JP2005146055A - Desulfurizing method and manufacturing method of hydrogen for fuel cell - Google Patents

Desulfurizing method and manufacturing method of hydrogen for fuel cell Download PDF

Info

Publication number
JP2005146055A
JP2005146055A JP2003382795A JP2003382795A JP2005146055A JP 2005146055 A JP2005146055 A JP 2005146055A JP 2003382795 A JP2003382795 A JP 2003382795A JP 2003382795 A JP2003382795 A JP 2003382795A JP 2005146055 A JP2005146055 A JP 2005146055A
Authority
JP
Japan
Prior art keywords
desulfurization
ope
nickel
reforming
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003382795A
Other languages
Japanese (ja)
Inventor
Sachiro Shimane
幸朗 島根
Takashi Katsuno
尚 勝野
Kazuhito Saito
一仁 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2003382795A priority Critical patent/JP2005146055A/en
Publication of JP2005146055A publication Critical patent/JP2005146055A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently removing sulfur compounds in hydrocarbon raw materials to a very low concentration for a long period of time, and a method which can keep catalysts for a reforming apparatus in a highly reactive state and can efficiently manufacture hydrogen for fuel cells when applied to a fuel cell system. <P>SOLUTION: The desulfurizing method comprises removing sulfur in the hydrocarbon raw materials using a desulfurizing agent comprising a metal component containing at least nickel supported on a carrier, where the desulfurizing conditions satisfy expressions (I) and (II): 1.06×P<SB>ope</SB><SP>0.44</SP><T<SB>ope</SB>/T<SB>50</SB><1.78×P<SB>ope</SB><SP>0.22</SP>(I); and T<SB>ope</SB>≥230 (II). In the formulae, T<SB>ope</SB>is an operation temperature (°C); P<SB>ope</SB>is an operation pressure (MPa); and T<SB>50</SB>is a 50% distillation temperature obtained by the ordinary pressure distillation test method prescribed in JIS K 2254 petroleum product-distillation test method. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、脱硫方法及び燃料電池用水素の製造方法に関する。詳しくは、炭化水素原料中の硫黄分を極めて低濃度まで効率よく、長期間にわたって除去することができる脱硫方法、及びこの脱硫方法を用いて脱硫処理された炭化水素原料を改質処理し、燃料電池用水素を製造する方法に関する。   The present invention relates to a desulfurization method and a method for producing hydrogen for fuel cells. Specifically, the sulfur content in the hydrocarbon raw material can be efficiently removed to a very low concentration over a long period of time, and the hydrocarbon raw material that has been desulfurized using this desulfurization method is reformed to produce a fuel. The present invention relates to a method for producing hydrogen for batteries.

近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。この燃料電池には、使用する電解質の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物型、固体高分子型などのタイプが知られている。一方、水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、さらには石油系のナフサや灯油などの炭化水素油の使用が研究されている。   In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and has a feature of high energy use efficiency. Alternatively, research into practical use is actively conducted for automobiles and the like. For this fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known depending on the type of electrolyte used. On the other hand, as a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of this natural gas, synthetic liquid fuel using natural gas as a raw material, and carbonization of petroleum naphtha and kerosene, etc. The use of hydrogen oil has been studied.

燃料電池を民生用や自動車用などに利用する場合、上記炭化水素油は常温常圧で液状であって、保管及び取扱いが容易である上、特に石油系のものはガソリンスタンドや販売店など、供給システムが整備されていることから、水素源として有利である。しかしながら、このような炭化水素油は、メタノールや天然ガス系のものに比べて、硫黄分の含有量が多いという問題がある。この炭化水素油を用いて水素を製造する場合、一般に、該炭化水素油を、改質触媒の存在下に水蒸気改質又は部分酸化改質処理する方法が用いられる。このような改質処理においては、上記改質触媒は、炭化水素油中の硫黄分により被毒されるため、触媒寿命の点から、該炭化水素油に脱硫処理を施し、硫黄分含有量を長時間にわたり0.2質量ppm以下に低減させることが必要である。
また、自動車に直接水素を搭載する場合、安全面から水素に付臭物を添加することが検討されており、原料油に存在する硫黄化合物からなる付臭物を極力低濃度にすることも同様に肝要である。
When the fuel cell is used for consumer use or automobile use, the hydrocarbon oil is liquid at room temperature and normal pressure, and is easy to store and handle. Since the supply system is maintained, it is advantageous as a hydrogen source. However, such hydrocarbon oil has a problem that the content of sulfur is higher than that of methanol or natural gas. When hydrogen is produced using this hydrocarbon oil, generally, a method of subjecting the hydrocarbon oil to steam reforming or partial oxidation reforming in the presence of a reforming catalyst is used. In such reforming treatment, the reforming catalyst is poisoned by the sulfur content in the hydrocarbon oil. Therefore, from the viewpoint of catalyst life, the hydrocarbon oil is subjected to desulfurization treatment to reduce the sulfur content. It is necessary to reduce it to 0.2 mass ppm or less over a long period of time.
In addition, when hydrogen is directly mounted on an automobile, it has been studied to add an odorant to hydrogen from the viewpoint of safety, and it is also possible to reduce the concentration of an odorant consisting of sulfur compounds present in feedstock as much as possible. It is important to.

石油系炭化水素の脱硫方法としては、これまで多くの研究がなされており、例えばCo−Mo/アルミナやNi−Mo/アルミナなどの水素化脱硫触媒とZnOなどの硫化水素吸着剤を用い、常圧〜5MPa・Gの圧力下、200〜400℃の温度で水素化脱硫する方法が知られている。この方法は厳しい条件下で水素化脱硫を行い、硫黄分を硫化水素にして除去する方法であり、小規模の分散型燃料電池用としては、安全・環境上の配慮、高圧ガス取締法等の関連法規との関係上好ましくない。すなわち燃料電池用としては、1MPa・G未満の条件で長時間燃料を脱硫することのできる脱硫剤が望まれている。
一方、燃料油中の硫黄分を、温和な条件で吸着除去する脱硫剤として、ニッケル系の吸着剤が提案されており(例えば特許文献1〜12参照)、またこれを改良したニッケル−銅系の吸着剤が提案されている(例えば特許文献11又は13参照)。
しかしながら、これらに開示される技術では脱硫剤の寿命という観点から実用的なレベルにはなく、実用化が困難であって、さらなる改良が望まれていた。
As a desulfurization method for petroleum hydrocarbons, many studies have been made so far. For example, a hydrodesulfurization catalyst such as Co-Mo / alumina or Ni-Mo / alumina and a hydrogen sulfide adsorbent such as ZnO are usually used. A method of hydrodesulfurizing at a temperature of 200 to 400 ° C. under a pressure of 5 MPa · G is known. This method performs hydrodesulfurization under harsh conditions and removes sulfur by converting it to hydrogen sulfide. For small-scale distributed fuel cells, safety and environmental considerations, high-pressure gas control methods, etc. It is not preferable in relation to related laws and regulations. That is, for fuel cells, a desulfurization agent that can desulfurize fuel for a long time under a condition of less than 1 MPa · G is desired.
On the other hand, a nickel-based adsorbent has been proposed as a desulfurizing agent that adsorbs and removes sulfur in fuel oil under mild conditions (for example, see Patent Documents 1 to 12), and an improved nickel-copper system. Adsorbents have been proposed (see, for example, Patent Document 11 or 13).
However, the techniques disclosed in these documents are not at a practical level from the viewpoint of the life of the desulfurizing agent, are difficult to put into practical use, and further improvements have been desired.

ところで、上記ニッケル系あるいはニッケル−銅系脱硫剤を利用する灯油の脱硫方法について、種々の脱硫条件が提案されている。しかしながら、原料となる灯油はその製造方法により、品質が変化するにも拘わらず、原料となる灯油の品質と、最適な脱硫処理条件との関係は明らかにされておらず、脱硫剤の性能を最大限に発揮できるまでには至っていない。また、ガソリン留分や軽油留分を原料として用いる場合についても、その詳細については開示されていない。
また、例えば、ニッケル系脱硫剤を用いた水素を添加しない灯油の脱硫方法が提案され、脱硫の反応条件も具体的に提案されているが(例えば、特許文献1〜4参照)、灯油の品質に応じた最適な脱硫条件の詳細については記載がなく、灯油等の燃料の品質とそれに応じた最適な脱硫条件との関係は見出されていなかった。
By the way, various desulfurization conditions have been proposed for the desulfurization method of kerosene using the nickel-based or nickel-copper-based desulfurizing agent. However, although the quality of kerosene used as a raw material varies depending on the production method, the relationship between the quality of kerosene used as a raw material and the optimum desulfurization treatment conditions has not been clarified, and the performance of the desulfurizing agent has not been clarified. It has not yet reached its full potential. Moreover, the details of the case where a gasoline fraction or a light oil fraction is used as a raw material are not disclosed.
In addition, for example, a method for desulfurizing kerosene using a nickel-based desulfurizing agent without adding hydrogen has been proposed, and reaction conditions for desulfurization have also been proposed specifically (see, for example, Patent Documents 1 to 4). The details of the optimum desulfurization conditions according to the above are not described, and the relationship between the quality of fuel such as kerosene and the optimum desulfurization conditions according to the fuel quality has not been found.

特公平6−65602号公報Japanese Examined Patent Publication No. 6-65602 特公平7−115842号公報Japanese Patent Publication No.7-115842 特開平1−188405号公報Japanese Patent Laid-Open No. 1-188405 特公平7−115843号公報Japanese Patent Publication No.7-115843 特開平2−275701号公報JP-A-2-275701 特開平2−204301号公報JP-A-2-204301 特開平5−70780号公報Japanese Patent Laid-Open No. 5-70780 特開平6−80972号公報Japanese Patent Laid-Open No. 6-80972 特開平6−91173号公報JP-A-6-91173 特開平6−228570号公報JP-A-6-228570 特開2001−279259号公報JP 2001-279259 A 特開2001−342465号公報JP 2001-342465 A 特開平6−315628号公報JP-A-6-315628

本発明は、このような状況下で、燃料中の硫黄分を極めて低濃度まで効率よく、長期間にわたって除去することができる脱硫方法を提供すること、及びこの脱硫方法を用いて脱硫処理された燃料を水蒸気改質、部分酸化改質又はオートサーマル改質処理し、燃料電池用水素を製造する方法を提供することを目的とするものである。   Under such circumstances, the present invention provides a desulfurization method capable of efficiently removing sulfur content in a fuel to a very low concentration over a long period of time, and desulfurization treatment was performed using this desulfurization method. It is an object of the present invention to provide a method for producing hydrogen for fuel cells by subjecting fuel to steam reforming, partial oxidation reforming or autothermal reforming.

本発明者らは、上記目的を達成すべく種々の研究を重ねた結果、灯油などの燃料の蒸留性状とそれに対応する最適な脱硫条件の間に一定の関係が有ることを見出し、ニッケルを含有する脱硫剤を用いて燃料中の硫黄分を除去する方法に適用することで、上記問題点を解決し得ることを見出し、本発明を完成するに至った。
すなわち本発明は、
(1)少なくともニッケルを含む金属成分を担体に担持してなる脱硫剤を用いて、炭化水素原料中の硫黄を除去する脱硫方法であって、脱硫条件が下記式(I)及び(II)を満足することを特徴とする脱硫方法、
1.06×Pope 0.44<Tope/T50<1.78×Pope 0.22 ・・・(I)
ope≧230 ・・・(II)
(式中、Topeは運転温度(℃)であり、Popeは運転圧力(MPa)であり、T50はJISK2254石油製品−蒸留試験方法に規定する常圧法蒸留試験方法により求めた50%留出時の留出温度である。)
(2)金属成分の95モル%以上が金属状態である上記(1)記載の脱硫方法、
(3)脱硫剤中のニッケルの含有量がNiO(酸化ニッケル)の換算量として、50〜90質量%の範囲である上記(1)又は(2)に記載の脱硫方法、
(4)金属成分として、さらに銅を含有し、銅の含有量がCuO(酸化銅)換算量として40質量%以下である上記(1)〜(3)のいずれかに記載の脱硫方法、
(5)担体がシリカ、アルミナ及びシリカ−アルミナから選ばれる少なくとも1種を含有する上記(1)〜(4)のいずれかに記載の脱硫方法。
(6)前記炭化水素原料が灯油、軽油、ナフサ、ガソリンから選ばれる少なくとも1種である上記(1)〜(5)のいずれかに記載の脱硫方法、
(7)上記(1)〜(6)のいずれかに記載の脱硫方法により炭化水素原料の脱硫をした後、改質することを特徴とする燃料電池用水素の製造方法、
(8)改質が水蒸気改質、部分酸化改質、又はオートサーマル改質である上記(7)に記載の燃料電池用水素の製造方法、
(9)改質に用いる触媒がルテニウム系触媒又はニッケル系触媒である上記(7)又は(8)に記載の燃料電池用水素の製造方法、
(10)改質に用いる触媒の担体成分が、酸化マンガン、酸化セリウム、及び酸化ジルコニウムから選ばれる少なくとも1種を含む上記(9)記載の燃料電池用水素の製造方法。
(11)上記(7)〜(10)のいずれかに記載の方法により製造された水素を用いることを特徴とする燃料電池システム、
を提供するものである。
As a result of repeating various studies to achieve the above object, the present inventors have found that there is a certain relationship between the distillation characteristics of fuel such as kerosene and the optimum desulfurization conditions corresponding to the distillation characteristics. The present invention has been completed by finding that the above problems can be solved by applying to a method of removing sulfur content in fuel using a desulfurizing agent.
That is, the present invention
(1) A desulfurization method for removing sulfur in a hydrocarbon raw material using a desulfurization agent formed by supporting a metal component containing at least nickel on a carrier, wherein the desulfurization conditions are represented by the following formulas (I) and (II): A desulfurization method characterized by satisfaction,
1.06 × P ope 0.44 <T ope / T 50 <1.78 × P ope 0.22 (I)
T ope ≧ 230 (II)
(Where T ope is the operating temperature (° C.), P ope is the operating pressure (MPa), and T 50 is the 50% distillation determined by the atmospheric distillation test method defined in JIS K2254 Petroleum Products-Distillation Test Method. This is the distillation temperature when leaving.)
(2) The desulfurization method according to the above (1), wherein 95 mol% or more of the metal component is in a metal state,
(3) The desulfurization method according to the above (1) or (2), wherein the content of nickel in the desulfurizing agent is in the range of 50 to 90% by mass as the converted amount of NiO (nickel oxide),
(4) The desulfurization method according to any one of (1) to (3), wherein the metal component further contains copper, and the copper content is 40% by mass or less in terms of CuO (copper oxide),
(5) The desulfurization method according to any one of (1) to (4), wherein the carrier contains at least one selected from silica, alumina, and silica-alumina.
(6) The desulfurization method according to any one of (1) to (5), wherein the hydrocarbon raw material is at least one selected from kerosene, light oil, naphtha, and gasoline,
(7) A method for producing hydrogen for a fuel cell, comprising desulfurizing a hydrocarbon raw material by the desulfurization method according to any one of (1) to (6) above, followed by reforming,
(8) The method for producing hydrogen for a fuel cell according to (7), wherein the reforming is steam reforming, partial oxidation reforming, or autothermal reforming,
(9) The method for producing hydrogen for fuel cells according to (7) or (8) above, wherein the catalyst used for reforming is a ruthenium catalyst or a nickel catalyst.
(10) The method for producing hydrogen for fuel cells as described in (9) above, wherein the carrier component of the catalyst used for reforming contains at least one selected from manganese oxide, cerium oxide, and zirconium oxide.
(11) A fuel cell system using hydrogen produced by the method according to any one of (7) to (10) above,
Is to provide.

本発明の脱硫方法によれば、炭化水素原料中の硫黄分を極めて低濃度まで効率よく、長期間にわたって除去することができる。この脱硫方法を燃料電池用水素の製造に適用することによって、炭化水素原料から水素を製造するための改質触媒を有効に機能させることができ、かつ該改質触媒の寿命を延長させることができる。   According to the desulfurization method of the present invention, the sulfur content in the hydrocarbon raw material can be efficiently removed to a very low concentration over a long period of time. By applying this desulfurization method to the production of hydrogen for fuel cells, a reforming catalyst for producing hydrogen from a hydrocarbon raw material can function effectively, and the life of the reforming catalyst can be extended. it can.

本発明の脱硫方法に用いる脱硫剤は、少なくともニッケルを含む金属成分を担体に担持してなることを特徴とする。ニッケル成分としては、通常酸化ニッケル、これを還元して得られる金属ニッケル、その他、炭酸ニッケル、硝酸ニッケル、塩化ニッケル、硫酸ニッケル、酢酸ニッケル等が挙げられる。本発明の脱硫剤においては、ニッケルを含む金属成分の95モル%以上が金属状態であることが好ましい。金属成分のうち95モル%以上が金属状態であると、脱硫剤表面の活性点の数が多く、より高い脱硫活性が得られる。
ニッケルの含有量としては、脱硫剤全量に基づいて、NiO(酸化ニッケル)換算量として、50〜90質量%の範囲であることが好ましい。ニッケル含有量が50質量%以上であると高い脱硫活性が得られ、90質量%以下であると、後に詳述する担体の含有量が確保されることによって、脱硫剤の表面積が十分となり脱硫性能が低下することがない。こうした観点からニッケル含有量としては、さらに60〜90質量%の範囲であることが好ましく、特に65〜85質量%の範囲であることが好ましい。
The desulfurization agent used in the desulfurization method of the present invention is characterized in that a metal component containing at least nickel is supported on a carrier. Examples of the nickel component include nickel oxide, metallic nickel obtained by reducing the nickel oxide, nickel carbonate, nickel nitrate, nickel chloride, nickel sulfate, nickel acetate and the like. In the desulfurization agent of this invention, it is preferable that 95 mol% or more of the metal component containing nickel is a metal state. When 95 mol% or more of metal components are in a metal state, the number of active sites on the surface of the desulfurizing agent is large, and higher desulfurization activity can be obtained.
As content of nickel, it is preferable that it is the range of 50-90 mass% as NiO (nickel oxide) conversion amount based on the desulfurization agent whole quantity. When the nickel content is 50% by mass or more, a high desulfurization activity is obtained. When the nickel content is 90% by mass or less, the content of the carrier, which will be described in detail later, is ensured, so that the surface area of the desulfurizing agent becomes sufficient. Will not drop. From this viewpoint, the nickel content is preferably in the range of 60 to 90% by mass, and more preferably in the range of 65 to 85% by mass.

また、本発明の脱硫剤は金属成分として、さらに銅を含有することが好ましい。銅成分の担持量は脱硫剤全量に基づき、CuO(酸化銅)換算量として40質量%以下であることが好ましい。銅含有量が40質量%以下であると、上記ニッケルの効果を阻害することがなく、脱硫剤としての機能を十分に発揮し得る。上記観点及び共存するニッケルの還元度を高めるとの観点から、銅の含有量は0.1〜40質量%の範囲であることがさらに好ましく、特には0.1〜30質量%の範囲であることが好ましい。
さらに、本発明の脱硫剤においては、NiOとCuOの総和量が、脱硫剤全量に基づき、60〜90質量%の範囲であることが好ましい。総和量がこの範囲であると、脱硫に必要な活性点数が十分であり、より高い脱硫性能が得られるとともに、後述する担体の割合が十分あるために脱硫剤の表面積が低下して、脱硫性能が低くなるという不都合がない。上記観点からNiOとCuOの総和量はさらに70〜90質量%の範囲であることが好ましい。
Moreover, it is preferable that the desulfurization agent of this invention contains copper further as a metal component. The supported amount of the copper component is preferably 40% by mass or less in terms of CuO (copper oxide) based on the total amount of the desulfurizing agent. When the copper content is 40% by mass or less, the function as a desulfurizing agent can be sufficiently exhibited without inhibiting the effect of the nickel. From the viewpoints described above and from the viewpoint of increasing the degree of reduction of the coexisting nickel, the copper content is more preferably in the range of 0.1 to 40% by mass, and particularly in the range of 0.1 to 30% by mass. It is preferable.
Furthermore, in the desulfurization agent of the present invention, the total amount of NiO and CuO is preferably in the range of 60 to 90% by mass based on the total amount of the desulfurization agent. When the total amount is within this range, the number of active points necessary for desulfurization is sufficient, and higher desulfurization performance is obtained, and since the ratio of the carrier described later is sufficient, the surface area of the desulfurization agent is reduced, and the desulfurization performance There is no inconvenience that becomes low. From the above viewpoint, the total amount of NiO and CuO is preferably in the range of 70 to 90% by mass.

本発明で用いられる担体としては、本発明の効果を奏する範囲内で特に限定されないが、多孔質の無機酸化物が特に好ましく、具体的にはシリカ、アルミナ、シリカ−アルミナ、チタニア、ジルコニア、マグネシア、酸化亜鉛、白土、粘土及び珪藻土などを挙げることができる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中で、特にシリカ、アルミナ、シリカ−アルミナ及びこれらの混合物が好ましい。本発明において、これらの担体に担持させる金属成分は、上述のニッケル成分を必須とし、また必要に応じて上述の銅成分を含有するものである。また、所望によりコバルト、鉄、マンガン、クロムなどの他の金属成分を少量混在させてもよい。   The carrier used in the present invention is not particularly limited within the scope of the effects of the present invention, but a porous inorganic oxide is particularly preferable, and specifically, silica, alumina, silica-alumina, titania, zirconia, magnesia. , Zinc oxide, white clay, clay and diatomaceous earth. These may be used alone or in combination of two or more. Of these, silica, alumina, silica-alumina and mixtures thereof are particularly preferable. In the present invention, the metal component to be supported on these carriers essentially includes the above-described nickel component, and optionally contains the above-described copper component. Moreover, you may mix a small amount of other metal components, such as cobalt, iron, manganese, and chromium, if desired.

次に、担体を用い、これにニッケル等の金属成分を担持する場合の製造方法について、以下詳細に説明する。
上記した担体に必須成分であるニッケル及び任意成分である銅、その他の金属成分を担持させる方法としては、特に制限はなく、含浸法、共沈法、混練法などの公知の任意の方法を採用することができる。本発明の好ましい脱硫剤の1つである、シリカ−アルミナ担体上にニッケル−銅を担持させてなる脱硫剤は、例えば以下に示すような共沈法によって製造することができる。この共沈法においては、まずニッケル源、アルミニウム源、及び銅源を含む酸性水溶液又は酸性水性分散液と、ケイ素源及び無機塩基を含む塩基性水溶液を調製する。前者の酸性水溶液又は酸性水分散液に用いられるニッケル源としては、例えば塩化ニッケル、硝酸ニッケル、硫酸ニッケル、酢酸ニッケル、炭酸ニッケル及びこれらの水和物などが挙げられる。また銅源としては、例えば塩化銅、硝酸銅、硫酸銅、酢酸銅及びこれらの水和物などが挙げられる。更にアルミニウム源としては、硝酸アルミニウム、擬ベーマイト、ベーマイトアルミナ、バイヤライト、ジブサイトなどのアルミナ水和物や、γ−アルミナなどが挙げられる。
Next, a manufacturing method in the case where a carrier is used and a metal component such as nickel is supported thereon will be described in detail below.
The method for supporting nickel, which is an essential component, copper, which is an optional component, and other metal components, is not particularly limited, and any known method such as an impregnation method, a coprecipitation method, or a kneading method is employed. can do. A desulfurization agent in which nickel-copper is supported on a silica-alumina support, which is one of the preferred desulfurization agents of the present invention, can be produced, for example, by a coprecipitation method as shown below. In this coprecipitation method, first, an acidic aqueous solution or acidic aqueous dispersion containing a nickel source, an aluminum source, and a copper source, and a basic aqueous solution containing a silicon source and an inorganic base are prepared. Examples of the nickel source used in the former acidic aqueous solution or acidic aqueous dispersion include nickel chloride, nickel nitrate, nickel sulfate, nickel acetate, nickel carbonate, and hydrates thereof. Examples of the copper source include copper chloride, copper nitrate, copper sulfate, copper acetate, and hydrates thereof. Furthermore, examples of the aluminum source include alumina hydrates such as aluminum nitrate, pseudoboehmite, boehmite alumina, bayerite, and dibsite, and γ-alumina.

一方、塩基性水溶液に用いられるケイ素源としては、アルカリ水溶液に可溶であって、焼成によりシリカになるものであればよく、特に制限されず、例えばオルトケイ酸、メタケイ酸及びそれらのナトリウム塩やカリウム塩、水ガラスなどが挙げられる。また、無機塩基としては、アルカリ金属の炭酸塩や水酸化物などが挙げられる。次に、このようにして調製した酸性の水溶液又は水分散液と塩基性水溶液をそれぞれ50〜90℃程度に加温して、両者を混合し、さらに50〜90℃程度の温度に保持して反応を完結させる。次に、生成した固形物を充分に洗浄したのち固液分離するか、あるいは生成した固形物を固液分離したのち充分に洗浄し、次いで、この固形物を公知の方法により80〜150℃程度の温度で乾燥処理する。このようにして得られた乾燥処理物を、好ましくは200〜400℃の範囲の温度において焼成することにより、シリカ−アルミナ担体上に金属成分が担持された脱硫剤が得られる。   On the other hand, the silicon source used in the basic aqueous solution is not particularly limited as long as it is soluble in an alkaline aqueous solution and becomes silica upon firing. For example, orthosilicic acid, metasilicic acid and their sodium salts A potassium salt, water glass, etc. are mentioned. Examples of the inorganic base include alkali metal carbonates and hydroxides. Next, the acidic aqueous solution or aqueous dispersion thus prepared and the basic aqueous solution are each heated to about 50 to 90 ° C., mixed together, and further maintained at a temperature of about 50 to 90 ° C. Complete the reaction. Next, the produced solid is sufficiently washed and separated into solid and liquid, or the produced solid is separated into solid and liquid and washed sufficiently, and then this solid is obtained at a temperature of about 80 to 150 ° C. by a known method. Dry at a temperature of The dried product thus obtained is preferably calcined at a temperature in the range of 200 to 400 ° C. to obtain a desulfurization agent having a metal component supported on a silica-alumina support.

担体として、アルミナ−シリカ以外の担体を用いる場合も、適宜上記の方法に準じて行うことができる。また、上記方法で得られた脱硫剤を更に還元処理して、金属成分の還元度(金属成分中の金属状態の質量割合)を本発明の範囲内とするには、当業界において通常用いられる方法が適宜用いられる。該還元処理は、燃料電池用水素の製造においては、その脱硫処理工程の直前に行うか、あるいは脱硫剤製造工程終了後に行う。脱硫剤製造後に還元を行う場合には、空気、希釈酸素、二酸化炭素などを用いて脱硫剤の安定化処理を行うことが好ましい。この安定化処理脱硫剤を用いる場合には、脱硫反応器に充填した後、再度還元処理を行うことが必要である。還元処理を行った後は不活性ガス、脱硫灯油で封入するとよい。   When a carrier other than alumina-silica is used as the carrier, it can be carried out according to the above method as appropriate. Further, the desulfurization agent obtained by the above method is further reduced, and the reduction degree of the metal component (mass ratio of the metal state in the metal component) is within the scope of the present invention. Methods are used as appropriate. In the production of hydrogen for a fuel cell, the reduction treatment is performed immediately before the desulfurization treatment step or after the desulfurization agent production step is completed. When the reduction is performed after the production of the desulfurizing agent, it is preferable that the desulfurizing agent is stabilized using air, diluted oxygen, carbon dioxide, or the like. When this stabilizing treatment desulfurizing agent is used, it is necessary to perform reduction treatment again after filling the desulfurization reactor. After performing the reduction treatment, it may be sealed with an inert gas or desulfurized kerosene.

次に、本発明の脱硫方法は、その脱硫条件が下記式(I)及び(II)を満足することを特徴とする。
1.06×Pope 0.44<Tope/T50<1.78×Pope 0.22 ・・・(I)
ope≧230 ・・・(II)
ここで、式中、Topeは運転温度(℃)であり、Popeは運転圧力(MPa)であり、T50はJISK2254石油製品−蒸留試験方法に規定する常圧法蒸留試験方法により求めた50%留出時の留出温度である。
50は、用いる燃料の蒸留性状を示す1つのパラメーターである。これを基に上記式から脱硫処理条件を決定することにより、液状炭化水素の蒸留性状に応じた最適な脱硫条件を決定することができるのである。
ope/T50が、下限値(上記式(I)における、1.06×Pope 0.44)を下回ると脱硫反応速度が遅くなるため、脱硫性能は低下する。また、上限値(上記式(I)における、1.78×Pope 0.22)を上回ると、コーク前駆体、あるいは、コーク生成量が増加するため、脱硫剤の脱硫性能を長期間にわたり保持することができなくなる。
この際、必要により、少量の水素を共存させてもよい。脱硫条件を上記範囲で適当に選択することにより、極めて低濃度の硫黄含有量を有する炭化水素等の燃料を得ることができる。
Next, the desulfurization method of the present invention is characterized in that the desulfurization conditions satisfy the following formulas (I) and (II).
1.06 × P ope 0.44 <T ope / T 50 <1.78 × P ope 0.22 (I)
T ope ≧ 230 (II)
Here, in the formula, T ope is the operating temperature (° C.), P ope is the operating pressure (MPa), and T 50 is determined by the atmospheric pressure distillation test method specified in JIS K2254 petroleum product-distillation test method. % Is the distillation temperature at the time of distillation.
T 50 is one parameter indicating the distillation characteristics of the fuel used. Based on this, by determining the desulfurization treatment conditions from the above formula, it is possible to determine the optimum desulfurization conditions according to the distillation properties of the liquid hydrocarbon.
When T ope / T 50 falls below the lower limit (1.06 × P ope 0.44 in the above formula (I)), the desulfurization reaction rate becomes slow, so the desulfurization performance decreases. Further, if the upper limit (1.78 × P ope 0.22 in the above formula (I)) is exceeded, the amount of coke precursor or coke increases, so the desulfurization performance of the desulfurizing agent should be maintained for a long time. Can not be.
At this time, if necessary, a small amount of hydrogen may coexist. By appropriately selecting the desulfurization conditions within the above range, it is possible to obtain a fuel such as hydrocarbon having a very low concentration of sulfur.

本発明において、脱硫剤を用いて脱硫する炭化水素原料としては、特に限定されるものではないが、例えば灯油、軽油、ナフサ、ガソリン等、もしくはこれらの混合物が挙げられる。これらのうち、本発明の脱硫剤を適用するのに好適な燃料としては灯油が好ましく、特に硫黄分含有量が80質量ppm以下のJIS1号灯油が好ましい。このJIS1号灯油は、原油を常圧蒸留して得た粗灯油を脱硫することにより得られるもので、該粗灯油は、通常硫黄分が多く、そのままではJIS1号灯油とはならず、硫黄分を低減させる必要がある。この硫黄分を低減させる方法としては、一般に工業的に実施されている水素化精製法で脱硫処理するのが好ましい。この場合、脱硫触媒として、通常ニッケル、コバルト、モリブデン、タングステンなどの遷移金属を適当な割合で混合したものを金属、酸化物、硫化物などの形態でアルミナを主成分とする担体に担持させたものが用いられる。反応条件は、例えば反応温度250〜400℃、圧力2〜10MPa・G、水素/油モル比2〜10、液時空間速度(LHSV)1〜5hr-1などの条件が用いられる。 In the present invention, the hydrocarbon raw material to be desulfurized using a desulfurizing agent is not particularly limited, and examples thereof include kerosene, light oil, naphtha, gasoline, and the like, or a mixture thereof. Among these, kerosene is preferable as a fuel suitable for applying the desulfurizing agent of the present invention, and JIS No. 1 kerosene having a sulfur content of 80 mass ppm or less is particularly preferable. This JIS No. 1 kerosene is obtained by desulfurizing crude kerosene obtained by atmospheric distillation of crude oil. The crude kerosene usually has a high sulfur content, and as such, it does not become JIS No. 1 kerosene, Need to be reduced. As a method for reducing the sulfur content, it is preferable to perform a desulfurization treatment by a hydrorefining method which is generally carried out industrially. In this case, as a desulfurization catalyst, usually a mixture of transition metals such as nickel, cobalt, molybdenum, tungsten, etc., mixed at an appropriate ratio is supported on a carrier mainly composed of alumina in the form of metal, oxide, sulfide or the like. Things are used. As the reaction conditions, for example, the reaction temperature is 250 to 400 ° C., the pressure is 2 to 10 MPa · G, the hydrogen / oil molar ratio is 2 to 10, and the liquid hourly space velocity (LHSV) is 1 to 5 hr −1 .

次に本発明の燃料電池用水素の製造方法は、上記のようにして脱硫処理した燃料を、水蒸気改質、部分酸化改質又はオートサーマル改質を行って、より具体的には水蒸気改質触媒、部分酸化改質触媒又はオートサーマル改質触媒と接触させることにより、燃料電池用水素を製造するものである。
ここで用いられる改質触媒としては特に制限はなく、従来から炭化水素の改質触媒として知られている公知のものの中から任意のものを適宜選択して用いることができる。このような改質触媒としては、例えば適当な担体にニッケルやジルコニウム、あるいはルテニウム、ロジウム、白金などの貴金属を担持したものを挙げることができる。上記担持金属は一種でもよく、二種以上を組み合わせてもよい。これらの触媒の中で、ニッケルを担持させたもの(以下、ニッケル系触媒という)とルテニウムを担持させたもの(以下、ルテニウム系触媒という)が好ましく、これらは、水蒸気改質処理、部分酸化改質処理又はオートサーマル改質処理中の炭素析出を抑制する効果が大きい。
上記改質触媒を担持させる担体には、酸化マンガン、酸化セリウム、酸化ジルコニウム等が含まれていることが好ましく、特にこれらのうち少なくとも1種を含む担体が特に好ましい。
Next, in the method for producing hydrogen for a fuel cell according to the present invention, the fuel desulfurized as described above is subjected to steam reforming, partial oxidation reforming or autothermal reforming, more specifically steam reforming. Hydrogen for fuel cells is produced by contacting with a catalyst, a partial oxidation reforming catalyst or an autothermal reforming catalyst.
There is no restriction | limiting in particular as a reforming catalyst used here, Arbitrary things can be suitably selected and used from the well-known things conventionally known as a hydrocarbon reforming catalyst. As such a reforming catalyst, for example, a catalyst in which noble metal such as nickel, zirconium, ruthenium, rhodium or platinum is supported on a suitable carrier can be exemplified. The supported metal may be one kind or a combination of two or more kinds. Among these catalysts, those supporting nickel (hereinafter referred to as nickel-based catalyst) and those supporting ruthenium (hereinafter referred to as ruthenium-based catalyst) are preferable. The effect of suppressing carbon deposition during quality treatment or autothermal reforming treatment is great.
The carrier for supporting the reforming catalyst preferably contains manganese oxide, cerium oxide, zirconium oxide or the like, and particularly preferably a carrier containing at least one of these.

ニッケル系触媒の場合、ニッケルの担持量は担体基準で3〜60質量%の範囲が好ましい。この担持量が上記範囲内であると、水蒸気改質触媒、部分酸化改質触媒又はオートサーマル改質触媒の活性が十分に発揮されるとともに、経済的にも有利なものとなる。触媒活性及び経済性などを考慮すると、ニッケルのより好ましい担持量は5〜50質量%であり、特に10〜30質量%の範囲が好ましい。
また、ルテニウム系触媒の場合、ルテニウムの担持量は担体基準で0.05〜20質量%の範囲が好ましい。ルテニウムの担持量が上記範囲内であると、水蒸気改質触媒、部分酸化改質触媒又はオートサーマル改質触媒の活性が十分に発揮されるとともに経済的にも有利なものとなる。触媒活性及び経済性などを考慮すると、ルテニウムのより好ましい担持量は0.05〜15質量%であり、特に0.1〜2質量%の範囲が好ましい。
In the case of a nickel-based catalyst, the supported amount of nickel is preferably in the range of 3 to 60% by mass based on the carrier. When the supported amount is within the above range, the activity of the steam reforming catalyst, the partial oxidation reforming catalyst or the autothermal reforming catalyst is sufficiently exhibited, and it is economically advantageous. In view of catalyst activity and economy, the more preferable amount of nickel is 5 to 50% by mass, and particularly preferably 10 to 30% by mass.
In the case of a ruthenium-based catalyst, the supported amount of ruthenium is preferably in the range of 0.05 to 20% by mass based on the carrier. When the supported amount of ruthenium is within the above range, the activity of the steam reforming catalyst, the partial oxidation reforming catalyst or the autothermal reforming catalyst is sufficiently exhibited and it is economically advantageous. Considering catalytic activity and economic efficiency, the more preferable loading of ruthenium is 0.05 to 15% by mass, and particularly preferably 0.1 to 2% by mass.

水蒸気改質処理における反応条件としては、水蒸気と燃料油に由来する炭素との比であるスチーム/カーボン(モル比)は、通常1.5〜10の範囲で選定される。スチーム/カーボン(モル比)が1.5以上であると水素の生成量が十分であり、10以下であると過剰の水蒸気を必要としないため、熱ロスが小さく、水素製造が効率的に行える。上記観点から、スチーム/カーボン(モル比)は1.5〜5の範囲であることが好ましく、さらには2〜4の範囲であることが好ましい。
また、水蒸気改質触媒層の入口温度を630℃以下に保って水蒸気改質を行うのが好ましい。入口温度が630℃以下であると、燃料油の熱分解が起こらないため、炭素ラジカルを経由した触媒あるいは反応管壁への炭素析出が生じにくい。以上の観点から、さらに水蒸気改質触媒層の入口温度は600℃以下であることが好ましい。なお、触媒層出口温度は特に制限はないが、650〜800℃の範囲が好ましい。650℃以上であると水素の生成量が十分であり、800℃以下であると、反応装置を耐熱材料で構成する必要がなく、経済的に好ましい。
As a reaction condition in the steam reforming treatment, steam / carbon (molar ratio), which is a ratio of steam and carbon derived from fuel oil, is usually selected in the range of 1.5 to 10. When the steam / carbon (molar ratio) is 1.5 or more, the amount of hydrogen generated is sufficient, and when it is 10 or less, excess water vapor is not required, so heat loss is small and hydrogen production can be performed efficiently. . From the above viewpoint, the steam / carbon (molar ratio) is preferably in the range of 1.5 to 5, and more preferably in the range of 2 to 4.
Moreover, it is preferable to perform steam reforming while maintaining the inlet temperature of the steam reforming catalyst layer at 630 ° C. or lower. If the inlet temperature is 630 ° C. or lower, thermal decomposition of the fuel oil does not occur, so that carbon deposition on the catalyst or reaction tube wall via the carbon radical is unlikely to occur. From the above viewpoint, the inlet temperature of the steam reforming catalyst layer is preferably 600 ° C. or lower. The catalyst layer outlet temperature is not particularly limited, but is preferably in the range of 650 to 800 ° C. When the temperature is 650 ° C. or higher, the amount of hydrogen generated is sufficient, and when it is 800 ° C. or lower, the reaction apparatus does not need to be made of a heat-resistant material, which is economically preferable.

部分酸化改質処理における反応条件としては、通常、圧力は常圧〜5MPa・G、温度は400〜1100℃、酸素(O2)/カーボン(モル比)は0.2〜0.8、液時空間速度(LHSV)は0.1〜100hr-1の条件が採用される。
また、オートサーマル改質処理における反応条件としては、通常、圧力は常圧〜5MPa・G、温度は400〜1100℃、スチーム/カーボン(モル比)は0.1〜10、酸素(O2)/カーボン(モル比)は0.1〜1、液時空間速度(LHSV)は0.1〜2hr-1、ガス時空間速度(GHSV)は1000〜100000hr-1の条件が採用される。
なお、上記水蒸気改質、部分酸化改質又はオートサーマル改質により得られるCOが水素生成に悪影響を及ぼすため、COを反応によりCO2に変換して除くことが好ましい。このように、本発明の方法によれば、燃料電池用水素を効率よく製造することができる。
液体燃料を使用する燃料電池システムは、通常、燃料供給装置、脱硫装置、改質装置、燃料電池から構成され、上記本発明の方法によって製造された水素は燃料電池に供給される。
As reaction conditions in the partial oxidation reforming treatment, the pressure is usually normal pressure to 5 MPa · G, the temperature is 400 to 1100 ° C., the oxygen (O 2 ) / carbon (molar ratio) is 0.2 to 0.8, and the liquid The space-time velocity (LHSV) is 0.1 to 100 hr −1 .
As reaction conditions in the autothermal reforming treatment, the pressure is usually normal pressure to 5 MPa · G, the temperature is 400 to 1100 ° C., the steam / carbon (molar ratio) is 0.1 to 10, and oxygen (O 2 ). / Carbon (molar ratio) is 0.1 to 1, liquid hourly space velocity (LHSV) is 0.1 to 2 hr −1 , and gas hourly space velocity (GHSV) is 1000 to 100,000 hr −1 .
In addition, since CO obtained by the steam reforming, partial oxidation reforming or autothermal reforming adversely affects hydrogen generation, it is preferable to convert CO to CO 2 by reaction and remove it. Thus, according to the method of the present invention, hydrogen for fuel cells can be produced efficiently.
A fuel cell system using a liquid fuel is usually composed of a fuel supply device, a desulfurization device, a reforming device, and a fuel cell, and the hydrogen produced by the method of the present invention is supplied to the fuel cell.

次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
(物性測定方法)
還元度(%)
還元度は(株)大倉理研製昇温還元装置(TPR;Temperature Programmed Reduction)「TP2000」を用いて測定される水素消費量から計算した。
各製造例にて製造される脱硫剤(還元処理前)20mgを試料管に充填し、100%のアルゴンガスを1時間流通させて、空気を置換した。その後、水素(65%)/アルゴン(35%)の混合ガスを20cm3/分で流通させ、室温で90分保持した。次に、10℃/分の昇温速度で827℃まで加熱しながら、TCD検出器(熱伝導型検出器)で水素の消費量を測定した。図1は脱硫剤(還元処理前)のTPRプロファイルであり、図1に示されるピークの面積Aは金属成分が酸化物から金属状態に全量還元されるのに必要な水素量を示す。
次に、各実施例及び比較例で製造される脱硫剤を還元処理及び安定化処理を行った後、上記と同様の方法で該脱硫剤の水素の消費量を測定した。その結果は図2に示すTPRプロファイルを示し、図2中の400K(127℃)付近で消費される水素(ピークの面積Cに該当)は、安定化処理によって表面酸化された部分の再還元によるものであり、770K(497℃)付近で消費される水素(ピークの面積Bに該当)は、還元処理後の未還元部分の還元によるものである。これらから、還元度は以下の式により求めた。
還元度(%)=100×(面積A−面積B)/面積A
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
(Physical property measurement method)
Degree of reduction (%)
The degree of reduction was calculated from the amount of hydrogen consumption measured using a temperature programmed reduction (TPR) “TP2000” manufactured by Okura Riken Co., Ltd.
The sample tube was filled with 20 mg of the desulfurization agent (before reduction treatment) produced in each production example, and 100% argon gas was passed for 1 hour to replace the air. Thereafter, a mixed gas of hydrogen (65%) / argon (35%) was circulated at 20 cm 3 / min and held at room temperature for 90 minutes. Next, the hydrogen consumption was measured with a TCD detector (heat conduction type detector) while heating to 827 ° C. at a rate of temperature increase of 10 ° C./min. FIG. 1 is a TPR profile of a desulfurization agent (before reduction treatment), and the peak area A shown in FIG. 1 indicates the amount of hydrogen necessary for the total reduction of the metal component from the oxide to the metal state.
Next, after reducing and stabilizing the desulfurizing agent produced in each Example and Comparative Example, the hydrogen consumption of the desulfurizing agent was measured in the same manner as described above. The result shows the TPR profile shown in FIG. 2, and the hydrogen consumed in the vicinity of 400 K (127 ° C.) in FIG. 2 (corresponding to the peak area C) is due to re-reduction of the surface oxidized portion by the stabilization treatment. The hydrogen consumed in the vicinity of 770 K (497 ° C.) (corresponding to the peak area B) is due to the reduction of the unreduced portion after the reduction treatment. From these, the degree of reduction was determined by the following equation.
Degree of reduction (%) = 100 × (area A−area B) / area A

脱硫剤の製造例
硫酸ニッケル・6水和物(特級、和光純薬株式会社製)730.2gおよび硫酸銅・5水和物(特級、和光純薬株式会社製)151.3gを80℃に加温したイオン交換水8Lに溶解し、これに擬ベーマイト(C−AP、Al23として67質量%、触媒化成工業株式会社製)を16.0g混合した。これに1規定の硫酸300mLを加えて、pHを2に調整し、調製液Xを得た。
次に、別に用意した、80℃に加温したイオン交換水8Lに炭酸ナトリウム600.0gを溶解し、水ガラス180.2g(J−1号、Si濃度量29質量%、日本化学工業株式会社製)を加えて、調製液Yを得た。
調製液X,Yの温度をそれぞれ80℃に保ちながら両者を混合し、1時間攪拌して沈殿ケーキを得た。その後、イオン交換水60Lを用いて得られた沈殿ケーキの洗浄・ろ過を行い、120℃送風乾燥機にて生成物を12時間乾燥後、350℃で3時間焼成した。その後、該焼成物を打錠成型により成型し、粉砕することによって平均粒径0.8mmの脱硫剤を得た。
該脱硫剤のニッケル含有量(NiO換算量)は65質量%、銅含有量(CuO換算)は15質量%、担体であるシリカ−アルミナ量は20質量%、Si/Al比(原子比)は5.6であった。
Production Example of Desulfurizing Agent 730.2 g of nickel sulfate hexahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and 151.3 g of copper sulfate pentahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) at 80 ° C. was dissolved in ion-exchanged water heated 8L, which pseudoboehmite (C-AP, 67 wt% as Al 2 O 3, manufactured by catalysts & Chemicals Industries Co., Ltd.) was 16.0g mixed. To this, 300 mL of 1N sulfuric acid was added to adjust the pH to 2, whereby Preparation Solution X was obtained.
Next, 600.0 g of sodium carbonate was dissolved in 8 L of ion-exchanged water heated to 80 ° C. separately, and 180.2 g of water glass (No. J-1, Si concentration 29 mass%, Nippon Chemical Industry Co., Ltd.) Preparation liquid Y was obtained.
While maintaining the temperature of each of the preparation liquids X and Y at 80 ° C., both were mixed and stirred for 1 hour to obtain a precipitation cake. Thereafter, the precipitate cake obtained using 60 L of ion-exchanged water was washed and filtered, and the product was dried for 12 hours in a 120 ° C. blower dryer and then calcined at 350 ° C. for 3 hours. Thereafter, the fired product was molded by tableting and pulverized to obtain a desulfurization agent having an average particle size of 0.8 mm.
The nickel content (NiO equivalent) of the desulfurizing agent is 65% by mass, the copper content (CuO equivalent) is 15% by mass, the amount of silica-alumina as a carrier is 20% by mass, and the Si / Al ratio (atomic ratio) is 5.6.

実施例1
上記製造例にて調製した脱硫剤を常圧下、水素気流中180℃まで昇温し、6時間保持した後、さらに30分かけて500℃まで昇温し、該温度で3時間保持して、還元を行った。次いで、室温まで降温し、希釈酸素(酸素濃度1%)で脱硫剤の最表面酸化処理(安定化処理)を行った。このような処理を行った脱硫剤について、上記物性測定方法によって、還元度を測定したところ還元度は100%であった。
この還元処理及び安定化処理を行った脱硫剤15cm3を内径17mmのSUS製反応管に充填した。常圧下、水素気流中200℃に昇温し、該温度で2時間保持して脱硫剤を活性化した。次いで、第1表に示す性状を有するJIS−1号灯油を250℃、圧力0.6MPa、液空間速度(SV)3h-1で反応管に流通させた。反応管出口での硫黄濃度を分析し、硫黄濃度が0.2質量ppmに上昇するまでの充填した脱硫剤あたりの通油量によって、脱硫剤の脱硫性能を評価した。脱硫剤の組成、還元条件及び還元度を第2表に、脱硫性能の評価結果を第3表に示す。
Example 1
The desulfurizing agent prepared in the above production example was heated to 180 ° C. in a hydrogen stream under normal pressure, held for 6 hours, further heated to 500 ° C. over 30 minutes, held at the temperature for 3 hours, Reduction was performed. Next, the temperature was lowered to room temperature, and the outermost surface oxidation treatment (stabilization treatment) of the desulfurizing agent was performed with diluted oxygen (oxygen concentration 1%). The degree of reduction of the desulfurizing agent subjected to such treatment was measured by the above physical property measurement method, and the degree of reduction was 100%.
A SUS reaction tube having an inner diameter of 17 mm was filled with 15 cm 3 of the desulfurizing agent subjected to the reduction treatment and the stabilization treatment. Under normal pressure, the temperature was raised to 200 ° C. in a hydrogen stream and maintained at that temperature for 2 hours to activate the desulfurizing agent. Next, JIS-1 kerosene having the properties shown in Table 1 was passed through the reaction tube at 250 ° C., pressure 0.6 MPa, and liquid space velocity (SV) 3 h −1 . The sulfur concentration at the outlet of the reaction tube was analyzed, and the desulfurization performance of the desulfurizing agent was evaluated based on the amount of oil per filled desulfurizing agent until the sulfur concentration increased to 0.2 ppm by mass. Table 2 shows the composition of the desulfurization agent, the reduction conditions and the degree of reduction, and Table 3 shows the evaluation results of the desulfurization performance.

比較例1
第1表に示す性状を有するJIS−1号灯油を200℃、圧力0.6MPa、液空間速度(SV)3h-1で反応管に流通させた以外は実施例1と同様にして脱硫剤の脱硫性能を評価した。脱硫剤の組成、還元条件及び還元度を第2表に、脱硫性能の評価結果を第3表に示す。
Comparative Example 1
JIS-1 kerosene having the properties shown in Table 1 was passed through the reaction tube at 200 ° C., pressure 0.6 MPa, and liquid space velocity (SV) 3 h −1 in the same manner as in Example 1 to obtain the desulfurizing agent. Desulfurization performance was evaluated. Table 2 shows the composition of the desulfurization agent, the reduction conditions and the degree of reduction, and Table 3 shows the evaluation results of the desulfurization performance.

実施例2
製造例1で製造した脱硫剤を常圧下、水素気流中180℃まで昇温し、6時間保持した後、さらに30分かけて300℃まで昇温し、該温度で50時間保持して、還元を行った。その後直ちに希釈酸素(酸素濃度1%)で脱硫剤の最表面酸化処理(安定化処理)を行った。このような処理を行った脱硫剤について、上記物性測定方法によって、還元度を測定したところ還元度は92%であった。
この還元処理及び安定化処理を行った脱硫剤に関して、実施例1と同様の条件で、第1表に示す性状を有するJIS−1号灯油を通油し、同様に脱硫性能を評価した。脱硫剤の組成、還元条件及び還元度を第2表に、脱硫性能の評価結果を第3表に示す。
Example 2
The desulfurizing agent produced in Production Example 1 was heated to 180 ° C. in a hydrogen stream under normal pressure, held for 6 hours, further heated to 300 ° C. over 30 minutes, held at that temperature for 50 hours, and reduced. Went. Immediately thereafter, the outermost surface oxidation treatment (stabilization treatment) of the desulfurizing agent was performed with diluted oxygen (oxygen concentration 1%). The degree of reduction of the desulfurizing agent subjected to such treatment was measured by the above physical property measurement method and found to be 92%.
With respect to the desulfurization agent subjected to the reduction treatment and the stabilization treatment, JIS-1 kerosene having the properties shown in Table 1 was passed under the same conditions as in Example 1, and the desulfurization performance was similarly evaluated. Table 2 shows the composition of the desulfurization agent, the reduction conditions and the degree of reduction, and Table 3 shows the evaluation results of the desulfurization performance.

比較例2
第1表に示す性状を有するJIS−1号灯油を200℃、圧力0.6MPa、液空間速度(SV)3h-1で反応管に流通させた以外は実施例2と同様にして脱硫剤の脱硫性能を評価した。脱硫剤の組成、還元条件及び還元度を第2表に、脱硫性能の評価結果を第3表に示す。
比較例3
第1表に示す性状を有するJIS−1号灯油を350℃、圧力0.6MPa、液空間速度(SV)3h-1で反応管に流通させた以外は比較例2と同様にして脱硫剤の脱硫性能を評価した。脱硫剤の組成、還元条件及び還元度を第2表に、脱硫性能の評価結果を第3表に示す。
Comparative Example 2
JIS-1 kerosene having the properties shown in Table 1 was passed through the reaction tube at 200 ° C., pressure 0.6 MPa, and liquid space velocity (SV) 3 h −1 in the same manner as in Example 2 to obtain the desulfurizing agent. Desulfurization performance was evaluated. Table 2 shows the composition of the desulfurization agent, the reduction conditions and the degree of reduction, and Table 3 shows the evaluation results of the desulfurization performance.
Comparative Example 3
JIS-1 kerosene having the properties shown in Table 1 was passed through the reaction tube at 350 ° C., pressure 0.6 MPa, and liquid space velocity (SV) 3 h −1 in the same manner as in Comparative Example 2 except for the desulfurizing agent. Desulfurization performance was evaluated. Table 2 shows the composition of the desulfurization agent, the reduction conditions and the degree of reduction, and Table 3 shows the evaluation results of the desulfurization performance.

Figure 2005146055
Figure 2005146055

Figure 2005146055
Figure 2005146055

Figure 2005146055
Figure 2005146055

本発明の脱硫方法によれば、炭化水素原料中の硫黄分を極めて低濃度まで効率よく、長期間にわたって除去することができる。従って、燃料供給装置、脱硫装置、改質装置、燃料電池から構成される通常の燃料電池システムの、脱硫装置における脱硫方法に適用した場合に、長期間にわたって改質装置の触媒を高活性な状態に保つことができ、燃料電池用の水素を効率的に製造することができる。   According to the desulfurization method of the present invention, the sulfur content in the hydrocarbon raw material can be efficiently removed to a very low concentration over a long period of time. Therefore, when applied to a desulfurization method in a desulfurization device of a normal fuel cell system composed of a fuel supply device, a desulfurization device, a reformer, and a fuel cell, the reformer catalyst is in a highly active state for a long period of time. Thus, hydrogen for fuel cells can be produced efficiently.

脱硫剤(還元処理前)のTPRプロファイルTPR profile of desulfurizing agent (before reduction treatment) 脱硫剤(還元処理及び安定化処理後)のTPRプロファイルTPR profile of desulfurization agent (after reduction and stabilization)

Claims (11)

少なくともニッケルを含む金属成分を担体に担持してなる脱硫剤を用いて、炭化水素原料中の硫黄を除去する脱硫方法であって、脱硫条件が下記式(I)及び(II)を満足することを特徴とする脱硫方法。
1.06×Pope 0.44<Tope/T50<1.78×Pope 0.22 ・・・(I)
ope≧230 ・・・(II)
(式中、Topeは運転温度(℃)であり、Popeは運転圧力(MPa)であり、T50はJISK2254石油製品−蒸留試験方法に規定する常圧法蒸留試験方法により求めた50%留出時の留出温度である。)
A desulfurization method for removing sulfur in a hydrocarbon raw material using a desulfurization agent in which a metal component containing at least nickel is supported on a carrier, and the desulfurization conditions satisfy the following formulas (I) and (II) A desulfurization method characterized by the above.
1.06 × P ope 0.44 <T ope / T 50 <1.78 × P ope 0.22 (I)
T ope ≧ 230 (II)
(Where T ope is the operating temperature (° C.), P ope is the operating pressure (MPa), and T 50 is the 50% distillation determined by the atmospheric distillation test method defined in JIS K2254 Petroleum Products-Distillation Test Method. This is the distillation temperature when leaving.)
金属成分の95モル%以上が金属状態である請求項1記載の脱硫方法。   The desulfurization method according to claim 1, wherein 95 mol% or more of the metal component is in a metal state. 脱硫剤中のニッケルの含有量がNiO(酸化ニッケル)の換算量として、50〜90質量%の範囲である請求項1又は2に記載の脱硫方法。   The desulfurization method according to claim 1 or 2, wherein the content of nickel in the desulfurizing agent is in the range of 50 to 90% by mass as a converted amount of NiO (nickel oxide). 金属成分として、さらに銅を含有し、銅の含有量がCuO(酸化銅)換算量として40質量%以下である請求項1〜3のいずれかに記載の脱硫方法。   The desulfurization method according to claim 1, further comprising copper as a metal component, wherein the copper content is 40% by mass or less in terms of CuO (copper oxide). 担体がシリカ、アルミナ及びシリカ−アルミナから選ばれる少なくとも1種を含有する請求項1〜4のいずれかに記載の脱硫方法。   The desulfurization method according to any one of claims 1 to 4, wherein the carrier contains at least one selected from silica, alumina, and silica-alumina. 前記炭化水素原料が、灯油、軽油、ナフサ、ガソリンから選ばれる少なくとも1種である請求項1〜5のいずれかに記載の脱硫方法。   The desulfurization method according to claim 1, wherein the hydrocarbon raw material is at least one selected from kerosene, light oil, naphtha, and gasoline. 請求項1〜6のいずれかに記載の脱硫方法により炭化水素原料の脱硫をした後、改質することを特徴とする燃料電池用水素の製造方法。   A method for producing hydrogen for a fuel cell, wherein the hydrocarbon raw material is desulfurized by the desulfurization method according to claim 1 and then reformed. 改質が水蒸気改質、部分酸化改質、又はオートサーマル改質である請求項7に記載の燃料電池用水素の製造方法。   The method for producing hydrogen for a fuel cell according to claim 7, wherein the reforming is steam reforming, partial oxidation reforming, or autothermal reforming. 改質に用いる触媒がルテニウム系触媒又はニッケル系触媒である請求項7又は8に記載の燃料電池用水素の製造方法。   The method for producing hydrogen for a fuel cell according to claim 7 or 8, wherein the catalyst used for reforming is a ruthenium catalyst or a nickel catalyst. 改質に用いる触媒の担体成分が、酸化マンガン、酸化セリウム、及び酸化ジルコニウムから選ばれる少なくとも1種を含む請求項9記載の燃料電池用水素の製造方法。   The method for producing hydrogen for a fuel cell according to claim 9, wherein the carrier component of the catalyst used for reforming contains at least one selected from manganese oxide, cerium oxide, and zirconium oxide. 請求項7〜10のいずれかに記載の方法により製造された水素を用いることを特徴とする燃料電池システム。

11. A fuel cell system using hydrogen produced by the method according to claim 7.

JP2003382795A 2003-11-12 2003-11-12 Desulfurizing method and manufacturing method of hydrogen for fuel cell Pending JP2005146055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003382795A JP2005146055A (en) 2003-11-12 2003-11-12 Desulfurizing method and manufacturing method of hydrogen for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003382795A JP2005146055A (en) 2003-11-12 2003-11-12 Desulfurizing method and manufacturing method of hydrogen for fuel cell

Publications (1)

Publication Number Publication Date
JP2005146055A true JP2005146055A (en) 2005-06-09

Family

ID=34691758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003382795A Pending JP2005146055A (en) 2003-11-12 2003-11-12 Desulfurizing method and manufacturing method of hydrogen for fuel cell

Country Status (1)

Country Link
JP (1) JP2005146055A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007323908A (en) * 2006-05-31 2007-12-13 Japan Energy Corp Fuel reforming system for solid oxide fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007323908A (en) * 2006-05-31 2007-12-13 Japan Energy Corp Fuel reforming system for solid oxide fuel cell

Similar Documents

Publication Publication Date Title
EP1270069B1 (en) Use of a desulfurizing agent
CA2601124C (en) Desulfurizing agent and method of desulfurization with the same
TW200836833A (en) Catalyst for carbon monoxide conversion and method of carbon monoxide modification with the same
JP2001279274A (en) Fuel oil for fuel cell, desulfurization method and method for producing hydrogen
JP4322804B2 (en) Method for desulfurizing liquid hydrocarbon and method for producing hydrogen for fuel cell
JP4521172B2 (en) Desulfurization agent and desulfurization method using the same
JP2005146054A (en) Desulfurizing agent and desulfurizing method using the same
JP2005146054A6 (en) Desulfurization agent and desulfurization method using the same
JP4267483B2 (en) Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cells
JP4079743B2 (en) Desulfurizing agent for hydrocarbon-containing gas and method for producing hydrogen for fuel cell
JP2004075778A (en) Desulfurizing agent for hydrocarbon and method for producing hydrogen for fuel cell
JP4580070B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP4388665B2 (en) Ni-Cu desulfurizing agent and method for producing hydrogen for fuel cell
JP4531939B2 (en) Method for producing nickel-copper desulfurization agent
JP2001279259A (en) Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery
JP4580071B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP2010001480A (en) Desulfurizing agent and desulfurization method using the same
JP2002316043A (en) Desulfurizing agent for organic sulfur compound- containing fuel oil and method of manufacturing hydrogen for fuel cell
JP2005146055A (en) Desulfurizing method and manufacturing method of hydrogen for fuel cell
JP2006117921A (en) Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system
JP2003290660A (en) Desulfurizing agent and method for manufacturing hydrogen for fuel battery using it
JP2008297451A (en) Porous desulfurizing agent, and desulfurizing method using the same
JP2001276605A (en) Desulfurization agent and method of producing hydrogen for fuel cell
JP2003290659A (en) Desulfurizing agent and method for manufacturing hydrogen for fuel battery using the same
JP4531917B2 (en) Method for producing nickel-based desulfurization agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006