogen for fuel cells as described in 1 above, wherein the carrier for the predesulfurization agent is porous .
3. Carrier pre desulfurizing agent alumina or silica - method for producing hydrogen for a fuel cell according to the one or a alumina.
4). 4. The method for producing hydrogen for a fuel cell according to any one of 1 to 3, wherein the amount of silver supported by the preliminary desulfurization agent is 0.5 to 50% by mass as metallic silver.
5. Organic sulfur compound-containing fuel oil, the production method of a hydrogen for a fuel cell according to any one of 1 to 4 is kerosene.
6 . 6. The method for producing hydrogen for a fuel cell according to any one of 1 to 5 , wherein the partial oxidation reforming catalyst, the autothermal reforming catalyst, or the steam reforming catalyst is a ruthenium catalyst or a nickel catalyst.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The organic sulfur compound-containing fuel oil desulfurizing agent of the present invention is a carrier in which silver is supported.
Examples of the supported silver compound include silver nitrate, silver fluoride, silver chloride, silver acetate, and silver carbonate. Among these, silver nitrate is preferable in terms of easy availability and handling.
[0011]
As the carrier in the present invention, a porous carrier is preferable. Specific examples include silica, alumina, silica-alumina, zeolite, titania, zirconia, magnesia, zinc oxide, white clay, clay, diatomaceous earth, activated carbon and the like, and may be used alone or in combination of two or more. . Among these, silica-alumina and alumina are particularly preferable.
[0012]
In the present invention, the supported amount of silver is preferably 0.5 to 50% by mass as metallic silver based on the total amount of the desulfurizing agent. If the amount is less than 0.5 mass, sufficient desulfurization performance may not be exhibited. If it exceeds 50% by mass, the particle diameter of the supported silver is increased, so that sufficient desulfurization performance may not be exhibited, which is not preferable. More preferably, it is the range of 3-30 mass%.
[0013]
The method for supporting silver on the carrier is not particularly limited, and known methods such as an impregnation method, a coprecipitation method, a kneading method, a physical mixing method, a vapor deposition method, and an ion exchange method can be employed.
Of these, the impregnation method and the coprecipitation method are preferable.
As for the shape of the desulfurizing agent of the present invention, a powder shape, a pulverized shape, a pellet shape, a tablet shape, and a honeycomb shape can be preferably exemplified. Moreover, what coated the powder on the other honeycomb can also be used suitably.
[0014]
The desulfurizing agent of the present invention is used as a desulfurizing agent for organic sulfur compound-containing fuel oil (hereinafter simply referred to as fuel oil). There is no particular restriction as fuel oil, natural gas, alcohol, ether, LPG, naphtha, gasoline, kerosene, light oil, heavy oil, asphaltene oil, oil sand oil, coal liquefied oil, petroleum heavy oil, shale oil, GTL, waste Preferred examples include plastic oil and biofuel. Among them, kerosene is preferable, and among kerosene, it is particularly preferable to apply to JIS No. 1 kerosene having a sulfur content of 80 ppm or less. This JIS No. 1 kerosene is obtained by desulfurizing crude kerosene obtained by atmospheric distillation of crude oil. The kerosene as such is not JIS No. 1 kerosene, and it is necessary to reduce the sulfur content. As a method for reducing the sulfur content, it is preferable to perform a desulfurization treatment by a hydrorefining method which is generally carried out industrially.
[0015]
The method for desulfurizing fuel oil using the desulfurizing agent of the present invention is not particularly limited, and a method for circulating fuel oil through a desulfurization tower filled with the desulfurizing agent, or a container such as a tank having the desulfurizing agent fixed therein. A method of allowing the fuel oil to stand or stir can be suitably employed. In that case, the temperature at which the desulfurizing agent is used is preferably in the range of -40 to 100 ° C. If it is less than -40 degreeC, the fluidity | liquidity of a fuel oil may fall, and if it exceeds 100 degreeC, the adsorption capacity of a desulfurization agent may fall and it is unpreferable. More preferably, it is the range of -20-80 degreeC. The pressure at which the desulfurizing agent is used is about normal pressure to 1 MPa (G).
[0016]
Furthermore, in the present invention, by using the desulfurizing agent of the present invention as a preliminary desulfurizing agent and then using the second desulfurizing agent, the adsorption desulfurization of the fuel oil can be efficiently performed. That is, the temperature of the adsorption desulfurization of the second desulfurizing agent can be reduced or the breakthrough time can be extended.
There is no restriction | limiting in particular as this 2nd desulfurization agent, You may use adsorption desulfurization agents other than a predesulfurization agent, or a hydrodesulfurization catalyst. The adsorptive desulfurization agent is not particularly limited, and examples include those containing at least one selected from nickel, chromium, manganese, iron, cobalt, copper, zinc, palladium, iridium, platinum, ruthenium, rhodium and gold. It is preferable that these metals are supported on a porous carrier. Examples of the porous carrier include those mentioned above. In particular, a material in which a metal containing at least nickel is supported on a porous carrier is preferable. These adsorptive desulfurization agents can improve the desulfurization performance by hydrogen reduction in advance. Moreover, when using a hydrodesulfurization catalyst as a 2nd desulfurization agent, you may add a small amount of hydrogen. In addition, as for the temperature which uses a 2nd desulfurization agent, 40-250 degreeC is preferable.
[0017]
As the desulfurization method using the second desulfurizing agent, a method in which the fuel oil desulfurized by the preliminary desulfurizing agent is directly brought into contact with the second desulfurizing agent is preferable. Alternatively, the fuel oil may be desulfurized with a preliminary desulfurization agent at another location and contacted with the second desulfurization agent immediately before the reforming reaction.
The method for producing hydrogen for a fuel cell according to the second invention of the present application is based on a partial oxidation reforming catalyst, an autothermal reforming catalyst or a steam reforming catalyst (hereinafter, all together) In some cases, hydrogen is produced by contacting with a reforming catalyst.
[0018]
There is no restriction | limiting in particular as a reforming catalyst used in the method of this invention, Arbitrary things can be suitably selected and used from the well-known things conventionally known as a hydrocarbon reforming catalyst. As such a reforming catalyst, for example, a catalyst in which noble metal such as nickel, zirconium, ruthenium, rhodium or platinum is supported on a suitable carrier can be exemplified. The supported metal may be one kind or a combination of two or more kinds. Among these catalysts, those supporting nickel (hereinafter referred to as nickel-based catalyst) and those supporting ruthenium (hereinafter referred to as ruthenium-based catalyst) are preferable. Partial oxidation reforming and autothermal reforming Or the effect which suppresses carbon precipitation during steam reforming reaction is large.
[0019]
In the case of this nickel-based catalyst, the supported amount of nickel is preferably in the range of 3 to 60% by mass based on the carrier. If the supported amount is less than 3% by mass, the activity of partial oxidation reforming, autothermal reforming or steam reforming may not be sufficiently exhibited. On the other hand, if the supported amount exceeds 60% by mass, a catalyst corresponding to the supported amount is obtained. The activity improvement effect is not recognized so much, but it is economically disadvantageous. Considering catalytic activity and economy, the more preferable loading of nickel is 5 to 50% by mass, and particularly preferably 10 to 30% by mass.
[0020]
In the case of a ruthenium-based catalyst, the supported amount of ruthenium is preferably in the range of 0.05 to 20% by mass based on the carrier. If the supported amount is less than 0.05% by mass, the activity of partial oxidation reforming, autothermal reforming or steam reforming may not be sufficiently exerted. On the other hand, if it exceeds 20% by mass, the supported amount is met. In addition, the improvement in catalytic activity is not recognized so much, which is disadvantageous economically. Considering catalytic activity and economy, the more preferable loading of ruthenium is 0.05 to 15% by mass, and particularly preferably 0.1 to 2% by mass.
[0021]
As reaction conditions in the partial oxidation reforming treatment, the pressure is usually normal pressure to 5 MPa, the temperature is 400 to 1,100 ° C., the oxygen (O 2 ) / carbon (molar ratio) is 0.2 to 0.8, and the liquid The space-time velocity (LHSV) is 0.1 to 100 hr −1 .
As reaction conditions in the autothermal reforming treatment, the pressure is usually normal pressure to 5 MPa, the temperature is 400 to 1,100 ° C., the steam / carbon (molar ratio) is 0.1 to 10, and oxygen (O 2 ). / Carbon (molar ratio) is 0.1 to 1, liquid hourly space velocity (LHSV) is 0.1 to 2 hr -1 , and gas hourly space velocity (GHSV) is 1,000 to 100,000 hr -1. Is done.
[0022]
Furthermore, as the reaction conditions in the steam reforming treatment, the specific steam / carbon (molar ratio) between the steam and the carbon derived from the fuel oil is usually 1.5 to 10, preferably 1.5 to 5, more preferably It is selected in the range of 2-4. If the steam / carbon (molar ratio) is less than 1.5, the amount of hydrogen produced may be reduced. If the steam / carbon (molar ratio) exceeds 10, excessive steam is required, heat loss is large, and the efficiency of hydrogen production decreases. Therefore, it is not preferable.
[0023]
Further, it is preferable to perform the steam reforming while keeping the inlet temperature of the steam reforming catalyst layer at 630 ° C. or lower, more preferably 600 ° C. or lower. When the inlet temperature exceeds 630 ° C., thermal decomposition of the fuel oil is promoted, and carbon may be deposited on the catalyst or the reaction tube wall via the generated radicals, which may make operation difficult. The catalyst layer outlet temperature is not particularly limited, but is preferably in the range of 650 to 800 ° C. If it is less than 650 ° C., the amount of hydrogen produced may not be sufficient. If it exceeds 800 ° C., the reaction apparatus may require a heat-resistant material, which is not economically preferable.
[0024]
The reaction pressure is usually in the range of normal pressure to 3 MPa (G), preferably normal pressure to 1 Ma (G), and LHSV is usually 0.1 to 100 hr −1 , preferably 0.2 to 50 hr −. A range of 1 .
In the method for producing hydrogen, CO obtained by the partial oxidation reforming, autothermal reforming or steam reforming adversely affects the hydrogen production, and it is preferable to remove CO as CO 2 by reaction.
In this way, hydrogen for fuel cells can be produced efficiently.
[0025]
【Example】
EXAMPLES Next, although an Example demonstrates this invention concretely, it is not restrict | limited to these Examples at all.
Table 1 shows the properties of JIS No. 1 kerosene and gasoline used.
[0026]
[Table 1]
[0027]
<Preparation of desulfurizing agent>
Desulfurization agent 1 (silver supported alumina)
2.49 g of silver nitrate (purity 99.8% by mass) was dissolved in 15 ml of water and impregnated on 30 g of an alumina support (JRC-ALO-2, catalyst catalyst reference catalyst). After air-drying in air for 6 hours, it was dried in a blast dryer at 120 ° C. for 12 hours. After the completion of drying, a desulfurizing agent 1 was obtained by firing at 400 ° C. for 3 hours in an air using an electric furnace. The supported amount of silver was 5% by mass.
[0028]
Desulfurizing agent 2 (silver-supported silica-alumina)
11.8 g of silver nitrate (purity 99.8% by mass) was dissolved in 30 ml of water and impregnated in 30 g of a silica-alumina carrier (N633L, manufactured by JGC Chemical Co., Ltd.). After air-drying in air for 6 hours, it was dried in a blast dryer at 120 ° C. for 12 hours. After the completion of drying, the desulfurization agent 2 was obtained by firing at 400 ° C. for 3 hours in an air using an electric furnace. The supported amount of silver was 20% by mass.
[0029]
Desulfurization agent 3 (Silver supported silica-alumina)
Using a 2 liter beaker, 11.8 g of silver nitrate (purity 99.8 mass%) was dissolved in 500 ml of warm water at 80 ° C. to prepare an aqueous silver nitrate solution. Thereto, 30 g of silica-alumina carrier (N633L, manufactured by JGC Chemical Co., Ltd.) was added (solution A). Using another 2 liter beaker, 5 g of sodium carbonate was dissolved in 500 ml of warm water at 80 ° C. (solution B). Solution B was added while stirring Solution A and maintained at 80 ° C. for 1 hour. The obtained solid component was washed with water, filtered, and dried in a blow dryer at 120 ° C. for 12 hours. After the completion of drying, a desulfurization agent 3 was obtained by firing at 220 ° C. for 3 hours in an air using an electric furnace. The supported amount of silver was 20% by mass.
[0030]
Desulfurization agent 4 (silver-supported silica-alumina)
Using a 2 liter beaker, 11.8 g of silver nitrate (purity 99.8% by mass) was dissolved in 500 ml of warm water to prepare a silver nitrate solution. Thereto was added 6.49 g (Al 2 O 3 concentration 67 mass%) of pseudo boehmite alumina (C-AP, manufactured by Catalyst Kasei Kogyo Co., Ltd.) (Solution C). Using another 2 liter beaker, 5 g of sodium carbonate was dissolved in 500 ml of warm water at 80 ° C., and 88 g of water glass (SiO 2 concentration 29 mass%) was added (solution D). Solution D was added while stirring Solution C and maintained at 80 ° C. for 1 hour. The obtained solid component was washed with water, filtered, and dried in a blow dryer at 120 ° C. for 12 hours. After the completion of drying, the desulfurization agent 4 was obtained by firing at 220 ° C. for 3 hours in an air using an electric furnace. The supported amount of silver was 20% by mass.
Desulfurization agent 5 (commercially available activated alumina)
N633L, desulfurization agent 6 (commercially available silica gel) manufactured by JGC
Q-10, manufactured by Fuji Silysia Ltd. [0031]
[ Reference Example 1] (Standing test)
10 g of desulfurizing agents 1 to 4 and 100 ml of JIS No. 1 kerosene were placed in a 500 ml beaker and left at room temperature for 24 hours. Thereafter, kerosene and the desulfurizing agent were separated by filtration. The sulfur concentration of the obtained kerosene after recovery is shown below.
Desulfurization agent 1: 0.6 ppm
Desulfurization agent 2: 0.4 ppm
Desulfurization agent 3: 0.5 ppm
Desulfurization agent 4: 0.4 ppm
[0032]
[Comparative Reference Example 1]
10 g of desulfurizing agents 5 and 6 and 100 ml of the JIS No. 1 kerosene were placed in a 500 ml beaker and left at room temperature for 24 hours. Thereafter, kerosene and the desulfurizing agent were separated by filtration. The sulfur concentration of the obtained kerosene after recovery is shown below.
Desulfurization agent 5: 47 ppm
Desulfurization agent 6: 32 ppm
[0033]
[ Reference Example 2]
100 g of desulfurizing agent 2 and 1 liter of JIS No. 1 kerosene were placed in a 2 liter beaker and left at room temperature for 24 hours. Thereafter, kerosene and the desulfurizing agent were separated by filtration. Next, 15 ml of nickel-supported diatomaceous earth (Ni 50% by mass, Ni-supported diatomaceous earth standard, Ni-5249, manufactured by Engelhard) was weighed as a second desulfurizing agent and filled into a stainless steel reaction tube having an inner diameter of 17 mm. Under normal pressure, the temperature was raised to 120 ° C. in a hydrogen stream, held for 1 hour, further heated, and held at 380 ° C. for 1 hour to activate the nickel-supporting diatomaceous earth. Thereafter, the temperature was lowered to 150 ° C. and held. The recovered kerosene was circulated through the reaction tube at a liquid space velocity of 10 hr −1 . The sulfur concentration of kerosene after 7 hours was 0.1 ppm.
[0034]
[Comparative Reference Example 2]
In Reference Example 2, the same procedure was performed except that the desulfurizing agent 6 was used instead of the desulfurizing agent 2. The sulfur concentration of kerosene after 7 hours was 7.2 ppm.
[0035]
[ Reference Example 3]
In Reference Example 2, the same procedure was performed except that JIS No. 1 kerosene was changed to gasoline and the operating temperature of the second desulfurizing agent was changed from 150 ° C to 50 ° C. The sulfur concentration of the gasoline after 7 hours was 0.2 ppm.
[0036]
[Example 1 ] (steam reforming treatment)
A steam reforming treatment was performed by a reformer in which 20 ml of a ruthenium-based reforming catalyst (ruthenium loading amount of 0.5% by mass, based on the support) was filled downstream of the second desulfurizing agent of Reference Example 2. The reforming treatment conditions are pressure: atmospheric pressure, steam / carbon (molar ratio) 2.5, LHSV: 1.0 hr −1 , inlet temperature: 500 ° C., outlet temperature: 750 ° C. As a result, the conversion rate at the reforming outlet after 200 hours was 100%. Further, the sulfur content of the desulfurized kerosene during the reaction period was 0.2 ppm or less.
[0037]
【The invention's effect】
The desulfurization agent for organic sulfur compound-containing fuel oil of the present invention can efficiently adsorb and remove the sulfur content in the organic sulfur compound-containing fuel oil to 1 ppm or less and has a long life. Also, hydrogen for a fuel cell can be effectively produced by subjecting an organic sulfur compound-containing fuel oil desulfurized using this desulfurizing agent to partial oxidation reforming, autothermal reforming, or steam reforming.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001119186A JP4749589B2 (en) | 2001-04-18 | 2001-04-18 | Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001119186A JP4749589B2 (en) | 2001-04-18 | 2001-04-18 | Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002316043A JP2002316043A (en) | 2002-10-29 |
JP4749589B2 true JP4749589B2 (en) | 2011-08-17 |
Family
ID=18969443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001119186A Expired - Fee Related JP4749589B2 (en) | 2001-04-18 | 2001-04-18 | Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4749589B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1732250B (en) * | 2002-12-26 | 2011-11-23 | 出光兴产株式会社 | Process for removing sulfide contained in hydrocarbon-containing gas |
KR20070056129A (en) * | 2004-09-01 | 2007-05-31 | 쥐드-케미 인코포레이티드 | A desulfurization system and method for desulfurizing a fuel stream |
JP2006173045A (en) * | 2004-12-20 | 2006-06-29 | Idemitsu Kosan Co Ltd | Liquid fuel for fuel cell, and desulfurizating method |
JP2006176721A (en) * | 2004-12-24 | 2006-07-06 | Idemitsu Kosan Co Ltd | Desulfurizing agent for fuel oil containing organic sulfur compound and manufacturing method of hydrogen for fuel cell |
JP4969091B2 (en) * | 2005-11-29 | 2012-07-04 | Jx日鉱日石エネルギー株式会社 | Desulfurization method for hydrocarbon fuel |
KR101332047B1 (en) * | 2006-07-11 | 2013-11-22 | 에스케이이노베이션 주식회사 | Sulphur-detecting indicators for determining life time of adsorbents, sulfur-removal canister and system composed of the same |
JP5421857B2 (en) * | 2010-05-19 | 2014-02-19 | Jx日鉱日石エネルギー株式会社 | Adsorbent, production method thereof, and fuel desulfurization method |
CN107486223B (en) * | 2017-08-17 | 2020-05-19 | 江苏天东新材料科技有限公司 | Preparation method and application of high-efficiency organic sulfur hydroconversion catalyst |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3825169A1 (en) * | 1988-07-23 | 1990-02-01 | Huels Chemische Werke Ag | METHOD FOR FINE DESULFURATION OF HYDROCARBONS |
JP2911961B2 (en) * | 1990-05-17 | 1999-06-28 | 日揮株式会社 | High concentration alcohol purification method and adsorbent for purification |
JPH1150069A (en) * | 1997-08-05 | 1999-02-23 | Tosoh Corp | Purification of natural gas |
JP4161147B2 (en) * | 1998-03-27 | 2008-10-08 | 大阪瓦斯株式会社 | Hydrogen production equipment |
-
2001
- 2001-04-18 JP JP2001119186A patent/JP4749589B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002316043A (en) | 2002-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1270069B1 (en) | Use of a desulfurizing agent | |
JPWO2006101079A1 (en) | Desulfurization agent and desulfurization method using the same | |
JP4068061B2 (en) | Hydrocarbon desulfurization and reforming method | |
JP2002322483A (en) | Method for desulfurization of liquid oil containing organic sulfur compound | |
JP4749589B2 (en) | Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method | |
JP2001279274A (en) | Fuel oil for fuel cell, desulfurization method and method for producing hydrogen | |
JP2001279257A (en) | Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery | |
JP4388665B2 (en) | Ni-Cu desulfurizing agent and method for producing hydrogen for fuel cell | |
JP2008291146A (en) | Porous desulfurizing agent and method for desulfurizing hydrocarbon oil using the same | |
JP4322804B2 (en) | Method for desulfurizing liquid hydrocarbon and method for producing hydrogen for fuel cell | |
JP4521172B2 (en) | Desulfurization agent and desulfurization method using the same | |
JP4531939B2 (en) | Method for producing nickel-copper desulfurization agent | |
JP2004075778A (en) | Desulfurizing agent for hydrocarbon and method for producing hydrogen for fuel cell | |
JP4580070B2 (en) | Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells | |
JP2001278602A (en) | Desulfurization agent, method of desulfurization and method of manufacturing hydrogen for fuel cell | |
WO2006068069A1 (en) | Liquid fuel for fuel cell and method of desulfurization | |
JP2002322482A (en) | Method for desulfurization of liquid oil containing organic sulfur compound | |
JP2001279259A (en) | Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery | |
JP2004305869A (en) | Adsorbent for removing sulfur compound, and method for producing hydrogen for fuel cell | |
JP2009046626A (en) | Desulfurization agent for liquid fuel and desulfurization method of liquid fuel | |
JP4580071B2 (en) | Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells | |
JP4531917B2 (en) | Method for producing nickel-based desulfurization agent | |
JP2001279261A (en) | Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery | |
JP2006117921A (en) | Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system | |
JP2003290660A (en) | Desulfurizing agent and method for manufacturing hydrogen for fuel battery using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071015 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20071015 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100409 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110426 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110518 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140527 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |