JP4531917B2 - Method for producing nickel-based desulfurization agent - Google Patents

Method for producing nickel-based desulfurization agent Download PDF

Info

Publication number
JP4531917B2
JP4531917B2 JP2000096487A JP2000096487A JP4531917B2 JP 4531917 B2 JP4531917 B2 JP 4531917B2 JP 2000096487 A JP2000096487 A JP 2000096487A JP 2000096487 A JP2000096487 A JP 2000096487A JP 4531917 B2 JP4531917 B2 JP 4531917B2
Authority
JP
Japan
Prior art keywords
nickel
aqueous solution
source
alumina
desulfurization agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000096487A
Other languages
Japanese (ja)
Other versions
JP2001279255A (en
Inventor
尚 勝野
聡 松田
一仁 齋藤
正浩 吉仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2000096487A priority Critical patent/JP4531917B2/en
Priority to EP01917783A priority patent/EP1270069B1/en
Priority to US10/221,199 priority patent/US7268097B2/en
Priority to PCT/JP2001/002861 priority patent/WO2001072417A1/en
Priority to DK01917783.1T priority patent/DK1270069T3/en
Priority to AU2001244705A priority patent/AU2001244705A1/en
Publication of JP2001279255A publication Critical patent/JP2001279255A/en
Application granted granted Critical
Publication of JP4531917B2 publication Critical patent/JP4531917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は脱硫剤の製造方法の改良に関する。さらに詳しくは、本発明は、石油系炭化水素油、特に灯油中の硫黄分を低濃度まで効果的に除去することができ、かつ寿命の長い脱硫剤を効率よく製造する方法に関するものである。
【0002】
【従来の技術】
近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。
この燃料電池には、使用する電解質の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物型、固体高分子型などのタイプが知られている。一方、水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、さらには石油系のLPG、ナフサ、灯油などの炭化水素の使用が研究されている。
燃料電池を民生用に利用する場合、上記石油系炭化水素、特に灯油は常温常圧で液状であって、保管及び取扱いが容易である上、ガソリンスタンドや販売店など、供給システムが整備されていることから、水素源として有利である。
【0003】
しかしながら、一般に、石油系炭化水素には、メタノールや天然ガス系のものに比べて、硫黄分の含有量が多いという問題がある。この石油系炭化水素を用いて水素を製造する場合、通常、該炭化水素を、改質触媒の存在下に水蒸気改質又は部分酸化改質処理する方法が用いられる。このような改質処理においては、上記改質触媒は、炭化水素中の硫黄分により被毒されるため、触媒寿命の点から、該炭化水素に脱硫処理を施し、硫黄分含有量を、通常0.2重量ppm以下にすることが肝要である。
石油系炭化水素の脱硫方法としては、これまで多くの研究がなされており、例えばCo−Mo/アルミナやNi−Mo/アルミナなどの水素化脱硫触媒とZnOなどの硫化水素吸着剤を用い、常圧〜5MPaの圧力下、200〜400℃の温度で水素化脱硫する方法が知られている。この方法は、厳しい条件下で水素化脱硫を行い、硫黄分を硫化水素にして除去する方法であり、しかも硫黄分を0.2重量ppm以下にすることは困難であるため、燃料電池用炭化水素の製造に適用しにくい。
【0004】
一方、炭化水素中の硫黄分を、水素化精製処理を行うことなく、温和な条件で吸着除去し、硫黄分を0.2重量ppm以下にし得る脱硫剤として、ニッケル系吸着剤が知られている(特公平6−65602号公報、同平7−115842号公報、同平7−115843号公報、特開平1−188405号公報、同平2−275701号公報、同平2−204301号公報、同平5−70780号公報、同平6−80972号公報、同平6−91173号公報、同6−228570号公報)。
これらのニッケル系吸着剤は、燃料電池用炭化水素油に対して、脱硫剤として適用するのに有利であるが、いずれも脱硫剤としての寿命の面で実用的なレベルに達していないのが実状である。
【0005】
【発明が解決しようとする課題】
本発明は、このような状況下で、石油系炭化水素、特に灯油中の硫黄分を低濃度まで効果的に吸着除去することができ、かつ寿命の長い脱硫剤を効率よく製造する方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、ニッケル源及びアルミニウム源を含む酸性水溶液または固体を含む酸性分散液(以下、「酸性水溶液等」という)と、ケイ素源を含む塩基性水溶液とを混合し、生成した固形物を焼成することにより、シリカーアルミナ担体上にニッケルを担持してなる脱硫剤が得られ、その目的を達成しうることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、シリカ−アルミナ担体上にニッケルを担持してなる脱硫剤を製造するに当たり、ニッケル源及びアルミニウム源を含むpH2以下の酸性水溶液等と、ケイ素源及び無機塩基を含む塩基性水溶液とを混合したのち、生成した固形物を取り出し、焼成することを特徴とするニッケル系脱硫剤の製造方法を提供するものである。
【0007】
【発明の実施の形態】
本発明の方法における、シリカーアルミナ担体上にニッケルを担持してなる脱硫剤は以下に示す方法によって製造される。
まず、ニッケル源及びアルミニウム源を含むpH2以下の酸性水溶液等と、ケイ素源及び無機塩基を含む塩基性水溶液を調製する。前者の酸性水溶液等に用いられるニッケル源としては、硝酸塩、塩化物、硫酸塩、酢酸塩、炭酸塩などが挙げられ、具体的には塩化ニッケル、硝酸ニッケル、硫酸ニッケル、酢酸ニッケル、炭酸ニッケル及びこれらの水和物などが挙げられる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらのニッケル源の使用量は、得られる脱硫剤中のニッケル含有量が、通常40重量%以上、好ましくは50〜70重量%の範囲になるように選ばれる。ニッケル含有量が40重量%より少ない場合は、硫黄吸着量が少なくなり脱硫寿命が短くなるなど所望の性能をもつ脱硫剤が得られにくい。
【0008】
また、アルミニウム源としては、擬ベーマイト、ベーマイトアルミナ、バイヤライト、ジブサイトなどのアルミナ水和物や、γ−アルミナなどが挙げられる。これらの中で擬ベーマイト、ベーマイトアルミナ及びγ−アルミナが好適である。これらは粉体状、あるいはゾルの形態で用いることができる。また、このアルミニウム源は一種用いてもよく、二種以上を組み合わせて用いてもよい。
上記ニッケル源及びアルミニウム源を含む酸性水溶液等は、塩酸、硫酸、硝酸などの酸によって、pH2以下、好ましくは1.5以下に調整することが必要である。このpHが2を超えると脱硫剤の表面積が減少し、硫黄吸着量が少なくなることにより脱硫寿命が短くなるなど所望の性能をもつ脱硫剤が得られない。
【0009】
一方、塩基性水溶液に用いられるケイ素源としては、アルカリ水溶液に可溶であって、焼成によりシリカになるものであればよく、特に制限されないが、例えばオルトケイ酸、メタケイ酸及びそれらのナトリウム塩やカリウム塩、水ガラスなどが挙げられる。これらは一種用いてもよく、二種以上を組み合わせて用いてもよいが、特にケイ酸ナトリウム水和物の一種である水ガラスが好適である。このケイ素源の使用量は、該ケイ素源中のケイ素原子と前記アルミニウム源中のアルミニウム原子のモル比(Si/Alモル比)が、通常10以下、好ましくは0.1〜8の範囲になるように選定される。Si/Alモル比が10を超えるとニッケル酸化物が還元されにくくなり、硫黄吸着量が少なくなることから脱硫剤の寿命が短くなるなど所望の性能をもつ脱硫剤が得られにくい。
【0010】
また、無機塩基としては、アルカリ金属の炭酸塩や水酸化物などが好ましく、例えば炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウムなどが挙げられる。これらは単独で用いてもよく、二種以上を組み合わせて用いてよいが、本発明においては、特に炭酸ナトリウム単独又は炭酸ナトリウムと水酸化ナトリウムとの組合わせが好適である。この無機塩基の使用量は、次の工程において、前記pH2以下の酸性水溶液等と、この塩基性水溶液を混合した場合、混合液が実質上中性から塩基性になるように選ぶのが有利である。また、この無機塩基は、全量を該塩基性水溶液の調製に用いてもよいし、あるいは一部を、次の工程における上記酸性水溶液と塩基性水溶液との混合液に加えてもよい。
本発明においては、このようにして調製したpH2以下の酸性水溶液等と塩基性水溶液を、それぞれ50〜90℃程度に加温したのち、両者を混合する。この混合は、できるだけす早く行うのが好ましい。混合後、必要に応じ、50〜90℃に加温された無機塩基を含む水溶液を加えたのち、混合液を50〜90℃程度の温度において0.5〜3時間程度撹拌し、反応を完結させる。
【0011】
次に、生成した固形物を充分に洗浄したのち固液分離するか、あるいは生成した固形物を固液分離したのち充分に洗浄し、次いで、この固形物を公知の方法により80〜150℃程度の温度で乾燥処理する。このようにして得られた乾燥処理物を、好ましくは200〜430℃、好ましくは250〜400℃の範囲の温度において焼成することにより、シリカ−アルミナ担体上にニッケルが担持された脱硫剤が得られる。焼成温度が上記範囲を逸脱すると脱硫剤の表面積が減少したりニッケルの凝集により硫黄吸着量が少なくなり脱硫剤の寿命が短くなるなど所望の性能をもつニッケル系脱硫剤が得られにくい。
本発明の方法により得られたニッケル系脱硫剤は、Si/Alモル比が通常10以下、好ましくは0.1〜8のシリカ−アルミナ担体上に、全重量に基づき、ニッケルが通常30重量%以上、好ましくは50〜70重量%の割合で担持されたものであって、石油系炭化水素の硫黄分を低濃度(0.2重量ppm以下)まで吸着除去することができ、しかも長期間にわたって、その脱硫性能を保持することができる。
本発明の方法で得られたニッケル系脱硫剤は都市ガス、LPG、ナフサ、ガソリン、灯油、軽油などに適用できるが、石油系炭化水素に適用する場合は、50%留出温度が40℃以上の炭化水素が好ましく、工業的にはガソリン、ナフサ、灯油、軽油などが挙げられ、特に沸点140〜270℃の留分を90%以上含む炭化水素、工業的には灯油を好ましく挙げることができる。
【0012】
上記灯油の中でも、硫黄分含有量が80重量ppm以下のJIS1号灯油に適用するのが好ましい。このJIS1号灯油は、原油を常圧蒸留して得た粗灯油を脱硫することにより得られる。該粗灯油は、通常硫黄分が多く、そのままではJIS1号灯油とはならず、硫黄分を低減させる必要がある。この硫黄分を低減させる方法としては、一般に工業的に実施されている水素化精製法で脱硫処理するのが好ましい。この場合、脱硫触媒として、通常ニッケル、コバルト、モリブデン、タングステンなどの遷移金属を適当な割合で混合したものを金属、酸化物、硫化物などの形態でアルミナを主成分とする担体に担持させたものが用いられる。反応条件は、例えば反応温度250〜400℃、圧力2〜10MPa・G、水素/油モル比2〜10、液時空間速度(LHSV)1〜5h-1などの条件が用いられる。
【0013】
前記ニッケル脱硫剤を用いて、石油系炭化水素を脱硫処理する方法としては、例えば以下に示す方法を用いることができる。
まず、該ニッケル系脱硫剤が充填された脱硫塔に、予め水素を供給し、150〜400℃程度の温度において、ニッケル系脱硫剤の還元処理を行う。次に、石油系炭化水素油、好ましくは灯油1号を、液相で脱硫塔中を上向き又は下向きの流れで通過させ、温度130〜230℃程度、圧力常圧〜1MPa・G程度、LHSV10h-1以下程度の条件で脱硫処理する。この際、必要により、少量の水素を共存させてもよい。脱硫条件を上記範囲で適当に選択することにより、硫黄分0.2重量ppm以下の石油系炭化水素を得ることができる。
【0014】
本発明の方法によって製造された脱硫剤を、燃料電池用水素の製造に用いる場合、通常、上記脱硫剤を用いて灯油等の石油系炭化水素油を前述のように脱硫した後、水蒸気改質及び/又は部分酸化を行う。上記脱硫剤を用いることにより、水蒸気改質触媒等への炭素析出がなく効率的に水素を製造することができる。
水蒸気改質の方法には特に制限はないが、通常以下のような方法で行われる。
まず、改質触媒の担持金属としては、Ni、ジルコニウムあるいはルテニウム(Ru),ロジウム(Rh),白金(Pt)などの貴金属が挙げられる。これらは単独でもよいし、2種以上を組合わせて用いてもよい。具体的には、Ruとジルコニウムとを担持したものが挙げられる。この種の担持金属の場合、さらにコバルトおよび/またはマグネシウムを添加したものが好適なものとして挙げられる。
一方、水蒸気改質に使用する触媒の担体としては、無機酸化物が用いられ、具体的には、アルミナ、シリカ、ジルコニア、マグネシア及びそれらの混合物が挙げられる。これらの中でもアルミナとジルコニアが特に好ましい。
【0015】
さらに水素の製造においては、水蒸気改質触媒層の入口温度を630℃以下に保って水蒸気改質を行う方法が好ましい。水蒸気改質触媒層入口温度は、酸素添加により上昇する傾向にあるので、これをコントロールする必要がある。触媒層出口温度は、特に制限はないが、好ましくは650〜800℃で行う。触媒層出口温度が650℃未満では水素の生成量が充分でなく、800℃を越える温度で反応するにはリアクターを特に耐熱性材料にする必要がある場合があり、経済性の点で好ましくないからである。
水素の製造においては、反応圧力は常圧〜3MPa,さらには常圧〜1MPaであることが好ましい。また、石油系炭化水素油の流量については、LHSVで0.1〜100h-1である。
なお、水素の製造においては、上記石油系炭化水素油は上記水蒸気改質と部分酸化を単独でまたは組み合わせて水素を製造する場合に使用しても効率的に水素を製造できる。
部分酸化反応は、好ましくはルテニウムなどの貴金属やニッケルなどを耐熱性酸化物に担持した触媒下、反応圧力が常圧〜5MPa,反応温度400〜1,100℃、酸素/炭素比0.2〜0.8,LHSV0.1〜100h-1で行われる。また、水蒸気添加する場合は、S/C比0.4〜4で行う。
上記水素の製造方法においては、上記水蒸気改質により得られるCOが水素生成に悪影響を及ぼすため、これを反応によりCO2 としてCOを除くことが好ましい。
【0016】
【実施例】
次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
実施例1
水500ミリリットルに塩化ニッケル50.9gを溶解し、これに擬ベーマイト0.6gを加えたのち、1モル/リットル濃度の硝酸水溶液20ミリリットルを加え、pH1に調整し、(A)液を調製した。
一方、水500ミリリットルに炭酸ナトリウム22.7gを溶解したのち、水ガラス11.7g(Si濃度29重量%)を加え、(B)液を調製した。
次に、上記(A)液と(B)液を、それぞれ80℃に加熱したのち、両者を瞬時に混合し、これに、水50ミリリットルに水酸化ナトリウム7.8gを溶解して80℃に加熱した溶液を加え、80℃に保持しながら1時間撹拌した。
その後、蒸留水60リットルを用いて生成物を充分に洗浄したのち、ろ過し、次いで固形物を120℃送風乾燥機にて12時間乾燥し、さらに300℃で1時間焼成処理することにより、Si/Alモル比が約5のシリカ−アルミナ担体上に、全重量に基づきニッケルが63重量%担持された脱硫剤を製造した。
【0017】
実施例2
実施例1において、(B)液の調製に炭酸ナトリウム33.1gを用い、かつ水酸化ナトリウム水溶液を加えなかったこと以外は、実施例1と同様にして、Si/Alモル比が約5のシリカ−アルミナ担体上に、全重量に基づきニッケルが63重量%担持された脱硫剤を製造した。
実施例3
実施例1において、(A)液の調製に擬ベーマイト0.6gの代わりにベーマイトアルミナ0.4gを用い、かつ(B)液の調製に水ガラス(Si濃度29重量%)12.5gを用いた以外は、実施例1と同様にして、Si/Alモル比が約8のシリカ−アルミナ担体上に、全重量に基づきニッケルが63重量%担持された脱硫剤を製造した。
【0018】
実施例4
実施例1において、焼成処理を250℃で1時間行った以外は、実施例1と同様にして、Si/Alモル比が約5のシリカ−アルミナ担体上に、全重量に基づきニッケルが63重量%担持された脱硫剤を製造した。
実施例5
実施例1において、(A)液の調製で擬ベーマイト0.6gの代わりにアルミナゾル(アルミナ濃度20重量%)2.9gを用いた以外は、実施例1と同様にして、Si/Alモル比が約5のシリカ−アルミナ担体上に、全重量に基づきニッケルが63重量%担持された脱硫剤を製造した。
【0019】
比較例1
水500ミリリットルに塩化ニッケル50.9gを溶解し、これにアルミナゾル(アルミナ濃度20重量%)0.8gを加え(A)液を調製した。この時の(A)液のpHは5であった。
一方、水500ミリリットルに炭酸水素ナトリウム18gを溶解したのち、水ガラス13.2g(Si濃度29重量%)を加え、(B)液を調製した。
次に、上記(A)液と(B)液を、それぞれ80℃に加熱したのち、両者を瞬時に混合し、80℃に保持しながら1時間撹拌した。
その後、蒸留水60リットルを用いて生成物を充分に洗浄したのち、ろ過し、次いで固形物を120℃送風乾燥機にて12時間乾燥し、さらに300℃で1時間焼成処理することにより、Si/Alモル比が約20のシリカ−アルミナ担体上に、全重量に基づきニッケルが63重量%担持された脱硫剤を製造した。
【0020】
比較例2
水500ミリリットルに塩化ニッケル50.9gを溶解し(A)液を調製した。この時の(A)液のpHは5であった。
一方、水500ミリリットルに水酸化ナトリウム17.1g溶解したのち、水ガラス13.8g(Si濃度29重量%)を加え、(B)液を調製した。
以下、比較例1と同様な操作を行い、シリカ担体上に、全重量に基づきニッケルが63重量%担持された脱硫剤を製造した。
比較例3
比較例1と同様にして(A)液を調製した。一方、水500ミリリットルに水酸化ナトリウム17.1gを溶解したのち、水ガラス13.8g(Si濃度29重量%)を加え、(B)液を調製した。
次に、上記(A)液と(B)液を、それぞれ80℃に加熱したのち、両者を瞬時に混合し、80℃に保持しながら1時間撹拌した。
その後、蒸留水60リットルを用いて生成物を充分に洗浄したのち、ろ過し、次いで固形物を120℃送風乾燥機にて12時間乾燥し、さらに450℃で1時間焼成処理することにより、Si/Alモル比が約20のシリカ−アルミナ担体上に、全重量に基づきニッケルが63重量%担持された脱硫剤を製造した。
【0021】
比較例4
特公平6−65602号公報に記載の実施例に従い、脱硫剤を製造した。
水500ミリリットルに硝酸ニッケル62.3gを溶解し、これに担体(珪藻土)4gを加え、(A)液を調製した。
一方、水500ミリリットルに炭酸ナトリウム33.1gを溶解し、(B)液を調製した。
次に、上記(A)液と(B)液を、それぞれ80℃に加熱したのち、両者を瞬時に混合し、80℃に保持しながら1時間撹拌した。
その後、蒸留水60リットルを用いて生成物を充分に洗浄したのち、ろ過し、次いで固形物を120℃送風乾燥機にて12時間乾燥し、さらに300℃で1時間焼成処理することにより、珪藻土担体上に、全重量に基づきニッケルが67重量%担持された脱硫剤を製造した。
【0022】
試験例
実施例1〜5及び比較例1〜4で得られた脱硫剤それぞれ15ミリリットルを、内径17mmのステンレス鋼製反応管に充填した。次いで、常圧下、水素気流中にて120℃に昇温し、1時間保持したのち、さらに昇温し、380℃で1時間保持することにより、脱硫剤をそれぞれ活性化した。
次に、温度を150℃に保持し、硫黄分濃度65重量ppmのJIS1号灯油を、常圧下、LHSV3h-1でそれぞれの反応管に供給開始した。
50時間経過した時点における処理灯油中の硫黄分濃度をそれぞれ分析し、脱硫性能を比較した。
その結果を、原料の種類などと共に、第1表に示す。
【0023】
【表1】

Figure 0004531917
【0024】
【表2】
Figure 0004531917
第1表から分かるように、実施例の脱硫剤は、いずれも比較例の脱硫剤に比べて脱硫性能に優れている。
【0025】
【発明の効果】
本発明によれば、石油系炭化水素油、特に灯油中の硫黄分を低濃度まで効果的に吸着除去することができ、かつ寿命の長いニッケル系脱硫剤を効率よく製造することができる。
また、本発明の製造方法によれば燃料電池用水素の製造に用いる脱硫剤を効率よく製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a method for producing a desulfurizing agent. More specifically, the present invention relates to a method for efficiently producing a desulfurizing agent that can effectively remove sulfur in petroleum hydrocarbon oils, particularly kerosene, to a low concentration and has a long life.
[0002]
[Prior art]
In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and has a feature of high energy use efficiency. Alternatively, research into practical use is actively conducted for automobiles and the like.
For this fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known depending on the type of electrolyte used. On the other hand, as a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of this natural gas, synthetic liquid fuel using natural gas as a raw material, and petroleum-based LPG, naphtha, kerosene, etc. The use of hydrocarbons has been studied.
When fuel cells are used for consumer use, the above petroleum hydrocarbons, especially kerosene, are liquid at normal temperature and pressure, and are easy to store and handle, and supply systems such as gas stations and dealers have been developed. Therefore, it is advantageous as a hydrogen source.
[0003]
However, in general, petroleum-based hydrocarbons have a problem that the sulfur content is higher than that of methanol or natural gas-based ones. When hydrogen is produced using this petroleum-based hydrocarbon, a method of subjecting the hydrocarbon to steam reforming or partial oxidation reforming in the presence of a reforming catalyst is usually used. In such a reforming treatment, the reforming catalyst is poisoned by the sulfur content in the hydrocarbon. Therefore, from the viewpoint of catalyst life, the hydrocarbon is subjected to a desulfurization treatment, and the sulfur content is usually reduced. It is important to make it 0.2 ppm or less.
As a desulfurization method for petroleum hydrocarbons, many studies have been made so far. For example, a hydrodesulfurization catalyst such as Co-Mo / alumina or Ni-Mo / alumina and a hydrogen sulfide adsorbent such as ZnO are usually used. There is known a method of hydrodesulfurization at a temperature of 200 to 400 ° C. under a pressure of 5 to 5 MPa. This method is a method in which hydrodesulfurization is performed under severe conditions to remove the sulfur content to hydrogen sulfide, and since it is difficult to reduce the sulfur content to 0.2 ppm by weight or less, carbonization for fuel cells is performed. It is difficult to apply to the production of hydrogen.
[0004]
On the other hand, nickel-based adsorbents are known as desulfurization agents that can adsorb and remove sulfur content in hydrocarbons under mild conditions without performing hydrorefining treatment, and reduce sulfur content to 0.2 ppm by weight or less. (Japanese Patent Publication Nos. 6-65602, 7-115842, 7-115843, JP-A-1-188405, 2-275701, 2-204301, JP-A-5-70780, JP-A-6-80972, JP-A-6-91173, JP-A-6-228570).
These nickel-based adsorbents are advantageous to be applied as desulfurization agents to hydrocarbon oils for fuel cells, but none of them has reached a practical level in terms of life as a desulfurization agent. It's real.
[0005]
[Problems to be solved by the invention]
Under such circumstances, the present invention provides a method for efficiently producing a desulfurizing agent that can effectively adsorb and remove the sulfur content of petroleum hydrocarbons, particularly kerosene, to a low concentration. It is intended to do.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have found that an acidic aqueous solution containing a nickel source and an aluminum source or an acidic dispersion containing a solid (hereinafter referred to as “acidic aqueous solution etc.”), a silicon source It was found that a desulfurizing agent obtained by supporting nickel on a silica-alumina support was obtained by mixing a basic aqueous solution containing sinter and firing the resulting solid, and the object could be achieved. The present invention has been completed based on such findings.
That is, the present invention provides a basic aqueous solution containing a nickel source and an aluminum base, an acidic aqueous solution having a pH of 2 or less, and a silicon source and an inorganic base in producing a desulfurization agent having nickel supported on a silica-alumina support. And producing a nickel-based desulfurizing agent, wherein the produced solid matter is taken out and fired.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, a desulfurization agent obtained by supporting nickel on a silica-alumina support is produced by the method described below.
First, an acidic aqueous solution having a pH of 2 or less containing a nickel source and an aluminum source, and a basic aqueous solution containing a silicon source and an inorganic base are prepared. Examples of the nickel source used in the former acidic aqueous solution include nitrates, chlorides, sulfates, acetates, carbonates, and the like. Specifically, nickel chloride, nickel nitrate, nickel sulfate, nickel acetate, nickel carbonate and These hydrates can be mentioned. These may be used alone or in combination of two or more. The amount of these nickel sources used is selected so that the nickel content in the resulting desulfurizing agent is usually 40% by weight or more, preferably 50 to 70% by weight. When the nickel content is less than 40% by weight, it is difficult to obtain a desulfurization agent having desired performance such as a reduced sulfur adsorption amount and a shorter desulfurization life.
[0008]
Examples of the aluminum source include alumina hydrates such as pseudo boehmite, boehmite alumina, bayerite, and dibsite, and γ-alumina. Among these, pseudo boehmite, boehmite alumina, and γ-alumina are preferable. These can be used in the form of powder or sol. Moreover, this aluminum source may be used alone or in combination of two or more.
The acidic aqueous solution containing the nickel source and the aluminum source needs to be adjusted to pH 2 or less, preferably 1.5 or less, with an acid such as hydrochloric acid, sulfuric acid or nitric acid. When this pH exceeds 2, the surface area of the desulfurizing agent is reduced, and a desulfurizing agent having desired performance cannot be obtained, for example, the desulfurization life is shortened by reducing the sulfur adsorption amount.
[0009]
On the other hand, the silicon source used in the basic aqueous solution is not particularly limited as long as it is soluble in an alkaline aqueous solution and becomes silica upon firing, and examples thereof include orthosilicic acid, metasilicic acid, and sodium salts thereof. A potassium salt, water glass, etc. are mentioned. These may be used singly or in combination of two or more, but water glass which is a kind of sodium silicate hydrate is particularly suitable. The amount of silicon source used is such that the molar ratio of silicon atoms in the silicon source to aluminum atoms in the aluminum source (Si / Al molar ratio) is usually 10 or less, preferably in the range of 0.1 to 8. Is selected as follows. When the Si / Al molar ratio exceeds 10, the nickel oxide is difficult to be reduced, and the sulfur adsorption amount is reduced, so that it is difficult to obtain a desulfurization agent having desired performance such as shortening the life of the desulfurization agent.
[0010]
The inorganic base is preferably an alkali metal carbonate or hydroxide, and examples thereof include sodium carbonate, potassium carbonate, sodium hydroxide, and potassium hydroxide. These may be used alone or in combination of two or more. In the present invention, sodium carbonate alone or a combination of sodium carbonate and sodium hydroxide is particularly suitable. The amount of the inorganic base used is advantageously selected so that the mixed solution becomes substantially neutral to basic when the acidic aqueous solution having a pH of 2 or less is mixed with the basic aqueous solution in the next step. is there. In addition, the entire amount of this inorganic base may be used for preparing the basic aqueous solution, or a part thereof may be added to the mixed solution of the acidic aqueous solution and the basic aqueous solution in the next step.
In the present invention, the acidic aqueous solution having a pH of 2 or less and the basic aqueous solution thus prepared are each heated to about 50 to 90 ° C., and then both are mixed. This mixing is preferably performed as soon as possible. After mixing, if necessary, an aqueous solution containing an inorganic base heated to 50 to 90 ° C. is added, and then the mixture is stirred at a temperature of about 50 to 90 ° C. for about 0.5 to 3 hours to complete the reaction. Let
[0011]
Next, the produced solid is sufficiently washed and separated into solid and liquid, or the produced solid is separated into solid and liquid and washed sufficiently, and then this solid is obtained at a temperature of about 80 to 150 ° C. by a known method. Dry at a temperature of The dried product thus obtained is preferably fired at a temperature in the range of 200 to 430 ° C., preferably 250 to 400 ° C., to obtain a desulfurization agent in which nickel is supported on a silica-alumina support. It is done. When the calcination temperature deviates from the above range, it is difficult to obtain a nickel-based desulfurization agent having desired performance such as a decrease in the surface area of the desulfurization agent or a decrease in the sulfur adsorption amount due to the aggregation of nickel and a shortened life of the desulfurization agent.
The nickel-based desulfurization agent obtained by the method of the present invention is usually 30 wt% of nickel based on the total weight on a silica-alumina support having a Si / Al molar ratio of usually 10 or less, preferably 0.1-8. As described above, preferably supported at a ratio of 50 to 70% by weight, the sulfur content of petroleum hydrocarbons can be adsorbed and removed to a low concentration (0.2 weight ppm or less), and for a long period of time. The desulfurization performance can be maintained.
The nickel-based desulfurizing agent obtained by the method of the present invention can be applied to city gas, LPG, naphtha, gasoline, kerosene, light oil, etc., but when applied to petroleum-based hydrocarbons, the 50% distillation temperature is 40 ° C. or higher. Of hydrocarbons, industrially include gasoline, naphtha, kerosene, light oil, etc. Especially, hydrocarbons containing 90% or more of a fraction having a boiling point of 140-270 ° C., and industrially kerosene can be preferably mentioned. .
[0012]
Among the kerosene, it is preferable to apply to JIS No. 1 kerosene having a sulfur content of 80 ppm by weight or less. This JIS No. 1 kerosene is obtained by desulfurizing crude kerosene obtained by atmospheric distillation of crude oil. The crude kerosene usually has a high sulfur content, and as such, does not become a JIS No. 1 kerosene, and it is necessary to reduce the sulfur content. As a method for reducing the sulfur content, it is preferable to perform a desulfurization treatment by a hydrorefining method which is generally carried out industrially. In this case, as a desulfurization catalyst, usually a mixture of transition metals such as nickel, cobalt, molybdenum, tungsten, etc., mixed at an appropriate ratio is supported on a carrier mainly composed of alumina in the form of metal, oxide, sulfide or the like. Things are used. As the reaction conditions, for example, the reaction temperature is 250 to 400 ° C., the pressure is 2 to 10 MPa · G, the hydrogen / oil molar ratio is 2 to 10, and the liquid hourly space velocity (LHSV) is 1 to 5 h −1 .
[0013]
As a method for desulfurizing petroleum hydrocarbons using the nickel desulfurization agent, for example, the following method can be used.
First, hydrogen is supplied in advance to a desulfurization tower filled with the nickel-based desulfurizing agent, and the nickel-based desulfurizing agent is reduced at a temperature of about 150 to 400 ° C. Next, petroleum-based hydrocarbon oil, preferably kerosene No. 1, is passed through the desulfurization tower in the liquid phase in an upward or downward flow, at a temperature of about 130 to 230 ° C., a pressure of normal pressure to about 1 MPa · G, LHSV 10 h Desulfurization treatment is performed under conditions of about 1 or less. At this time, if necessary, a small amount of hydrogen may coexist. By appropriately selecting the desulfurization conditions within the above range, a petroleum hydrocarbon having a sulfur content of 0.2 ppm by weight or less can be obtained.
[0014]
When the desulfurizing agent produced by the method of the present invention is used for the production of hydrogen for fuel cells, usually, the above-mentioned desulfurizing agent is used to desulfurize petroleum hydrocarbon oils such as kerosene as described above, followed by steam reforming. And / or partial oxidation. By using the desulfurizing agent, hydrogen can be efficiently produced without carbon deposition on the steam reforming catalyst or the like.
The method for steam reforming is not particularly limited, but is usually performed by the following method.
First, examples of the supporting metal for the reforming catalyst include noble metals such as Ni, zirconium, ruthenium (Ru), rhodium (Rh), and platinum (Pt). These may be used alone or in combination of two or more. Specific examples include those carrying Ru and zirconium. In the case of this type of supported metal, preferred are those added with cobalt and / or magnesium.
On the other hand, an inorganic oxide is used as a catalyst carrier used for steam reforming, and specifically, alumina, silica, zirconia, magnesia, and a mixture thereof may be used. Of these, alumina and zirconia are particularly preferable.
[0015]
Furthermore, in the production of hydrogen, a method of performing steam reforming while maintaining the inlet temperature of the steam reforming catalyst layer at 630 ° C. or lower is preferable. Since the steam reforming catalyst layer inlet temperature tends to increase due to the addition of oxygen, it needs to be controlled. The catalyst layer outlet temperature is not particularly limited but is preferably 650 to 800 ° C. If the catalyst layer outlet temperature is less than 650 ° C., the amount of hydrogen generated is not sufficient, and in order to react at a temperature exceeding 800 ° C., the reactor may be required to be a particularly heat-resistant material, which is not preferable in terms of economy. Because.
In the production of hydrogen, the reaction pressure is preferably normal pressure to 3 MPa, more preferably normal pressure to 1 MPa. The flow rate of petroleum hydrocarbon oil is 0.1 to 100 h −1 in LHSV.
In the production of hydrogen, the petroleum-based hydrocarbon oil can produce hydrogen efficiently even when used in the case of producing hydrogen by combining the steam reforming and partial oxidation alone or in combination.
The partial oxidation reaction is preferably carried out under a catalyst in which a noble metal such as ruthenium or nickel is supported on a heat-resistant oxide, the reaction pressure is normal pressure to 5 MPa, the reaction temperature is 400 to 1,100 ° C., and the oxygen / carbon ratio is 0.2 to 0.8, LHSV 0.1-100 h −1 . Moreover, when adding water vapor | steam, it carries out by S / C ratio 0.4-4.
In the method for producing hydrogen, CO obtained by the steam reforming has an adverse effect on hydrogen generation. Therefore, it is preferable to remove CO as CO 2 by reaction.
[0016]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
Example 1
After dissolving 50.9 g of nickel chloride in 500 ml of water and adding 0.6 g of pseudoboehmite to this, 20 ml of 1 mol / liter nitric acid aqueous solution was added to adjust to pH 1 to prepare solution (A). .
On the other hand, after 22.7 g of sodium carbonate was dissolved in 500 ml of water, 11.7 g of water glass (Si concentration: 29% by weight) was added to prepare a liquid (B).
Next, after the liquids (A) and (B) were heated to 80 ° C., both were mixed instantaneously, and 7.8 g of sodium hydroxide was dissolved in 50 ml of water to 80 ° C. The heated solution was added and stirred for 1 hour while maintaining at 80 ° C.
Thereafter, the product is sufficiently washed with 60 liters of distilled water, filtered, and then the solid is dried with a 120 ° C. blower dryer for 12 hours, and further subjected to a baking treatment at 300 ° C. for 1 hour to obtain Si. A desulfurization agent having 63% by weight of nickel supported on the total weight on a silica-alumina support having a / Al molar ratio of about 5 was produced.
[0017]
Example 2
In Example 1, except that 33.1 g of sodium carbonate was used for the preparation of the liquid (B) and no aqueous sodium hydroxide solution was added, the Si / Al molar ratio was about 5 in the same manner as in Example 1. On the silica-alumina support, a desulfurization agent having 63% by weight of nickel supported on the total weight was produced.
Example 3
In Example 1, 0.4 g of boehmite alumina was used instead of 0.6 g of pseudoboehmite for the preparation of the liquid (A), and 12.5 g of water glass (Si concentration 29 wt%) was used for the preparation of the liquid (B). In the same manner as in Example 1, a desulfurization agent having 63% by weight of nickel supported on the total weight on a silica-alumina support having a Si / Al molar ratio of about 8 was produced in the same manner as in Example 1.
[0018]
Example 4
In Example 1, except that the baking treatment was performed at 250 ° C. for 1 hour, 63% by weight of nickel based on the total weight was formed on a silica-alumina support having a Si / Al molar ratio of about 5 in the same manner as in Example 1. % Supported desulfurization agent was produced.
Example 5
In Example 1, the Si / Al molar ratio was the same as in Example 1 except that 2.9 g of alumina sol (alumina concentration 20% by weight) was used in place of 0.6 g of pseudoboehmite in preparation of the liquid (A). A desulfurization agent having 63% by weight of nickel based on the total weight was produced on a silica-alumina support of about 5.
[0019]
Comparative Example 1
50.9 g of nickel chloride was dissolved in 500 ml of water, and 0.8 g of alumina sol (alumina concentration 20% by weight) was added thereto to prepare a liquid (A). The pH of the solution (A) at this time was 5.
On the other hand, 18 g of sodium hydrogen carbonate was dissolved in 500 ml of water, and then 13.2 g of water glass (Si concentration 29% by weight) was added to prepare a liquid (B).
Next, after heating the said (A) liquid and (B) liquid to 80 degreeC, respectively, both were mixed instantaneously and it stirred for 1 hour, hold | maintaining at 80 degreeC.
Thereafter, the product is sufficiently washed with 60 liters of distilled water, filtered, and then the solid is dried with a 120 ° C. blower dryer for 12 hours, and further subjected to a baking treatment at 300 ° C. for 1 hour to obtain Si. A desulfurization agent having 63% by weight of nickel supported on the total weight of silica / alumina support having a / Al molar ratio of about 20 was produced.
[0020]
Comparative Example 2
A solution (A) was prepared by dissolving 50.9 g of nickel chloride in 500 ml of water. The pH of the solution (A) at this time was 5.
On the other hand, after dissolving 17.1 g of sodium hydroxide in 500 ml of water, 13.8 g of water glass (Si concentration 29% by weight) was added to prepare a liquid (B).
Thereafter, the same operation as in Comparative Example 1 was performed to produce a desulfurization agent in which 63% by weight of nickel was supported on the silica support based on the total weight.
Comparative Example 3
The liquid (A) was prepared in the same manner as in Comparative Example 1. On the other hand, after dissolving 17.1 g of sodium hydroxide in 500 ml of water, 13.8 g of water glass (Si concentration 29% by weight) was added to prepare a liquid (B).
Next, after heating the said (A) liquid and (B) liquid to 80 degreeC, respectively, both were mixed instantaneously and it stirred for 1 hour, hold | maintaining at 80 degreeC.
Thereafter, the product is sufficiently washed with 60 liters of distilled water, filtered, and then the solid is dried in a 120 ° C. blower dryer for 12 hours, and further subjected to a baking treatment at 450 ° C. for 1 hour, whereby Si A desulfurization agent having 63% by weight of nickel supported on the total weight of silica / alumina support having a / Al molar ratio of about 20 was produced.
[0021]
Comparative Example 4
A desulfurizing agent was produced according to the examples described in JP-B-6-65602.
62.3 g of nickel nitrate was dissolved in 500 ml of water, and 4 g of carrier (diatomaceous earth) was added thereto to prepare a liquid (A).
On the other hand, 33.1 g of sodium carbonate was dissolved in 500 ml of water to prepare solution (B).
Next, after heating the said (A) liquid and (B) liquid to 80 degreeC, respectively, both were mixed instantaneously and it stirred for 1 hour, hold | maintaining at 80 degreeC.
Thereafter, the product is sufficiently washed with 60 liters of distilled water, filtered, and then the solid is dried in a 120 ° C. blower dryer for 12 hours, and further calcined at 300 ° C. for 1 hour, whereby diatomaceous earth. A desulfurizing agent on which 67% by weight of nickel was supported based on the total weight was produced on the support.
[0022]
Test Examples 15 ml each of the desulfurization agents obtained in Examples 1 to 5 and Comparative Examples 1 to 4 were filled into a stainless steel reaction tube having an inner diameter of 17 mm. Next, the temperature was raised to 120 ° C. in a hydrogen stream under normal pressure, held for 1 hour, further heated, and held at 380 ° C. for 1 hour to activate the desulfurizing agent.
Next, the temperature was maintained at 150 ° C., and supply of JIS No. 1 kerosene having a sulfur concentration of 65 ppm by weight to each reaction tube at LHSV3h −1 under normal pressure was started.
The sulfur content in the treated kerosene at the time when 50 hours had passed was analyzed, and the desulfurization performance was compared.
The results are shown in Table 1 together with the types of raw materials.
[0023]
[Table 1]
Figure 0004531917
[0024]
[Table 2]
Figure 0004531917
As can be seen from Table 1, all of the desulfurization agents of the examples are superior in desulfurization performance as compared with the desulfurization agent of the comparative example.
[0025]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the sulfur content in petroleum hydrocarbon oil, especially kerosene can be effectively adsorbed and removed to a low concentration, and a long-life nickel-based desulfurizing agent can be efficiently produced.
Further, according to the production method of the present invention, a desulfurization agent used for production of hydrogen for fuel cells can be produced efficiently.

Claims (8)

シリカ−アルミナ担体上にニッケルを担持してなる脱硫剤を製造するに当たり、ニッケル源及びアルミニウム源を含むpH2以下の酸性水溶液または酸性分散液と、ケイ素源及び無機塩基を含む塩基性水溶液とを混合したのち、生成した固形物を取り出し、焼成することを特徴とするニッケル系脱硫剤の製造方法であって、
前記ニッケル源及びアルミニウム源を含むpH2以下の酸性水溶液または酸性分散液が、アルミニウム源として、アルミナゾル、擬ベーマイト、ベーマイトアルミナ及びγ−アルミナの中から選ばれる少なくとも一種を含むものであり、
前記ケイ素源中のケイ素原子(Si)とアルミニウム源中のアルミニウム原子(Al)のモル比(Si/Alモル比)を10以下とするニッケル系脱硫剤の製造方法。
In producing a desulfurization agent comprising nickel supported on a silica-alumina support, an acidic aqueous solution or acidic dispersion having a pH of 2 or less containing a nickel source and an aluminum source and a basic aqueous solution containing a silicon source and an inorganic base are mixed. Then, the method for producing a nickel-based desulfurization agent characterized in that the generated solid matter is taken out and fired,
The acidic aqueous solution or acidic dispersion having a pH of 2 or less containing the nickel source and the aluminum source contains at least one selected from alumina sol, pseudoboehmite, boehmite alumina, and γ-alumina as the aluminum source,
The manufacturing method of the nickel-type desulfurization agent which makes the molar ratio (Si / Al molar ratio) of the silicon atom (Si) in the said silicon source, and the aluminum atom (Al) in an aluminum source 10 or less.
ケイ素源及び無機塩基を含む塩基性水溶液が、無機塩基としてNa2 CO3 、又はNa2 CO3 とNaOHを含むものである請求項1に記載の製造方法。The production method according to claim 1, wherein the basic aqueous solution containing a silicon source and an inorganic base contains Na 2 CO 3 or Na 2 CO 3 and NaOH as the inorganic base. ニッケルの担持量が、脱硫剤全重量に基づき、40重量%以上である請求項1又は2に記載の製造方法。The production method according to claim 1 or 2 , wherein the supported amount of nickel is 40% by weight or more based on the total weight of the desulfurizing agent. 200〜400℃の温度で焼成を行う請求項1〜のいずれかに記載の製造方法。The manufacturing method according to any one of claims 1 to 3 , wherein firing is performed at a temperature of 200 to 400 ° C. 酸性水溶液または酸性分散液がpH1以下である請求項1〜のいずれかに記載の製造方法。The process according to any one of claims 1-4 acidic aqueous solution or an acidic dispersion is pH1 less. Si/Alモル比を5〜8とする請求項1〜のいずれかに記載の製造方法。The production method according to any one of claims 1 to 5 , wherein the Si / Al molar ratio is 5 to 8. 焼成後に、水素下で還元処理を行う請求項1〜のいずれかに記載の製造方法。The production method according to any one of claims 1 to 6 , wherein the reduction treatment is performed under hydrogen after firing. 脱硫剤が燃料電池用水素の製造に用いられる請求項1〜のいずれかに記載の製造方法。The process according to any one of claims 1 to 7, the desulfurizing agent is used in the production of hydrogen for fuel cells.
JP2000096487A 2000-03-31 2000-03-31 Method for producing nickel-based desulfurization agent Expired - Fee Related JP4531917B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000096487A JP4531917B2 (en) 2000-03-31 2000-03-31 Method for producing nickel-based desulfurization agent
EP01917783A EP1270069B1 (en) 2000-03-31 2001-04-02 Use of a desulfurizing agent
US10/221,199 US7268097B2 (en) 2000-03-31 2001-04-02 Desulfurizing agent for hydrocarbon derived from petroleum, method for producing hydrogen for use in fuel cell and method for producing nickel-based desulfurizing agent
PCT/JP2001/002861 WO2001072417A1 (en) 2000-03-31 2001-04-02 Desulfurizing agent for hydrocarbon derived from petroleum, method for producing hydrogen for use in fuel cell and method for producing nickel-based desulfurizing agent
DK01917783.1T DK1270069T3 (en) 2000-03-31 2001-04-02 Use of a desulfurizing agent
AU2001244705A AU2001244705A1 (en) 2000-03-31 2001-04-02 Desulfurizing agent for hydrocarbon derived from petroleum, method for producinghydrogen for use in fuel cell and method for producing nickel-based desulfurizi ng agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000096487A JP4531917B2 (en) 2000-03-31 2000-03-31 Method for producing nickel-based desulfurization agent

Publications (2)

Publication Number Publication Date
JP2001279255A JP2001279255A (en) 2001-10-10
JP4531917B2 true JP4531917B2 (en) 2010-08-25

Family

ID=18611251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000096487A Expired - Fee Related JP4531917B2 (en) 2000-03-31 2000-03-31 Method for producing nickel-based desulfurization agent

Country Status (1)

Country Link
JP (1) JP4531917B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050020446A1 (en) * 2003-07-23 2005-01-27 Choudhary Tushar V. Desulfurization and novel process for same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06205978A (en) * 1992-11-10 1994-07-26 Engelhard Corp Improved nickel catalyst
JPH06315628A (en) * 1992-04-06 1994-11-15 Nippon Oil Co Ltd Production of fuel gas for fuel cell
JPH10296091A (en) * 1997-04-30 1998-11-10 Tonen Corp Catalyst for hydrogenation treatment and method for hydrogenation treatment for hydrocarbon oil using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315628A (en) * 1992-04-06 1994-11-15 Nippon Oil Co Ltd Production of fuel gas for fuel cell
JPH06205978A (en) * 1992-11-10 1994-07-26 Engelhard Corp Improved nickel catalyst
JPH10296091A (en) * 1997-04-30 1998-11-10 Tonen Corp Catalyst for hydrogenation treatment and method for hydrogenation treatment for hydrocarbon oil using the same

Also Published As

Publication number Publication date
JP2001279255A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
EP1270069B1 (en) Use of a desulfurizing agent
WO2002038268A1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JPWO2006101079A1 (en) Desulfurization agent and desulfurization method using the same
JP2001279274A (en) Fuel oil for fuel cell, desulfurization method and method for producing hydrogen
JP4388665B2 (en) Ni-Cu desulfurizing agent and method for producing hydrogen for fuel cell
JP4749589B2 (en) Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method
JP4531939B2 (en) Method for producing nickel-copper desulfurization agent
JP4580070B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP4322804B2 (en) Method for desulfurizing liquid hydrocarbon and method for producing hydrogen for fuel cell
JP2008291146A (en) Porous desulfurizing agent and method for desulfurizing hydrocarbon oil using the same
JP2004075778A (en) Desulfurizing agent for hydrocarbon and method for producing hydrogen for fuel cell
JP4079743B2 (en) Desulfurizing agent for hydrocarbon-containing gas and method for producing hydrogen for fuel cell
JP4531917B2 (en) Method for producing nickel-based desulfurization agent
JP4521172B2 (en) Desulfurization agent and desulfurization method using the same
JP2001279259A (en) Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery
JP4580071B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP2005146054A6 (en) Desulfurization agent and desulfurization method using the same
JP2005146054A (en) Desulfurizing agent and desulfurizing method using the same
JP2001276605A (en) Desulfurization agent and method of producing hydrogen for fuel cell
JP4955483B2 (en) Method for producing hydrocarbon desulfurization agent
JP2001278602A (en) Desulfurization agent, method of desulfurization and method of manufacturing hydrogen for fuel cell
JP2001172651A (en) Fuel oil for fuel cell
JP2010001480A (en) Desulfurizing agent and desulfurization method using the same
JP2003290660A (en) Desulfurizing agent and method for manufacturing hydrogen for fuel battery using it
JP2001262164A (en) Fuel oil for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees