JP5726513B2 - Fuel cell desulfurization system, fuel cell hydrogen production system, fuel cell system, and hydrocarbon fuel desulfurization method - Google Patents

Fuel cell desulfurization system, fuel cell hydrogen production system, fuel cell system, and hydrocarbon fuel desulfurization method Download PDF

Info

Publication number
JP5726513B2
JP5726513B2 JP2010293678A JP2010293678A JP5726513B2 JP 5726513 B2 JP5726513 B2 JP 5726513B2 JP 2010293678 A JP2010293678 A JP 2010293678A JP 2010293678 A JP2010293678 A JP 2010293678A JP 5726513 B2 JP5726513 B2 JP 5726513B2
Authority
JP
Japan
Prior art keywords
fuel
desulfurization
hydrocarbon
fuel cell
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010293678A
Other languages
Japanese (ja)
Other versions
JP2012142177A (en
Inventor
康嗣 橋本
康嗣 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2010293678A priority Critical patent/JP5726513B2/en
Priority to PCT/JP2011/079719 priority patent/WO2012090837A1/en
Publication of JP2012142177A publication Critical patent/JP2012142177A/en
Application granted granted Critical
Publication of JP5726513B2 publication Critical patent/JP5726513B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/103Sulfur containing contaminants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/123X-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/12Noble metals
    • B01J29/126Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
    • C10G25/05Removal of non-hydrocarbon compounds, e.g. sulfur compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1023Catalysts in the form of a monolith or honeycomb
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1029Catalysts in the form of a foam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • C01B2203/1294Evaporation by heat exchange with hot process stream
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、燃料電池用脱硫システム、燃料電池用水素製造システム、燃料電池システム及び炭化水素系燃料の脱硫方法に関する。   The present invention relates to a fuel cell desulfurization system, a fuel cell hydrogen production system, a fuel cell system, and a hydrocarbon fuel desulfurization method.

一般的に燃料電池用の燃料ガスとしては水素を主成分とするガスが用いられるが、その原料には天然ガス、LPG、ナフサ、灯油等の炭化水素系燃料などが用いられる。これら炭素と水素を含む炭化水素系燃料を水蒸気とともに触媒上で高温処理する、酸素含有気体で部分酸化する、或いは水蒸気と酸素含有気体が共存する系において自己熱回収型の改質反応を行うことにより得られる水素が燃料電池用の燃料水素として利用される。   In general, a gas mainly composed of hydrogen is used as a fuel gas for a fuel cell, and a hydrocarbon-based fuel such as natural gas, LPG, naphtha, or kerosene is used as a raw material. These hydrocarbon fuels containing carbon and hydrogen are treated at high temperature on a catalyst together with steam, partially oxidized with an oxygen-containing gas, or subjected to a self-heat recovery type reforming reaction in a system where steam and oxygen-containing gas coexist. Hydrogen obtained by the above is used as fuel hydrogen for fuel cells.

この燃料電池用の燃料水素を製造するまでの燃料改質、その後に行われる一酸化炭素除去の各工程、さらには陰極の電極に用いられる触媒は、貴金属または銅などが還元状態で使われることが多い。このような状態では硫黄は触媒毒として作用し、水素製造工程または電池そのものの触媒活性を低下させ、効率が低下してしまうという問題がある。   The catalyst used for the fuel reforming until the production of fuel hydrogen for the fuel cell, the subsequent carbon monoxide removal, and the cathode electrode is used in a reduced state such as noble metal or copper. There are many. In such a state, sulfur acts as a catalyst poison, and there is a problem that the catalytic activity of the hydrogen production process or the battery itself is lowered, and the efficiency is lowered.

燃料電池用の燃料から硫黄分を除去する方法としては、例えば、金属担持ゼオライトを用いる方法などが知られている。   As a method for removing sulfur from fuel for a fuel cell, for example, a method using metal-supported zeolite is known.

特開平10−237473号公報Japanese Patent Laid-Open No. 10-237473

ところで、燃料電池の燃料水素の原料となる炭化水素系燃料には硫黄以外にも様々な不純物が含まれる場合がある。例えば、都市ガス中には、脱硫剤の一時被毒物となる水が含まれることがある。ガス中の水分量が高濃度になると、脱硫剤の性能が一時的に急低下し、硫黄が十分に除去されなくなる。炭化水素系燃料に混入する不純物は種類や濃度が変動するため、脱硫剤の被毒物への対応は難しいものとなっていた。   By the way, the hydrocarbon fuel used as the raw material for fuel hydrogen of the fuel cell may contain various impurities in addition to sulfur. For example, city gas may contain water that is a temporary poison for the desulfurization agent. When the amount of water in the gas becomes high, the performance of the desulfurizing agent is temporarily lowered, and sulfur is not sufficiently removed. Impurities mixed in hydrocarbon fuels vary in type and concentration, making it difficult to deal with poisons of desulfurization agents.

本発明は、脱硫剤の被毒物が含まれる炭化水素系燃料が供給される場合であっても所望の脱硫性能をより長期間維持することができる高耐久な燃料電池用脱硫システム、水素製造システム及び燃料電池システム、並びに、炭化水素系燃料の脱硫方法を提供することを目的とする。   The present invention relates to a highly durable fuel cell desulfurization system and hydrogen production system capable of maintaining a desired desulfurization performance for a long period of time even when a hydrocarbon fuel containing a desulfurization agent poison is supplied. It is another object of the present invention to provide a fuel cell system and a hydrocarbon fuel desulfurization method.

上記課題を解決するために本発明は、燃料電池用の脱硫システムであって、硫黄化合物が含まれる流通する炭化水素系燃料から硫黄化合物を除去するための脱硫部を備え、脱硫部が、異なる濃度で活性金属を担持した複数のゼオライトによって構成され、複数のゼオライトが炭化水素系燃料の流通方向の上流側から下流側に向かって活性金属濃度が高いものから低いものとなる順序で配置されている脱硫剤を有する燃料電池用脱硫システムを提供する。   In order to solve the above problems, the present invention is a desulfurization system for a fuel cell, comprising a desulfurization section for removing sulfur compounds from a circulating hydrocarbon fuel containing sulfur compounds, and the desulfurization sections are different. Consists of a plurality of zeolites carrying active metals at a concentration, and the plurality of zeolites are arranged in order from the highest to the lowest active metal concentration from the upstream side to the downstream side in the flow direction of the hydrocarbon fuel. A desulfurization system for a fuel cell having a desulfurizing agent is provided.

本発明の燃料電池用脱硫システムによれば、上記構成を有する脱硫部を備えることにより、脱硫剤の被毒物が含まれる炭化水素系燃料が供給された場合であっても炭化水素系燃料に含まれる硫黄化合物を長期にわたって十分に除去することができる。   According to the fuel cell desulfurization system of the present invention, by including the desulfurization section having the above-described configuration, even if a hydrocarbon fuel containing a desulfurization agent poison is supplied, it is included in the hydrocarbon fuel. Sulfur compounds can be sufficiently removed over a long period of time.

この理由を本発明者らは、上流側に配置された活性金属が高濃度で担持されたゼオライトによって被毒物を吸着させることが可能となり、それ以降に配置されたゼオライト触媒の活性が十分に保たれて硫黄が後段にスリップするのを抑制することができるためと考えている。   For this reason, the present inventors can adsorb the poisonous substance by the zeolite in which the active metal disposed upstream is supported at a high concentration, and the activity of the zeolite catalyst disposed thereafter is sufficiently maintained. It is thought that it is possible to suppress the sulfur from slipping to the subsequent stage.

本発明の燃料電池用脱硫システムにおいて、脱硫性能の観点から、上記ゼオライトがX型ゼオライト又はY型ゼオライトであり、上記活性金属がAg又はCuであることが好ましい。   In the fuel cell desulfurization system of the present invention, from the viewpoint of desulfurization performance, the zeolite is preferably X-type zeolite or Y-type zeolite, and the active metal is preferably Ag or Cu.

上記炭化水素系燃料は、炭素数4以下の炭化水素化合物を含むことができる。   The hydrocarbon fuel may contain a hydrocarbon compound having 4 or less carbon atoms.

本発明の燃料電池用脱硫システムは、25℃において水分を0.001〜2容量%含有し、硫黄化合物が含まれる炭化水素系燃料を脱硫部に供給する燃料供給部を更に備えることができる。   The fuel cell desulfurization system of the present invention may further include a fuel supply unit that supplies a hydrocarbon fuel containing 0.001 to 2% by volume of moisture at 25 ° C. and containing a sulfur compound to the desulfurization unit.

なお、本明細書でいう水分量とは、露点計で測定した露点温度を、25℃における水分量に換算した値である。   In addition, the moisture content as used in this specification is the value which converted the dew point temperature measured with the dew point meter into the moisture content in 25 degreeC.

本発明はまた、本発明の燃料電池用脱硫システムと、該燃料電池用脱硫システムの脱硫部を経た炭化水素系燃料から水素を発生させる水素発生部と、を備える燃料電池用水素製造システムを提供する。   The present invention also provides a fuel cell hydrogen production system comprising: the fuel cell desulfurization system of the present invention; and a hydrogen generation unit that generates hydrogen from a hydrocarbon-based fuel that has passed through the desulfurization unit of the fuel cell desulfurization system. To do.

本発明の水素製造システムによれば、本発明の燃料電池用脱硫システムを備えることにより、脱硫剤の被毒物が含まれる炭化水素系燃料が供給された場合であっても水素発生部に硫黄化合物が流れてしまうことを長期にわたって抑制することができ、これにより水素の製造効率を長期にわたって十分に維持することが可能となる。   According to the hydrogen production system of the present invention, by providing the fuel cell desulfurization system of the present invention, even if a hydrocarbon-based fuel containing a desulfurization agent poison is supplied, a sulfur compound is generated in the hydrogen generating part. Can be suppressed over a long period of time, whereby the production efficiency of hydrogen can be sufficiently maintained over a long period of time.

本発明はまた、本発明の燃料電池用水素製造システムを備える燃料電池システムを提供する。   The present invention also provides a fuel cell system comprising the fuel cell hydrogen production system of the present invention.

本発明の燃料電池システムによれば、脱硫剤の被毒物が含まれる炭化水素系燃料が供給された場合であっても、本発明の水素製造システムを備えることにより燃料水素を安定的に燃料電池の陰極に供給することができ、発電効率を長期にわたって十分に維持することが可能となる。   According to the fuel cell system of the present invention, even when a hydrocarbon-based fuel containing a desulfurization agent poison is supplied, the fuel cell can be stably supplied with the fuel hydrogen by providing the hydrogen production system of the present invention. The power generation efficiency can be sufficiently maintained over a long period of time.

本発明はまた、硫黄化合物が含まれる炭化水素系燃料を、異なる濃度で活性金属を担持した複数のゼオライトの活性金属濃度が高いものから順に流通させる炭化水素系燃料の脱硫方法を提供する。   The present invention also provides a hydrocarbon-based fuel desulfurization method in which a hydrocarbon-based fuel containing a sulfur compound is circulated in descending order of the active metal concentration of a plurality of zeolites carrying active metals at different concentrations.

本発明の炭化水素系燃料の脱硫方法によれば、炭化水素系燃料に脱硫剤の被毒物が含まれる場合であっても、炭化水素系燃料中の硫黄化合物を長期にわたって十分に除去することができる。   According to the hydrocarbon-based fuel desulfurization method of the present invention, even if the hydrocarbon-based fuel contains a desulfurization agent poisonous substance, sulfur compounds in the hydrocarbon-based fuel can be sufficiently removed over a long period of time. it can.

本発明の炭化水素系燃料の脱硫方法において、脱硫性能の観点から、上記ゼオライトがX型ゼオライト又はY型ゼオライトであり、上記活性金属がAg又はCuであることが好ましい。   In the hydrocarbon fuel desulfurization method of the present invention, from the viewpoint of desulfurization performance, the zeolite is preferably X-type zeolite or Y-type zeolite, and the active metal is preferably Ag or Cu.

上記炭化水素系燃料は、炭素数4以下の炭化水素化合物を含むことができる。   The hydrocarbon fuel may contain a hydrocarbon compound having 4 or less carbon atoms.

また、上記炭化水素系燃料は25℃において水分を0.001〜2容量%含有することができる。本発明の炭化水素系燃料の脱硫方法によれば、水分を上記の割合で含む炭化水素系燃料を脱硫する場合であっても長期にわたって安定的に脱硫が可能となる。   The hydrocarbon fuel can contain 0.001-2% by volume of water at 25 ° C. According to the hydrocarbon-based fuel desulfurization method of the present invention, desulfurization can be stably performed over a long period of time even when a hydrocarbon-based fuel containing water in the above proportion is desulfurized.

本発明によれば、脱硫剤の被毒物が含まれる炭化水素系燃料が供給される場合であっても所望の脱硫性能をより長期間維持することができる高耐久な燃料電池用脱硫システム、水素製造システム及び燃料電池システム、並びに、炭化水素系燃料の脱硫方法を提供することができる。   According to the present invention, a highly durable fuel cell desulfurization system capable of maintaining a desired desulfurization performance for a longer period of time even when a hydrocarbon-based fuel containing a desulfurization agent poison is supplied, hydrogen A manufacturing system, a fuel cell system, and a hydrocarbon-based fuel desulfurization method can be provided.

本発明の実施形態に係る燃料電池システムの一例を示す概念図である。It is a conceptual diagram which shows an example of the fuel cell system which concerns on embodiment of this invention. 本発明の実施形態に係る脱硫システムの一例を示す模式図である。It is a mimetic diagram showing an example of a desulfurization system concerning an embodiment of the present invention.

図1は、本発明の実施形態に係る燃料電池システムの一例を示す概念図である。燃料電池システム1は、燃料供給部2と、脱硫部3と、水素発生部4と、セルスタック5と、オフガス燃焼部6と、水供給部7と、水気化部8と、酸化剤供給部9と、パワーコンディショナー10と、制御部11と、を備えている。図1に示す流れで各部が配管(図示せず)で接続されている。本実施形態においては、燃料供給部2及び脱硫部3が燃料電池用の脱硫システム20を構成している。   FIG. 1 is a conceptual diagram showing an example of a fuel cell system according to an embodiment of the present invention. The fuel cell system 1 includes a fuel supply unit 2, a desulfurization unit 3, a hydrogen generation unit 4, a cell stack 5, an off-gas combustion unit 6, a water supply unit 7, a water vaporization unit 8, and an oxidant supply unit. 9, a power conditioner 10, and a control unit 11. Each part is connected by piping (not shown) in the flow shown in FIG. In the present embodiment, the fuel supply unit 2 and the desulfurization unit 3 constitute a fuel cell desulfurization system 20.

燃料供給部2は、脱硫部3へ炭化水素系燃料を供給する。ここで、炭化水素系燃料は、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物が用いられる。炭化水素系燃料としては、例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられ、これらの炭化水素系燃料は従来の石油・石炭等の化石燃料由来のもの、合成ガス等の合成系燃料由来のもの、バイオマス由来のものを適宜用いることができる。具体的には、炭化水素類として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、タウンガス、ガソリン、ナフサ、灯油、軽油が挙げられる。アルコール類としては、メタノール、エタノールが挙げられる。エーテル類としては、ジメチルエーテルが挙げられる。バイオ燃料としては、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。本実施形態においては、パイプラインで供給されメタンを主成分として含むガス(例えば、都市ガス(City gas)、タウンガス(Town gas)、天然ガス(Natural gas)、バイオガス等)又はLPGを好適に使用することができる。   The fuel supply unit 2 supplies hydrocarbon fuel to the desulfurization unit 3. Here, as the hydrocarbon-based fuel, a compound containing carbon and hydrogen (may contain other elements such as oxygen) in the molecule or a mixture thereof is used. Examples of hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthesized from syngas. A fuel-derived one or a biomass-derived one can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Biofuels include biogas, bioethanol, biodiesel, and biojet. In the present embodiment, a gas containing methane as a main component (for example, city gas, town gas, natural gas, biogas, etc.) or LPG supplied through a pipeline is suitable. Can be used for

パイプラインから供給される炭化水素系燃料を使用する場合、パイプラインの破損等により水分などの一時被毒物が混入する可能性がある。本発明に係る脱硫部3によれば、そのような炭化水素系燃料が供給された場合であっても、本発明に係る構成を有していない脱硫部に比べて脱硫性能をより長期にわたって維持することが可能となる。   When using a hydrocarbon-based fuel supplied from a pipeline, temporary poisons such as moisture may be mixed due to damage to the pipeline. According to the desulfurization section 3 according to the present invention, even when such a hydrocarbon fuel is supplied, the desulfurization performance is maintained over a longer period than the desulfurization section not having the configuration according to the present invention. It becomes possible to do.

本実施形態においては、炭化水素系燃料が、炭素数4以下の炭化水素化合物を含むことが好ましい。炭素数4以下の炭化水素化合物としては、具体的には、メタン、エタン、プロパン、ブタンなどの飽和脂肪族炭化水素、エチレン、プロピレン、ブテンなどの不飽和脂肪族炭化水素が挙げられる。炭化水素系燃料は、炭素数4以下の炭化水素化合物を含むガス、すなわち、メタン、エタン、エチレン、プロパン、プロピレン、ブタン及びブテンのうちの1種以上を含むガスであることが好ましい。また、炭素数4以下の炭化水素化合物を含むガスとしては、メタンを80体積%以上含むガスが好ましく、メタンを85体積%以上含むガスがより好ましい。   In the present embodiment, the hydrocarbon fuel preferably contains a hydrocarbon compound having 4 or less carbon atoms. Specific examples of the hydrocarbon compound having 4 or less carbon atoms include saturated aliphatic hydrocarbons such as methane, ethane, propane, and butane, and unsaturated aliphatic hydrocarbons such as ethylene, propylene, and butene. The hydrocarbon-based fuel is preferably a gas containing a hydrocarbon compound having 4 or less carbon atoms, that is, a gas containing one or more of methane, ethane, ethylene, propane, propylene, butane and butene. Moreover, as gas containing a C4 or less hydrocarbon compound, the gas containing 80 volume% or more of methane is preferable, and the gas containing 85 volume% or more of methane is more preferable.

炭化水素系燃料には一般的に硫黄化合物が含まれている。硫黄化合物としては、炭化水素類などにもともと混在している硫黄化合物や、ガス漏れ検知のための付臭剤に含まれている化合物が挙げられる。炭化水素類等にもともと混在している硫黄化合物としては、硫化水素(HS)、硫化カルボニル(COS)、二硫化炭素(CS)等が挙げられる。付臭剤としては、アルキルスルフィド、メルカプタンの単独又は混合物が用いられ、例えば、ジエチルスルフィド(DES)、ジメチルスルフィド(DMS)、エチルメチルスルフィド(EMS)、テトラヒドロチオフェン(THT)、tert−ブチルメルカプタン(TBM)、イソプロピルメルカプタン、ジメチルジスルフィド(DMDS)、ジエチルジスルフィド(DEDS)などが用いられる。硫黄化合物は、炭化水素系燃料の全量を基準とした硫黄原子換算濃度で0.1〜10質量ppm程度含まれる。 The hydrocarbon fuel generally contains a sulfur compound. Examples of the sulfur compound include sulfur compounds originally mixed in hydrocarbons and the like, and compounds contained in odorants for detecting gas leaks. Examples of sulfur compounds originally mixed in hydrocarbons include hydrogen sulfide (H 2 S), carbonyl sulfide (COS), carbon disulfide (CS 2 ), and the like. As the odorant, alkyl sulfide, mercaptan alone or a mixture thereof is used. For example, diethyl sulfide (DES), dimethyl sulfide (DMS), ethyl methyl sulfide (EMS), tetrahydrothiophene (THT), tert-butyl mercaptan ( TBM), isopropyl mercaptan, dimethyl disulfide (DMDS), diethyl disulfide (DEDS) and the like are used. The sulfur compound is contained in an amount of about 0.1 to 10 mass ppm in terms of sulfur atom based on the total amount of hydrocarbon fuel.

炭化水素系燃料には、水分、一酸化炭素などの脱硫剤の活性金属を被毒する物質が含まれることがある。炭化水素系燃料が水分を含む場合、25℃において水分を0.001〜2容量%含有することができる。   Hydrocarbon fuels may contain substances that poison active metals of desulfurization agents such as moisture and carbon monoxide. When the hydrocarbon fuel contains water, it can contain 0.001 to 2% by volume of water at 25 ° C.

本実施形態においては脱硫部3を備える本発明に係る脱硫システムが構築されていることにより、上記のような被毒物や硫黄化合物を含む炭化水素系燃料を用いる場合であっても脱硫性能を長期にわたって維持することができる。   In the present embodiment, since the desulfurization system according to the present invention including the desulfurization section 3 is constructed, long-term desulfurization performance can be achieved even when using hydrocarbon fuels containing poisonous substances and sulfur compounds as described above. Can be maintained over time.

脱硫部3は、異なる濃度で活性金属を担持した複数のゼオライトによって構成され、複数のゼオライトが炭化水素系燃料の流通方向の上流側から下流側に向かって活性金属濃度が高いものから低いものとなる順序で配置されている脱硫剤を有している。図2は、本実施形態に係る脱硫システムの一例を示す模式図である。脱硫部3aは、活性金属を担持したゼオライトを含む触媒層101,102,103が3層積層されて構成されている脱硫剤を有する。図2中、矢印Aが炭化水素系燃料の流通方向の上流側であり、矢印Bが下流側を示す。触媒層101が最も高い濃度で活性金属を担持したゼオライトを含み、触媒層102,103の順に活性金属の濃度が小さくなっている。   The desulfurization section 3 is composed of a plurality of zeolites supporting active metals at different concentrations, and the plurality of zeolites are from those having a high active metal concentration to a downstream from the upstream side to the downstream side in the flow direction of the hydrocarbon fuel. The desulfurizing agent is arranged in the order as follows. FIG. 2 is a schematic diagram illustrating an example of a desulfurization system according to the present embodiment. The desulfurization unit 3a has a desulfurization agent that is formed by laminating three catalyst layers 101, 102, and 103 including zeolite supporting an active metal. In FIG. 2, the arrow A indicates the upstream side in the hydrocarbon fuel flow direction, and the arrow B indicates the downstream side. The catalyst layer 101 contains zeolite having active metal supported at the highest concentration, and the active metal concentration decreases in the order of the catalyst layers 102 and 103.

脱硫部3は、担持させた活性金属の濃度が異なるゼオライトを複数用意し、これらを活性金属の濃度が低いものから若しくは高いものから順に所定の容器に充填することにより作成できる。なお、活性金属の濃度が最も高いゼオライトが含まれる層が炭化水素系燃料の流通方向の上流側に配置される。   The desulfurization unit 3 can be prepared by preparing a plurality of zeolites having different concentrations of the supported active metal and filling them in a predetermined container in order from the lowest or highest active metal concentration. In addition, the layer containing the zeolite having the highest concentration of the active metal is disposed on the upstream side in the flow direction of the hydrocarbon fuel.

触媒層の数は特に限定されないが、脱硫税能向上およびコストの観点から、3〜7層が好ましい。   The number of catalyst layers is not particularly limited, but 3 to 7 layers are preferable from the viewpoints of desulfurization taxability improvement and cost.

ゼオライトとしては、SiO/Alモル比2.7〜3のX型ゼオライト、SiO/Alモル比4.5〜5のY型ゼオライト、SiO/Alモル比20〜22のモルデナイト型ゼオライト等が挙げられる。これらのうち、脱硫性能の点で、X型ゼオライト、Y型ゼオライトが好ましい。 The zeolite, X-type zeolite of SiO 2 / Al 2 O 3 molar ratio 2.7 to 3, Y-type zeolite of SiO 2 / Al 2 O 3 molar ratio 4.5 to 5, SiO 2 / Al 2 O 3 molar Examples thereof include mordenite zeolite having a ratio of 20 to 22. Among these, X-type zeolite and Y-type zeolite are preferable in terms of desulfurization performance.

活性金属としては、Ag、Cu、Znが挙げられる。これらのうち、脱硫性能の点で、Ag、Cuが好ましい。   Examples of the active metal include Ag, Cu, and Zn. Among these, Ag and Cu are preferable in terms of desulfurization performance.

銅の担持量の範囲は、脱硫性能向上の観点から、ゼオライト基準で3〜20質量%であることが好ましく、5〜15質量%であることがより好ましい。   The range of the amount of copper supported is preferably 3 to 20% by mass, more preferably 5 to 15% by mass on the basis of zeolite from the viewpoint of improving the desulfurization performance.

銅の担持方法としては、イオン交換法が好ましく使用される。イオン交換に用いるゼオライトは、ナトリウム型、アンモニウム型、プロトン型など様々な形態のものを用いることができるが、ナトリウム型が最も好ましく使用される。一方、銅は通常カチオンとして水に溶解した形態で準備される。その具体例としては、硫酸銅、硝酸銅、塩化銅、酢酸銅などの水溶液、銅アンミン錯体イオンのような銅錯体イオンの水溶液、などを挙げることができる。銅イオンを含む水溶液の濃度は銅の濃度として、通常0.1〜10質量%、好ましくは0.5〜5質量%の範囲である。   As a method for supporting copper, an ion exchange method is preferably used. As the zeolite used for ion exchange, various types such as sodium type, ammonium type and proton type can be used, and the sodium type is most preferably used. On the other hand, copper is usually prepared as a cation dissolved in water. Specific examples thereof include aqueous solutions of copper sulfate, copper nitrate, copper chloride, and copper acetate, and aqueous solutions of copper complex ions such as copper ammine complex ions. The density | concentration of the aqueous solution containing a copper ion is 0.1-10 mass% normally as a copper density | concentration, Preferably it is the range of 0.5-5 mass%.

イオン交換の方法には特に制限はないが、通常は上記のカチオン性の銅を含む溶液に、前述のゼオライトを加え、通常0〜90℃、好ましくは20〜70℃の温度範囲において1時間ないし数時間程度、好ましくは撹拌しながらイオン交換処理する。ついで、固形物をろ過などの手段で分離し、水などで洗浄した後、50〜200℃、好ましくは80〜150℃の温度で乾燥処理する。このイオン交換処理は繰り返し行うことができる。次に必要であれば、200〜600℃、好ましくは300〜500℃で数時間程度焼成処理しても良い。このような方法により、目的の銅イオン交換ゼオライトを得ることができる。   The ion exchange method is not particularly limited, but usually the above-mentioned zeolite is added to the above-mentioned solution containing the cationic copper, and it is usually 0 to 90 ° C., preferably 20 to 70 ° C. for 1 hour to The ion exchange treatment is performed for several hours, preferably with stirring. Next, the solid matter is separated by means such as filtration and washed with water, and then dried at a temperature of 50 to 200 ° C., preferably 80 to 150 ° C. This ion exchange treatment can be repeated. Next, if necessary, it may be fired at 200 to 600 ° C., preferably 300 to 500 ° C. for about several hours. By such a method, the target copper ion exchange zeolite can be obtained.

上記の方法で製造された銅を担持したゼオライトは、アルミナ、シリカ、粘土鉱物など、もしくはベーマイトなどこれらの前駆体を、適当なバインダーとして用いて押出成型、打錠成型、転動造粒、スプレードライおよび必要に応じて焼成するなど、通常の方法で成型して使用できる。また、ゼオライトをあらかじめ成型し、その後に前記のイオン交換法を適用することも好ましく採用される。   Zeolite supporting copper produced by the above method is made by extrusion molding, tableting molding, rolling granulation, spraying using alumina, silica, clay mineral, etc., or a precursor thereof such as boehmite as an appropriate binder. It can be molded and used in a conventional manner such as drying and firing as necessary. In addition, it is also preferable to preliminarily mold the zeolite and then apply the ion exchange method.

銀の担持量の範囲は、脱硫性能向上の観点から、ゼオライト基準で10〜30質量%であることが好ましく、15〜25質量%であることがより好ましい。   The range of the supported amount of silver is preferably 10 to 30% by mass, more preferably 15 to 25% by mass on the basis of zeolite from the viewpoint of improving the desulfurization performance.

銀の担持方法としても、イオン交換法が好ましく使用される。イオン交換に用いるゼオライトは、ナトリウム型、アンモニウム型、プロトン型など様々な形態のものを用いることができるが、ナトリウム型が最も好ましく使用される。一方、銀は通常カチオンとして水に溶解した形態で準備される。その具体例としては、硝酸銀や過塩素酸銀などの水溶液、銀のアンミン錯イオン水溶液、などを挙げることができるが、硝酸銀水溶液が最も好ましく使用される。銀イオンを含む水溶液の濃度は銀の濃度として、通常0.5〜10質量%、好ましくは1〜5質量%の範囲である。   An ion exchange method is preferably used as a method for supporting silver. As the zeolite used for ion exchange, various types such as sodium type, ammonium type and proton type can be used, and the sodium type is most preferably used. On the other hand, silver is usually prepared as a cation dissolved in water. Specific examples thereof include an aqueous solution of silver nitrate and silver perchlorate, an aqueous solution of silver ammine complex ion, and the like, and an aqueous silver nitrate solution is most preferably used. The density | concentration of the aqueous solution containing silver ion is 0.5-10 mass% normally as a density | concentration of silver, Preferably it is the range of 1-5 mass%.

イオン交換の方法には特に制限はないが、通常は上記のカチオン性の銀を含む溶液に、前述のゼオライトを加え、通常0〜90℃、好ましくは20〜70℃の温度範囲において1時間ないし数時間程度、好ましくは撹拌しながらイオン交換処理する。ついで、固形物をろ過などの手段で分離し、水などで洗浄した後、50〜200℃、好ましくは80〜150℃の温度で乾燥処理する。このイオン交換処理は繰り返し行うことができる。次に必要であれば、200〜600℃、好ましくは250〜400℃で数時間程度焼成処理しても良い。このような方法により、目的の銀イオン交換ゼオライトを得ることができる。   The method of ion exchange is not particularly limited, but usually the above-mentioned zeolite is added to the above solution containing cationic silver, and it is usually 0 to 90 ° C., preferably 20 to 70 ° C. for 1 hour to The ion exchange treatment is performed for several hours, preferably with stirring. Next, the solid matter is separated by means such as filtration and washed with water, and then dried at a temperature of 50 to 200 ° C., preferably 80 to 150 ° C. This ion exchange treatment can be repeated. Next, if necessary, it may be fired at 200 to 600 ° C., preferably 250 to 400 ° C. for about several hours. By such a method, the target silver ion exchange zeolite can be obtained.

上記の方法で製造された銀を担持したゼオライトは、アルミナ、シリカ、粘土鉱物など、もしくはベーマイトなどこれらの前駆体を、適当なバインダーとして用いて、押出成型、打錠成型、転動造粒、スプレードライおよび必要に応じて焼成するなど、通常の方法で成型して使用できる。また、ゼオライトをあらかじめ成型し、その後に前記のイオン交換方法を適用することも好ましく採用される。   Zeolite carrying silver produced by the above method is alumina, silica, clay mineral, etc., using these precursors such as boehmite as an appropriate binder, extrusion molding, tableting molding, rolling granulation, It can be molded and used by a normal method such as spray drying and firing as necessary. In addition, it is also preferable to pre-mold zeolite and apply the above ion exchange method thereafter.

脱硫条件は、通常、炭化水素系燃料は気化した状態であることが好ましい。脱硫温度は100℃以下が好ましく、例えば−50℃〜100℃の範囲、より好ましくは−20℃〜80℃の範囲、さらに好ましくは0〜60℃の範囲、さらにより好ましくは10〜50℃の範囲で選ばれる。   Usually, the desulfurization condition is preferably that the hydrocarbon fuel is vaporized. The desulfurization temperature is preferably 100 ° C. or less, for example, in the range of −50 ° C. to 100 ° C., more preferably in the range of −20 ° C. to 80 ° C., further preferably in the range of 0 to 60 ° C., and still more preferably in the range of 10 to 50 ° C. Selected by range.

都市ガスなど常温・常圧で気体である炭化水素系燃料を用いる場合、GHSVは10〜20000h−1、好ましくは10〜7000h−1の間で選択される。GHSVが10h−1より低いと脱硫性能的には十分になるが必要以上に脱硫剤を使用するため脱硫器が過大となり好ましくない。一方、GHSVが20000h−1より大きいと十分な脱硫性能が得られない。なお、液体燃料を炭化水素系燃料として使用することもでき、その場合には、LHSVとして0.01〜100h−1の範囲を選択できる。 When using a hydrocarbon-based fuel that is a gas at normal temperature and normal pressure, such as city gas, GHSV is selected between 10 and 20000 h −1 , preferably between 10 and 7000 h −1 . When GHSV is lower than 10 h −1 , the desulfurization performance is sufficient, but since the desulfurizing agent is used more than necessary, the desulfurizer becomes excessively unfavorable. On the other hand, if GHSV is larger than 20000 h −1 , sufficient desulfurization performance cannot be obtained. In addition, liquid fuel can also be used as a hydrocarbon fuel, and in that case, a range of 0.01 to 100 h −1 can be selected as LHSV.

圧力条件は、通常、常圧〜1MPa(ゲージ圧、以下同じ。)、好ましくは常圧〜0.5MPa、さらに好ましくは常圧〜0.2MPaの範囲で選択されるが、大気圧条件下が最も好ましい。   The pressure conditions are usually selected in the range of normal pressure to 1 MPa (gauge pressure, the same shall apply hereinafter), preferably normal pressure to 0.5 MPa, and more preferably normal pressure to 0.2 MPa. Most preferred.

脱硫部3により硫黄分が除去された炭化水素系燃料は、水素発生部4へ供給される。水素発生部4は、脱硫システム20とともに水素製造システム30を構成する。水素発生部4は、脱硫後の炭化水素系燃料を改質触媒によって改質する改質器を有し、水素リッチガスを発生させる。水素発生部4での改質方式は、特に限定されず、例えば、水蒸気改質、部分酸化改質、自己熱改質、その他の改質方式を採用できる。また、改質温度は通常200〜800℃、好ましくは300〜700℃である。なお、水素発生部4は、セルスタック5が要求する水素リッチガスの性状によって、改質触媒により改質する改質器の他に性状を調整するための構成を有する場合もある。例えば、セルスタック5のタイプが固体高分子形燃料電池(PEFC)やリン酸形燃料電池(PAFC)であった場合、水素発生部4は、水素リッチガス中の一酸化炭素を除去するための構成(例えば、シフト反応部、選択酸化反応部)を有する。水素発生部4は、水素リッチガスをセルスタック5のアノード12へ供給する。   The hydrocarbon-based fuel from which the sulfur content has been removed by the desulfurization unit 3 is supplied to the hydrogen generation unit 4. The hydrogen generator 4 and the desulfurization system 20 constitute a hydrogen production system 30. The hydrogen generator 4 includes a reformer that reforms the hydrocarbon-based fuel after desulfurization using a reforming catalyst, and generates a hydrogen-rich gas. The reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed. The reforming temperature is usually 200 to 800 ° C, preferably 300 to 700 ° C. The hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required by the cell stack 5. For example, when the type of the cell stack 5 is a polymer electrolyte fuel cell (PEFC) or a phosphoric acid fuel cell (PAFC), the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part). The hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.

改質触媒は、セリウム酸化物またはセリウム酸化物を主成分とする希土類元素酸化物を含む触媒担体と、該担体に担持された活性金属とを有するものが挙げられる。   Examples of the reforming catalyst include those having a catalyst carrier containing cerium oxide or a rare earth element oxide mainly composed of cerium oxide, and an active metal supported on the carrier.

活性金属としては、Ru又はRhを用いることが好ましい。Ru又はRhの担持量としては、セリウムとRu又はRhの原子比(Ce/Ru又はCe/Rh)が1〜250、好ましくは2〜100、さらに好ましくは3〜50が望ましい。当該原子比が前記範囲から外れる場合、十分な触媒活性が得られない場合があり、好ましくない。また、Ru又はRhの担持量は、触媒重量(触媒担体と活性金属の合計重量)に対し、Ru又はRhを金属当量として0.1〜3.0質量%であり、好ましくは0.5〜2.5質量%である。   As the active metal, Ru or Rh is preferably used. As the loading amount of Ru or Rh, the atomic ratio of cerium to Ru or Rh (Ce / Ru or Ce / Rh) is 1 to 250, preferably 2 to 100, more preferably 3 to 50. When the atomic ratio is out of the above range, sufficient catalytic activity may not be obtained, which is not preferable. The amount of Ru or Rh supported is 0.1 to 3.0% by mass, preferably 0.5 to 3.0% by weight, based on the catalyst weight (total weight of catalyst support and active metal), with Ru or Rh as the metal equivalent. 2.5% by mass.

Ru又はRhの触媒担体への担持方法は、特に限定されるものではなく、公知の方法を適用することにより容易に行うことができる。例えば、含浸法、沈着法、共沈法、混練法、イオン交換法、ポアフィリング法等が挙げられ、特に含浸法が望ましい。触媒を製造する際のRu又はRhの出発物質は、前記の担持法により異なり、適宜選択することができるが、通常、Ru又はRhの塩化物やRu又はRhの硝酸塩が用いられる。例えば、含浸法を適用する場合、Ru又はRhの塩の溶液(通常は水溶液)を調製し、前記の担体に含浸させたのち、乾燥、必要に応じ焼成する方法を例示することができる。焼成は、通常、空気や窒素雰囲気下などで行われ、温度は、当該塩の分解温度以上であれば特に限定されないが、通常、200〜800℃、好ましくは300〜800℃、より好ましくは500〜800℃程度が望ましい。本発明においては、通常、Ru又はRhを触媒担体に担持したのち、還元雰囲気(通常は水素雰囲気)で400〜1000℃、好ましくは500〜700℃で還元処理することにより触媒を調製することが好ましく採用される。なお、上記の改質触媒には、他の貴金属(白金、イリジウム、パラジウムなど)をさらに担持させた形態とすることもできる。   The method for supporting Ru or Rh on the catalyst carrier is not particularly limited, and can be easily performed by applying a known method. For example, an impregnation method, a deposition method, a coprecipitation method, a kneading method, an ion exchange method, a pore filling method and the like can be mentioned, and the impregnation method is particularly desirable. The starting material for Ru or Rh used in the production of the catalyst varies depending on the above-mentioned supporting method and can be appropriately selected. Usually, a Ru or Rh chloride or a Ru or Rh nitrate is used. For example, when the impregnation method is applied, a method of preparing a solution of Ru or Rh salt (usually an aqueous solution), impregnating the carrier, drying, and firing as necessary can be exemplified. Firing is usually performed in air or a nitrogen atmosphere, and the temperature is not particularly limited as long as it is equal to or higher than the decomposition temperature of the salt, but is usually 200 to 800 ° C, preferably 300 to 800 ° C, more preferably 500. About ~ 800 ° C is desirable. In the present invention, it is usually possible to prepare a catalyst by supporting Ru or Rh on a catalyst carrier and then performing a reduction treatment at 400 to 1000 ° C., preferably 500 to 700 ° C. in a reducing atmosphere (usually a hydrogen atmosphere). Preferably employed. The above reforming catalyst may be in a form in which other noble metals (platinum, iridium, palladium, etc.) are further supported.

また、改質触媒の触媒担体としては、セリウム酸化物またはセリウム酸化物を主成分とする希土類元素酸化物5〜40質量%、アルミニウム酸化物60〜95質量%を含む担体であることが好ましい。   The catalyst support for the reforming catalyst is preferably a support containing cerium oxide or a rare earth element oxide containing cerium oxide as a main component in an amount of 5 to 40% by mass and aluminum oxide in an amount of 60 to 95% by mass.

セリウム酸化物としては、特に限定されないが、酸化第2セリウム(通称、セリアと呼ばれている。)が好ましい。セリウム酸化物の調製方法は、特に限定されるものではなく、例えば、硝酸セリウム(Ce(NO・6HO、Ce(NO等)、塩化セリウム(CeCl・nHO)、水酸化セリウム(Ce(OH)、Ce(OH)・HO等)、炭酸セリウム(Ce(CO・8HO、Ce(CO・5HO等)、シュウ酸セリウム、シュウ酸セリウム(IV)アンモニウム、塩化セリウム等を出発原料とし、公知の方法、例えば、空気中において焼成すること等により調製することができる。 Although it does not specifically limit as a cerium oxide, The 2nd cerium oxide (commonly called ceria) is preferable. The method for preparing cerium oxide is not particularly limited, and for example, cerium nitrate (Ce (NO 3 ) 3 .6H 2 O, Ce (NO 3 ) 4, etc.), cerium chloride (CeCl 3 .nH 2 O) ), Cerium hydroxide (Ce (OH) 3 , Ce (OH) 4 .H 2 O, etc.), cerium carbonate (Ce 2 (CO 3 ) 3 · 8H 2 O, Ce 2 (CO 3 ) 3 · 5H 2 O Etc.), cerium oxalate, cerium (IV) ammonium oxalate, cerium chloride and the like as starting materials, and can be prepared by a known method, for example, firing in air.

セリウム酸化物を主成分とする希土類元素酸化物は、セリウムを主成分とした混合希土類元素の塩から調製することができる。セリウム酸化物を主成分とする希土類元素酸化物において、セリウム酸化物の含有量は通常50質量%以上、好ましくは60質量%以上、さらに好ましくは70質量%以上である。セリウム酸化物以外の希土類元素酸化物としては、スカンジウム、イットリウム、ランタン、プロセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム等の各元素の酸化物が挙げられる。なかでも、イットリウム、ランタン、ネオジムの各元素の酸化物が好ましく、特にランタンの酸化物が好ましい。もちろん結晶形態は特に限定されるものではなく、いずれの結晶形態であっても良い。   The rare earth element oxide mainly composed of cerium oxide can be prepared from a salt of a mixed rare earth element mainly composed of cerium. In the rare earth element oxide mainly composed of cerium oxide, the content of cerium oxide is usually 50% by mass or more, preferably 60% by mass or more, and more preferably 70% by mass or more. Examples of rare earth elements other than cerium oxide include scandium, yttrium, lanthanum, protheodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and other elements. Is mentioned. Of these, oxides of each element of yttrium, lanthanum, and neodymium are preferable, and oxides of lanthanum are particularly preferable. Of course, the crystal form is not particularly limited, and any crystal form may be used.

アルミニウム酸化物としては、アルミナの他、アルミニウムとケイ素、銅、鉄、チタンなどの他の元素との複酸化物をも包含し、複酸化物としてはシリカアルミナ等が代表的なものとして挙げられる。これらのうち、特にアルミナが望ましく、アルミナとしては特に限定されなく、α、β、γ、η、θ、κ、χ等のいずれの結晶形態のものが使用でき、特にγ型が好ましい。また、ベーマイト、バイアライト、ギブサイト等のアルミナ水和物を使用することもできる。シリカアルミナの場合も特に限定されなく、いずれの結晶形態のものが使用できる。アルミニウム酸化物は少量の不純物を含有していても支障無く使用できる。   Examples of the aluminum oxide include alumina and double oxides of aluminum and other elements such as silicon, copper, iron, and titanium. Typical examples of the double oxide include silica alumina. . Of these, alumina is particularly desirable, and the alumina is not particularly limited, and any crystal form such as α, β, γ, η, θ, κ, and χ can be used, and the γ type is particularly preferable. Alumina hydrates such as boehmite, bayerite, and gibbsite can also be used. Silica alumina is not particularly limited, and any crystal form can be used. Aluminum oxide can be used without any problem even if it contains a small amount of impurities.

改質触媒の触媒担体におけるセリウム酸化物およびセリウム酸化物を主成分とする希土類元素酸化物の組成割合は、5〜40質量%が好ましく、10〜35質量%がより好ましい。セリウム酸化物およびセリウム酸化物を主成分とする希土類元素酸化物が5質量%より少ない場合、炭素析出抑制効果、活性促進効果、酸素共存下での耐熱性向上効果が不十分であり好ましくなく、また40質量%より多い場合は担体の表面積が減少し、十分な触媒活性が得られないことがあり好ましくない。   The composition ratio of cerium oxide and rare earth element oxide mainly composed of cerium oxide in the catalyst carrier of the reforming catalyst is preferably 5 to 40% by mass, and more preferably 10 to 35% by mass. When the rare earth element oxide containing cerium oxide and cerium oxide as a main component is less than 5% by mass, the carbon precipitation suppressing effect, the activity promoting effect, and the heat resistance improving effect in the presence of oxygen are insufficient, which is not preferable. On the other hand, when the amount is more than 40% by mass, the surface area of the support is decreased, and sufficient catalytic activity may not be obtained.

改質触媒の触媒担体におけるアルミニウム酸化物の組成割合は、60〜95質量%が好ましく、65〜90質量%がより好ましい。アルミニウム酸化物の組成割合が60質量%より少ない場合は担体の表面積が減少し、十分な触媒活性が得られないことがあり好ましくなく、また95質量%より多い場合は炭素析出抑制効果、活性促進効果、酸素共存下での耐熱性向上効果が不十分であり好ましくない。   60-95 mass% is preferable and, as for the composition ratio of the aluminum oxide in the catalyst support | carrier of a reforming catalyst, 65-90 mass% is more preferable. When the composition ratio of the aluminum oxide is less than 60% by mass, the surface area of the support is decreased, so that sufficient catalytic activity may not be obtained. This is not preferable because the effect and the effect of improving heat resistance in the presence of oxygen are insufficient.

改質触媒の触媒担体の製造方法は特に限定されるものではなく、公知の方法により容易に製造することができる。例えば、アルミニウム酸化物に、セリウムもしくはセリウムを主成分とする希土類元素の塩の水溶液を含浸させて、乾燥、焼成することにより製造することができる。このとき用いる塩としては水溶性の塩が好ましく、具体的な塩としては、硝酸塩、塩化物、硫酸塩、酢酸塩等の塩を挙げることができるが、特に焼成により容易に熱分解して酸化物となる硝酸塩または有機酸塩が好ましい。焼成は、通常、空気や酸素雰囲気下などで行われ、温度は、当該塩の分解温度以上であれば特に限定されないが、通常500〜1400℃、好ましくは700〜1200℃程度が望ましい。また、担体の調製の別法としては、共沈法、ゲル混練法、ゾルゲル法によっても調製することができる。   The method for producing the catalyst carrier of the reforming catalyst is not particularly limited, and can be easily produced by a known method. For example, it can be produced by impregnating aluminum oxide with an aqueous solution of cerium or a rare earth element salt containing cerium as a main component, followed by drying and baking. The salt used at this time is preferably a water-soluble salt. Specific examples of the salt include nitrates, chlorides, sulfates, acetates, and the like. Nitrate or organic acid salt is preferable. Firing is usually performed in air or an oxygen atmosphere, and the temperature is not particularly limited as long as it is equal to or higher than the decomposition temperature of the salt. As another method for preparing the carrier, it can also be prepared by a coprecipitation method, a gel kneading method, or a sol-gel method.

このようにして触媒担体を得ることができるが、Ru又はRhを担持する前に触媒担体を空気や酸素雰囲気下で焼成処理するのが好ましい。このときの焼成温度としては、通常500〜1400℃、好ましくは700〜1200℃である。また、触媒担体の機械的強度を高めることを目的として、触媒担体に少量のバインダー、例えばシリカ、セメント等を添加することもできる。改質触媒の触媒担体の形状は特に限定されるものではなく、触媒を使用する形態により適宜選択することができる。例えば、ペレット状、顆粒状、ハニカム状、スポンジ状等などの任意の形状が採用される。   Although the catalyst carrier can be obtained in this way, it is preferable to calcinate the catalyst carrier in the atmosphere of air or oxygen before supporting Ru or Rh. As a calcination temperature at this time, it is 500-1400 degreeC normally, Preferably it is 700-1200 degreeC. Further, for the purpose of increasing the mechanical strength of the catalyst carrier, a small amount of a binder such as silica or cement can be added to the catalyst carrier. The shape of the catalyst carrier of the reforming catalyst is not particularly limited, and can be appropriately selected depending on the form in which the catalyst is used. For example, an arbitrary shape such as a pellet shape, a granule shape, a honeycomb shape, or a sponge shape is adopted.

改質触媒の形状は特に限定されるものではなく、触媒を使用する形態により適宜選択することができる。例えば、ペレット状、顆粒状、ハニカム状、スポンジ状等などの任意の形状が採用される。   The shape of the reforming catalyst is not particularly limited, and can be appropriately selected depending on the form in which the catalyst is used. For example, an arbitrary shape such as a pellet shape, a granule shape, a honeycomb shape, or a sponge shape is adopted.

また、水素発生部4においては、炭化水素系燃料を改質するために水蒸気が必要であることから、水気化部8から水素発生部4に水蒸気が供給されることが好ましい。水蒸気は、水供給部7から供給される水を水気化部8において加熱し、気化させることによって生成されることが好ましい。水気化部8における水の加熱は、例えば、水素発生部4の熱、オフガス燃焼部6の熱、あるいは排ガスの熱を回収する等、燃料電池システム1内で発生した熱を用いてもよい。また、別途ヒータ、バーナ等の他熱源を用いて水を加熱してもよい。なお、図1では、一例としてオフガス燃焼部6から水素発生部4へ供給される熱のみ記載されているが、これに限定されない。   Further, in the hydrogen generation unit 4, it is preferable that water vapor is supplied from the water vaporization unit 8 to the hydrogen generation unit 4 because water vapor is required to reform the hydrocarbon-based fuel. The water vapor is preferably generated by heating the water supplied from the water supply unit 7 in the water vaporization unit 8 and vaporizing it. Heating of the water in the water vaporization unit 8 may use heat generated in the fuel cell system 1 such as recovering heat of the hydrogen generation unit 4, heat of the off-gas combustion unit 6, or exhaust gas. Moreover, you may heat water using other heat sources, such as a heater and a burner separately. In FIG. 1, only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this.

燃料電池システム1には、水素製造システム30とセルスタック5をつなぐ配管を通じて、水素製造システム30から水素リッチガスが供給される。この水素リッチガスと酸化剤を用いて、セルスタック5にて発電を行う。燃料電池システム1におけるセルスタック5の種類は特に限定されず、例えば、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)、リン酸形燃料電池(PAFC:Phosphoric Acid Fuel Cell)、溶融炭酸塩形燃料電池(MCFC:Molten Carbonate Fuel Cell)、及び、その他の種類を採用することができる。なお、セルスタック5の種類や改質方式等に応じて、図1に示す構成要素を適宜省略してもよい。   Hydrogen rich gas is supplied from the hydrogen production system 30 to the fuel cell system 1 through a pipe connecting the hydrogen production system 30 and the cell stack 5. Electric power is generated in the cell stack 5 using this hydrogen-rich gas and an oxidizing agent. The type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid. A fuel cell fuel cell (PAFC), a molten carbonate fuel cell (MCFC), and other types can be employed. It should be noted that the components shown in FIG. 1 may be omitted as appropriate according to the type of cell stack 5, the reforming method, and the like.

酸化剤は、酸化剤供給部9と燃料電池システム1をつなぐ配管を通じて、酸化剤供給部9から供給される。酸化剤としては、例えば、空気、純酸素ガス(通常の除去手法で除去が困難な不純物を含んでもよい)、酸素富化空気が用いられる。   The oxidant is supplied from the oxidant supply unit 9 through a pipe connecting the oxidant supply unit 9 and the fuel cell system 1. As the oxidizing agent, for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.

セルスタック5は、水素発生部4からの水素リッチガス及び酸化剤供給部9からの酸化剤を用いて発電を行う。セルスタック5は、水素リッチガスが供給されるアノード12と、酸化剤が供給されるカソード13と、アノード12とカソード13との間に配置される電解質14と、を備えている。セルスタック5は、パワーコンディショナー10を介して、電力を外部へ供給する。セルスタック5は、発電に用いられなかった水素リッチガス及び酸化剤をオフガスとして、オフガス燃焼部6へ供給する。なお、水素発生部4が備えている燃焼部(例えば、改質器を加熱する燃焼器など)をオフガス燃焼部6と共用してもよい。   The cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9. The cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13. The cell stack 5 supplies power to the outside via the power conditioner 10. The cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas. Note that a combustion section (for example, a combustor that heats the reformer) provided in the hydrogen generation section 4 may be shared with the off-gas combustion section 6.

オフガス燃焼部6は、セルスタック5から供給されるオフガスを燃焼させる。オフガス燃焼部6によって発生する熱は、水素発生部4へ供給され、水素発生部4での水素リッチガスの発生に用いられる。また、燃料供給部2、水供給部7、及び酸化剤供給部9は、例えばポンプによって構成されており、制御部11からの制御信号に基づいて駆動する。   The off gas combustion unit 6 burns off gas supplied from the cell stack 5. The heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4. The fuel supply unit 2, the water supply unit 7, and the oxidant supply unit 9 are configured by, for example, a pump and are driven based on a control signal from the control unit 11.

パワーコンディショナー10は、セルスタック5からの電力を、外部での電力使用状態に合わせて調整する。パワーコンディショナー10は、例えば、電圧を変換する処理や、直流電力を交流電力へ変換する処理を行う。   The power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.

制御部11は、燃料電池システム1全体の制御処理を行う。制御部11は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び入出力インターフェイスを含んで構成されたデバイスによって構成される。制御部11は、燃料供給部2、水供給部7、酸化剤供給部9、パワーコンディショナー10、その他、図示されないセンサや補機と電気的に接続されている。制御部11は、燃料電池システム1内で発生する各種信号を取得すると共に、燃料電池システム1内の各機器へ制御信号を出力する。   The control unit 11 performs control processing for the entire fuel cell system 1. The control unit 11 includes, for example, a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface. The control unit 11 is electrically connected to the fuel supply unit 2, the water supply unit 7, the oxidant supply unit 9, the power conditioner 10, and other sensors and auxiliary equipment not shown. The control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.

次に、本発明の炭化水素系燃料の脱硫方法及び水素の製造方法について説明する。   Next, the hydrocarbon fuel desulfurization method and hydrogen production method of the present invention will be described.

本発明の炭化水素系燃料の脱硫方法は、硫黄化合物が含まれる炭化水素系燃料を、異なる濃度で活性金属を担持した複数のゼオライトの活性金属濃度が高いものから順に流通させる。   In the hydrocarbon-based fuel desulfurization method of the present invention, a hydrocarbon-based fuel containing a sulfur compound is circulated in descending order of the active metal concentration of a plurality of zeolites carrying active metals at different concentrations.

硫黄化合物が含まれる炭化水素系燃料としては、上述した炭化水素系燃料が挙げられる。   Examples of the hydrocarbon fuel containing a sulfur compound include the hydrocarbon fuels described above.

炭化水素系燃料を、異なる濃度で活性金属を担持した複数のゼオライトの活性金属濃度が高いものから順に流通させる具体的な手段としては、上述した燃料供給部2及び上述した脱硫部3が挙げられる。すなわち、燃料供給部2によって炭化水素系燃料を脱硫部3に供給し、燃料供給部から供給された炭化水素系燃料を脱硫部3における脱硫剤と接触させる。   Specific means for circulating hydrocarbon-based fuels in descending order of the active metal concentration of a plurality of zeolites carrying active metals at different concentrations includes the fuel supply unit 2 and the desulfurization unit 3 described above. . That is, the hydrocarbon fuel is supplied to the desulfurization unit 3 by the fuel supply unit 2, and the hydrocarbon fuel supplied from the fuel supply unit is brought into contact with the desulfurization agent in the desulfurization unit 3.

脱硫条件は、通常、炭化水素系燃料は気化した状態であることが好ましい。また、脱硫温度は100℃以下が好ましく、例えば−50℃〜100℃の範囲、より好ましくは−20℃〜80℃の範囲、さらに好ましくは0〜60℃の範囲、さらにより好ましくは10〜50℃の範囲で選ばれる。   Usually, the desulfurization condition is preferably that the hydrocarbon fuel is vaporized. The desulfurization temperature is preferably 100 ° C. or less, for example, in the range of −50 ° C. to 100 ° C., more preferably in the range of −20 ° C. to 80 ° C., further preferably in the range of 0 to 60 ° C., and still more preferably in the range of 10 to 50. It is selected in the range of ° C.

都市ガスなど常温・常圧で気体である炭化水素系燃料を用いる場合、GHSVは10〜20000h−1、好ましくは10〜7000h−1の間で選択される。GHSVが10h−1より低いと脱硫性能的には十分になるが必要以上に脱硫剤を使用するため脱硫器が過大となり好ましくない。一方、GHSVが20000h−1より大きいと十分な脱硫性能が得られない。なお、液体燃料を炭化水素系燃料として使用することもでき、その場合には、LHSVとして0.01〜100h−1の範囲を選択できる。 When using a hydrocarbon-based fuel that is a gas at normal temperature and normal pressure, such as city gas, GHSV is selected between 10 and 20000 h −1 , preferably between 10 and 7000 h −1 . When GHSV is lower than 10 h −1 , the desulfurization performance is sufficient, but since the desulfurizing agent is used more than necessary, the desulfurizer becomes excessively unfavorable. On the other hand, if GHSV is larger than 20000 h −1 , sufficient desulfurization performance cannot be obtained. In addition, liquid fuel can also be used as a hydrocarbon fuel, and in that case, a range of 0.01 to 100 h −1 can be selected as LHSV.

圧力条件は、通常、常圧〜1MPa(ゲージ圧、以下同じ。)、好ましくは常圧〜0.5MPa、さらに好ましくは常圧〜0.2MPaの範囲で選択されるが、大気圧条件下が最も好ましい。   The pressure conditions are usually selected in the range of normal pressure to 1 MPa (gauge pressure, the same shall apply hereinafter), preferably normal pressure to 0.5 MPa, and more preferably normal pressure to 0.2 MPa. Most preferred.

<ゼオライト触媒の作製>
(触媒1)
硝酸銀19gに対し、蒸留水600mlを添加し硝酸銀水溶液を調製した。次に、攪拌しながらSiO/Al(モル比)=4.5の市販NaY型ゼオライト粉末50gと混合し、イオン交換を行った。その後、硝酸根が残らないように蒸留水にて洗浄した。洗浄後、空気中、180℃で一晩乾燥した。乾燥後の粉末状銀交換ゼオライト30gに対し、アルミナバインダーを5g混合し、1mmφにて押出成型し、触媒1とした。触媒1中の銀の担持量は担体基準で15質量%であった。
<Preparation of zeolite catalyst>
(Catalyst 1)
A silver nitrate aqueous solution was prepared by adding 600 ml of distilled water to 19 g of silver nitrate. Next, the mixture was mixed with 50 g of commercially available NaY-type zeolite powder having a SiO 2 / Al 2 O 3 (molar ratio) = 4.5 with stirring to perform ion exchange. Then, it was washed with distilled water so as not to leave nitrate radicals. After washing, it was dried overnight at 180 ° C. in air. 5 g of an alumina binder was mixed with 30 g of the powdery silver exchanged zeolite after drying, and extrusion molding was performed at 1 mmφ to obtain catalyst 1. The amount of silver supported in Catalyst 1 was 15% by mass based on the carrier.

(触媒2)
使用した硝酸銀を12.7gに変更して、銀の担持量を担体基準で10質量%とした以外は触媒1と同様にして、触媒2を得た。
(Catalyst 2)
The catalyst 2 was obtained in the same manner as the catalyst 1 except that the silver nitrate used was changed to 12.7 g and the supported amount of silver was 10% by mass based on the carrier.

(触媒3)
使用した硝酸銀を6.3gに変更して、銀の担持量を担体基準で5質量%とした以外は触媒1と同様にして、触媒3を得た。
(Catalyst 3)
The catalyst 3 was obtained in the same manner as the catalyst 1 except that the silver nitrate used was changed to 6.3 g and the supported amount of silver was 5 mass% based on the carrier.

(触媒4)
硫酸銅5水和物40gに対し、蒸留水600mlを添加し硫酸銅水溶液を調製した。次に、攪拌しながらSiO/Al(モル比)=4.5の市販NaY型ゼオライト粉末50gと混合し、イオン交換を行った。その後、硫酸根が残らないように蒸留水にて洗浄した。洗浄後、空気気流中、180℃で一晩乾燥した。乾燥後の粉末状銅交換ゼオライト30gに対し、アルミナバインダーを5g混合し、1mmφにて押出成型し、触媒4とした。触媒4中の銅の担持量は担体基準で15質量%であった。
(Catalyst 4)
To 40 g of copper sulfate pentahydrate, 600 ml of distilled water was added to prepare an aqueous copper sulfate solution. Next, the mixture was mixed with 50 g of commercially available NaY-type zeolite powder having a SiO 2 / Al 2 O 3 (molar ratio) = 4.5 with stirring to perform ion exchange. Then, it washed with distilled water so that a sulfate radical might not remain. After washing, it was dried overnight at 180 ° C. in an air stream. 5 g of an alumina binder was mixed with 30 g of the powdered copper-exchanged zeolite after drying, and extrusion molding was performed at 1 mmφ to obtain catalyst 4. The supported amount of copper in the catalyst 4 was 15% by mass based on the carrier.

(触媒5)
使用した硫酸銅5水和物を26.8gに変更して、銅の担持量を担体基準で10質量%とした以外は触媒4と同様にして、触媒5を得た。
(Catalyst 5)
The catalyst 5 was obtained in the same manner as the catalyst 4 except that the copper sulfate pentahydrate used was changed to 26.8 g and the supported amount of copper was changed to 10% by mass based on the carrier.

(触媒6)
使用した硫酸銅5水和物を13.2gに変更して、銅の担持量を担体基準で5質量%とした以外は触媒4と同様にして、触媒6を得た。
(Catalyst 6)
The catalyst 6 was obtained in the same manner as the catalyst 4 except that the copper sulfate pentahydrate used was changed to 13.2 g and the supported amount of copper was changed to 5% by mass based on the carrier.

(触媒7)
硝酸銀19gに対し、蒸留水600mlを添加し硝酸銀水溶液を調製した。次に、攪拌しながらSiO/Al(モル比)=2.7の市販NaX型ゼオライト粉末50gと混合し、イオン交換を行った。その後、硝酸根が残らないように蒸留水にて洗浄した。洗浄後、空気中、180℃で一晩乾燥した。乾燥後の粉末状銀交換ゼオライト30gに対し、アルミナバインダーを5g混合し、1mmφにて押出成型し、触媒7とした。触媒7中の銀の担持量は担体基準で15質量%であった。
(Catalyst 7)
A silver nitrate aqueous solution was prepared by adding 600 ml of distilled water to 19 g of silver nitrate. Next, the mixture was mixed with 50 g of commercially available NaX-type zeolite powder with SiO 2 / Al 2 O 3 (molar ratio) = 2.7 with stirring, and ion exchange was performed. Then, it was washed with distilled water so as not to leave nitrate radicals. After washing, it was dried overnight at 180 ° C. in air. 5 g of an alumina binder was mixed with 30 g of the powdered silver exchanged zeolite after drying, and extrusion molding was performed at 1 mmφ to obtain a catalyst 7. The supported amount of silver in the catalyst 7 was 15% by mass based on the carrier.

(触媒8)
使用した硝酸銀を12.7gに変更して、銀の担持量を担体基準で10質量%とした以外は触媒7と同様にして、触媒8を得た。
(Catalyst 8)
The catalyst 8 was obtained in the same manner as the catalyst 7 except that the silver nitrate used was changed to 12.7 g and the supported amount of silver was 10% by mass based on the carrier.

(触媒9)
使用した硝酸銀を6.3gに変更して、銀の担持量を担体基準で5質量%とした以外は触媒7と同様にして、触媒9を得た。
(Catalyst 9)
The catalyst 9 was obtained in the same manner as the catalyst 7 except that the silver nitrate used was changed to 6.3 g and the supported amount of silver was 5% by mass based on the carrier.

<脱硫システムの作製及び炭化水素系燃料の脱硫>
(実施例1)
固定床流通式反応管に、触媒1、触媒2及び触媒3をこの順に各充填量8ml、8ml及び8mlで充填し、上記3種のゼオライトが積層された触媒層を作成した。活性金属濃度の相対値は、触媒1/触媒2/触媒3=1/0.67/0.33である。
<Production of desulfurization system and desulfurization of hydrocarbon fuel>
Example 1
In a fixed bed flow type reaction tube, catalyst 1, catalyst 2 and catalyst 3 were filled in this order with 8 ml, 8 ml and 8 ml, respectively, to prepare a catalyst layer in which the above three kinds of zeolite were laminated. The relative value of the active metal concentration is catalyst 1 / catalyst 2 / catalyst 3 = 1 / 0.67 / 0.33.

上記の触媒層が充填された反応管の触媒1層側から、表1に示される組成を有する燃料1(都市ガス)をGHSV:6000h−1、温度30℃、大気圧の条件下で流通させた。 From the catalyst 1 layer side of the reaction tube filled with the catalyst layer, fuel 1 (city gas) having the composition shown in Table 1 is circulated under the conditions of GHSV: 6000 h −1 , temperature of 30 ° C., and atmospheric pressure. It was.

このときの反応管入口及び出口のガス中の硫黄濃度をSCD(Sulfur Chemiluminescence Detector)ガスクロマトグラフィーにより測定し、出口ガス中の硫黄化合物の炭化水素系燃料全量を基準とした硫黄原子換算濃度が0.05容量ppm以上となった時間を硫黄破過時間として記録した。結果を表2に示す。   The sulfur concentration in the gas at the inlet and outlet of the reaction tube at this time was measured by SCD (Sulfur Chemiluminescence Detector) gas chromatography, and the sulfur atom equivalent concentration of the sulfur compound in the outlet gas based on the total amount of hydrocarbon fuel was 0. The time when 0.05 ppm by volume or more was recorded as the sulfur breakthrough time. The results are shown in Table 2.

(実施例2)
燃料1に代えて、表1に示される組成を有する燃料2(都市ガス)をGHSV:6000h−1、温度30℃、大気圧の条件下で流通させた以外は実施例1と同様にして脱硫を行った。そして、実施例1と同様にして硫黄破過時間を測定した。
(Example 2)
Desulfurization was performed in the same manner as in Example 1 except that fuel 2 (city gas) having the composition shown in Table 1 was circulated under the conditions of GHSV: 6000 h −1 , temperature of 30 ° C., and atmospheric pressure instead of fuel 1. Went. Then, the sulfur breakthrough time was measured in the same manner as in Example 1.

(実施例3)
燃料1に代えて、表1に示される組成を有する燃料3(都市ガス)をGHSV:6000h−1、温度30℃、大気圧の条件下で流通させた以外は実施例1と同様にして脱硫を行った。そして、実施例1と同様にして硫黄破過時間を測定した。
(Example 3)
Desulfurization was performed in the same manner as in Example 1 except that fuel 3 (city gas) having the composition shown in Table 1 was circulated under the conditions of GHSV: 6000 h −1 , temperature of 30 ° C., and atmospheric pressure instead of fuel 1. Went. Then, the sulfur breakthrough time was measured in the same manner as in Example 1.

(実施例4)
固定床流通式反応管に、触媒4、触媒5及び触媒6をこの順に各充填量8ml、8ml及び8mlで充填し、上記3種のゼオライトが積層された触媒層を作成した。活性金属濃度の相対値は、触媒4/触媒5/触媒6=1/0.67/0.33である。
Example 4
A fixed bed flow type reaction tube was filled with catalyst 4, catalyst 5 and catalyst 6 in this order at 8 ml, 8 ml and 8 ml, respectively, to prepare a catalyst layer in which the above three types of zeolite were laminated. The relative value of the active metal concentration is catalyst 4 / catalyst 5 / catalyst 6 = 1 / 0.67 / 0.33.

上記の触媒層が充填された反応管の触媒4層側から、表1に示される組成を有する燃料2(都市ガス)をGHSV:6000h−1、温度30℃、大気圧の条件下で流通させた。そして、実施例1と同様にして硫黄破過時間を測定した。 From the catalyst 4 layer side of the reaction tube filled with the catalyst layer, fuel 2 (city gas) having the composition shown in Table 1 is circulated under the conditions of GHSV: 6000 h −1 , temperature of 30 ° C., and atmospheric pressure. It was. Then, the sulfur breakthrough time was measured in the same manner as in Example 1.

(実施例5)
固定床流通式反応管に、触媒7、触媒8及び触媒9をこの順に各充填量8ml、8ml及び8mlで充填し、上記3種のゼオライトが積層された触媒層を作成した。活性金属濃度の相対値は、触媒7/触媒8/触媒9=1/0.67/0.33である。
(Example 5)
In a fixed bed flow type reaction tube, catalyst 7, catalyst 8 and catalyst 9 were filled in this order at 8 ml, 8 ml and 8 ml, respectively, to prepare a catalyst layer in which the above three kinds of zeolite were laminated. The relative value of the active metal concentration is catalyst 7 / catalyst 8 / catalyst 9 = 1 / 0.67 / 0.33.

上記の触媒層が充填された反応管の触媒7層側から、表1に示される組成を有する燃料2(都市ガス)をGHSV:6000h−1、温度30℃、大気圧の条件下で流通させた。そして、実施例1と同様にして硫黄破過時間を測定した。 From the catalyst 7 layer side of the reaction tube filled with the catalyst layer, fuel 2 (city gas) having the composition shown in Table 1 is circulated under the conditions of GHSV: 6000 h −1 , temperature of 30 ° C., and atmospheric pressure. It was. Then, the sulfur breakthrough time was measured in the same manner as in Example 1.

(比較例1)
固定床流通式反応管に触媒2を充填量24mlで充填し、触媒層を作成した。この反応管に、表1に示される組成を有する燃料1(都市ガス)をGHSV:6000h−1、温度30℃、大気圧の条件下で流通させた。そして、実施例1と同様にして硫黄破過時間を測定した。
(Comparative Example 1)
A fixed bed flow type reaction tube was filled with the catalyst 2 at a filling amount of 24 ml to prepare a catalyst layer. Fuel 1 (city gas) having the composition shown in Table 1 was circulated through this reaction tube under the conditions of GHSV: 6000 h −1 , temperature of 30 ° C., and atmospheric pressure. Then, the sulfur breakthrough time was measured in the same manner as in Example 1.

(比較例2)
燃料1に代えて、表1に示される組成を有する燃料2(都市ガス)をGHSV:6000h−1、温度30℃、大気圧の条件下で流通させた以外は比較例1と同様にして脱硫を行った。そして、実施例1と同様にして硫黄破過時間を測定した。
(Comparative Example 2)
Desulfurization in the same manner as in Comparative Example 1 except that fuel 2 (city gas) having the composition shown in Table 1 was circulated under the conditions of GHSV: 6000 h −1 , temperature of 30 ° C., and atmospheric pressure instead of fuel 1. Went. Then, the sulfur breakthrough time was measured in the same manner as in Example 1.

(比較例3)
燃料1に代えて、表1に示される組成を有する燃料3(都市ガス)をGHSV:6000h−1、温度30℃、大気圧の条件下で流通させた以外は比較例1と同様にして脱硫を行った。そして、実施例1と同様にして硫黄破過時間を測定した。
(Comparative Example 3)
Desulfurization in the same manner as in Comparative Example 1 except that fuel 3 (city gas) having the composition shown in Table 1 was circulated under the conditions of GHSV: 6000 h −1 , temperature of 30 ° C., and atmospheric pressure instead of fuel 1. Went. Then, the sulfur breakthrough time was measured in the same manner as in Example 1.

(比較例4)
固定床流通式反応管に触媒5を充填量24mlで充填し、触媒層を作成した。この反応管に、表1に示される組成を有する燃料2(都市ガス)をGHSV:6000h−1、温度30℃、大気圧の条件下で流通させた。そして、実施例1と同様にして硫黄破過時間を測定した。
(Comparative Example 4)
A fixed bed flow-type reaction tube was filled with the catalyst 5 at a filling amount of 24 ml to prepare a catalyst layer. In this reaction tube, fuel 2 (city gas) having the composition shown in Table 1 was circulated under the conditions of GHSV: 6000 h −1 , temperature of 30 ° C., and atmospheric pressure. Then, the sulfur breakthrough time was measured in the same manner as in Example 1.

(比較例5)
固定床流通式反応管に触媒8を充填量24mlで充填し、触媒層を作成した。この反応管に、表1に示される組成を有する燃料2(都市ガス)をGHSV:6000h−1、温度30℃、大気圧の条件下で流通させた。そして、実施例1と同様にして硫黄破過時間を測定した。
(Comparative Example 5)
A fixed bed flow type reaction tube was filled with the catalyst 8 at a filling amount of 24 ml to prepare a catalyst layer. In this reaction tube, fuel 2 (city gas) having the composition shown in Table 1 was circulated under the conditions of GHSV: 6000 h −1 , temperature of 30 ° C., and atmospheric pressure. Then, the sulfur breakthrough time was measured in the same manner as in Example 1.

Figure 0005726513
Figure 0005726513

Figure 0005726513
Figure 0005726513

表2に示すように、活性金属濃度が異なる複数のゼオライトを炭化水素系燃料である都市ガスの流通方向の上流側から下流側に向かって活性金属濃度が高いものから低いものとなる順序で配置して活性金属の濃度勾配を設けることにより、濃度勾配がない場合に比べて硫黄破過時間を長くすることができることが確認された。   As shown in Table 2, a plurality of zeolites having different active metal concentrations are arranged in order from the highest to the lowest active metal concentration from the upstream side to the downstream side in the distribution direction of the city gas that is a hydrocarbon fuel. Thus, it was confirmed that by providing a concentration gradient of the active metal, the sulfur breakthrough time can be made longer than when there is no concentration gradient.

1…燃料電池システム、2…燃料供給部、3…脱硫部、4…水素発生部、5…セルスタック、20…脱硫システム、30…水素製造システム。   DESCRIPTION OF SYMBOLS 1 ... Fuel cell system, 2 ... Fuel supply part, 3 ... Desulfurization part, 4 ... Hydrogen generation part, 5 ... Cell stack, 20 ... Desulfurization system, 30 ... Hydrogen production system.

Claims (10)

燃料電池用の脱硫システムであって、
硫黄化合物が含まれる流通する炭化水素系燃料から前記硫黄化合物を除去するための脱硫部を備え、
前記脱硫部が、異なる濃度で活性金属を担持した複数のゼオライトによって構成され、前記複数のゼオライトが炭化水素系燃料の流通方向の上流側から下流側に向かって活性金属濃度が高いものから低いものとなる順序で配置されている脱硫剤を有
前記活性金属が、Cu又はAgのいずれか一種である、燃料電池用脱硫システム。
A desulfurization system for a fuel cell,
A desulfurization section for removing the sulfur compound from the circulating hydrocarbon fuel containing the sulfur compound;
The desulfurization part is composed of a plurality of zeolites carrying active metals at different concentrations, and the plurality of zeolites have a high to low active metal concentration from the upstream side to the downstream side in the flow direction of the hydrocarbon fuel. have a desulfurizing agent are arranged in the order in which the,
A desulfurization system for a fuel cell , wherein the active metal is any one of Cu and Ag .
前記複数のゼオライトが、Agが担持されたX型ゼオライト、Agが担持されたY型ゼオライト、Cuが担持されたX型ゼオライト又はCuが担持されたY型ゼオライトである、請求項1に記載の燃料電池用脱硫システム。2. The plurality of zeolites according to claim 1, wherein the zeolite is an X-type zeolite on which Ag is supported, an Y-type zeolite on which Ag is supported, an X-type zeolite on which Cu is supported, or a Y-type zeolite on which Cu is supported. Desulfurization system for fuel cells. 前記炭化水素系燃料が炭素数4以下の炭化水素化合物を含む、請求項1又は2に記載の燃料電池用脱硫システム。   The desulfurization system for a fuel cell according to claim 1 or 2, wherein the hydrocarbon fuel includes a hydrocarbon compound having 4 or less carbon atoms. 25℃において水分を0.001〜2容量%含有し、硫黄化合物が含まれる炭化水素系燃料を前記脱硫部に供給する燃料供給部を更に備える、請求項1〜3のいずれか一項に記載の燃料電池用脱硫システム。   4. The fuel supply unit according to claim 1, further comprising a fuel supply unit that supplies 0.001 to 2% by volume of water at 25 ° C. and supplies a hydrocarbon-based fuel containing a sulfur compound to the desulfurization unit. Fuel cell desulfurization system. 請求項1〜4のいずれか一項に記載の燃料電池用脱硫システムと、該燃料電池用脱硫システムの前記脱硫部を経た炭化水素系燃料から水素を発生させる水素発生部と、を備える、燃料電池用水素製造システム。   A fuel comprising: the fuel cell desulfurization system according to any one of claims 1 to 4; and a hydrogen generation unit that generates hydrogen from the hydrocarbon-based fuel that has passed through the desulfurization unit of the fuel cell desulfurization system. Battery hydrogen production system. 請求項5に記載の燃料電池用水素製造システムを備える、燃料電池システム。   A fuel cell system comprising the hydrogen production system for a fuel cell according to claim 5. 硫黄化合物が含まれる炭化水素系燃料を、異なる濃度で活性金属を担持した複数のゼオライトの活性金属濃度が高いものから順に流通させる工程を備え、前記活性金属が、Cu又はAgのいずれか一種であることを特徴とする、炭化水素系燃料の脱硫方法。 A step of causing a hydrocarbon-based fuel containing a sulfur compound to circulate in order from the active metal concentration of a plurality of zeolites supporting active metal at different concentrations , wherein the active metal is one of Cu and Ag; A desulfurization method for hydrocarbon fuel, which is characterized in that it exists . 前記複数のゼオライトが、Agが担持されたX型ゼオライト、Agが担持されたY型ゼオライト、Cuが担持されたX型ゼオライト又はCuが担持されたY型ゼオライトである、請求項7に記載の炭化水素系燃料の脱硫方法。The plurality of zeolites are X-type zeolite on which Ag is supported, Y-type zeolite on which Ag is supported, X-type zeolite on which Cu is supported, or Y-type zeolite on which Cu is supported. A method for desulfurizing hydrocarbon fuels. 前記炭化水素系燃料が炭素数4以下の炭化水素化合物を含む、請求項7又は8に記載の炭化水素系燃料の脱硫方法。   The method for desulfurizing a hydrocarbon fuel according to claim 7 or 8, wherein the hydrocarbon fuel includes a hydrocarbon compound having 4 or less carbon atoms. 前記炭化水素系燃料が25℃において水分を0.001〜2容量%含有する、請求項7〜9のいずれか一項に記載の炭化水素系燃料の脱硫方法。   The hydrocarbon-based fuel desulfurization method according to any one of claims 7 to 9, wherein the hydrocarbon-based fuel contains 0.001 to 2% by volume of water at 25 ° C.
JP2010293678A 2010-12-28 2010-12-28 Fuel cell desulfurization system, fuel cell hydrogen production system, fuel cell system, and hydrocarbon fuel desulfurization method Expired - Fee Related JP5726513B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010293678A JP5726513B2 (en) 2010-12-28 2010-12-28 Fuel cell desulfurization system, fuel cell hydrogen production system, fuel cell system, and hydrocarbon fuel desulfurization method
PCT/JP2011/079719 WO2012090837A1 (en) 2010-12-28 2011-12-21 Desulfurization system for fuel cell, hydrogen production system for fuel cell, fuel cell system, and desulfurization method for hydrocarbon fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010293678A JP5726513B2 (en) 2010-12-28 2010-12-28 Fuel cell desulfurization system, fuel cell hydrogen production system, fuel cell system, and hydrocarbon fuel desulfurization method

Publications (2)

Publication Number Publication Date
JP2012142177A JP2012142177A (en) 2012-07-26
JP5726513B2 true JP5726513B2 (en) 2015-06-03

Family

ID=46382943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010293678A Expired - Fee Related JP5726513B2 (en) 2010-12-28 2010-12-28 Fuel cell desulfurization system, fuel cell hydrogen production system, fuel cell system, and hydrocarbon fuel desulfurization method

Country Status (2)

Country Link
JP (1) JP5726513B2 (en)
WO (1) WO2012090837A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237473A (en) * 1997-02-21 1998-09-08 Tokyo Gas Co Ltd Process for desulfurizing hydrocarbon gas
JP2000351978A (en) * 1999-06-10 2000-12-19 Idemitsu Kosan Co Ltd Hydrogenation of heavy oil
JP2002003862A (en) * 2000-06-23 2002-01-09 Idemitsu Kosan Co Ltd Method for treating heavy hydrocarbon oil
JP3895134B2 (en) * 2001-07-05 2007-03-22 東京瓦斯株式会社 Fuel gas desulfurization apparatus and desulfurization method
US8444945B2 (en) * 2002-12-26 2013-05-21 Idemitsu Kosan Co., Ltd. Method for removing sulfur compound in hydrocarbon-containing gas
JP2004277747A (en) * 2004-05-11 2004-10-07 Tokyo Gas Co Ltd Method of removing sulfur compound in fuel gas
JP4485917B2 (en) * 2004-11-15 2010-06-23 新日本石油株式会社 Hydrogen production apparatus and start / stop method of fuel cell system
JP4822692B2 (en) * 2004-11-16 2011-11-24 三菱重工業株式会社 Desulfurization method, and operation method of fuel cell system and hydrogen production system
JP4969090B2 (en) * 2005-11-29 2012-07-04 Jx日鉱日石エネルギー株式会社 Desulfurization method for hydrocarbon fuel
KR101264330B1 (en) * 2006-02-18 2013-05-14 삼성에스디아이 주식회사 Desulfurization device for fuel gas of fuel cell and desulfurizing method using the same
JP4907391B2 (en) * 2007-03-07 2012-03-28 Jx日鉱日石エネルギー株式会社 Desulfurization method for hydrocarbon fuel

Also Published As

Publication number Publication date
WO2012090837A1 (en) 2012-07-05
JP2012142177A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP4897434B2 (en) Kerosene desulfurization agent, desulfurization method, and fuel cell system using the same
JP2006318721A (en) Liquefied petroleum gas for lp-gas fuel cell, its desulfurizing method, and fuel cell system
KR100973876B1 (en) Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
JP3943902B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
WO2012090832A1 (en) Desulfurization system for fuel cell, hydrogen production system for fuel cell, fuel cell system, desulfurization method for hydrocarbon fuel, and method for producing hydrogen
WO2015083704A1 (en) Desulfurization system, hydrogen production system, fuel cell system, method of desulfurizing fuel gas, and method of producing fuel gas desulfurization catalyst
JP4080225B2 (en) Hydrocarbon desulfurization method and fuel cell system
CA2593413C (en) Hydrocarbon fuel reforming catalyst and use thereof
JP5782400B2 (en) Desulfurization system, hydrogen production system, fuel cell system, fuel desulfurization method, and hydrogen production method
JP5809413B2 (en) Fuel cell desulfurization system, fuel cell hydrogen production system, fuel cell system, and hydrocarbon fuel desulfurization method
JP5687147B2 (en) Fuel cell system
JP2005007383A (en) Adsorbent for removing sulfur compound and method for producing hydrogen for fuel cell
JP5726513B2 (en) Fuel cell desulfurization system, fuel cell hydrogen production system, fuel cell system, and hydrocarbon fuel desulfurization method
EP2660304A1 (en) Desulfurization system, hydrogen-manufacturing system, fuel-cell system, fuel-desulfurization method, and method for manufacturing hydrogen
KR20090065444A (en) Catalyst for oxidizing selectively carbon monoxide, method of reducing carbon monoxide concentration and fuel cell system
WO2012090956A1 (en) Desulfurization system, hydrogen-manufacturing system, fuel-cell system, fuel-desulfurization method, and method for manufacturing hydrogen
JP2015108034A (en) Method for desulfurizing fuel gas, method for manufacturing desulfurization catalyst for fuel gas, and desulfurization system
JP2004066035A (en) Method of desulfurizing hydrocarbon and fuel cell system
JP2009046626A (en) Desulfurization agent for liquid fuel and desulfurization method of liquid fuel
JP5788352B2 (en) Reforming catalyst for hydrogen production, hydrogen production apparatus and fuel cell system using the catalyst
JP5462686B2 (en) Method for producing hydrocarbon desulfurization agent, hydrocarbon desulfurization method, fuel gas production method, and fuel cell system
JP4057314B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP4125924B2 (en) Hydrocarbon desulfurization method and fuel cell system
JP2015108035A (en) Method for desulfurizing fuel gas, method for manufacturing desulfurization catalyst for fuel gas, and desulfurization system
JP4559676B2 (en) Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150401

R150 Certificate of patent or registration of utility model

Ref document number: 5726513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees