JP2010001480A - Desulfurizing agent and desulfurization method using the same - Google Patents

Desulfurizing agent and desulfurization method using the same Download PDF

Info

Publication number
JP2010001480A
JP2010001480A JP2009169049A JP2009169049A JP2010001480A JP 2010001480 A JP2010001480 A JP 2010001480A JP 2009169049 A JP2009169049 A JP 2009169049A JP 2009169049 A JP2009169049 A JP 2009169049A JP 2010001480 A JP2010001480 A JP 2010001480A
Authority
JP
Japan
Prior art keywords
desulfurization
desulfurizing agent
raw material
hydrocarbon raw
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009169049A
Other languages
Japanese (ja)
Inventor
Takashi Katsuno
尚 勝野
Kazuhito Saito
一仁 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2009169049A priority Critical patent/JP2010001480A/en
Publication of JP2010001480A publication Critical patent/JP2010001480A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desulfurizing agent capable of efficiently removing sulfur in a hydrocarbon raw material and/or an oxygen-containing hydrocarbon raw material to an extremely low concentration, and long in life and industrially advantageous, a method of manufacturing the desulfurizing agent, and a desulfurization method of removing sulfur compounds in a hydrocarbon raw material and/or an oxygen-containing hydrocarbon raw material using the desulfurizing agent. <P>SOLUTION: This desulfurizing agent removes sulfur compounds in a hydrocarbon raw material and/or an oxygen-containing hydrocarbon raw material without addition of hydrogen during desulfurization, includes nickel, and has a bulk density of not smaller than 1 g/cm<SP>3</SP>, this desulfurization method uses the desulfurizing agent to remove sulfur compounds in a hydrocarbon raw material and/or an oxygen-containing hydrocarbon raw material, and, in this method for manufacturing a desulfurizing agent having a bulk density of not smaller than 1 g/cm<SP>3</SP>, the desulfurizing agent involves in desulfurization without addition of hydrogen during desulfurization, and is formed instantaneously as a precipitate by mixing an acidic solution or an acidic aqueous dispersion containing nickel with a basic solution containing silicon and an inorganic base. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、脱硫時に水素を添加しないで硫黄化合物を除去する脱硫剤(以下、単に脱硫剤ということがある)、該脱硫剤の製造方法及び該脱硫剤を用いた脱硫方法に関する。詳しくは、炭化水素原料及び/又は酸素含有炭化水素原料中の硫黄分を極めて低濃度まで効率よく除去することができ、かつ寿命の長い脱硫剤、該脱硫剤の製造方法、及びこの脱硫剤を用いて炭化水素原料及び/又は酸素含有炭化水素原料の硫黄化合物を脱硫する脱硫方法に関する。   The present invention relates to a desulfurizing agent that removes a sulfur compound without adding hydrogen during desulfurization (hereinafter sometimes simply referred to as a desulfurizing agent), a method for producing the desulfurizing agent, and a desulfurizing method that uses the desulfurizing agent. Specifically, the sulfur content in the hydrocarbon raw material and / or oxygen-containing hydrocarbon raw material can be efficiently removed to a very low concentration, and has a long life, a method for producing the desulfurizing agent, and the desulfurizing agent. The present invention relates to a desulfurization method for desulfurizing a hydrocarbon raw material and / or a sulfur compound of an oxygen-containing hydrocarbon raw material.

近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。この燃料電池には、使用する電解質の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物型、固体高分子型などのタイプが知られている。一方、水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、さらには石油系のナフサや灯油などの炭化水素油の使用が研究されている。   In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and has a feature of high energy use efficiency. Alternatively, research into practical use is actively conducted for automobiles and the like. For this fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known depending on the type of electrolyte used. On the other hand, as a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of this natural gas, synthetic liquid fuel using natural gas as a raw material, and carbonization of petroleum naphtha and kerosene, etc. The use of hydrogen oil has been studied.

燃料電池を民生用や自動車用などに利用する場合、上記炭化水素油は常温常圧で液状であって、保管及び取扱いが容易である上、特に石油系のものはガソリンスタンドや販売店など、供給システムが整備されていることから、水素源として有利である。しかしながら、このような炭化水素油は、メタノールや天然ガス系のものに比べて、硫黄分の含有量が多いという問題がある。この炭化水素油を用いて水素を製造する場合、一般に、該炭化水素油を、改質触媒の存在下に水蒸気改質又は部分酸化改質処理する方法等が用いられる。このような改質処理においては、上記改質触媒は、炭化水素油中の硫黄分により被毒されるため、触媒寿命の点から、該炭化水素油に脱硫処理を施し、硫黄分含有量を長時間にわたり0.2質量ppm以下に低減させることが必要である。
また、自動車に直接水素を搭載する場合、安全面から水素に付臭物を添加することが検討されており、原料油に存在する硫黄化合物からなる付臭物を極力低濃度にすることも同様に肝要である。
When the fuel cell is used for consumer use or automobile use, the hydrocarbon oil is liquid at room temperature and normal pressure, and is easy to store and handle. Since the supply system is maintained, it is advantageous as a hydrogen source. However, such hydrocarbon oil has a problem that the content of sulfur is higher than that of methanol or natural gas. When hydrogen is produced using this hydrocarbon oil, generally, a method of subjecting the hydrocarbon oil to steam reforming or partial oxidation reforming in the presence of a reforming catalyst is used. In such reforming treatment, the reforming catalyst is poisoned by the sulfur content in the hydrocarbon oil. Therefore, from the viewpoint of catalyst life, the hydrocarbon oil is subjected to desulfurization treatment to reduce the sulfur content. It is necessary to reduce it to 0.2 mass ppm or less over a long period of time.
In addition, when hydrogen is directly mounted on an automobile, it has been studied to add an odorant to hydrogen from the viewpoint of safety, and it is also possible to reduce the concentration of an odorant consisting of sulfur compounds present in feedstock as much as possible. It is important to.

石油系炭化水素の脱硫方法としては、これまで多くの研究がなされており、例えばCo−Mo/アルミナやNi−Mo/アルミナなどの水素化脱硫触媒とZnOなどの硫化水素吸着剤を用い、常圧〜5MPa・Gの圧力下、200〜400℃の温度で水素化脱硫する方法が知られている。この方法は厳しい条件下で水素化脱硫を行い、硫黄分を硫化水素にして除去する方法であり、小規模の分散型燃料電池用としては、安全・環境上の配慮、高圧ガス取締法等の関連法規との関係上好ましくない。すなわち燃料電池用としては、1MPa・G未満の条件で長時間燃料を脱硫することのできる脱硫剤が望まれている。
一方、燃料油中の硫黄分を、温和な条件で吸着除去する脱硫剤として、ニッケル系の吸着剤が提案されており(例えば特許文献1〜12参照)、またこれを改良したニッケル−銅系の吸着剤が提案されている(例えば特許文献11又は13参照)。
しかしながら、これらに開示される技術では脱硫剤の寿命という観点から実用的なレベルにはなく、特に上記ニッケル−銅系の吸着剤においては、嵩密度が低いために脱硫器の大きさを大きくせざるを得ず、実用化が困難であるとともに、通常の大きさの脱硫器では硫黄を効率的に脱硫するには不十分であるという問題点があった。
As a desulfurization method for petroleum hydrocarbons, many studies have been made so far. For example, a hydrodesulfurization catalyst such as Co-Mo / alumina or Ni-Mo / alumina and a hydrogen sulfide adsorbent such as ZnO are usually used. A method of hydrodesulfurizing at a temperature of 200 to 400 ° C. under a pressure of 5 MPa · G is known. This method performs hydrodesulfurization under harsh conditions and removes sulfur by converting it to hydrogen sulfide. For small-scale distributed fuel cells, safety and environmental considerations, high-pressure gas control methods, etc. It is not preferable in relation to related laws and regulations. That is, for fuel cells, a desulfurization agent that can desulfurize fuel for a long time under a condition of less than 1 MPa · G is desired.
On the other hand, a nickel-based adsorbent has been proposed as a desulfurizing agent that adsorbs and removes sulfur in fuel oil under mild conditions (for example, see Patent Documents 1 to 12), and an improved nickel-copper system. Adsorbents have been proposed (see, for example, Patent Document 11 or 13).
However, the technologies disclosed therein are not at a practical level from the viewpoint of the life of the desulfurizing agent, and particularly in the above-described nickel-copper type adsorbent, the bulk density is low, so the size of the desulfurizer can be increased. Inevitably, practical application is difficult, and a desulfurizer having a normal size is insufficient to efficiently desulfurize sulfur.

特公平6−65602号公報Japanese Examined Patent Publication No. 6-65602 特公平7−115842号公報Japanese Patent Publication No.7-115842 特開平1−188405号公報Japanese Patent Laid-Open No. 1-188405 特公平7−115843号公報Japanese Patent Publication No.7-115843 特開平2−275701号公報JP-A-2-275701 特開平2−204301号公報JP-A-2-204301 特開平5−70780号公報Japanese Patent Laid-Open No. 5-70780 特開平6−80972号公報Japanese Patent Laid-Open No. 6-80972 特開平6−91173号公報JP-A-6-91173 特開平6−228570号公報JP-A-6-228570 特開2001−279259号公報JP 2001-279259 A 特開2001−342465号公報JP 2001-342465 A 特開平6−315628号公報JP-A-6-315628

本発明は、このような状況下で、炭化水素原料及び/又は酸素含有炭化水素原料中の硫黄分を極めて低濃度まで効率よく除去することができ、かつ寿命の長い工業的に有利な脱硫剤、及びこの脱硫剤を用いて脱硫処理された炭化水素原料及び/又は酸素含有炭化水素原料を水蒸気改質、部分酸化改質又はオートサーマル改質処理し、燃料電池用水素を製造する方法を提供することを目的とするものである。特に小型でコンパクトな脱硫器を配備した燃料電池システムにおいて、硫黄を低濃度まで、効率よく除去することのできる脱硫剤及び該脱硫剤を用いた脱硫方法を提供することを目的とするものである。   Under such circumstances, the present invention can efficiently remove the sulfur content in the hydrocarbon raw material and / or the oxygen-containing hydrocarbon raw material to a very low concentration and has a long life and is industrially advantageous. And a method for producing hydrogen for a fuel cell by subjecting a hydrocarbon raw material and / or oxygen-containing hydrocarbon raw material desulfurized using this desulfurizing agent to steam reforming, partial oxidation reforming or autothermal reforming treatment It is intended to do. In particular, in a fuel cell system equipped with a small and compact desulfurizer, an object is to provide a desulfurization agent capable of efficiently removing sulfur to a low concentration and a desulfurization method using the desulfurization agent. .

本発明者らは、上記目的を達成すべく種々の研究を重ねた結果、ニッケルを含有し、かつ嵩密度の高い脱硫剤が上記問題点を解決し得ることを見出し、本発明を完成するに至った。
すなわち本発明は、
(1)炭化水素原料及び/又は酸素含有炭化水素原料中の硫黄化合物を、脱硫時に水素を添加しないで除去する脱硫剤であって、ニッケルを含有し、嵩密度が1g/cm3以上であり、かつ表面積が150〜350m2/gの範囲であることを特徴とする脱硫剤、
(2)嵩密度が1.2g/cm3以上2.0g/cm3以下である上記(1)に記載の脱硫剤、
(3)さらに担体を含有する上記(1)又は(2)に記載の脱硫剤、
(4)ニッケルの含有量がNiO(酸化ニッケル)の換算量として、50〜90質量%の範囲である上記(1)〜(3)のいずれかに記載の脱硫剤、
(5)さらに銅を含有し、銅の含有量がCuO(酸化銅)換算量として40質量%以下である上記(1)〜(4)のいずれかに記載の脱硫剤、
(6)担体がシリカ、アルミナ及びシリカ−アルミナから選ばれる少なくとも1種を含有する上記(3)〜(5)のいずれかに記載の脱硫剤、
(7)炭化水素原料及び/又は酸素含有炭化水素原料が灯油、軽油、液化石油ガス(LPG)、ナフサ、ガソリン、天然ガス及びジメチルエーテルから選ばれる少なくとも1種である上記(1)〜(6)のいずれかに記載の脱硫剤、
As a result of various studies to achieve the above object, the present inventors have found that a desulfurization agent containing nickel and having a high bulk density can solve the above problems, and to complete the present invention. It came.
That is, the present invention
(1) A desulfurization agent for removing sulfur compounds in hydrocarbon raw materials and / or oxygen-containing hydrocarbon raw materials without adding hydrogen during desulfurization, which contains nickel and has a bulk density of 1 g / cm 3 or more. And a desulfurizing agent having a surface area in the range of 150 to 350 m 2 / g,
(2) The desulfurization agent according to (1), wherein the bulk density is 1.2 g / cm 3 or more and 2.0 g / cm 3 or less,
(3) The desulfurization agent according to (1) or (2), further comprising a carrier,
(4) The desulfurization agent according to any one of the above (1) to (3), wherein the nickel content is in the range of 50 to 90% by mass as a conversion amount of NiO (nickel oxide),
(5) The desulfurization agent according to any one of (1) to (4), further containing copper, wherein the copper content is 40% by mass or less as a CuO (copper oxide) equivalent amount,
(6) The desulfurization agent according to any one of (3) to (5), wherein the carrier contains at least one selected from silica, alumina, and silica-alumina.
(7) The above (1) to (6), wherein the hydrocarbon raw material and / or the oxygen-containing hydrocarbon raw material is at least one selected from kerosene, light oil, liquefied petroleum gas (LPG), naphtha, gasoline, natural gas, and dimethyl ether. A desulfurizing agent according to any one of

(8)ニッケルを含有する酸性溶液又は酸性水性分散液と、ケイ素及び無機塩基を含有する塩基性溶液とを混合し、瞬時に沈殿を形成させる嵩密度が1g/cm3以上で、脱硫時に水素を添加しないで脱硫する脱硫剤の製造方法、
(9)酸性溶液又は酸性水性分散液と塩基性溶液との混合及び沈殿の形成を内径3〜100mmの反応管内で行うことを特徴とする上記(8)に記載の脱硫剤の製造方法、
(10)酸性溶液又は酸性水性分散液にさらに銅及びアルミニウムを含有する上記(8)又は(9)に記載の脱硫剤の製造方法、
(11)上記(1)〜(7)のいずれかに記載の脱硫剤を用いて、−40〜300℃の範囲の温度で炭化水素原料及び/又は酸素含有炭化水素原料の脱硫をすることを特徴とする脱硫方法、
を提供するものである。
(8) An acidic solution or acidic aqueous dispersion containing nickel and a basic solution containing silicon and an inorganic base are mixed, and the bulk density for instantly forming a precipitate is 1 g / cm 3 or more, and hydrogen is used during desulfurization. A method for producing a desulfurizing agent for desulfurization without adding
(9) The method for producing a desulfurization agent according to (8) above, wherein the mixing of the acidic solution or acidic aqueous dispersion and the basic solution and the formation of the precipitate are performed in a reaction tube having an inner diameter of 3 to 100 mm,
(10) The method for producing a desulfurization agent according to (8) or (9) above, further containing copper and aluminum in the acidic solution or the acidic aqueous dispersion,
(11) Desulfurization of the hydrocarbon raw material and / or the oxygen-containing hydrocarbon raw material at a temperature in the range of −40 to 300 ° C. using the desulfurizing agent according to any one of (1) to (7) above. Desulfurization method,
Is to provide.

本発明によれば、炭化水素原料及び/又は酸素含有炭化水素原料中の硫黄分を極めて低濃度まで効率よく除去することができ、かつ寿命の長い脱硫剤、該脱硫剤の製造方法、及びこの脱硫剤を用いて炭化水素原料及び/又は酸素含有炭化水素原料中の硫黄化合物を脱硫する脱硫方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the sulfur content in a hydrocarbon raw material and / or oxygen-containing hydrocarbon raw material can be efficiently removed to a very low concentration and has a long life, a method for producing the desulfurizing agent, and this A desulfurization method for desulfurizing a sulfur compound in a hydrocarbon raw material and / or an oxygen-containing hydrocarbon raw material using a desulfurizing agent can be provided.

本発明の脱硫剤は、炭化水素原料及び/又は酸素含有炭化水素原料中の硫黄化合物を、脱硫時に水素を添加しないで除去する脱硫剤であって、ニッケルを含有し、嵩密度が1g/cm3以上で、かつ表面積が150〜350m2/gの範囲であることを特徴とする。
本発明の脱硫剤の、ニッケル成分としては、通常酸化ニッケル、これを還元して得られる金属ニッケル、その他、炭酸ニッケル、硝酸ニッケル、塩化ニッケル、硫酸ニッケル、酢酸ニッケル等が挙げられ、本発明の脱硫剤においては、このうち、ニッケル成分の60%以上が金属ニッケルであることが好ましい。金属ニッケルが60%以上であると、脱硫剤表面の活性点の数が多く、特に高い脱硫性能が得られる。
ニッケルの含有量としては、脱硫剤全量に基づいて、NiO(酸化ニッケル)換算量として、50〜90質量%の範囲であることが好ましい。ニッケル含有量が50質量%以上であると高い脱硫活性が得られ、90質量%以下であると、後述する担体の含有量が確保されることによって、脱硫剤の表面積が十分となり脱硫性能が低下することがない。こうした観点からニッケル含有量としては、さらに60〜85質量%の範囲であることが好ましく、特に65〜85質量%の範囲であることが好ましい。
The desulfurization agent of the present invention is a desulfurization agent that removes sulfur compounds in hydrocarbon raw materials and / or oxygen-containing hydrocarbon raw materials without adding hydrogen during desulfurization, contains nickel, and has a bulk density of 1 g / cm. It is 3 or more, and a surface area is the range of 150-350 m < 2 > / g, It is characterized by the above-mentioned.
Examples of the nickel component of the desulfurizing agent of the present invention include nickel oxide, nickel metal obtained by reducing this, nickel carbonate, nickel nitrate, nickel chloride, nickel sulfate, nickel acetate and the like. In the desulfurization agent, 60% or more of the nickel component is preferably metallic nickel. When the metallic nickel is 60% or more, the number of active sites on the surface of the desulfurizing agent is large, and particularly high desulfurization performance is obtained.
As content of nickel, it is preferable that it is the range of 50-90 mass% as NiO (nickel oxide) conversion amount based on the desulfurization agent whole quantity. When the nickel content is 50% by mass or more, high desulfurization activity is obtained, and when it is 90% by mass or less, the content of the carrier described later is ensured, so that the surface area of the desulfurizing agent is sufficient and the desulfurization performance is lowered There is nothing to do. From this viewpoint, the nickel content is preferably in the range of 60 to 85% by mass, and particularly preferably in the range of 65 to 85% by mass.

また、本発明の脱硫剤はさらに銅を含有することが好ましい。銅成分の含有量は脱硫剤全量に基づき、CuO(酸化銅)換算量として40質量%以下であることが好ましい。銅含有量が40質量%以下であると、上記ニッケルの効果を阻害することがなく、脱硫剤としての機能を十分に発揮し得る。上記観点及び共存するニッケルの還元度を高めるとの観点から、銅の含有量は35質量%以下であることがさらに好ましく、特には30質量%以下であることが好ましい。
さらに、本発明の脱硫剤においては、NiOとCuOの総和量が、脱硫剤全量に基づき、70〜95質量%の範囲であることが好ましい。総和量がこの範囲であると、脱硫に必要な活性点数が十分であり、所望の脱硫性能が得られるとともに、後述する担体の割合が十分あるために脱硫剤の表面積が低下して、脱硫性能が低くなるという不都合がない。
Moreover, it is preferable that the desulfurization agent of this invention contains copper further. The content of the copper component is preferably 40% by mass or less in terms of CuO (copper oxide) based on the total amount of the desulfurizing agent. When the copper content is 40% by mass or less, the function as a desulfurizing agent can be sufficiently exhibited without inhibiting the effect of the nickel. From the viewpoints described above and from the viewpoint of increasing the degree of reduction of the coexisting nickel, the copper content is more preferably 35% by mass or less, and particularly preferably 30% by mass or less.
Furthermore, in the desulfurization agent of the present invention, the total amount of NiO and CuO is preferably in the range of 70 to 95% by mass based on the total amount of the desulfurization agent. If the total amount is within this range, the number of active points necessary for desulfurization is sufficient, the desired desulfurization performance is obtained, and the surface area of the desulfurization agent is reduced due to the sufficient proportion of the carrier described later, and the desulfurization performance There is no inconvenience that becomes low.

本発明の脱硫剤においては、表面積を高くするために、担体を用いることができ、多孔質担体が好適に用いられる。本発明の脱硫剤はその表面積が100〜350m2/gの範囲であることが好ましい。該脱硫剤の表面積が100m2/g以上であると担持されたニッケル等の金属の分散度が高いので好ましく、さらには150〜330m2/gの範囲であることが好ましい。
上記担体としては、多孔質の無機酸化物が特に好ましく、具体的にはシリカ、アルミナ、シリカ−アルミナ、チタニア、ジルコニア、マグネシア、酸化亜鉛、白土、粘土及び珪藻土などを挙げることができる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中で、特にシリカ、アルミナ、シリカ−アルミナ及びこれらの混合物が好ましい。本発明において、これらの担体に担持させる金属成分は、上述のニッケル成分を必須とし、また必要に応じて上述の銅成分を含有するものである。また、所望によりコバルト、鉄、マンガン、クロムなどの他の金属成分を少量混在させてもよい。
In the desulfurizing agent of the present invention, a carrier can be used to increase the surface area, and a porous carrier is preferably used. The desulfurizing agent of the present invention preferably has a surface area in the range of 100 to 350 m 2 / g. The surface area of the desulfurizing agent is preferably 100 m 2 / g or more because the dispersity of the supported metal such as nickel is high, and more preferably in the range of 150 to 330 m 2 / g.
As the carrier, porous inorganic oxides are particularly preferable, and specific examples include silica, alumina, silica-alumina, titania, zirconia, magnesia, zinc oxide, white clay, clay, and diatomaceous earth. These may be used alone or in combination of two or more. Of these, silica, alumina, silica-alumina and mixtures thereof are particularly preferable. In the present invention, the metal component to be supported on these carriers essentially includes the above-described nickel component, and optionally contains the above-described copper component. Moreover, you may mix a small amount of other metal components, such as cobalt, iron, manganese, and chromium, if desired.

本発明の脱硫剤は、嵩密度が1g/cm3以上であることを必須とする。ここで、嵩密度とは体積既知の容器に該脱硫剤を一定方法で充填し、粒子間の空隙も含めた体積で、該脱硫剤の質量を除した値をいう。嵩密度が1g/cm3以上であると、脱硫器がコンパクトなものであっても活性金属の含有量が多くなり、十分な脱硫性能を発揮することができる。以上の観点から、嵩密度は1.2g/cm3以上であることが好ましい。一方、嵩密度の上限については、特に制限はないが、通常2.0g/cm3以下である。 The desulfurizing agent of the present invention must have a bulk density of 1 g / cm 3 or more. Here, the bulk density refers to a value obtained by dividing the mass of the desulfurizing agent by filling the desulfurizing agent in a known volume with a certain method and including the voids between the particles. When the bulk density is 1 g / cm 3 or more, even if the desulfurizer is compact, the content of the active metal is increased and sufficient desulfurization performance can be exhibited. From the above viewpoint, the bulk density is preferably 1.2 g / cm 3 or more. On the other hand, the upper limit of the bulk density is not particularly limited, but is usually 2.0 g / cm 3 or less.

脱硫剤の嵩密度を1g/cm3以上にする方法としては、特に限定されず、含浸法、共沈法、混練法などによることができる。これらのうち、共沈法が簡便に嵩密度1g/cm3以上の脱硫剤が製造し得るとの観点から最も好ましい。
以下、共沈法について詳細に説明する。本発明に係る共沈法においては、まず必須成分であるニッケル源、所望に応じてアルミニウム源及び銅源を含む酸性水溶液又は酸性水性分散液と、ケイ素源及び無機塩基を含む塩基性水溶液を調製する。
従来の共沈法では、このようにして調製した酸性の水溶液又は水分散液と塩基性水溶液をそれぞれ50〜90℃程度に加温して、両者を混合し、さらに50〜90℃程度の温度に保持して反応を完結させるが、この手法(以下「正添加法」ということがある)では嵩密度を高くすることはできず、せいぜい0.9g/cm3程度までにしかならない。
これに対して、本発明においては、上記酸性の水溶液又は水分散液と塩基性水溶液の両者を同時に反応管内に供給し、反応管内で沈殿を瞬時に形成する。このような方法(以下「同時添加法」ということがある)を用いることにより、脱硫剤の嵩密度を1g/cm3以上にすることができる。なお、ここで用いる反応管は直管でも曲管でもよく、内径3〜100mmの範囲であることが好ましい。またスタティックミキサーを用いてもよい。
The method for setting the bulk density of the desulfurizing agent to 1 g / cm 3 or more is not particularly limited, and may be an impregnation method, a coprecipitation method, a kneading method, or the like. Of these, the coprecipitation method is most preferable from the viewpoint that a desulfurization agent having a bulk density of 1 g / cm 3 or more can be easily produced.
Hereinafter, the coprecipitation method will be described in detail. In the coprecipitation method according to the present invention, firstly, a nickel source as an essential component, an acidic aqueous solution or acidic aqueous dispersion containing an aluminum source and a copper source as required, and a basic aqueous solution containing a silicon source and an inorganic base are prepared. To do.
In the conventional coprecipitation method, the acidic aqueous solution or aqueous dispersion thus prepared and the basic aqueous solution are each heated to about 50 to 90 ° C., mixed together, and further heated to a temperature of about 50 to 90 ° C. However, this method (hereinafter sometimes referred to as “positive addition method”) cannot increase the bulk density, and it is only about 0.9 g / cm 3 at most.
In contrast, in the present invention, both the acidic aqueous solution or the aqueous dispersion and the basic aqueous solution are simultaneously supplied into the reaction tube, and a precipitate is instantaneously formed in the reaction tube. By using such a method (hereinafter sometimes referred to as “simultaneous addition method”), the bulk density of the desulfurizing agent can be 1 g / cm 3 or more. The reaction tube used here may be a straight tube or a curved tube, and preferably has an inner diameter of 3 to 100 mm. A static mixer may also be used.

また、上記酸性の水溶液又は水分散液と塩基性水溶液の両者を小さな受器に同時に導入し、瞬時に沈殿を形成する方法も上記方法と同様に有効である。この方法においては、生成した沈殿物や溶液が受器中に残存し、添加した酸性の水溶液又は水分散液と塩基性水溶液がこれらによって希釈されると、瞬時に沈殿を形成することができなくなり、嵩密度の高い脱硫剤を得ることができない。従って、生成した沈殿物や溶液が受器中に残存しないように、これらを連続的に抜き出すか、又は十分小さな受器を用いることが肝要である。
なお、脱硫剤の嵩密度を向上する方法として、圧縮成型法がある。この方法は脱硫剤に荷重をかけることより、嵩密度を向上させるものであるが、脱硫反応に有効な細孔が潰れてしまい、表面積及び細孔容積が低下する。表面積及び細孔容積が低下すると活性点であるニッケル等の金属の分散度が失われ、また硫黄化合物の吸着点が減少し、脱硫機能を損なう場合がある。
In addition, the method of introducing both the acidic aqueous solution or the aqueous dispersion and the basic aqueous solution simultaneously into a small receiver and forming a precipitate instantaneously is also effective as in the above method. In this method, the generated precipitate or solution remains in the receiver, and when the added acidic aqueous solution or aqueous dispersion and basic aqueous solution are diluted with these, it is impossible to form a precipitate instantaneously. Therefore, a desulfurization agent having a high bulk density cannot be obtained. Therefore, it is important to continuously extract these precipitates or solutions so that they do not remain in the receiver, or to use a sufficiently small receiver.
As a method for improving the bulk density of the desulfurizing agent, there is a compression molding method. This method improves the bulk density by applying a load to the desulfurizing agent, but the pores effective for the desulfurization reaction are crushed, and the surface area and pore volume are reduced. When the surface area and pore volume are reduced, the dispersity of the metal such as nickel, which is the active site, is lost, and the adsorption point of the sulfur compound is reduced, which may impair the desulfurization function.

以下に本発明の好ましい脱硫剤の1つである、シリカ−アルミナ担体上にニッケル−銅を担持させてなる、嵩密度が1g/cm3以上の脱硫剤を共沈法によって製造する方法を具体例として詳細に説明する。
まずニッケル源、アルミニウム源、及び銅源を含む酸性水溶液又は酸性水性分散液と、ケイ素源及び無機塩基を含む塩基性水溶液を調製する。前者の酸性水溶液又は酸性水分散液に用いられるニッケル源としては、例えば塩化ニッケル、硝酸ニッケル、硫酸ニッケル、酢酸ニッケル、炭酸ニッケル及びこれらの水和物などが挙げられる。また銅源としては、例えば塩化銅、硝酸銅、硫酸銅、酢酸銅及びこれらの水和物などが挙げられる。更にアルミニウム源としては、硝酸アルミニウム、擬ベーマイト、ベーマイトアルミナ、バイヤライト、ジブサイトなどのアルミナ水和物や、γ−アルミナなどが挙げられる。
一方、塩基性水溶液に用いられるケイ素源としては、アルカリ水溶液に可溶であって、焼成によりシリカになるものであればよく、特に制限されず、例えばオルトケイ酸、メタケイ酸及びそれらのナトリウム塩やカリウム塩、水ガラスなどが挙げられる。また、無機塩基としては、アルカリ金属の炭酸塩や水酸化物などが挙げられる。
A specific example of a method for producing a desulfurization agent having a bulk density of 1 g / cm 3 or more by supporting nickel-copper on a silica-alumina support, which is one of the preferred desulfurization agents of the present invention, is described below. This will be described in detail as an example.
First, an acidic aqueous solution or acidic aqueous dispersion containing a nickel source, an aluminum source, and a copper source, and a basic aqueous solution containing a silicon source and an inorganic base are prepared. Examples of the nickel source used in the former acidic aqueous solution or acidic aqueous dispersion include nickel chloride, nickel nitrate, nickel sulfate, nickel acetate, nickel carbonate, and hydrates thereof. Examples of the copper source include copper chloride, copper nitrate, copper sulfate, copper acetate, and hydrates thereof. Furthermore, examples of the aluminum source include alumina hydrates such as aluminum nitrate, pseudoboehmite, boehmite alumina, bayerite, and dibsite, and γ-alumina.
On the other hand, the silicon source used in the basic aqueous solution is not particularly limited as long as it is soluble in an alkaline aqueous solution and becomes silica upon firing. For example, orthosilicic acid, metasilicic acid and their sodium salts A potassium salt, water glass, etc. are mentioned. Examples of the inorganic base include alkali metal carbonates and hydroxides.

次に、上記酸性水溶液又は酸性水性分散液と塩基性水溶液を用いて、上述の同時添加法で生成した沈殿物を充分に洗浄したのち固液分離するか、あるいは生成した沈殿物を固液分離したのち充分に洗浄し、次いで、この沈殿物を公知の方法により80〜150℃程度の温度で乾燥処理する。このようにして得られた乾燥処理物を、好ましくは200〜400℃の範囲の温度において焼成することにより、シリカ−アルミナ担体上に金属成分が担持された脱硫剤が得られる。
なお、担体として、シリカ−アルミナ以外の担体を用いる場合も、上記の方法に準じて高嵩密度の脱硫剤を得ることができる。
本発明の脱硫剤の成型方法としては、通常使用される成型方法を用いることができるが、押出し成型もしくは乾燥物の粗砕、破砕による成型方法を用いることが好ましい。脱硫剤の嵩密度を向上させることを考慮した場合には、圧縮成型法が有効であるが、上述のように脱硫反応に有効な細孔が潰れてしまい、表面積及び細孔容積が低下する場合がある。
Next, using the acidic aqueous solution or acidic aqueous dispersion and basic aqueous solution, the precipitate generated by the simultaneous addition method described above is thoroughly washed and then separated into solid or liquid, or the produced precipitate is separated into solid and liquid. Then, it is thoroughly washed, and then this precipitate is dried at a temperature of about 80 to 150 ° C. by a known method. The dried product thus obtained is preferably calcined at a temperature in the range of 200 to 400 ° C. to obtain a desulfurization agent having a metal component supported on a silica-alumina support.
Even when a carrier other than silica-alumina is used as the carrier, a high bulk density desulfurization agent can be obtained according to the above method.
As a molding method of the desulfurizing agent of the present invention, a commonly used molding method can be used. However, it is preferable to use a molding method by extrusion molding, or crushing or crushing a dried product. When considering increasing the bulk density of the desulfurizing agent, the compression molding method is effective, but as described above, the pores effective for the desulfurization reaction are crushed and the surface area and pore volume are reduced. There is.

また、本発明の脱硫剤は、0.15mmol/g以上の水素吸着量を有することが好ましい。この水素吸着量が0.15mmol/g以上であると、脱硫に必要な活性点数が十分あり、高い脱硫性能が得られる。
なお、上記方法で得られた脱硫剤を更に還元処理して、金属ニッケルの量及び水素吸着量を制御するには、当業界において通常用いられる方法が適宜用いられる。該還元処理は、燃料電池用水素の製造においては、その脱硫処理工程の直前に行うか、あるいは脱硫剤製造工程終了後に行う。脱硫剤製造後に還元を行う場合には、空気、希釈酸素、二酸化炭素などを用いて脱硫剤の最表面を酸化処理する、いわゆる安定化処理を行うことが好ましい。この安定化処理脱硫剤を用いる場合には、脱硫反応器に充填した後、再度還元処理を行うことが必要である。還元処理を行った後は不活性ガス、脱硫灯油で封入するとよい。
The desulfurizing agent of the present invention preferably has a hydrogen adsorption amount of 0.15 mmol / g or more. When the hydrogen adsorption amount is 0.15 mmol / g or more, the number of active sites necessary for desulfurization is sufficient, and high desulfurization performance is obtained.
In addition, in order to further reduce the desulfurizing agent obtained by the above method and control the amount of nickel metal and the amount of hydrogen adsorption, a method usually used in the art is appropriately used. In the production of hydrogen for a fuel cell, the reduction treatment is performed immediately before the desulfurization treatment step or after the completion of the desulfurization agent production step. When the reduction is performed after the production of the desulfurizing agent, it is preferable to perform a so-called stabilization treatment in which the outermost surface of the desulfurizing agent is oxidized using air, diluted oxygen, carbon dioxide, or the like. When this stabilizing treatment desulfurizing agent is used, it is necessary to perform reduction treatment again after filling the desulfurization reactor. After performing the reduction treatment, it may be sealed with an inert gas or desulfurized kerosene.

本発明の脱硫剤を用いて脱硫する炭化水素原料及び/又は酸素含有炭化水素原料としては、特に限定されるものではないが、例えば灯油、軽油、液化石油ガス(LPG)、ナフサ、ガソリン、天然ガス、ジメチルエーテル等、もしくはこれらの混合物が挙げられる。これらのうち、本発明の脱硫剤を適用するのに好適な原料としては灯油及び、液化石油ガス(LPG)が好ましく、特に灯油においては、硫黄分含有量が80質量ppm以下のJIS1号灯油が好ましい。このJIS1号灯油は、原油を常圧蒸留して得た粗灯油を脱硫することにより得られるもので、該粗灯油は、通常硫黄分が多く、そのままではJIS1号灯油とはならず、硫黄分を低減させる必要がある。この硫黄分を低減させる方法としては、一般に工業的に実施されている水素化精製法で脱硫処理するのが好ましい。この場合、脱硫触媒として、通常ニッケル、コバルト、モリブデン、タングステンなどの遷移金属を適当な割合で混合したものを金属、酸化物、硫化物などの形態でアルミナを主成分とする担体に担持させたものが用いられる。反応条件は、例えば反応温度250〜400℃、圧力2〜10MPa・G、水素/油モル比2〜10、液空間速度(LHSV)1〜5hr-1などの条件が用いられる。 The hydrocarbon raw material and / or the oxygen-containing hydrocarbon raw material to be desulfurized using the desulfurizing agent of the present invention is not particularly limited. For example, kerosene, light oil, liquefied petroleum gas (LPG), naphtha, gasoline, natural Examples thereof include gas, dimethyl ether, and the like, or a mixture thereof. Of these, kerosene and liquefied petroleum gas (LPG) are preferred as raw materials suitable for applying the desulfurizing agent of the present invention. In particular, kerosene is JIS No. 1 kerosene having a sulfur content of 80 mass ppm or less. preferable. This JIS No. 1 kerosene is obtained by desulfurizing crude kerosene obtained by atmospheric distillation of crude oil. The crude kerosene usually has a high sulfur content, and as such, it does not become JIS No. 1 kerosene, Need to be reduced. As a method for reducing the sulfur content, it is preferable to perform a desulfurization treatment by a hydrorefining method which is generally carried out industrially. In this case, as a desulfurization catalyst, usually a mixture of transition metals such as nickel, cobalt, molybdenum, tungsten, etc., mixed at an appropriate ratio is supported on a carrier mainly composed of alumina in the form of metal, oxide, sulfide or the like. Things are used. As the reaction conditions, for example, the reaction temperature is 250 to 400 ° C., the pressure is 2 to 10 MPa · G, the hydrogen / oil molar ratio is 2 to 10, and the liquid space velocity (LHSV) is 1 to 5 hr −1 .

本発明の脱硫剤を用いて、炭化水素原料及び/又は酸素含有炭化水素原料を脱硫する条件としては、該原料の性状に応じて適宜選択することができ、特に限定されないが、通常−40〜300℃の範囲で脱硫することができる。該原料として炭化水素、例えばJIS1号灯油を用い、液相で本発明の脱硫剤を充填した脱硫塔中を上向き又は下向きの流れで通過させて脱硫する場合には、温度130〜230℃程度、圧力常圧〜1Mpa・G程度、液空間速度(LHSV)が2hr-1よりも速い速度の条件で脱硫処理することが好ましい。この際、必要により、少量の水素を共存させてもよい。脱硫条件を上記範囲で適当に選択することにより、硫黄分0.2ppm以下の炭化水素を得ることができる。 The conditions for desulfurizing the hydrocarbon raw material and / or the oxygen-containing hydrocarbon raw material using the desulfurizing agent of the present invention can be appropriately selected according to the properties of the raw material, and are not particularly limited, but are usually −40 to 40. Desulfurization can be performed in the range of 300 ° C. When using a hydrocarbon such as JIS No. 1 kerosene as the raw material and passing through a desulfurization tower filled with the desulfurization agent of the present invention in a liquid phase in an upward or downward flow, the temperature is about 130 to 230 ° C. It is preferable to perform the desulfurization treatment under conditions of normal pressure to about 1 Mpa · G and a liquid space velocity (LHSV) higher than 2 hr −1 . At this time, if necessary, a small amount of hydrogen may coexist. By appropriately selecting the desulfurization conditions within the above range, a hydrocarbon having a sulfur content of 0.2 ppm or less can be obtained.

次に本発明の燃料電池用水素の製造方法は、上記のようにして脱硫処理した炭化水素原料及び/又は酸素含有炭化水素原料を、水蒸気改質、部分酸化改質又はオートサーマル改質を行って、より具体的には水蒸気改質触媒、部分酸化改質触媒又はオートサーマル改質触媒と接触させることにより、燃料電池用水素を製造するものである。
ここで用いられる改質触媒としては特に制限はなく、従来から炭化水素の改質触媒として知られている公知のものの中から任意のものを適宜選択して用いることができる。このような改質触媒としては、例えば適当な担体にニッケルやジルコニウム、あるいはルテニウム、ロジウム、白金などの貴金属を担持したものを挙げることができる。上記担持金属は一種でもよく、二種以上を組み合わせてもよい。これらの触媒の中で、ニッケルを担持させたもの(以下、ニッケル系触媒という)とルテニウムを担持させたもの(以下、ルテニウム系触媒という)が好ましく、これらは、水蒸気改質処理、部分酸化改質処理又はオートサーマル改質処理中の炭素析出を抑制する効果が大きい。
上記改質触媒を担持させる担体には、酸化マンガン、酸化セリウム、酸化ジルコニウム等が含まれていることが好ましく、特にこれらのうち少なくとも1種を含む担体が特に好ましい。
Next, the method for producing hydrogen for a fuel cell according to the present invention performs steam reforming, partial oxidation reforming or autothermal reforming on the hydrocarbon raw material and / or oxygen-containing hydrocarbon raw material that has been desulfurized as described above. More specifically, hydrogen for a fuel cell is produced by contacting with a steam reforming catalyst, a partial oxidation reforming catalyst or an autothermal reforming catalyst.
There is no restriction | limiting in particular as a reforming catalyst used here, Arbitrary things can be suitably selected and used from the well-known things conventionally known as a hydrocarbon reforming catalyst. As such a reforming catalyst, for example, a catalyst in which noble metal such as nickel, zirconium, ruthenium, rhodium or platinum is supported on a suitable carrier can be exemplified. The supported metal may be one kind or a combination of two or more kinds. Among these catalysts, those supporting nickel (hereinafter referred to as nickel-based catalyst) and those supporting ruthenium (hereinafter referred to as ruthenium-based catalyst) are preferable. The effect of suppressing carbon deposition during quality treatment or autothermal reforming treatment is great.
The carrier for supporting the reforming catalyst preferably contains manganese oxide, cerium oxide, zirconium oxide or the like, and particularly preferably a carrier containing at least one of these.

ニッケル系触媒の場合、ニッケルの担持量は担体基準で3〜60質量%の範囲が好ましい。この担持量が上記範囲内であると、水蒸気改質触媒、部分酸化改質触媒又はオートサーマル改質触媒の活性が十分に発揮されるとともに、経済的にも有利なものとなる。触媒活性及び経済性などを考慮すると、ニッケルのより好ましい担持量は5〜50質量%であり、特に10〜30質量%の範囲が好ましい。
また、ルテニウム系触媒の場合、ルテニウムの担持量は担体基準で0.05〜20質量%の範囲が好ましい。ルテニウムの担持量が上記範囲内であると、水蒸気改質触媒、部分酸化改質触媒又はオートサーマル改質触媒の活性が十分に発揮されるとともに経済的にも有利なものとなる。触媒活性及び経済性などを考慮すると、ルテニウムのより好ましい担持量は0.05〜15質量%であり、特に0.1〜2質量%の範囲が好ましい。
In the case of a nickel-based catalyst, the supported amount of nickel is preferably in the range of 3 to 60% by mass based on the carrier. When the supported amount is within the above range, the activity of the steam reforming catalyst, the partial oxidation reforming catalyst or the autothermal reforming catalyst is sufficiently exhibited, and it is economically advantageous. In view of catalyst activity and economy, the more preferable amount of nickel is 5 to 50% by mass, and particularly preferably 10 to 30% by mass.
In the case of a ruthenium-based catalyst, the supported amount of ruthenium is preferably in the range of 0.05 to 20% by mass based on the carrier. When the supported amount of ruthenium is within the above range, the activity of the steam reforming catalyst, the partial oxidation reforming catalyst or the autothermal reforming catalyst is sufficiently exhibited and it is economically advantageous. Considering catalytic activity and economic efficiency, the more preferable loading of ruthenium is 0.05 to 15% by mass, and particularly preferably 0.1 to 2% by mass.

水蒸気改質処理における反応条件としては、水蒸気と原料に由来する炭素との比であるスチーム/カーボン(モル比)は、通常1.5〜10の範囲で選定される。スチーム/カーボン(モル比)が1.5以上であると水素の生成量が十分であり、10以下であると過剰の水蒸気を必要としないため、熱ロスが小さく、水素製造が効率的に行える。上記観点から、スチーム/カーボン(モル比)は1.5〜5の範囲であることが好ましく、さらには2〜4の範囲であることが好ましい。
また、水蒸気改質触媒層の入口温度を630℃以下に保って水蒸気改質を行うのが好ましい。入口温度が630℃以下であると、原料の熱分解が起こらないため、炭素ラジカルを経由した触媒あるいは反応管壁への炭素析出が生じにくい。以上の観点から、さらに水蒸気改質触媒層の入口温度は600℃以下であることが好ましい。なお、触媒層出口温度は特に制限はないが、650〜800℃の範囲が好ましい。650℃以上であると水素の生成量が十分であり、800℃以下であると、反応装置を耐熱材料で構成する必要がなく、経済的に好ましい。
As a reaction condition in the steam reforming treatment, steam / carbon (molar ratio), which is a ratio between steam and carbon derived from the raw material, is usually selected in the range of 1.5 to 10. When the steam / carbon (molar ratio) is 1.5 or more, the amount of hydrogen generated is sufficient, and when it is 10 or less, excess water vapor is not required, so heat loss is small and hydrogen production can be performed efficiently. . From the above viewpoint, the steam / carbon (molar ratio) is preferably in the range of 1.5 to 5, and more preferably in the range of 2 to 4.
Moreover, it is preferable to perform steam reforming while maintaining the inlet temperature of the steam reforming catalyst layer at 630 ° C. or lower. When the inlet temperature is 630 ° C. or lower, the raw material is not thermally decomposed, so that carbon deposition through the carbon radicals on the catalyst or the reaction tube wall hardly occurs. From the above viewpoint, the inlet temperature of the steam reforming catalyst layer is preferably 600 ° C. or lower. The catalyst layer outlet temperature is not particularly limited, but is preferably in the range of 650 to 800 ° C. When the temperature is 650 ° C. or higher, the amount of hydrogen generated is sufficient, and when it is 800 ° C. or lower, the reaction apparatus does not need to be made of a heat-resistant material, which is economically preferable.

部分酸化改質処理における反応条件としては、通常、圧力は常圧〜5MPa・G、温度は400〜1100℃、酸素(O2)/カーボン(モル比)は0.2〜0.8、液空間速度(LHSV)は0.1〜100hr-1の条件が採用される。
また、オートサーマル改質処理における反応条件としては、通常、圧力は常圧〜5MPa・G、温度は400〜1100℃、スチーム/カーボン(モル比)は0.1〜10、酸素(O2)/カーボン(モル比)は0.1〜1、液空間速度(LHSV)は0.1〜2hr-1、ガス空間速度(GHSV)は1000〜100000hr-1の条件が採用される。
なお、上記水蒸気改質、部分酸化改質又はオートサーマル改質により得られるCOが水素生成に悪影響を及ぼすため、COを反応によりCO2に変換して除くことが好ましい。このように、本発明の方法によれば、燃料電池用水素を効率よく製造することができる。
液体の原料を使用する燃料電池システムは、通常、原料供給装置、脱硫装置、改質装置、燃料電池から構成され、上記本発明の方法によって製造された水素は燃料電池に供給される。
As reaction conditions in the partial oxidation reforming treatment, the pressure is usually normal pressure to 5 MPa · G, the temperature is 400 to 1100 ° C., the oxygen (O 2 ) / carbon (molar ratio) is 0.2 to 0.8, and the liquid The space velocity (LHSV) is 0.1 to 100 hr −1 .
As reaction conditions in the autothermal reforming treatment, the pressure is usually normal pressure to 5 MPa · G, the temperature is 400 to 1100 ° C., the steam / carbon (molar ratio) is 0.1 to 10, and oxygen (O 2 ). / Carbon (molar ratio) is 0.1 to 1, liquid space velocity (LHSV) is 0.1 to 2 hr −1 , and gas space velocity (GHSV) is 1000 to 100,000 hr −1 .
In addition, since CO obtained by the steam reforming, partial oxidation reforming or autothermal reforming adversely affects hydrogen generation, it is preferable to convert CO to CO 2 by reaction and remove it. Thus, according to the method of the present invention, hydrogen for fuel cells can be produced efficiently.
A fuel cell system using a liquid raw material is usually composed of a raw material supply device, a desulfurization device, a reforming device, and a fuel cell, and hydrogen produced by the method of the present invention is supplied to the fuel cell.

次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
(評価方法)
灯油及び液化石油ガス(LPG)の脱硫試験によって、実施例1〜5及び比較例1〜3で製造される脱硫剤の脱硫性能を評価した。
(1)灯油の脱硫試験
(ア)16時間経過後の硫黄濃度(質量ppm)
各実施例及び比較例で製造される脱硫剤15ccを内径17mmのSUS製反応管に充填した。常圧下、水素気流中120℃に昇温し、30分保持した。その後、さらに1時間かけて300℃まで昇温し、300℃で3時間保持して脱硫剤を活性化した。その後、温度を180℃に降温し、該温度で保持した。ついで、第1表に示す性状を有するJIS−1号灯油を常圧下、液空間速度(SV)20hr-1で反応管に流通させた。16時間経過後の硫黄濃度によって脱硫性能を評価した。
(イ)脱硫剤の寿命
実施例1及び比較例1で製造される脱硫剤について、上記と同様に反応管に充填し、同様の方法で活性化した。その後、第1表に示す性状を有するJIS−1号灯油を常圧下、液空間速度(SV)3hr-1で反応管に流通させた。灯油の脱硫率が0.2質量ppmを越えるまでの時間で脱硫剤の寿命を評価した。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
(Evaluation methods)
By the desulfurization test of kerosene and liquefied petroleum gas (LPG), the desulfurization performance of the desulfurization agents produced in Examples 1 to 5 and Comparative Examples 1 to 3 was evaluated.
(1) Desulfurization test of kerosene (A) Sulfur concentration after 16 hours (mass ppm)
A SUS reaction tube having an inner diameter of 17 mm was filled with 15 cc of the desulfurizing agent produced in each example and comparative example. Under normal pressure, the temperature was raised to 120 ° C. in a hydrogen stream and held for 30 minutes. Thereafter, the temperature was further raised to 300 ° C. over 1 hour and maintained at 300 ° C. for 3 hours to activate the desulfurizing agent. Thereafter, the temperature was lowered to 180 ° C. and kept at that temperature. Subsequently, JIS-1 kerosene having the properties shown in Table 1 was circulated through the reaction tube at a liquid space velocity (SV) of 20 hr -1 under normal pressure. Desulfurization performance was evaluated by the sulfur concentration after 16 hours.
(I) Life of desulfurization agent About the desulfurization agent manufactured in Example 1 and Comparative Example 1, it filled with the reaction tube similarly to the above, and activated by the same method. Thereafter, JIS-1 kerosene having the properties shown in Table 1 was circulated through the reaction tube at a liquid space velocity (SV) of 3 hr -1 under normal pressure. The life of the desulfurizing agent was evaluated by the time until the desulfurization rate of kerosene exceeded 0.2 mass ppm.

Figure 2010001480
Figure 2010001480

(2)液化石油ガス(LPG)の脱硫試験
実施例1で製造される脱硫剤15ccを内径17mmのSUS製反応管に充填した。常圧下、水素気流中120℃に昇温し、30分保持した。その後、さらに1時間かけて300℃まで昇温し、300℃で3時間保持して脱硫剤を活性化した。その後、温度を180℃に降温し、該温度で保持した。ついで、第2表に示す性状を有するJIS−1種−1号LPGを常圧下、ガス空間速度(SV)4000hr-1で反応管に流通させた。800時間経過後の硫黄濃度を分析し、脱硫率で脱硫性能を評価した。
(2) Desulfurization test of liquefied petroleum gas (LPG) 15 cc of the desulfurizing agent produced in Example 1 was charged into a SUS reaction tube having an inner diameter of 17 mm. Under normal pressure, the temperature was raised to 120 ° C. in a hydrogen stream and held for 30 minutes. Thereafter, the temperature was further raised to 300 ° C. over 1 hour and maintained at 300 ° C. for 3 hours to activate the desulfurizing agent. Thereafter, the temperature was lowered to 180 ° C. and kept at that temperature. Subsequently, JIS-1 type-1 No. LPG having the properties shown in Table 2 was circulated through the reaction tube at a gas space velocity (SV) of 4000 hr -1 under normal pressure. The sulfur concentration after 800 hours was analyzed, and the desulfurization performance was evaluated by the desulfurization rate.

Figure 2010001480
Figure 2010001480

実施例1
硫酸ニッケル・6水和物(特級、和光純薬株式会社製)360.1gおよび硫酸銅・5水和物(特級、和光純薬株式会社製)85.2gを80℃に加温したイオン交換水4Lに溶解し、これに擬ベーマイト(C−AP、Al23として67質量%、触媒化成工業株式会社製)を7.2g混合し調製液Aを得た。
次に、別に用意した、80℃に加温したイオン交換水4Lに炭酸ナトリウム300.0gを溶解し、水ガラス93.6g(J−1号、Si濃度29質量%、日本化学工業株式会社製)を加えて、調製液Bを得た。
調製液A,Bの温度をそれぞれ80℃に保ちながら、両者を内径8mm、長さ10cmのステンレス製反応管に導入し、沈殿ケーキを得た(同時添加法)。その後、イオン交換水60Lを用いて沈殿ケーキの洗浄・ろ過を行い、120℃送風乾燥機にて生成物を12時間乾燥した。該乾燥物を、めのう乳鉢を用いて粉砕することで平均粒径を0.8mmとし、その後350℃で3時間焼成して脱硫剤aを得た。
該脱硫剤aのニッケル含有量(NiO換算)は64質量%、銅含有量(CuO換算)は16質量%、担体であるシリカ−アルミナ量は20質量%、Si/Al比(原子比)は4.8であった。また脱硫剤aの嵩密度を、該脱硫剤を5cm3のメスシリンダーに充填し、その質量を測定する方法にて行ったところ、1.5g/cm3であった。
該脱硫剤aを上記評価方法によって評価した。結果を第3表及び第4表に示す。
Example 1
Ion exchange in which nickel sulfate hexahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) 360.1 g and copper sulfate pentahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) 85.2 g were heated to 80 ° C. was dissolved in water 4L, give this pseudoboehmite (C-AP, 67 wt% as Al 2 O 3, catalysts & Chemicals Industries Co., Ltd.) was 7.2g mixture preparation a.
Next, 300.0 g of sodium carbonate was dissolved in 4 L of ion-exchanged water heated to 80 ° C. separately, and 93.6 g of water glass (No. J-1, Si concentration 29 mass%, manufactured by Nippon Chemical Industry Co., Ltd.) ) Was added to obtain Preparation B.
While maintaining the temperature of each of preparation solutions A and B at 80 ° C., both were introduced into a stainless steel reaction tube having an inner diameter of 8 mm and a length of 10 cm to obtain a precipitation cake (simultaneous addition method). Thereafter, the precipitated cake was washed and filtered using 60 L of ion-exchanged water, and the product was dried for 12 hours with a 120 ° C. blower dryer. The dried product was pulverized using an agate mortar to adjust the average particle size to 0.8 mm, and then calcined at 350 ° C. for 3 hours to obtain a desulfurizing agent a.
The desulfurization agent a has a nickel content (NiO equivalent) of 64% by mass, a copper content (CuO equivalent) of 16% by mass, a silica-alumina content of the carrier of 20% by mass, and a Si / Al ratio (atomic ratio) of 4.8. The bulk density of the desulfurizing agent a was 1.5 g / cm 3 when the desulfurizing agent was filled in a 5 cm 3 graduated cylinder and its mass was measured.
The desulfurizing agent a was evaluated by the above evaluation method. The results are shown in Tables 3 and 4.

比較例1
実施例1に記載されるのと同様の方法で調製液A及びBを得た。調製液A,Bの温度をそれぞれ80℃に保ちながら、調製液Aに調製液Bを10分間かけて滴下し、沈殿ケーキを得た(正添加法)。その後、イオン交換水60Lを用いて沈殿ケーキの洗浄・ろ過を行い、120℃送風乾燥機にて生成物を12時間乾燥した。該乾燥物を、めのう乳鉢を用いて粉砕することで平均粒径を0.8mmとし、その後350℃で3時間焼成して脱硫剤bを得た。
該脱硫剤bのニッケル含有量(NiO換算)は64質量%、銅含有量(CuO換算)は16質量%、担体であるシリカ−アルミナ量は20質量%、Si/Al比(原子比)は4.8であった。また実施例1に記載するのと同様の方法で嵩密度を測定したところ、0.9g/cm3であった。
該脱硫剤bを上記評価方法によって評価した。結果を第3表及び第4表に示す。
Comparative Example 1
Preparation solutions A and B were obtained in the same manner as described in Example 1. While maintaining the temperature of each of the preparation liquids A and B at 80 ° C., the preparation liquid B was added dropwise to the preparation liquid A over 10 minutes to obtain a precipitated cake (positive addition method). Thereafter, the precipitated cake was washed and filtered using 60 L of ion-exchanged water, and the product was dried for 12 hours with a 120 ° C. blower dryer. The dried product was pulverized using an agate mortar to obtain an average particle size of 0.8 mm, and then calcined at 350 ° C. for 3 hours to obtain a desulfurizing agent b.
The desulfurizing agent b has a nickel content (NiO equivalent) of 64% by mass, a copper content (CuO equivalent) of 16% by mass, a silica-alumina content of the support of 20% by mass, and a Si / Al ratio (atomic ratio) of 4.8. Moreover, when the bulk density was measured by the method similar to that described in Example 1, it was 0.9 g / cm 3 .
The desulfurizing agent b was evaluated by the above evaluation method. The results are shown in Tables 3 and 4.

実施例2
硫酸ニッケル・6水和物(特級、和光純薬株式会社製)450.1gを80℃に加温したイオン交換水4Lに溶解し、これに擬ベーマイト(C−AP、Al23として67質量%、触媒化成工業株式会社製)を7.2g混合し調製液Cを得た。また、実施例1に記載されると同様の方法で調製液Bを得た。
調製液C,Bを用いて実施例1に記載されるのと同様の方法(同時添加法)で脱硫剤cを得た。該脱硫剤cのニッケル含有量(NiO換算)は80質量%、担体であるシリカ−アルミナ量は20質量%、Si/Al比(原子比)は4.8であった。また実施例1に記載するのと同様の方法で嵩密度を測定したところ、1.5g/cm3であった。
該脱硫剤cを上記評価方法によって評価した。結果を第3表及び第4表に示す。
Example 2
Nickel sulfate hexahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) 450.1 g was dissolved in 4 L of ion-exchanged water heated to 80 ° C., and pseudo boehmite (C-AP, Al 2 O 3 as 67 Preparation liquid C was obtained by mixing 7.2 g of mass%, produced by Catalyst Chemical Industry Co., Ltd. Moreover, the preparation liquid B was obtained by the same method as described in Example 1.
A desulfurization agent c was obtained by the same method (simultaneous addition method) as described in Example 1 using Preparation Solutions C and B. The desulfurization agent c had a nickel content (NiO equivalent) of 80% by mass, the amount of silica-alumina as a support was 20% by mass, and the Si / Al ratio (atomic ratio) was 4.8. Moreover, when the bulk density was measured by the method similar to that described in Example 1, it was 1.5 g / cm 3 .
The desulfurizing agent c was evaluated by the above evaluation method. The results are shown in Tables 3 and 4.

実施例3
硫酸ニッケル・6水和物(特級、和光純薬株式会社製)433.2gおよび硫酸銅・5水和物(特級、和光純薬株式会社製)16.0gを80℃に加温したイオン交換水4Lに溶解し、調製液Dを得た。
次に、別に用意した、80℃に加温したイオン交換水4Lに炭酸ナトリウム300.0gを溶解し、水ガラス108.4g(J−1号、Si濃度29質量%、日本化学工業株式会社製)を加えて、調製液Eを得た。
調製液D,Eを用いて実施例1に記載されるのと同様の方法(同時添加法)で脱硫剤dを得た。該脱硫剤dのニッケル含有量(NiO換算)は77質量%、銅含有量(CuO換算)は3質量%、担体であるシリカ含有量は20質量%であった。また実施例1に記載するのと同様の方法で嵩密度を測定したところ、1.5g/cm3であった。
該脱硫剤dを上記評価方法によって評価した。結果を第3表及び第4表に示す。
Example 3
Ion exchange in which 433.2 g of nickel sulfate hexahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and 16.0 g of copper sulfate pentahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) were heated to 80 ° C. Dissolved in 4 L of water to obtain Preparation Liquid D.
Next, 300.0 g of sodium carbonate was dissolved in 4 L of ion-exchanged water heated to 80 ° C. separately, and 108.4 g of water glass (No. J-1, Si concentration 29 mass%, manufactured by Nippon Chemical Industry Co., Ltd.) ) Was added to obtain Preparation E.
Desulfurization agent d was obtained by the same method (simultaneous addition method) as described in Example 1 using Preparation Solutions D and E. The desulfurization agent d had a nickel content (NiO equivalent) of 77% by mass, a copper content (CuO equivalent) of 3% by mass, and a silica content as a support of 20% by mass. Moreover, when the bulk density was measured by the method similar to that described in Example 1, it was 1.5 g / cm 3 .
The desulfurizing agent d was evaluated by the above evaluation method. The results are shown in Tables 3 and 4.

実施例4
硫酸ニッケル・6水和物(特級、和光純薬株式会社製)405.1gおよび硫酸銅・5水和物(特級、和光純薬株式会社製)42.6gを80℃に加温したイオン交換水4Lに溶解し、調製液Fを得た。また、実施例3に記載されると同様の方法で調製液Eを得た。
調製液F,Eを用いて実施例1に記載されるのと同様の方法(同時添加法)で脱硫剤eを得た。該脱硫剤eのニッケル含有量(NiO換算)は72質量%、銅含有量(CuO換算)は8質量%、担体であるシリカ含有量は20質量%であった。また実施例1に記載するのと同様の方法で嵩密度を測定したところ、1.5g/cm3であった。
該脱硫剤eを上記評価方法によって評価した。結果を第3表及び第4表に示す。
Example 4
Ion exchange with 405.1 g of nickel sulfate hexahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and 42.6 g of copper sulfate pentahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) heated to 80 ° C. Dissolved in 4 L of water to obtain Preparation Liquid F. Also, Preparation E was obtained in the same manner as described in Example 3.
A desulfurization agent e was obtained by the same method (simultaneous addition method) as described in Example 1 using Preparation Solutions F and E. The desulfurization agent e had a nickel content (NiO equivalent) of 72% by mass, a copper content (CuO equivalent) of 8% by mass, and a silica content as a support of 20% by mass. Moreover, when the bulk density was measured by the method similar to that described in Example 1, it was 1.5 g / cm 3 .
The desulfurizing agent e was evaluated by the above evaluation method. The results are shown in Tables 3 and 4.

実施例5
硫酸ニッケル・6水和物(特級、和光純薬株式会社製)281.3gおよび硫酸銅・5水和物(特級、和光純薬株式会社製)160.0gを80℃に加温したイオン交換水4Lに溶解し、これに擬ベーマイト(C−AP、Al23として67質量%、触媒化成工業株式会社製)を7.2g混合し調製液Gを得た。また、実施例1に記載されると同様の方法で調製液Bを得た。
調製液G,Bを用いて実施例1に記載されるのと同様の方法(同時添加法)で脱硫剤fを得た。該脱硫剤fのニッケル含有量(NiO換算)は50質量%、銅含有量(CuO換算)は30質量%、担体であるシリカ−アルミナ量は20質量%、Si/Al比(原子比)は4.8であった。また実施例1に記載するのと同様の方法で嵩密度を測定したところ、1.5g/cm3であった。
該脱硫剤fを上記評価方法によって評価した。結果を第3表及び第4表に示す。
Example 5
Ion exchange in which 281.3 g of nickel sulfate hexahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and 160.0 g of copper sulfate pentahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) were heated to 80 ° C. Dissolved in 4 L of water, 7.2 g of pseudo boehmite (67 mass% as C-AP, Al 2 O 3 , manufactured by Catalytic Chemical Industry Co., Ltd.) was mixed therewith to obtain Preparation G. Moreover, the preparation liquid B was obtained by the same method as described in Example 1.
A desulfurizing agent f was obtained by the same method (simultaneous addition method) as described in Example 1 using the preparations G and B. The nickel content (NiO equivalent) of the desulfurizing agent f is 50% by mass, the copper content (CuO equivalent) is 30% by mass, the amount of silica-alumina as a carrier is 20% by mass, and the Si / Al ratio (atomic ratio) is 4.8. Moreover, when the bulk density was measured by the method similar to that described in Example 1, it was 1.5 g / cm 3 .
The desulfurizing agent f was evaluated by the above evaluation method. The results are shown in Tables 3 and 4.

比較例2
実施例5で調製された調製液Gと実施例1で調製された調製液Bを用いて、比較例1に記載されるのと同様の方法(正添加法)で脱硫剤gを得た。該脱硫剤gのニッケル含有量(NiO換算)は50質量%、銅含有量(CuO換算)は30質量%、担体であるシリカ−アルミナ量は20質量%、Si/Al比(原子比)は4.8であった。また実施例1に記載するのと同様の方法で嵩密度を測定したところ、0.9g/cm3であった。
該脱硫剤gを上記評価方法によって評価した。結果を第3表及び第4表に示す。
Comparative Example 2
Using the preparation liquid G prepared in Example 5 and the preparation liquid B prepared in Example 1, a desulfurization agent g was obtained by the same method (positive addition method) as described in Comparative Example 1. The desulfurization agent g has a nickel content (NiO equivalent) of 50% by mass, a copper content (CuO equivalent) of 30% by mass, a silica-alumina content as a support of 20% by mass, and a Si / Al ratio (atomic ratio) of 4.8. Moreover, when the bulk density was measured by the method similar to that described in Example 1, it was 0.9 g / cm 3 .
The desulfurizing agent g was evaluated by the above evaluation method. The results are shown in Tables 3 and 4.

比較例3
実施例3で調製された調製液D及び調製液Eを用いて、比較例1に記載されるのと同様の方法(正添加法)で脱硫剤hを得た。該脱硫剤hのニッケル含有量(NiO換算)は77質量%、銅含有量(CuO換算)は3質量%、担体であるシリカ含有量は20質量%であった。また実施例1に記載するのと同様の方法で嵩密度を測定したところ、0.9g/cm3であった。
該脱硫剤hを上記評価方法によって評価した。結果を第3表及び第4表に示す。
Comparative Example 3
Using the preparation liquid D and the preparation liquid E prepared in Example 3, a desulfurization agent h was obtained by the same method (positive addition method) as described in Comparative Example 1. The desulfurization agent h had a nickel content (NiO equivalent) of 77% by mass, a copper content (CuO equivalent) of 3% by mass, and a silica content as a support of 20% by mass. Moreover, when the bulk density was measured by the method similar to that described in Example 1, it was 0.9 g / cm 3 .
The desulfurizing agent h was evaluated by the above evaluation method. The results are shown in Tables 3 and 4.

Figure 2010001480
Figure 2010001480

Figure 2010001480
Figure 2010001480

本発明の脱硫剤は、炭化水素原料及び/又は酸素含有炭化水素原料中の硫黄分を極めて低濃度まで効率よく除去することができ、比較的少量の容積で十分な脱硫性能を有するため、原料供給装置、脱硫装置、改質装置、燃料電池から構成される通常の燃料電池システムの脱硫装置に適用した場合に、該脱硫装置をコンパクトにすることができる。また本発明の脱硫剤はその寿命が長いため、長期間にわたって改質装置の触媒を高活性な状態に保つことができ、燃料電池用の水素を効率的に製造することができる。   The desulfurization agent of the present invention can efficiently remove sulfur content in a hydrocarbon raw material and / or oxygen-containing hydrocarbon raw material to a very low concentration and has a sufficient desulfurization performance with a relatively small volume. When applied to a desulfurization device of a normal fuel cell system composed of a supply device, a desulfurization device, a reforming device, and a fuel cell, the desulfurization device can be made compact. Further, since the desulfurization agent of the present invention has a long life, the catalyst of the reformer can be maintained in a highly active state for a long period of time, and hydrogen for fuel cells can be produced efficiently.

Claims (11)

炭化水素原料及び/又は酸素含有炭化水素原料中の硫黄化合物を、脱硫時に水素を添加しないで除去する脱硫剤であって、ニッケルを含有し、嵩密度が1g/cm3以上であり、かつ表面積が150〜350m2/gの範囲であることを特徴とする脱硫剤。 A desulfurization agent for removing sulfur compounds in hydrocarbon raw materials and / or oxygen-containing hydrocarbon raw materials without adding hydrogen during desulfurization, containing nickel, having a bulk density of 1 g / cm 3 or more, and a surface area Is in the range of 150 to 350 m 2 / g. 嵩密度が1.2g/cm3以上2.0g/cm3以下である請求項1記載の脱硫剤。 The desulfurization agent according to claim 1, wherein the bulk density is 1.2 g / cm 3 or more and 2.0 g / cm 3 or less. さらに担体を含有する請求項1又は2に記載の脱硫剤。 Furthermore, the desulfurization agent of Claim 1 or 2 containing a support | carrier. ニッケルの含有量がNiO(酸化ニッケル)の換算量として、50〜90質量%の範囲である請求項1〜3のいずれかに記載の脱硫剤。 The desulfurization agent according to any one of claims 1 to 3, wherein the nickel content is in the range of 50 to 90 mass% as a conversion amount of NiO (nickel oxide). さらに銅を含有し、銅の含有量がCuO(酸化銅)換算量として40質量%以下である請求項1〜4のいずれかに記載の脱硫剤。 The desulfurization agent according to any one of claims 1 to 4, further comprising copper, wherein the copper content is 40% by mass or less in terms of CuO (copper oxide). 担体がシリカ、アルミナ及びシリカ−アルミナから選ばれる少なくとも1種を含有する請求項3〜5のいずれかに記載の脱硫剤。 The desulfurization agent according to any one of claims 3 to 5, wherein the carrier contains at least one selected from silica, alumina, and silica-alumina. 炭化水素原料及び/又は酸素含有炭化水素原料が灯油、軽油、液化石油ガス(LPG)、ナフサ、ガソリン、天然ガス及びジメチルエーテルから選ばれる少なくとも1種である請求項1〜6のいずれかに記載の脱硫剤。 The hydrocarbon raw material and / or the oxygen-containing hydrocarbon raw material is at least one selected from kerosene, light oil, liquefied petroleum gas (LPG), naphtha, gasoline, natural gas, and dimethyl ether. Desulfurization agent. ニッケルを含有する酸性溶液又は酸性水性分散液と、ケイ素及び無機塩基を含有する塩基性溶液とを混合し、瞬時に沈殿を形成させる嵩密度が1g/cm3以上で、脱硫時に水素を添加しないで脱硫する脱硫剤の製造方法。 Mixing an acidic solution or acidic aqueous dispersion containing nickel with a basic solution containing silicon and an inorganic base, the bulk density at which a precipitate is instantly formed is 1 g / cm 3 or more, and no hydrogen is added during desulfurization. Of producing a desulfurizing agent by desulfurization at a temperature 酸性溶液又は酸性水性分散液と塩基性溶液との混合及び沈殿の形成を内径3〜100mmの反応管内で行うことを特徴とする請求項8に記載の脱硫剤の製造方法。 The method for producing a desulfurizing agent according to claim 8, wherein the mixing of the acidic solution or the acidic aqueous dispersion and the basic solution and the formation of the precipitate are performed in a reaction tube having an inner diameter of 3 to 100 mm. 酸性溶液又は酸性水性分散液にさらに銅及びアルミニウムを含有する請求項8又は9に記載の脱硫剤の製造方法。 The method for producing a desulfurizing agent according to claim 8 or 9, further comprising copper and aluminum in the acidic solution or the acidic aqueous dispersion. 請求項1〜7のいずれかに記載の脱硫剤を用いて、−40〜300℃の範囲の温度で炭化水素原料及び/又は酸素含有炭化水素原料の脱硫をすることを特徴とする脱硫方法。 A desulfurization method comprising desulfurizing a hydrocarbon raw material and / or an oxygen-containing hydrocarbon raw material at a temperature in the range of -40 to 300 ° C using the desulfurizing agent according to any one of claims 1 to 7.
JP2009169049A 2009-07-17 2009-07-17 Desulfurizing agent and desulfurization method using the same Pending JP2010001480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009169049A JP2010001480A (en) 2009-07-17 2009-07-17 Desulfurizing agent and desulfurization method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009169049A JP2010001480A (en) 2009-07-17 2009-07-17 Desulfurizing agent and desulfurization method using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003334884A Division JP4521172B2 (en) 2003-09-26 2003-09-26 Desulfurization agent and desulfurization method using the same

Publications (1)

Publication Number Publication Date
JP2010001480A true JP2010001480A (en) 2010-01-07

Family

ID=41583440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009169049A Pending JP2010001480A (en) 2009-07-17 2009-07-17 Desulfurizing agent and desulfurization method using the same

Country Status (1)

Country Link
JP (1) JP2010001480A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254275A (en) * 2006-02-24 2007-10-04 Cosmo Oil Co Ltd Desulfurizing agent for hydrocarbon
CN115634559A (en) * 2021-12-31 2023-01-24 山东庚辰环保新材料有限公司 Wet desulfurization device, process and application

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315628A (en) * 1992-04-06 1994-11-15 Nippon Oil Co Ltd Production of fuel gas for fuel cell
JP2001279259A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery
JP2001342465A (en) * 2000-03-31 2001-12-14 Idemitsu Kosan Co Ltd Desulfurizer for petroleum hydrocarbon and method of producing hydrogen for fuel cell
JP2001342464A (en) * 2000-03-31 2001-12-14 Idemitsu Kosan Co Ltd Desulfurizer for petroleum hydrocarbon and method of producing hydrogen for fuel cell
JP2003144930A (en) * 2001-11-09 2003-05-20 Nippon Oil Corp Desulfurization catalyst for hydrocarbon, desulfurization method and fuel cell system
JP2003181292A (en) * 2002-12-25 2003-07-02 Chevron Research & Technology Co Highly active catalyst for treating residual oil
JP4521172B2 (en) * 2003-09-26 2010-08-11 出光興産株式会社 Desulfurization agent and desulfurization method using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06315628A (en) * 1992-04-06 1994-11-15 Nippon Oil Co Ltd Production of fuel gas for fuel cell
JP2001279259A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery
JP2001342465A (en) * 2000-03-31 2001-12-14 Idemitsu Kosan Co Ltd Desulfurizer for petroleum hydrocarbon and method of producing hydrogen for fuel cell
JP2001342464A (en) * 2000-03-31 2001-12-14 Idemitsu Kosan Co Ltd Desulfurizer for petroleum hydrocarbon and method of producing hydrogen for fuel cell
JP2003144930A (en) * 2001-11-09 2003-05-20 Nippon Oil Corp Desulfurization catalyst for hydrocarbon, desulfurization method and fuel cell system
JP2003181292A (en) * 2002-12-25 2003-07-02 Chevron Research & Technology Co Highly active catalyst for treating residual oil
JP4521172B2 (en) * 2003-09-26 2010-08-11 出光興産株式会社 Desulfurization agent and desulfurization method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254275A (en) * 2006-02-24 2007-10-04 Cosmo Oil Co Ltd Desulfurizing agent for hydrocarbon
CN115634559A (en) * 2021-12-31 2023-01-24 山东庚辰环保新材料有限公司 Wet desulfurization device, process and application
CN115634559B (en) * 2021-12-31 2023-08-04 山东庚辰环保新材料有限公司 Wet desulfurization device, process and application

Similar Documents

Publication Publication Date Title
CA2601124C (en) Desulfurizing agent and method of desulfurization with the same
EP1270069B1 (en) Use of a desulfurizing agent
TW200836833A (en) Catalyst for carbon monoxide conversion and method of carbon monoxide modification with the same
JP4521172B2 (en) Desulfurization agent and desulfurization method using the same
JP2001279274A (en) Fuel oil for fuel cell, desulfurization method and method for producing hydrogen
JP4322804B2 (en) Method for desulfurizing liquid hydrocarbon and method for producing hydrogen for fuel cell
JP4079743B2 (en) Desulfurizing agent for hydrocarbon-containing gas and method for producing hydrogen for fuel cell
JP2010001480A (en) Desulfurizing agent and desulfurization method using the same
JP2005146054A (en) Desulfurizing agent and desulfurizing method using the same
JP2004075778A (en) Desulfurizing agent for hydrocarbon and method for producing hydrogen for fuel cell
JP2005146054A6 (en) Desulfurization agent and desulfurization method using the same
JP4388665B2 (en) Ni-Cu desulfurizing agent and method for producing hydrogen for fuel cell
JP4580070B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP2008055252A (en) Steam modifying catalyst, hydrogen manufacturing apparatus and fuel cell system
JP5446060B2 (en) Porous material for honeycomb, porous material mixture, suspension for supporting honeycomb, catalyst body, and method for producing mixed reaction gas using the catalyst body
JP4531939B2 (en) Method for producing nickel-copper desulfurization agent
JP2002316043A (en) Desulfurizing agent for organic sulfur compound- containing fuel oil and method of manufacturing hydrogen for fuel cell
JP2001279259A (en) Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery
JP4580071B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP2008297451A (en) Porous desulfurizing agent, and desulfurizing method using the same
JP2005146055A (en) Desulfurizing method and manufacturing method of hydrogen for fuel cell
JP2006117921A (en) Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system
JP2001276605A (en) Desulfurization agent and method of producing hydrogen for fuel cell
JP2003290660A (en) Desulfurizing agent and method for manufacturing hydrogen for fuel battery using it
JP2003290659A (en) Desulfurizing agent and method for manufacturing hydrogen for fuel battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20130219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029