JP2009046626A - Desulfurization agent for liquid fuel and desulfurization method of liquid fuel - Google Patents

Desulfurization agent for liquid fuel and desulfurization method of liquid fuel Download PDF

Info

Publication number
JP2009046626A
JP2009046626A JP2007215816A JP2007215816A JP2009046626A JP 2009046626 A JP2009046626 A JP 2009046626A JP 2007215816 A JP2007215816 A JP 2007215816A JP 2007215816 A JP2007215816 A JP 2007215816A JP 2009046626 A JP2009046626 A JP 2009046626A
Authority
JP
Japan
Prior art keywords
desulfurization
liquid fuel
desulfurization agent
fuel
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007215816A
Other languages
Japanese (ja)
Inventor
Toshimasa Uko
俊匡 宇高
Tetsuya Fukunaga
哲也 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2007215816A priority Critical patent/JP2009046626A/en
Publication of JP2009046626A publication Critical patent/JP2009046626A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive and high-performance desulfurization agent which is usable for the desulfurization of liquid fuel at ≤80°C and also usable as the desulfurization agent for rough removal carried out in the desulfurization to very low sulfur level such as desulfurization for liquid fuel for a fuel cell. <P>SOLUTION: The desulfurization agent is used for desulfurizing the liquid fuel at ≤80°C, consists essentially of an inorganic oxide, and has ≥170 μmol ammonia adsorption volume per one gram of the desulfurization agent at 100°C. The desulfurization method of the liquid fuel uses the desulfurization agent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液体燃料用脱硫剤、及び該脱硫剤を用いた液体燃料の脱硫方法、及び水素の製造方法と燃料電池システムに関する。   The present invention relates to a liquid fuel desulfurization agent, a liquid fuel desulfurization method using the desulfurization agent, a hydrogen production method, and a fuel cell system.

近年、環境問題から新エネルギー技術として脚光を浴びている燃料電池は、水素と酸素、あるいはCOやメタン等の可燃性物質と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有していることから、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。この燃料電池において、水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、LPガス、さらには石油系のナフサや灯油などの炭化水素油の使用が提案されている。
燃料電池を民生用や自動車用などに利用する場合、上記炭化水素のうちメタン、液化天然ガス、都市ガス、液化石油ガス以外は常温常圧で液状であって、保管及び取扱いが容易である上、特に石油系のものはガソリンスタンドや販売店など、供給システムが整備されていることから、水素源として有利である。しかしながら、このような炭化水素油は、メタノールや天然ガス系のものに比べて、硫黄分の含有量が多いという問題がある。炭化水素油を用いて水素を製造する場合、一般に、該炭化水素油を、改質触媒の存在下に改質処理する方法が用いられる。このような改質処理においては、上記改質触媒は、炭化水素油中の硫黄分により被毒されるため、触媒寿命の点から、該炭化水素油に脱硫処理を施し、硫黄分含有量を長時間にわたり所定値以下に低減させることが必要である。
In recent years, fuel cells, which are attracting attention as a new energy technology due to environmental problems, convert chemical energy into electrical energy by electrochemically reacting oxygen with hydrogen and flammable substances such as CO and methane. Therefore, since it has the feature of high energy use efficiency, practical research has been actively conducted for consumer use, industrial use or automobile use. In this fuel cell, as a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of this natural gas, synthetic liquid fuel made from natural gas, LP gas, and petroleum-based gas The use of hydrocarbon oils such as naphtha and kerosene has been proposed.
When fuel cells are used for consumer use or automobiles, the hydrocarbons other than methane, liquefied natural gas, city gas, and liquefied petroleum gas are liquid at room temperature and normal pressure, and are easy to store and handle. In particular, petroleum-based products are advantageous as a hydrogen source because their supply systems such as gas stations and dealers have been established. However, such hydrocarbon oil has a problem that the content of sulfur is higher than that of methanol or natural gas. In the case of producing hydrogen using a hydrocarbon oil, generally, a method of reforming the hydrocarbon oil in the presence of a reforming catalyst is used. In such reforming treatment, the reforming catalyst is poisoned by the sulfur content in the hydrocarbon oil. Therefore, from the viewpoint of catalyst life, the hydrocarbon oil is subjected to desulfurization treatment to reduce the sulfur content. It is necessary to reduce it below a predetermined value over a long period of time.

石油系炭化水素の脱硫方法としては、これまで多くの研究がなされており、例えば特許文献1には、Ni、Zn、Cu等の活性金属成分を担持した脱硫剤を用いる硫黄除去方法が記載され、特許文献2には、Agを特定量多孔質担体に持した炭化水素化合物の脱硫剤が記載され、また、特許文献3には、金属成分と無機酸化物又は活性炭からなる複合化合物を含む燃料油処理剤を用いて燃料油を処理する方法が記載され、更に特許文献4には、アルミナを核としてニッケル、亜鉛を共沈法により形成した前駆体から得られる脱硫剤が記載されている。しかしながら、これらの特許文献記載の脱硫剤は、いずれも遷移金属や貴金属等の活性金属を必須とするものであり、非常に高価であるうえ、脱硫前の灯油等の燃料に含まれる硫黄分が多いとその寿命等に問題があった。
また、有機硫黄化合物の脱硫については、特許文献5に、液体炭化水素と酸化遷移金属担持アルミナ系吸着剤等の吸着剤とを接触させて、液体炭化水素に含まれる特定の有機硫黄化合物を除去する脱硫方法が記載されているが、このような方法でも、未だその吸着性能において十分ではなかった。
As a desulfurization method for petroleum hydrocarbons, many studies have been made so far. For example, Patent Document 1 describes a sulfur removal method using a desulfurization agent carrying an active metal component such as Ni, Zn, Cu or the like. Patent Document 2 describes a hydrocarbon compound desulfurization agent having a specific amount of Ag held in a porous carrier, and Patent Document 3 discloses a fuel containing a composite compound composed of a metal component and an inorganic oxide or activated carbon. A method for treating fuel oil using an oil treating agent is described, and Patent Document 4 further describes a desulfurizing agent obtained from a precursor formed by coprecipitation of nickel and zinc with alumina as a core. However, the desulfurization agents described in these patent documents all require an active metal such as a transition metal or a noble metal, and are very expensive and have a sulfur content in fuel such as kerosene before desulfurization. If it was too much, there was a problem in its life.
Regarding desulfurization of organic sulfur compounds, Patent Document 5 removes specific organic sulfur compounds contained in liquid hydrocarbons by bringing liquid hydrocarbons into contact with an adsorbent such as an oxidized transition metal-supported alumina-based adsorbent. Although a desulfurization method is described, such a method has not yet been sufficient in its adsorption performance.

特開2006−117921号公報JP 2006-117721 A 特開2006−176721号公報JP 2006-176721 A 特開2002−249787号公報JP 2002-249787 A 特開2004−230317号公報JP 2004230317 A 特開2005−2317号公報JP 2005-2317 A

本発明の課題は、80℃以下の温度での液体燃料の脱硫に使用できる、安価で高性能な脱硫剤を提供することにある。また、燃料電池用液体燃料の脱硫などの非常に低硫黄レベルへの脱硫の際に行われる2段脱硫法の1段目において、いわゆる「粗取り」用脱硫剤として使用しうる脱硫剤を提供することにある。さらに、脱硫処理された液体燃料を改質して水素を製造する方法、及びその水素を利用した燃料電池システムを提供することにある。   An object of the present invention is to provide an inexpensive and high-performance desulfurization agent that can be used for desulfurization of liquid fuel at a temperature of 80 ° C. or lower. Also provided is a desulfurization agent that can be used as a so-called “roughing” desulfurization agent in the first stage of the two-stage desulfurization method performed when desulfurizing liquid fuel for fuel cells to a very low sulfur level. There is to do. It is another object of the present invention to provide a method for producing hydrogen by reforming a desulfurized liquid fuel and a fuel cell system using the hydrogen.

すなわち本発明は、
(1)液体燃料を80℃以下で脱硫する際に用いる脱硫剤であって、無機酸化物を主成分とし、かつアンモニア吸着量が、脱硫剤1g当り170μmol/g以上である液体燃料用脱硫剤、
(2)液体燃料を、上記(1)記載の脱硫剤を用いて80℃以下で脱硫処理する、液体燃料の脱硫方法、
(3)上記(2)記載の方法で、液体燃料を脱硫した後、この脱硫処理燃料を部分酸化改質、オートサーマル改質又は水蒸気改質する水素の製造方法、及び
(4)上記(3)記載の製造方法によって得られる水素を原料とする燃料電池システム、
を提供するものである。
That is, the present invention
(1) A desulfurization agent for use in desulfurization of liquid fuel at 80 ° C. or less, comprising an inorganic oxide as a main component and an ammonia adsorption amount of 170 μmol / g or more per gram of desulfurization agent ,
(2) A liquid fuel desulfurization method, wherein the liquid fuel is desulfurized at 80 ° C. or lower using the desulfurization agent described in (1) above.
(3) A method for producing hydrogen in which the liquid fuel is desulfurized by the method described in (2) above, and then the desulfurized fuel is partially oxidized reformed, autothermal reformed or steam reformed, and (4) (3 ) A fuel cell system using hydrogen obtained by the production method as described above,
Is to provide.

本発明によれば、80℃以下の温度での液体燃料の脱硫に使用できる、安価で高性能な脱硫剤を提供することができる。また、燃料電池用液体燃料の脱硫などの非常に低硫黄レベルへの脱硫の際に行われる2段脱硫法の1段目において、粗取り用脱硫剤として使用できる脱硫剤を提供することができる。さらに、上記脱硫剤を用いた液体燃料の脱硫方法を提供することができる。また、脱硫処理された液体燃料を改質して水素を製造し、その水素を利用して燃料電池システムを提供することができる。   According to the present invention, an inexpensive and high-performance desulfurization agent that can be used for desulfurization of liquid fuel at a temperature of 80 ° C. or less can be provided. In addition, a desulfurization agent that can be used as a roughing desulfurization agent can be provided in the first stage of the two-stage desulfurization method that is performed at the time of desulfurization to a very low sulfur level such as desulfurization of liquid fuel for fuel cells. . Furthermore, a method for desulfurizing a liquid fuel using the desulfurizing agent can be provided. In addition, hydrogen can be produced by reforming the desulfurized liquid fuel, and a fuel cell system can be provided using the hydrogen.

[液体燃料の脱硫剤]
本発明の脱硫剤は、無機酸化物を主成分とし、かつアンモニア吸着量が、脱硫剤1g当り170μmol/g以上のものである。
無機酸化物としては、アンモニア吸着量が上記範囲にあるものであればいずれも使用しうるが、好ましくは、通常脱硫剤の担体として使用しうる多孔質の無機酸化物が脱硫性能を高める点で使用でき、具体的には、シリカ、アルミナ、シリカ−アルミナ、ゼオライト、チタニア、ジルコニア、マグネシア、シリカ−マグネシア、酸化亜鉛、白土、粘土、珪藻土、ALPO(Alminophosphate)、SAPO(Silicoaluminophosphate)、MCM(Mobil‘s composition of Matter)、活性炭等を使用できる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。
[Desulfurization agent for liquid fuel]
The desulfurizing agent of the present invention has an inorganic oxide as a main component and has an ammonia adsorption amount of 170 μmol / g or more per 1 g of the desulfurizing agent.
Any inorganic oxide can be used as long as the ammonia adsorption amount is in the above-mentioned range. Preferably, however, a porous inorganic oxide that can be used as a carrier for a desulfurizing agent usually improves the desulfurization performance. Specifically, silica, alumina, silica-alumina, zeolite, titania, zirconia, magnesia, silica-magnesia, zinc oxide, white clay, clay, diatomaceous earth, ALPO (Alminophosphate), SAPO (Silicoaluminophosphate), MCM (Mobil) 's composition of matter), activated carbon and the like can be used. These may be used alone or in combination of two or more.

本発明においては、無機酸化物としては、所望のアンモニア吸着量が得やすい点やルイス酸点が多い点から、アルミナ及び/又はジルコニアが好ましく用いられる。本発明の脱硫剤は、上記観点から、また、安価で簡便に製造でき、脱硫性能に優れる点から、実質的にアルミナ及び/又はジルコニアのみからなるものが好ましく、実質的にアルミナのみからなるものがより好ましい。なお、ここで、「実質的に」とは、本発明の効果に影響を及ぼさない範囲において、少量の他の成分を含んでもよい趣旨であり、アルミナ及び/又はジルコニアのみ、あるいはアルミナのみからなるものも包含する。   In the present invention, as the inorganic oxide, alumina and / or zirconia is preferably used because a desired ammonia adsorption amount is easily obtained and a Lewis acid point is large. From the above viewpoint, the desulfurizing agent of the present invention is preferably substantially composed only of alumina and / or zirconia, and is substantially composed only of alumina from the viewpoint of being inexpensive and simple to manufacture and excellent in desulfurization performance. Is more preferable. Here, “substantially” means that a small amount of other components may be included within a range that does not affect the effect of the present invention, and consists of alumina and / or zirconia alone, or alumina alone. Also included.

本発明においては、上記アルミナとしては、α、κ、θ、δ、γ、η、χ、ρなどのいずれの構造のアルミナも使用できるが、表面積が大きいこと、入手しやすい点から、γアルミナが好ましく用いられる。
本発明の脱硫剤は、上記無機酸化物を主成分とするものであるが、ここで、「主成分」とは、上記無機酸化物を少なくとも50質量%含むことを意味し、好ましくは、70質量%以上、より好ましくは90質量%以上含むことを意味し、実質100質量%含むことも包含する。
In the present invention, alumina having any structure such as α, κ, θ, δ, γ, η, χ, and ρ can be used as the alumina, but γ alumina is used because of its large surface area and easy availability. Is preferably used.
The desulfurizing agent of the present invention contains the inorganic oxide as a main component. Here, the “main component” means that the inorganic oxide is contained at least 50% by mass, preferably 70%. It means that it is contained by mass% or more, more preferably 90% by mass or more, and includes substantially 100% by mass.

本発明の脱硫剤は、上記無機酸化物とともに、活性金属成分を含有することができるが、該活性金属を担持させないものであることが好ましい。活性金属種を担持させていない無機酸化物からなる、アンモニア吸着量が170μmol/g以上の脱硫剤を用いると、十分な脱硫性能が得られ、例えば通常の燃焼用途に用いても環境負荷が小さい燃料を得ることができる。なお、活性金属を含む場合は、該活性金属としては、特に制限はなく、無機酸化物を担体として通常これに担持しうる活性金属がいずれも使用できるが、具体的には、Ni,Co,Zn,Fe,Ag,Cu,Sn,Pd,Bi,Pt,Ru,Rh,Au,Mn、Mo、W等が挙げられる。金属成分担持量は通常0.5〜80質量%であり、5〜70質量%が好ましい。   The desulfurizing agent of the present invention can contain an active metal component together with the inorganic oxide, but preferably does not carry the active metal. When a desulfurizing agent composed of an inorganic oxide not supporting active metal species and having an ammonia adsorption amount of 170 μmol / g or more is used, sufficient desulfurization performance can be obtained. For example, even if it is used for ordinary combustion applications, the environmental load is small. Fuel can be obtained. In the case of containing an active metal, the active metal is not particularly limited, and any active metal that can be normally supported on an inorganic oxide as a carrier can be used. Specifically, Ni, Co, Zn, Fe, Ag, Cu, Sn, Pd, Bi, Pt, Ru, Rh, Au, Mn, Mo, W, etc. are mentioned. The metal component loading is usually 0.5 to 80% by mass, preferably 5 to 70% by mass.

本発明の脱硫剤は、上述の無機酸化物を主成分とし、かつ100℃におけるアンモニア吸着量が、脱硫剤1g当り170μmol/g以上のものである。
アンモニア吸着量とは、100℃で0.5%NH3/Heを1時間流通させた際のアンモニア吸着量を質量分析法にて測定して得た値を意味し、具体的には後述の方法で測定できる。本発明の脱硫剤は、このアンモニア吸着量が脱硫剤1g当り170μmol/g以上のものであるが、脱硫性能の点から、この吸着量が200μmol/g以上であることが好ましく、より好ましくは250μmol/g以上、より好ましくは300μmol/g以上、更に好ましくは350μmol/g以上である。その上限値は特に制限はないが、通常、無機酸化物は1000μmol/g程度以下である。
The desulfurizing agent of the present invention contains the above-mentioned inorganic oxide as a main component and has an ammonia adsorption amount at 100 ° C. of 170 μmol / g or more per 1 g of the desulfurizing agent.
The ammonia adsorption amount means a value obtained by measuring the ammonia adsorption amount by mass spectrometry when 0.5% NH 3 / He is circulated at 100 ° C. for 1 hour. It can be measured by the method. The desulfurization agent of the present invention has an ammonia adsorption amount of 170 μmol / g or more per gram of the desulfurization agent. From the viewpoint of desulfurization performance, the adsorption amount is preferably 200 μmol / g or more, more preferably 250 μmol. / G or more, more preferably 300 μmol / g or more, still more preferably 350 μmol / g or more. The upper limit is not particularly limited, but usually the inorganic oxide is about 1000 μmol / g or less.

本発明の脱硫剤としては、アンモニア吸着量が上記範囲にあるものが用いられるが、焼成等熱処理して上記範囲を満たすものが好ましく包含される。
本発明の脱硫剤の製造方法は、上記アンモニア吸着量を満たすものであれば特に制限はないが、脱硫性能の点から、好ましくは脱硫剤前駆体を300〜850℃で熱処理して行う。該脱硫剤前駆体は、好ましくは、アルミナ及び/又はジルコニア等の無機酸化物を主成分とするものである。
アルミナ、ジルコニア等の無機酸化物としては、通常は、200〜1000℃の温度で製造されたものを用いるが、本発明においては、脱硫性能の観点から、これらを脱硫剤として使用する際に更に300〜850℃で熱処理することが好ましい。熱処理温度が上記範囲より低いとアンモニアの吸着量が少なくなり、脱硫効果が低下することがある。また上記範囲より高いと、無機酸化物担体の多孔構造の一部が壊れ、表面積が小さくなり、脱硫効果が劣ることがある。上記観点からは、上記熱処理温度は、より好ましくは400〜800℃であり、更に好ましくは500〜700℃である。なお、上記無機酸化物の製造の際の温度が300〜850℃の間であり、かつその後脱硫処理迄の間に水又は水蒸気と実質接触しない場合は、前処理としての上記熱処理を行わなくてもよい場合がある。
上記熱処理の時間は、処理温度により適宜選択しうるが、通常は1〜20時間、好ましくは、2〜5時間である。
As the desulfurizing agent of the present invention, those having an ammonia adsorption amount in the above range are used, but those which satisfy the above range by heat treatment such as firing are preferably included.
The method for producing the desulfurizing agent of the present invention is not particularly limited as long as it satisfies the above ammonia adsorption amount, but from the viewpoint of desulfurizing performance, the desulfurizing agent precursor is preferably heat treated at 300 to 850 ° C. The desulfurizing agent precursor is preferably composed mainly of an inorganic oxide such as alumina and / or zirconia.
As inorganic oxides such as alumina and zirconia, those produced at a temperature of 200 to 1000 ° C. are usually used. However, in the present invention, when these are used as a desulfurizing agent, from the viewpoint of desulfurization performance. Heat treatment is preferably performed at 300 to 850 ° C. When the heat treatment temperature is lower than the above range, the amount of ammonia adsorbed decreases, and the desulfurization effect may be reduced. If it is higher than the above range, a part of the porous structure of the inorganic oxide support is broken, the surface area becomes small, and the desulfurization effect may be inferior. From the above viewpoint, the heat treatment temperature is more preferably 400 to 800 ° C, still more preferably 500 to 700 ° C. In addition, when the temperature at the time of manufacture of the inorganic oxide is between 300 to 850 ° C. and does not substantially come into contact with water or water vapor before the desulfurization treatment, the heat treatment as a pretreatment is not performed. There are cases where it is good.
The heat treatment time can be appropriately selected depending on the treatment temperature, but is usually 1 to 20 hours, preferably 2 to 5 hours.

本発明においては、上記のように、高温で熱処理することにより、無機酸化物のルイス酸が増加する。これによりアンモニア吸着量が増大し、その結果として、この脱硫剤を用いた液体燃料の脱硫性能が向上する。
上記熱処理は、空気、窒素、水素、ヘリウム及びそれらの2種以上の混合気体のいずれの雰囲気下で行うこともができるが、入手し易さの点から、空気雰囲気下及び/又は水素雰囲気下で行うことが好ましい。例えば、空気雰囲気下で処理し、その後水素雰囲気下で処理してもよい。この場合、少なくともいずれかの処理を300〜850℃で行えば、本発明の脱硫剤が得られる。また、この処理は真空中で行うこともできる。
本発明において、上記熱処理は脱硫剤の焼成において、またその後の脱硫前処理においても行うことができ、その双方において行うこともできる。
In the present invention, the Lewis acid of the inorganic oxide is increased by heat treatment at a high temperature as described above. As a result, the ammonia adsorption amount increases, and as a result, the desulfurization performance of the liquid fuel using the desulfurizing agent is improved.
The heat treatment can be performed in any atmosphere of air, nitrogen, hydrogen, helium and a mixed gas of two or more thereof. However, from the viewpoint of easy availability, the atmosphere is air atmosphere and / or hydrogen atmosphere. It is preferable to carry out with. For example, the treatment may be performed in an air atmosphere and then in a hydrogen atmosphere. In this case, the desulfurization agent of the present invention can be obtained by performing at least one of the treatments at 300 to 850 ° C. This treatment can also be performed in a vacuum.
In the present invention, the heat treatment can be performed in the baking of the desulfurizing agent, in the subsequent pre-desulfurization treatment, or both.

また、本発明の脱硫剤は、上記熱処理の後、水又は水蒸気に実質接触させることなく液体燃料に接触させて脱硫処理を行うことが好ましい。前記熱処理後、例えば、空気中に含まれる水分に接触しただけでも、脱硫剤表面のルイス酸点が減少し、その結果、触媒のアンモニア吸着量が減少し、脱硫性能が低下することがある。従って、本発明の脱硫剤は、前記アンモニア吸着量の範囲の値を維持できるように、前記熱処理の後、水あるいは水蒸気に実質接触させないことが好ましい。具体的には、脱硫剤を、脱硫装置に入れる脱硫剤充填器に入れた状態で熱処理すると、熱処理後に水分に接触することを防ぐことができ好ましい。また、熱処理容器から取り出した後直ぐに脱硫器に充填したり、ドライルームで充填することも有効である。
脱硫剤の形状は、粉末状、破砕状、ペレット状、錠剤状、針状、球状、ハニカム状又は粉末を他のハニカムにコーティングした状態が好ましい。
Moreover, it is preferable that the desulfurization agent of this invention performs a desulfurization process by making it contact with liquid fuel, without making it contact substantially with water or water vapor | steam after the said heat processing. After the heat treatment, for example, the Lewis acid point on the surface of the desulfurizing agent may be decreased just by contact with moisture contained in the air. As a result, the ammonia adsorption amount of the catalyst may be decreased and the desulfurization performance may be deteriorated. Therefore, it is preferable that the desulfurizing agent of the present invention is not substantially brought into contact with water or water vapor after the heat treatment so that the value in the ammonia adsorption amount range can be maintained. Specifically, it is preferable to heat-treat the desulfurizing agent in a desulfurizing agent filling device that is put into a desulfurizing apparatus, because it can prevent contact with moisture after the heat treatment. It is also effective to fill the desulfurizer immediately after taking out from the heat treatment container or to fill in a dry room.
The shape of the desulfurizing agent is preferably powder, crushed, pellet, tablet, needle, sphere, honeycomb, or a state where powder is coated on another honeycomb.

本発明の脱硫剤は、通常の燃焼用途に用いる灯油、軽油等の液体燃料の脱硫に使用することもできるが、燃料電池用液体燃料の脱硫などの非常に低硫黄レベルへの脱硫が必要な際にも使用することができる。この場合、本発明の脱硫剤は、燃料電池の水素発生用燃料として用いる炭化水素系液体燃料の殆ど大部分の硫黄分を除去する、所謂「粗取り」用の脱硫剤として使用し、例えば2段脱硫法の1段目の脱硫剤として使用することが好ましい。このように硫黄分を粗取りした炭化水素系液体燃料を、2段目の燃料電池用脱硫剤に通油すると、脱硫剤の寿命を長くすることができる。上記2段目の脱硫剤としては、特に制限はなく、従来公知の脱硫剤がいずれも使用できる。   The desulfurizing agent of the present invention can be used for desulfurization of liquid fuels such as kerosene and light oil used for normal combustion applications, but desulfurization to a very low sulfur level such as desulfurization of liquid fuel for fuel cells is required. Can also be used. In this case, the desulfurization agent of the present invention is used as a so-called “rough removal” desulfurization agent that removes most of the sulfur content of the hydrocarbon-based liquid fuel used as a fuel for generating hydrogen in a fuel cell. It is preferably used as a first-stage desulfurization agent in the stage desulfurization method. When the hydrocarbon-based liquid fuel from which the sulfur content is roughly removed is passed through the second-stage fuel cell desulfurization agent, the life of the desulfurization agent can be extended. The second-stage desulfurizing agent is not particularly limited, and any conventionally known desulfurizing agent can be used.

[液体燃料の脱硫方法]
本発明の液体燃料の脱硫方法は、液体燃料を、上記脱硫剤を用いて80℃以下で脱硫処理するものである。
本発明において、前記脱硫剤を用いて脱硫する硫黄含有液体燃料としては、特に限定されるものではないが、例えばアルコール、エーテル、ナフサ、ガソリン、灯油、軽油、重油、石炭液化油、GTL油、廃プラスチック油及びバイオフューエル(バイオマス燃料)等から選ばれる1種、もしくはこれらの組合せが挙げられる。これらのうち、本発明の脱硫剤を適用するのに好適な液体燃料としては、入手し易さの点から、灯油、軽油又はガソリンが好ましく、硫黄分含有量が80質量ppm以下の上記液体燃料がより好ましく、上記硫黄分含有量のJIS1号灯油が更に好ましい。
[Method of desulfurization of liquid fuel]
In the liquid fuel desulfurization method of the present invention, the liquid fuel is desulfurized at 80 ° C. or lower using the above-mentioned desulfurizing agent.
In the present invention, the sulfur-containing liquid fuel to be desulfurized using the desulfurizing agent is not particularly limited. For example, alcohol, ether, naphtha, gasoline, kerosene, light oil, heavy oil, coal liquefied oil, GTL oil, Examples thereof include one selected from waste plastic oil and biofuel (biomass fuel), or a combination thereof. Among these, as the liquid fuel suitable for applying the desulfurizing agent of the present invention, kerosene, light oil or gasoline is preferable from the viewpoint of availability, and the above liquid fuel having a sulfur content of 80 mass ppm or less. Is more preferable, and JIS No. 1 kerosene having the above sulfur content is more preferable.

本発明の脱硫方法において、除去される硫黄分として液体燃料に含有される硫黄化合物としては、例えばメルカプタン類、鎖状スルフィド類、環状スルフィド類、チオフェン類、ベンゾチオフェン類、ジベンゾチオフェン類等の有機硫黄化合物が挙げられる。
本発明に係る脱硫剤を用いて、硫黄含有液体燃料を脱硫する方法としては、脱硫剤に有機硫黄化合物含有液体燃料を流通させる方法、脱硫剤を内部に固定したタンクなどの容器に有機硫黄化合物含有液体燃料を静置又は撹拌する方法が挙げられる。
本発明における脱硫方法において、脱硫温度は80℃以下であることが好ましい。この脱硫温度が80℃以下であればエネルギーコストが低く、経済的に有利である。脱硫温度の下限については特に制限はなく、脱硫すべき液体燃料の流動性及び脱硫剤の脱硫活性などを考慮して、適宜選定される。脱硫すべき液体燃料が灯油である場合、流動性の点から、その下限値は−40℃程度である。好ましい脱硫温度は−30〜60℃であり、0〜40℃がより好ましい。
In the desulfurization method of the present invention, the sulfur compound contained in the liquid fuel as a sulfur content to be removed includes, for example, mercaptans, chain sulfides, cyclic sulfides, thiophenes, benzothiophenes, dibenzothiophenes, and the like. A sulfur compound is mentioned.
As a method of desulfurizing a sulfur-containing liquid fuel using the desulfurizing agent according to the present invention, a method of circulating an organic sulfur compound-containing liquid fuel in the desulfurizing agent, an organic sulfur compound in a container such as a tank in which the desulfurizing agent is fixed inside A method of standing or stirring the contained liquid fuel may be mentioned.
In the desulfurization method in the present invention, the desulfurization temperature is preferably 80 ° C. or less. If this desulfurization temperature is 80 degrees C or less, energy cost is low and it is economically advantageous. The lower limit of the desulfurization temperature is not particularly limited, and is appropriately selected in consideration of the fluidity of the liquid fuel to be desulfurized and the desulfurization activity of the desulfurizing agent. When the liquid fuel to be desulfurized is kerosene, the lower limit is about −40 ° C. from the viewpoint of fluidity. A preferable desulfurization temperature is −30 to 60 ° C., and more preferably 0 to 40 ° C.

温度以外の脱硫条件については特に制限はなく、脱硫すべき液体燃料の性状に応じて適宜選択することができる。具体的には、燃料としてJIS1号灯油等の炭化水素を液相で本発明に係る脱硫剤を充填した脱硫塔中を上向き又は下向きの流れで通過させて脱硫する場合には、脱硫温度は室温程度、圧力は常圧乃至1MPa・G程度、液時空間速度(LHSV)は30hr-1以下、更には20hr-1以下、更には5hr-1以下の条件で脱硫処理することが好ましい。この際、必要により、少量の水素を共存させてもよい。 The desulfurization conditions other than the temperature are not particularly limited, and can be appropriately selected according to the properties of the liquid fuel to be desulfurized. Specifically, when desulfurization is performed by passing hydrocarbons such as JIS No. 1 kerosene as fuel in a desulfurization tower filled with the desulfurization agent according to the present invention in a liquid phase in an upward or downward flow, the desulfurization temperature is room temperature. extent, the pressure is atmospheric圧乃Itaru 1 MPa · G about, liquid hourly hourly space velocity (LHSV) can be 30 hr -1 or less, more 20 hr -1 or less, and more preferably to desulfurization treatment with 5 hr -1 following conditions. At this time, if necessary, a small amount of hydrogen may coexist.

本発明の脱硫剤を用いた脱硫処理により、本発明においては、液体燃料の硫黄含有量を、例えば10質量ppm以下、好ましくは2質量ppm以下、より好ましくは1質量ppm以下迄低減することができ、また、本発明の脱硫剤を例えば前記2段脱硫の第1段目の脱硫剤として用いることにより、液体燃料の硫黄含有量を、最終的に例えば0.5質量ppm以下、好ましくは0.05質量ppm以下迄低減することができる。
この場合、硫黄分による後段の改質触媒への被毒を極力抑制し、長期間安定に機能することができる。クリーンアップ脱硫剤(2段目脱硫剤)としては、硫黄分を0.5ppm以下まで低減できれば、特に制限はなく、公知の吸着脱硫剤又は水素化脱硫剤などをいずれも用いてもよい。
By the desulfurization treatment using the desulfurizing agent of the present invention, in the present invention, the sulfur content of the liquid fuel can be reduced to, for example, 10 mass ppm or less, preferably 2 mass ppm or less, more preferably 1 mass ppm or less. In addition, by using the desulfurizing agent of the present invention as, for example, the first-stage desulfurizing agent of the above-mentioned two-stage desulfurization, the sulfur content of the liquid fuel is finally reduced to, for example, 0.5 mass ppm or less, preferably 0 .05 mass ppm or less.
In this case, it is possible to suppress the poisoning of the subsequent reforming catalyst due to the sulfur content as much as possible and to function stably for a long period of time. The clean-up desulfurization agent (second-stage desulfurization agent) is not particularly limited as long as the sulfur content can be reduced to 0.5 ppm or less, and any known adsorptive desulfurization agent or hydrodesulfurization agent may be used.

[水素の製造方法]
次に本発明は、上記のようにして脱硫処理した燃料を、水蒸気改質、部分酸化改質又はオートサーマル改質を行って、より具体的には水蒸気改質触媒、部分酸化改質触媒又はオートサーマル改質触媒と接触させることにより、燃料電池用水素を製造するものである。
[Method for producing hydrogen]
Next, in the present invention, the fuel desulfurized as described above is subjected to steam reforming, partial oxidation reforming or autothermal reforming, and more specifically, a steam reforming catalyst, partial oxidation reforming catalyst or Hydrogen for fuel cells is produced by contacting with an autothermal reforming catalyst.

ここで用いられる改質触媒としては特に制限はなく、従来から炭化水素の改質触媒として知られている公知のものの中から任意のものを適宜選択して用いることができる。このような改質触媒としては、例えば適当な担体にニッケル、あるいはルテニウム、ロジウム、白金などの貴金属を担持したものを挙げることができる。上記担持金属は一種でもよく、二種以上を組み合わせてもよい。これらの触媒の中で、ニッケルを担持させたもの(以下、ニッケル系触媒という)とルテニウム(以下、ルテニウム系触媒という)あるいはロジウムを担持させたものが好ましい。
上記改質触媒を担持させる担体には、酸化マンガン、酸化セリウム、酸化ジルコニウム等が含まれていることが好ましく、特にこれらのうち少なくとも1種を含む担体が特に好ましい。これらは、水蒸気改質処理、部分酸化改質処理又はオートサーマル改質処理中の炭素析出を抑制する効果が大きい。
There is no restriction | limiting in particular as a reforming catalyst used here, Arbitrary things can be suitably selected and used from the well-known things conventionally known as a hydrocarbon reforming catalyst. As such a reforming catalyst, for example, a catalyst in which noble metal such as nickel or ruthenium, rhodium or platinum is supported on a suitable carrier can be exemplified. The supported metal may be one kind or a combination of two or more kinds. Among these catalysts, those supporting nickel (hereinafter referred to as nickel-based catalyst) and ruthenium (hereinafter referred to as ruthenium-based catalyst) or those supporting rhodium are preferable.
The carrier for supporting the reforming catalyst preferably contains manganese oxide, cerium oxide, zirconium oxide or the like, and particularly preferably a carrier containing at least one of these. These have a great effect of suppressing carbon deposition during steam reforming, partial oxidation reforming or autothermal reforming.

ニッケル系触媒の場合、ニッケルの担持量は担体基準で3〜60質量%の範囲が好ましい。この担持量が上記範囲内であると、水蒸気改質触媒、部分酸化改質触媒又はオートサーマル改質触媒の活性が十分に発揮されるとともに、経済的にも有利なものとなる。触媒活性及び経済性などを考慮すると、ニッケルのより好ましい担持量は5〜50質量%であり、特に10〜30質量%の範囲が好ましい。
また、ルテニウム系触媒の場合、ルテニウムの担持量は担体基準で0.05〜10質量%の範囲が好ましい。ルテニウムの担持量が上記範囲内であると、水蒸気改質触媒、部分酸化改質触媒又はオートサーマル改質触媒の活性が十分に発揮されるとともに経済的にも有利なものとなる。触媒活性及び経済性などを考慮すると、ルテニウムのより好ましい担持量は0.05〜5質量%であり、特に0.1〜2質量%の範囲が好ましい。
In the case of a nickel-based catalyst, the supported amount of nickel is preferably in the range of 3 to 60% by mass based on the carrier. When the supported amount is within the above range, the activity of the steam reforming catalyst, the partial oxidation reforming catalyst or the autothermal reforming catalyst is sufficiently exhibited, and it is economically advantageous. In view of catalyst activity and economy, the more preferable amount of nickel is 5 to 50% by mass, and particularly preferably 10 to 30% by mass.
In the case of a ruthenium-based catalyst, the supported amount of ruthenium is preferably in the range of 0.05 to 10% by mass based on the carrier. When the supported amount of ruthenium is within the above range, the activity of the steam reforming catalyst, the partial oxidation reforming catalyst or the autothermal reforming catalyst is sufficiently exhibited and it is economically advantageous. Considering catalytic activity and economy, the more preferable loading of ruthenium is 0.05 to 5% by mass, and particularly preferably 0.1 to 2% by mass.

水蒸気改質処理における反応条件としては、水蒸気と燃料油に由来する炭素との比であるスチーム/カーボン(モル比)は、通常1.5〜10の範囲で選定される。スチーム/カーボン(モル比)が1.5以上であると水素の生成量が十分であり、10以下であると過剰の水蒸気を必要としないため、熱ロスが小さく、水素製造が効率的に行える。上記観点から、スチーム/カーボン(モル比)は1.5〜5の範囲であることが好ましく、さらには2〜4の範囲であることが好ましい。
また、水蒸気改質触媒層の入口温度を630℃以下に保って水蒸気改質を行うのが好ましい。入口温度が630℃以下であると、燃料油の熱分解が起こらないため、炭素ラジカルを経由した触媒あるいは反応管壁への炭素析出が生じにくい。以上の観点から、さらに水蒸気改質触媒層の入口温度は600℃以下であることが好ましい。なお、触媒層出口温度は特に制限はないが、650〜800℃の範囲が好ましい。650℃以上であると水素の生成量が十分であり、800℃以下であると、反応装置を耐熱材料で構成する必要がなく、経済的に好ましい。
As a reaction condition in the steam reforming treatment, steam / carbon (molar ratio), which is a ratio of steam and carbon derived from fuel oil, is usually selected in the range of 1.5 to 10. When the steam / carbon (molar ratio) is 1.5 or more, the amount of hydrogen generated is sufficient, and when it is 10 or less, excess water vapor is not required, so heat loss is small and hydrogen production can be performed efficiently. . From the above viewpoint, the steam / carbon (molar ratio) is preferably in the range of 1.5 to 5, and more preferably in the range of 2 to 4.
Moreover, it is preferable to perform steam reforming while maintaining the inlet temperature of the steam reforming catalyst layer at 630 ° C. or lower. If the inlet temperature is 630 ° C. or lower, thermal decomposition of the fuel oil does not occur, so that carbon deposition on the catalyst or reaction tube wall via the carbon radical is unlikely to occur. From the above viewpoint, the inlet temperature of the steam reforming catalyst layer is preferably 600 ° C. or lower. The catalyst layer outlet temperature is not particularly limited, but is preferably in the range of 650 to 800 ° C. When the temperature is 650 ° C. or higher, the amount of hydrogen generated is sufficient, and when it is 800 ° C. or lower, the reaction apparatus does not need to be made of a heat-resistant material, which is economically preferable.

部分酸化改質処理における反応条件としては、通常、圧力は常圧〜5MPa・G、温度は400〜1100℃、酸素(O2)/カーボン(モル比)は0.2〜0.8、液時空間速度(LHSV)は0.1〜100hr-1の条件が採用される。
また、オートサーマル改質処理における反応条件としては、通常、圧力は常圧〜5MPa・G、温度は400〜1100℃、スチーム/カーボン(モル比)は0.1〜10、酸素(O2)/カーボン(モル比)は0.1〜1、液時空間速度(LHSV)は0.1〜2hr-1、ガス時空間速度(GHSV)は1000〜100000hr-1の条件が採用される。
なお、上記水蒸気改質、部分酸化改質又はオートサーマル改質により得られた水素含有ガス中のCOは、後段でシフト反応によりH2とCO2に変換することで更に水素の濃度を増加させる。このように、本発明の方法によれば、燃料電池用水素を効率よく製造することができる。
液体燃料を使用する燃料電池システムは、通常、燃料供給装置、脱硫装置、改質装置、燃料電池から構成され、上記本発明の方法によって製造された水素は燃料電池に供給される。
As reaction conditions in the partial oxidation reforming treatment, the pressure is usually normal pressure to 5 MPa · G, the temperature is 400 to 1100 ° C., the oxygen (O 2 ) / carbon (molar ratio) is 0.2 to 0.8, and the liquid The space-time velocity (LHSV) is 0.1 to 100 hr −1 .
As reaction conditions in the autothermal reforming treatment, the pressure is usually normal pressure to 5 MPa · G, the temperature is 400 to 1100 ° C., the steam / carbon (molar ratio) is 0.1 to 10, and oxygen (O 2 ). / Carbon (molar ratio) is 0.1 to 1, liquid hourly space velocity (LHSV) is 0.1 to 2 hr −1 , and gas hourly space velocity (GHSV) is 1000 to 100,000 hr −1 .
Note that CO in the hydrogen-containing gas obtained by steam reforming, partial oxidation reforming or autothermal reforming is further converted to H 2 and CO 2 by a shift reaction at a later stage to further increase the hydrogen concentration. . Thus, according to the method of the present invention, hydrogen for fuel cells can be produced efficiently.
A fuel cell system using a liquid fuel is usually composed of a fuel supply device, a desulfurization device, a reforming device, and a fuel cell, and the hydrogen produced by the method of the present invention is supplied to the fuel cell.

[燃料電池システム]
本発明はまた、前記製造方法で得られた水素を用いる燃料電池システムを提供する。以下に本発明の燃料電池システムについて添付図1に従い説明する。
図1は本発明の燃料電池システムの一例を示す概略フロー図である。図1によれば、燃料タンク21内の燃料は、燃料ポンプ22を経て脱硫器23に流入する。脱硫器内には本発明に係る脱硫剤が充填されている。前述したように、この脱硫は2段で行い、1段目に本発明の脱硫剤を充填することも可能である。脱硫器23で脱硫された燃料は水タンクから水ポンプ24を経た水と混合した後、気化器1に導入されて気化され、次いで改質器31に送り込まれる。
改質器31の内部には前述の改質触媒が充填されており、改質器31に送り込まれた燃料混合物(水蒸気及び脱硫処理液体燃料を含む混合気体)から、前述した水蒸気改質反応によって水素が製造される。
[Fuel cell system]
The present invention also provides a fuel cell system using hydrogen obtained by the production method. The fuel cell system of the present invention will be described below with reference to FIG.
FIG. 1 is a schematic flowchart showing an example of the fuel cell system of the present invention. According to FIG. 1, the fuel in the fuel tank 21 flows into the desulfurizer 23 via the fuel pump 22. The desulfurizer is filled with the desulfurizing agent according to the present invention. As described above, this desulfurization is performed in two stages, and the desulfurization agent of the present invention can be filled in the first stage. The fuel desulfurized in the desulfurizer 23 is mixed with water from the water tank via the water pump 24, introduced into the vaporizer 1, vaporized, and then fed into the reformer 31.
The inside of the reformer 31 is filled with the above-described reforming catalyst, and the above-described steam reforming reaction is performed from the fuel mixture (mixed gas containing steam and desulfurized liquid fuel) fed into the reformer 31. Hydrogen is produced.

このようにして製造された水素はCO変成器32、CO選択酸化器33を通じてそのCO濃度が燃料電池の特性に影響を及ぼさない程度まで低減される。これらの反応器に用いる触媒の例としては、CO変成器32では、鉄―クロム系触媒、銅―亜鉛系触媒あるいは貴金属系触媒を、CO選択酸化器33では、ルテニウム系触媒、白金系触媒あるいはそれらの混合物等を挙げることができる。
燃料電池34は負極34Aと正極34Bとの間に高分子電解質34Cを備えた固体高分子形燃料電池である。負極側には上記の方法で得られた水素リッチガスが、正極側には空気ブロワー35から送られる空気が、それぞれ必要に応じて適当な加湿処理を行った後(加湿装置は図示せず)導入される。
このとき負極側では水素ガスがプロトンとなり電子を放出する反応が進行し、正極側では酸素ガスが電子とプロトンを得て水となる反応が進行し、両極34A、34B間に直流電流が発生する。負極には、白金黒、活性炭担持のPt触媒あるいはPt−Ru合金触媒などが、正極には白金黒、活性炭担持のPt触媒などが用いられる。
The hydrogen produced in this way is reduced through the CO converter 32 and the CO selective oxidizer 33 to such an extent that the CO concentration does not affect the characteristics of the fuel cell. Examples of catalysts used in these reactors include an iron-chromium catalyst, a copper-zinc catalyst or a noble metal catalyst in the CO converter 32, and a ruthenium catalyst, a platinum catalyst, or a noble metal catalyst in the CO selective oxidizer 33. The mixture etc. can be mentioned.
The fuel cell 34 is a solid polymer fuel cell including a polymer electrolyte 34C between a negative electrode 34A and a positive electrode 34B. The hydrogen-rich gas obtained by the above method is introduced into the negative electrode side, and the air sent from the air blower 35 is introduced into the positive electrode side after performing appropriate humidification treatment as necessary (humidifier not shown). Is done.
At this time, a reaction in which hydrogen gas becomes protons and emits electrons proceeds on the negative electrode side, and a reaction in which oxygen gas obtains electrons and protons to become water proceeds on the positive electrode side, and a direct current is generated between both electrodes 34A and 34B. . Platinum black, activated carbon-supported Pt catalyst or Pt-Ru alloy catalyst is used for the negative electrode, and platinum black, Pt catalyst supported on activated carbon is used for the positive electrode.

負極34A側に改質器31のバーナ31Aを接続して余った水素を燃料とすることができる。また、正極34B側に接続された気水分離器36において、正極34B側に供給された空気中の酸素と水素との結合により生じた水と排気ガスとを分離し、水は水蒸気の生成に利用することができる。
なお、燃料電池34では、発電に伴って熱が発生するため、排熱回収装置37を付設してこの熱を回収して有効利用することができる。排熱回収装置37は、反応時に生じた熱を奪う熱交換機37Aと、この熱交換器37Aで奪った熱を水と熱交換するための熱交換器37Bと、冷却器37Cと、これら熱交換器37A、37B及び冷却器37Cへ冷媒を循環させるポンプ37Dとを備え、熱交換器37Bにおいて得られた温水は、他の設備などで有効利用することができる。
The surplus hydrogen can be used as fuel by connecting the burner 31A of the reformer 31 to the negative electrode 34A side. Further, in the steam separator 36 connected to the positive electrode 34B side, water and exhaust gas generated by the combination of oxygen and hydrogen in the air supplied to the positive electrode 34B side are separated, and the water is used to generate water vapor. Can be used.
In the fuel cell 34, since heat is generated with power generation, an exhaust heat recovery device 37 can be attached to recover the heat for effective use. The exhaust heat recovery device 37 includes a heat exchanger 37A that takes away the heat generated during the reaction, a heat exchanger 37B that exchanges heat taken by the heat exchanger 37A with water, a cooler 37C, and these heat exchanges. The hot water obtained in the heat exchanger 37B can be effectively used in other facilities. The pumps 37A and 37B and the pump 37D circulate the refrigerant to the cooler 37C.

本実施例においては、各性状は以下のように測定、評価した。   In this example, each property was measured and evaluated as follows.

[液体燃料中の硫黄分の測定]
JIS K 2541−2に規定する微量電量滴定式酸化法に準拠し、三菱化学社製のTS−03装置を用いて定量した。検量線は、ジブチルスルフィド(純度99%以上)のトルエン溶液を測定して作製した。試料は検量線用溶液と同様に測定し、検量線から求めた硫黄量(μg)と試料注入量(mg)から試料中の硫黄分(wtppm)を算出した。
[Measurement of sulfur content in liquid fuel]
In accordance with the microcoulometric titration method defined in JIS K 2541-2, the amount was determined using a TS-03 apparatus manufactured by Mitsubishi Chemical Corporation. The calibration curve was prepared by measuring a toluene solution of dibutyl sulfide (purity 99% or more). The sample was measured in the same manner as the calibration curve solution, and the sulfur content (wtppm) in the sample was calculated from the sulfur amount (μg) obtained from the calibration curve and the sample injection amount (mg).

実施例1
(1)脱硫剤1の製造、及び脱硫性能の評価
市販のアルミナ(触媒化成製)を乳鉢で粒子径100μm以下に粉砕し、それを脱流器に2.5cc充填し、脱硫器内に、水素を流しながら300℃で3時間熱処理して(表1に記載のとおり)、脱硫剤1を得た。その後、脱硫剤を脱硫器から取り出すことなく、下記性状の灯油を室温(30℃)下、液空間速度(LHSV)20/hで通油した。得られた灯油中の硫黄濃度を前述の方法で測定した結果を表1に示す。
JIS−1号灯油
・蒸留性状:初留温度156℃、10%留出温度170℃、30%留出温度185℃、50%留出温度201℃、70%留出温度224℃、90%留出温度253℃、終点275℃
・硫黄分:14質量ppm
(2)アンモニア吸着量の測定
(イ)乳鉢で粒子径100μm以下に粉砕した上記(1)で用いた市販のアルミナ(触媒化成製)0.1gを、アンモニア吸着量測定用セル内で、表1に示す温度、雰囲気で熱処理を行い、脱硫剤1を得た。その後、100℃まで降温し、温度が安定した後0.5%NH3/Heを100℃で1時間、前記セル内に流通させる。1時間後Heでパージし、ベースラインが安定した後710℃まで20℃/分で昇温して、アンモニア脱離を質量分析法にて計測する。検量に0.5%NH3/Heを使用した。
(ロ)アンモニアを吸着させないこと以外は前記(イ)と同じ操作を行って得られたデータを、バックグラウンドとして、前(イ)で求めた値から差し引いた値を、アンモニア吸着量とした。結果を表1に示す。
Example 1
(1) Production of desulfurization agent 1 and evaluation of desulfurization performance Commercially available alumina (catalyst conversion) was pulverized to a particle size of 100 μm or less with a mortar, filled with 2.5 cc in a deflower, Heat treatment was performed at 300 ° C. for 3 hours while flowing hydrogen (as described in Table 1) to obtain a desulfurizing agent 1. Thereafter, kerosene having the following properties was passed at room temperature (30 ° C.) at a liquid space velocity (LHSV) of 20 / h without removing the desulfurizing agent from the desulfurizer. Table 1 shows the results of measuring the sulfur concentration in the kerosene obtained by the method described above.
JIS-1 kerosene / distillation properties: initial distillation temperature 156 ° C, 10% distillation temperature 170 ° C, 30% distillation temperature 185 ° C, 50% distillation temperature 201 ° C, 70% distillation temperature 224 ° C, 90% distillation Outlet temperature 253 ° C, end point 275 ° C
・ Sulfur content: 14 mass ppm
(2) Measurement of ammonia adsorption amount (a) 0.1 g of commercially available alumina (catalyst conversion) used in the above (1) pulverized to a particle size of 100 μm or less with a mortar in a cell for measuring ammonia adsorption amount. Heat treatment was performed at the temperature and atmosphere shown in 1 to obtain a desulfurizing agent 1. Thereafter, the temperature is lowered to 100 ° C., and after the temperature is stabilized, 0.5% NH 3 / He is circulated in the cell at 100 ° C. for 1 hour. After 1 hour, purge with He, stabilize the baseline, raise the temperature to 710 ° C. at 20 ° C./min, and measure ammonia desorption by mass spectrometry. 0.5% NH 3 / He was used for calibration.
(B) The data obtained by performing the same operation as in (a) except that ammonia was not adsorbed was used as the background, and the value subtracted from the value obtained in the previous (a) was taken as the ammonia adsorption amount. The results are shown in Table 1.

実施例2〜6(脱硫剤2〜6の製造、アンモニア吸着量及び脱硫性能の評価)
乳鉢で粒子径100μm以下に粉砕した市販のアルミナ(実施例2〜5では触媒化成製、実施例6では水澤化学製)を用い、表1に示す熱処理条件にした以外は実施例1と同様に脱硫剤2〜6の製造、アンモニア吸着量及び脱硫性能の測定を行った。結果を表1に示す。
Examples 2 to 6 (Production of desulfurizing agents 2 to 6, evaluation of ammonia adsorption amount and desulfurization performance)
Similar to Example 1 except that commercial alumina (pulverized in Examples 2 to 5 and manufactured by Mizusawa Chemical in Example 6) pulverized to a particle size of 100 μm or less in a mortar was used and the heat treatment conditions shown in Table 1 were used. Production of desulfurizing agents 2-6, ammonia adsorption amount and desulfurization performance were measured. The results are shown in Table 1.

実施例7(脱硫剤7の製造、アンモニア吸着量及び脱硫性能の評価)
(1)硝酸ジルコニル水和物27.6gをイオン交換水200mlに溶解させ、これに水酸化ナトリウム16.7gを溶解させたイオン交換水200mlを加えて水酸化物を沈殿させた。沈殿物を通水洗浄後、120℃で一晩乾燥した。乾燥終了後、空気下500℃で3時間焼成した。焼成物を乳鉢で粒子径100μm以下に粉砕し、そのうち2.5ccを脱硫器に充填し、脱硫器内に水素流通下、600℃で3時間熱処理することで脱硫剤7を得た。得られた脱硫剤7について、実施例1と同様の操作を行い、硫黄分濃度を測定した。結果を表1に示す。
(2)実施例1のアンモニア吸着量の操作において、乳鉢で粒子径100μm以下に粉砕した市販のアルミナを、上記(1)において500℃で3時間焼成した焼成物を乳鉢で粒子径100μm以下に粉砕したものに代え、表1に示す熱処理条件にした以外は実施例1と同様にアンモニア吸着量の測定を行った。結果を表1に示す。
Example 7 (Production of desulfurizing agent 7, evaluation of ammonia adsorption amount and desulfurization performance)
(1) 27.6 g of zirconyl nitrate hydrate was dissolved in 200 ml of ion-exchanged water, and 200 ml of ion-exchanged water in which 16.7 g of sodium hydroxide was dissolved was added thereto to precipitate a hydroxide. The precipitate was washed with water and dried at 120 ° C. overnight. After the drying, it was calcined at 500 ° C. for 3 hours under air. The calcined product was pulverized to a particle size of 100 μm or less with a mortar, 2.5 cc of which was filled in a desulfurizer, and heat treated at 600 ° C. for 3 hours under hydrogen flow in the desulfurizer to obtain a desulfurizing agent 7. About the obtained desulfurization agent 7, operation similar to Example 1 was performed and the sulfur content density | concentration was measured. The results are shown in Table 1.
(2) In the operation of the ammonia adsorption amount in Example 1, a commercially available alumina pulverized with a mortar to a particle size of 100 μm or less, and a fired product obtained by baking at 500 ° C. for 3 hours in the above (1) to a particle size of 100 μm or less with a mortar The ammonia adsorption amount was measured in the same manner as in Example 1 except that the heat treatment conditions shown in Table 1 were used instead of the pulverized ones. The results are shown in Table 1.

比較例1及び2(脱硫剤8、9の製造、アンモニア吸着量及び脱硫性能の評価)
乳鉢で粒子径100μm以下に粉砕した市販のアルミナ(触媒化成製)2.5ccを脱硫器内に充填し、脱硫器内にて水素流通下、120℃(比較例1)又は900℃(比較例2)の条件で3時間熱処理することで脱硫剤8及び9をそれぞれ得た。得られた脱硫剤8及び9の各々について、実施例1と同様の操作を行い、硫黄分濃度を測定した。結果を表1に示す。
アンモニア吸着量については、乳鉢で粒子径100μm以下に粉砕した上記市販のアルミナ(触媒化成製)を用い、アンモニア吸着量測定用セル内での熱処理条件を表1に示すとおりにした以外は、実施例1と同様に行った。結果を表1に示す。
Comparative Examples 1 and 2 (Production of desulfurization agents 8 and 9, evaluation of ammonia adsorption amount and desulfurization performance)
2.5 cc of commercially available alumina (catalyst conversion) pulverized to a particle size of 100 μm or less in a mortar is charged into a desulfurizer, and 120 ° C. (Comparative Example 1) or 900 ° C. (Comparative Example) under hydrogen flow in the desulfurizer. The desulfurization agents 8 and 9 were obtained by heat treatment for 3 hours under the condition 2). About each of the obtained desulfurization agents 8 and 9, operation similar to Example 1 was performed and the sulfur content density | concentration was measured. The results are shown in Table 1.
Regarding the ammonia adsorption amount, the above-mentioned commercially available alumina (made by catalytic conversion) pulverized in a mortar to a particle diameter of 100 μm or less was used, except that the heat treatment conditions in the cell for measuring the ammonia adsorption amount were as shown in Table 1. Performed as in Example 1. The results are shown in Table 1.

比較例3(脱硫剤10の製造、アンモニア吸着量及び脱硫性能の評価)
乳鉢で粒子径100μm以下に粉砕した市販のシリカ(水澤化学製)2.5ccを脱硫器内に充填し、脱硫器内に水素流通下、600℃の条件で3時間熱処理することで脱硫剤10を得た。得られた触媒10について実施例1と同様の操作を行い、硫黄分濃度を測定した。結果を表1に示す。
アンモニア吸着量については、乳鉢で粒子径100μm以下に粉砕した上記市販のシリカ(水澤化学製)を用い、アンモニア吸着量測定用セル内での熱処理条件を表1に示すとおりにした以外は、実施例1と同様に行った。結果を表1に示す。
Comparative Example 3 (Production of desulfurizing agent 10, evaluation of ammonia adsorption amount and desulfurization performance)
Desulfurizing agent 10 was prepared by filling 2.5 cc of commercially available silica (manufactured by Mizusawa Chemical Co., Ltd.) pulverized to a particle size of 100 μm or less in a mortar into a desulfurizer and heat-treating it at 600 ° C. for 3 hours under hydrogen flow. Got. The obtained catalyst 10 was subjected to the same operation as in Example 1, and the sulfur concentration was measured. The results are shown in Table 1.
Regarding the ammonia adsorption amount, the above-mentioned commercially available silica (manufactured by Mizusawa Chemical Co., Ltd.) pulverized with a mortar to a particle size of 100 μm or less was used, except that the heat treatment conditions in the cell for measuring the ammonia adsorption amount were as shown in Table 1. Performed as in Example 1. The results are shown in Table 1.

Figure 2009046626
Figure 2009046626

本発明の脱硫剤は、液体燃料の脱硫に使用でき、安価で高性能な脱硫剤を提供することから、燃焼用途に用いる灯油、軽油等の液体燃料の脱硫にも、また燃料電池用液体燃料の脱硫などの非常に低硫黄レベルへの脱硫の際にも使用することができる。また、この脱硫剤を用いて得られた液体処理燃料は、燃料電池用水素の製造に好適に使用することができる。   The desulfurization agent of the present invention can be used for desulfurization of liquid fuel, and provides an inexpensive and high-performance desulfurization agent. Therefore, the desulfurization agent for kerosene, light oil and the like used for combustion is also suitable for desulfurization of liquid fuel for fuel cells. It can also be used for desulfurization to very low sulfur levels, such as desulfurization. Moreover, the liquid processing fuel obtained using this desulfurization agent can be used suitably for manufacture of hydrogen for fuel cells.

本発明の燃料電池システムの一例を示す概略フロー図である。It is a schematic flowchart which shows an example of the fuel cell system of this invention.

符号の説明Explanation of symbols

1:気化器
11:水供給管
12:燃料導入管
15:接続管
21:燃料タンク
22:ポンプ
23:脱硫器
24:水ポンプ
31:改質器
31A:改質器のバーナ
32:CO変成器
33:CO選択酸化器
34:燃料電池
34A:燃料電池負極
34B:燃料電池正極
34C:燃料電池高分子電解質
35:空気ブロワー
36:気水分離器
37:排熱回収装置
37A:熱交換器
37B:熱交換器
37C:冷却器
37D:冷媒循環ポンプ
1: Vaporizer 11: Water supply pipe 12: Fuel introduction pipe 15: Connection pipe 21: Fuel tank 22: Pump 23: Desulfurizer 24: Water pump 31: Reformer 31A: Reformer burner 32: CO converter 33: CO selective oxidizer 34: Fuel cell 34A: Fuel cell negative electrode 34B: Fuel cell positive electrode 34C: Fuel cell polymer electrolyte 35: Air blower 36: Air / water separator 37: Waste heat recovery device 37A: Heat exchanger 37B: Heat exchanger 37C: Cooler 37D: Refrigerant circulation pump

Claims (12)

液体燃料を80℃以下で脱硫する際に用いる脱硫剤であって、無機酸化物を主成分とし、かつ100℃でのアンモニア吸着量が、脱硫剤1g当り170μmol/g以上である液体燃料用脱硫剤。   A desulfurization agent for use in desulfurization of liquid fuel at 80 ° C. or less, comprising an inorganic oxide as a main component, and an ammonia adsorption amount at 100 ° C. of 170 μmol / g or more per 1 g of desulfurization agent. Agent. 100℃でのアンモニア吸着量が、脱硫剤1g当り300μmol/g以上である、請求項1記載の脱硫剤。   The desulfurization agent according to claim 1, wherein the ammonia adsorption amount at 100 ° C is 300 µmol / g or more per 1 g of the desulfurization agent. 無機酸化物が、アルミナ及び/又はジルコニアである、請求項1又は2に記載の脱硫剤。   The desulfurization agent according to claim 1 or 2, wherein the inorganic oxide is alumina and / or zirconia. 実質的にアルミナのみからなる、請求項1〜3のいずれかに記載の脱硫剤。   The desulfurization agent according to any one of claims 1 to 3, which consists essentially of alumina. 無機酸化物が、γアルミナである、請求項1〜4のいずれかに記載の脱硫剤。   The desulfurization agent according to any one of claims 1 to 4, wherein the inorganic oxide is γ-alumina. 活性金属を担持しない、請求項1〜5のいずれかに記載の脱硫剤。   The desulfurization agent according to any one of claims 1 to 5, which does not carry an active metal. 無機酸化物を主成分とする脱硫剤前駆体を空気雰囲気下及び/又は水素雰囲気下、300〜850℃で熱処理して得られる、請求項1〜6のいずれかに記載の脱硫剤。   The desulfurization agent in any one of Claims 1-6 obtained by heat-processing the desulfurization agent precursor which has an inorganic oxide as a main component at 300-850 degreeC in air atmosphere and / or hydrogen atmosphere. 脱硫剤前駆体がアルミナ及び/又はジルコニアからなる、請求項7記載の脱硫剤。   The desulfurization agent according to claim 7, wherein the desulfurization agent precursor is made of alumina and / or zirconia. 液体燃料を、請求項1〜8のいずれかに記載の脱硫剤を用いて80℃以下で脱硫処理する、液体燃料の脱硫方法。   A method for desulfurizing a liquid fuel, wherein the liquid fuel is desulfurized at 80 ° C. or lower using the desulfurizing agent according to claim 1. 請求項7又は8に記載の脱硫剤を、熱処理後に水又は水蒸気に実質接触させることなく液体燃料に接触させる工程を有する、請求項9記載の液体燃料の脱硫方法。   The method for desulfurizing a liquid fuel according to claim 9, further comprising a step of bringing the desulfurizing agent according to claim 7 or 8 into contact with the liquid fuel without being substantially brought into contact with water or water vapor after the heat treatment. 請求項9又は10に記載の方法で、液体燃料を脱硫した後、この脱硫処理した燃料を部分酸化改質、オートサーマル改質又は水蒸気改質する、水素の製造方法。   11. The method for producing hydrogen according to claim 9, wherein after desulfurizing the liquid fuel, the desulfurized fuel is subjected to partial oxidation reforming, autothermal reforming, or steam reforming. 請求項11記載の製造方法によって得られる水素を原料とする燃料電池システム。   A fuel cell system using hydrogen obtained by the production method according to claim 11 as a raw material.
JP2007215816A 2007-08-22 2007-08-22 Desulfurization agent for liquid fuel and desulfurization method of liquid fuel Pending JP2009046626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007215816A JP2009046626A (en) 2007-08-22 2007-08-22 Desulfurization agent for liquid fuel and desulfurization method of liquid fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007215816A JP2009046626A (en) 2007-08-22 2007-08-22 Desulfurization agent for liquid fuel and desulfurization method of liquid fuel

Publications (1)

Publication Number Publication Date
JP2009046626A true JP2009046626A (en) 2009-03-05

Family

ID=40499141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007215816A Pending JP2009046626A (en) 2007-08-22 2007-08-22 Desulfurization agent for liquid fuel and desulfurization method of liquid fuel

Country Status (1)

Country Link
JP (1) JP2009046626A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017051928A (en) * 2015-09-11 2017-03-16 東京瓦斯株式会社 Desulfurizing agent for fuel gas
CN114471448A (en) * 2021-12-30 2022-05-13 贵研工业催化剂(云南)有限公司 Benzene refining desulfurization adsorbent and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002317A (en) * 2003-03-20 2005-01-06 Japan Energy Corp Desulfurization method of liquid hydrocarbon containing organic sulfur compound
JP2005270855A (en) * 2004-03-25 2005-10-06 Cosmo Oil Co Ltd Adsorbent of sulfur compound in hydrocarbon oil and method for removing sulfur compound in hydrocarbon oil
JP2006117921A (en) * 2004-09-22 2006-05-11 Idemitsu Kosan Co Ltd Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system
JP2006176721A (en) * 2004-12-24 2006-07-06 Idemitsu Kosan Co Ltd Desulfurizing agent for fuel oil containing organic sulfur compound and manufacturing method of hydrogen for fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002317A (en) * 2003-03-20 2005-01-06 Japan Energy Corp Desulfurization method of liquid hydrocarbon containing organic sulfur compound
JP2005270855A (en) * 2004-03-25 2005-10-06 Cosmo Oil Co Ltd Adsorbent of sulfur compound in hydrocarbon oil and method for removing sulfur compound in hydrocarbon oil
JP2006117921A (en) * 2004-09-22 2006-05-11 Idemitsu Kosan Co Ltd Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system
JP2006176721A (en) * 2004-12-24 2006-07-06 Idemitsu Kosan Co Ltd Desulfurizing agent for fuel oil containing organic sulfur compound and manufacturing method of hydrogen for fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017051928A (en) * 2015-09-11 2017-03-16 東京瓦斯株式会社 Desulfurizing agent for fuel gas
CN114471448A (en) * 2021-12-30 2022-05-13 贵研工业催化剂(云南)有限公司 Benzene refining desulfurization adsorbent and preparation method thereof
CN114471448B (en) * 2021-12-30 2024-04-26 贵研工业催化剂(云南)有限公司 Benzene refining desulfurization adsorbent and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2006068135A1 (en) Desulfurizing agent for organosulfur compound-containing fuel oil, and process for producing hydrogen for fuel cell
KR20070115991A (en) Desulfurizing agent and method of desulfurization with the same
US7556872B2 (en) Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
KR20090083923A (en) Desulfurizing agent for kerosene, desulfurization method and fuel cell system using the desulfurizing agent for kerosene
JP4722429B2 (en) Method for producing metal-supported zeolite molding and adsorbent for removing sulfur compound containing the zeolite
JP4676690B2 (en) METAL ION EXCHANGE ZEOLITE, PROCESS FOR PRODUCING THE SAME, AND SOLUTION COMPOUND ADSORBENT CONTAINING THE METAL ION EXCHANGE ZEOLITE
JP2018108927A (en) Metal-supported zeolite molded body, production method of metal-supported zeolite molded body, absorbent for removing sulfur compound, production method of hydrogen, and fuel cell system
JP3943902B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP2006036616A (en) Method for manufacturing zeolite and adsorbent containing the zeolite for removing sulfur compound
JP4080225B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP4267483B2 (en) Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cells
WO2012090832A1 (en) Desulfurization system for fuel cell, hydrogen production system for fuel cell, fuel cell system, desulfurization method for hydrocarbon fuel, and method for producing hydrogen
JP6317909B2 (en) Metal-supported zeolite molded body, metal-supported zeolite molded body manufacturing method, sulfur compound removing adsorbent, hydrogen manufacturing method, and fuel cell system
JP4749589B2 (en) Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method
JP2009046626A (en) Desulfurization agent for liquid fuel and desulfurization method of liquid fuel
JP5324205B2 (en) Hydrocarbon desulfurization agent and method for producing the same, kerosene desulfurization method, fuel cell system
JP5782400B2 (en) Desulfurization system, hydrogen production system, fuel cell system, fuel desulfurization method, and hydrogen production method
JP2006117921A (en) Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system
JP2009057421A (en) Desulfurization agent for liquid fuel and desulfurization method for liquid fuel
JP2005089255A (en) Hydrogen generator and its method
JP5809413B2 (en) Fuel cell desulfurization system, fuel cell hydrogen production system, fuel cell system, and hydrocarbon fuel desulfurization method
JP4057314B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP2004066035A (en) Method of desulfurizing hydrocarbon and fuel cell system
JP5726513B2 (en) Fuel cell desulfurization system, fuel cell hydrogen production system, fuel cell system, and hydrocarbon fuel desulfurization method
JP2013199533A (en) Method for producing desulfurized gaseous fuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108