JP2005146054A - Desulfurizing agent and desulfurizing method using the same - Google Patents
Desulfurizing agent and desulfurizing method using the same Download PDFInfo
- Publication number
- JP2005146054A JP2005146054A JP2003382794A JP2003382794A JP2005146054A JP 2005146054 A JP2005146054 A JP 2005146054A JP 2003382794 A JP2003382794 A JP 2003382794A JP 2003382794 A JP2003382794 A JP 2003382794A JP 2005146054 A JP2005146054 A JP 2005146054A
- Authority
- JP
- Japan
- Prior art keywords
- desulfurization
- raw material
- reforming
- hydrocarbon raw
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Fuel Cell (AREA)
Abstract
Description
本発明は、脱硫剤及びこれを用いた脱硫方法及び燃料電池用水素の製造方法に関する。詳しくは、炭化水素原料及び/又は酸素含有炭化水素原料中の硫黄分を極めて低濃度まで効率よく除去することができ、かつ寿命の長い脱硫剤、及びこの脱硫剤を用いて脱硫処理された燃料を改質処理し、燃料電池用水素を製造する方法に関する。 The present invention relates to a desulfurization agent, a desulfurization method using the same, and a method for producing hydrogen for fuel cells. Specifically, a desulfurization agent that can efficiently remove sulfur content in a hydrocarbon raw material and / or oxygen-containing hydrocarbon raw material to an extremely low concentration and has a long life, and a fuel desulfurized using the desulfurization agent The present invention relates to a method for producing hydrogen for fuel cells.
近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。この燃料電池には、使用する電解質の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物型、固体高分子型などのタイプが知られている。一方、水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、さらには石油系のナフサや灯油などの炭化水素油の使用が研究されている。 In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and has a feature of high energy use efficiency. Alternatively, research into practical use is actively conducted for automobiles and the like. For this fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known depending on the type of electrolyte used. On the other hand, as a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of this natural gas, synthetic liquid fuel using natural gas as a raw material, and carbonization of petroleum naphtha and kerosene, etc. The use of hydrogen oil has been studied.
燃料電池を民生用や自動車用などに利用する場合、上記炭化水素油は常温常圧で液状であって、保管及び取扱いが容易である上、特に石油系のものはガソリンスタンドや販売店など、供給システムが整備されていることから、水素源として有利である。しかしながら、このような炭化水素油は、メタノールや天然ガス系のものに比べて、硫黄分の含有量が多いという問題がある。この炭化水素油を用いて水素を製造する場合、一般に、該炭化水素油を、改質触媒の存在下に水蒸気改質又は部分酸化改質処理する方法が用いられる。このような改質処理においては、上記改質触媒は、炭化水素油中の硫黄分により被毒されるため、触媒寿命の点から、該炭化水素油に脱硫処理を施し、硫黄分含有量を極力低濃度にすることが肝要である。
また、自動車に直接水素を搭載する場合、安全面から水素に付臭物を添加することが検討されており、原料油に存在する硫黄化合物からなる付臭物を極力低濃度にすることも同様に肝要である。
When the fuel cell is used for consumer use or automobile use, the hydrocarbon oil is liquid at room temperature and normal pressure, and is easy to store and handle. Since the supply system is maintained, it is advantageous as a hydrogen source. However, such hydrocarbon oil has a problem that the content of sulfur is higher than that of methanol or natural gas. When hydrogen is produced using this hydrocarbon oil, generally, a method of subjecting the hydrocarbon oil to steam reforming or partial oxidation reforming in the presence of a reforming catalyst is used. In such reforming treatment, the reforming catalyst is poisoned by the sulfur content in the hydrocarbon oil. Therefore, from the viewpoint of catalyst life, the hydrocarbon oil is subjected to desulfurization treatment to reduce the sulfur content. It is important to make the concentration as low as possible.
In addition, when hydrogen is directly mounted on an automobile, it has been studied to add an odorant to hydrogen from the viewpoint of safety, and it is also possible to reduce the concentration of an odorant consisting of sulfur compounds present in feedstock as much as possible. It is important to.
石油系炭化水素の脱硫方法としては、これまで多くの研究がなされており、例えばCo−Mo/アルミナやNi−Mo/アルミナなどの水素化脱硫触媒とZnOなどの硫化水素吸着剤を用い、常圧〜5MPa・Gの圧力下、200〜400℃の温度で水素化脱硫する方法が知られている。この方法は厳しい条件下で水素化脱硫を行い、硫黄分を硫化水素にして除去する方法であり、小規模の分散型燃料電池用としては、安全・環境上の配慮、高圧ガス取締法等の関連法規との関係上好ましくない。すなわち燃料電池用としては、1MPa・G未満の条件で長時間燃料を脱硫することのできる脱硫剤が望まれている。
一方、燃料油中の硫黄分を、温和な条件で吸着除去する脱硫剤として、ニッケル系の吸着剤が提案されており(例えば特許文献1〜12参照)、またこれを改良したニッケル−銅系の吸着剤が提案されている(例えば特許文献11又は13参照)。
しかしながら、これらに開示される技術では脱硫剤の寿命という観点から実用的なレベルにはなく、実用化が困難であって、さらなる改良が望まれていた。
As a desulfurization method for petroleum hydrocarbons, many studies have been made so far. For example, a hydrodesulfurization catalyst such as Co-Mo / alumina or Ni-Mo / alumina and a hydrogen sulfide adsorbent such as ZnO are usually used. A method of hydrodesulfurizing at a temperature of 200 to 400 ° C. under a pressure of 5 MPa · G is known. This method performs hydrodesulfurization under harsh conditions and removes sulfur by converting it to hydrogen sulfide. For small-scale distributed fuel cells, safety and environmental considerations, high-pressure gas control methods, etc. It is not preferable in relation to related laws and regulations. That is, for fuel cells, a desulfurization agent that can desulfurize fuel for a long time under a condition of less than 1 MPa · G is desired.
On the other hand, a nickel-based adsorbent has been proposed as a desulfurizing agent that adsorbs and removes sulfur in fuel oil under mild conditions (for example, see
However, the techniques disclosed in these documents are not at a practical level from the viewpoint of the life of the desulfurizing agent, are difficult to put into practical use, and further improvements have been desired.
本発明は、このような状況下で、炭化水素原料及び/又は酸素含有炭化水素原料中の硫黄分を極めて低濃度まで効率よく除去することができ、かつ寿命の長い工業的に有利な脱硫剤、及びこの脱硫剤を用いて脱硫処理された炭化水素原料及び/又は酸素含有炭化水素原料を水蒸気改質、部分酸化改質又はオートサーマル改質処理し、燃料電池用水素を製造する方法を提供することを目的とするものである。また、硫黄化合物からなる付臭剤が添加された水素や都市ガスの脱硫にも適用可能な脱硫剤を提供することを目的とするものである。 Under such circumstances, the present invention can efficiently remove the sulfur content in the hydrocarbon raw material and / or the oxygen-containing hydrocarbon raw material to a very low concentration and has a long life and is industrially advantageous. And a method for producing hydrogen for a fuel cell by subjecting a hydrocarbon raw material and / or oxygen-containing hydrocarbon raw material desulfurized using this desulfurizing agent to steam reforming, partial oxidation reforming or autothermal reforming treatment It is intended to do. Another object of the present invention is to provide a desulfurization agent applicable to desulfurization of hydrogen or city gas to which an odorant composed of a sulfur compound is added.
本発明者らは、上記目的を達成すべく種々の研究を重ねた結果、担体に金属成分を担持してなる脱硫剤であって、該金属成分の還元度(全金属成分における金属状態の金属成分の含有割合)が高く、かつ該金属の金属結晶子径が4.0nm以下である脱硫剤が上記問題点を解決し得ることを見出し、本発明を完成するに至った。
すなわち本発明は、
(1)担体に金属成分を担持してなる炭化水素原料及び/又は酸素含有炭化水素原料中の硫黄化合物を除去する脱硫剤であって、該金属成分の80モル%以上が金属状態であり、かつ金属結晶子径が4.0nm以下であることを特徴とする脱硫剤、
(2)金属成分としてニッケルを含有し、ニッケルの含有量が、脱硫剤全量に対し、NiO(酸化ニッケル)の換算量として、50〜90質量%の範囲である上記(1)記載の脱硫剤、
(3)金属成分として銅を含有し、銅の含有量が、脱硫剤全量に対し、CuO(酸化銅)換算量として40質量%以下である上記(1)又は(2)に記載の脱硫剤、
(4)担体がシリカ、アルミナ及びシリカ−アルミナから選ばれる少なくとも1種を含有する上記(1)〜(3)のいずれかに記載の脱硫剤、
(5)炭化水素原料及び/又は酸素含有炭化水素原料が灯油、軽油、液化石油ガス(LPG)、ナフサ、ガソリン、天然ガス及びジメチルエーテルから選ばれる少なくとも1種である上記(1)〜(4)のいずれかに記載の脱硫剤、
(6)上記(1)〜(5)のいずれかに記載の脱硫剤を用いて、−40〜300℃の範囲の温度で炭化水素原料及び/又は酸素含有炭化水素原料の脱硫をすることを特徴とする脱硫方法、
(7)上記(1)〜(6)のいずれかに記載の脱硫剤を用いて炭化水素原料及び/又は酸素含有炭化水素原料の脱硫をした後、改質することを特徴とする燃料電池用水素の製造方法、
(8)改質が水蒸気改質、部分酸化改質、又はオートサーマル改質である上記(7)に記載の燃料電池用水素の製造方法、
(9)改質に用いる触媒がルテニウム系触媒又はニッケル系触媒である上記(7)又は(8)に記載の燃料電池用水素の製造方法、
(10)改質に用いる触媒の担体成分が、酸化マンガン、酸化セリウム、及び酸化ジルコニウムから選ばれる少なくとも1種を含む上記(9)記載の燃料電池用水素の製造方法、
(11)上記(7)〜(10)のいずれかに記載の方法により製造された水素を用いることを特徴とする燃料電池システム、
を提供するものである。
As a result of various researches to achieve the above object, the present inventors have obtained a desulfurization agent having a metal component supported on a carrier, the reduction degree of the metal component (the metal in the metal state in all metal components) The present inventors have found that a desulfurizing agent having a high component content) and a metal crystallite diameter of the metal of 4.0 nm or less can solve the above problems, and has completed the present invention.
That is, the present invention
(1) A desulfurization agent for removing a sulfur compound in a hydrocarbon raw material and / or an oxygen-containing hydrocarbon raw material obtained by supporting a metal component on a carrier, wherein 80 mol% or more of the metal component is in a metal state, And a desulfurizing agent having a metal crystallite diameter of 4.0 nm or less,
(2) The desulfurization agent according to the above (1), which contains nickel as a metal component, and the nickel content is in the range of 50 to 90% by mass as a conversion amount of NiO (nickel oxide) with respect to the total amount of the desulfurization agent. ,
(3) The desulfurization agent according to the above (1) or (2), which contains copper as a metal component, and the copper content is 40% by mass or less as a CuO (copper oxide) conversion amount with respect to the total amount of the desulfurization agent. ,
(4) The desulfurization agent according to any one of (1) to (3), wherein the support contains at least one selected from silica, alumina, and silica-alumina.
(5) The above (1) to (4), wherein the hydrocarbon raw material and / or the oxygen-containing hydrocarbon raw material is at least one selected from kerosene, light oil, liquefied petroleum gas (LPG), naphtha, gasoline, natural gas, and dimethyl ether. A desulfurizing agent according to any one of
(6) Desulfurization of the hydrocarbon raw material and / or the oxygen-containing hydrocarbon raw material at a temperature in the range of −40 to 300 ° C. using the desulfurizing agent according to any one of (1) to (5) above. Desulfurization method,
(7) For a fuel cell, wherein the hydrocarbon raw material and / or the oxygen-containing hydrocarbon raw material is desulfurized using the desulfurizing agent according to any one of (1) to (6) above, and then reformed. A method for producing hydrogen,
(8) The method for producing hydrogen for a fuel cell according to (7), wherein the reforming is steam reforming, partial oxidation reforming, or autothermal reforming,
(9) The method for producing hydrogen for fuel cells according to (7) or (8) above, wherein the catalyst used for reforming is a ruthenium catalyst or a nickel catalyst.
(10) The method for producing hydrogen for a fuel cell according to (9), wherein the carrier component of the catalyst used for reforming contains at least one selected from manganese oxide, cerium oxide, and zirconium oxide,
(11) A fuel cell system using hydrogen produced by the method according to any one of (7) to (10) above,
Is to provide.
本発明によれば、炭化水素原料及び/又は酸素含有炭化水素原料中の硫黄分を極めて低濃度まで効率よく除去することができ、かつ寿命の長い脱硫剤を提供することができる。この脱硫剤を燃料電池用水素の製造に適用することによって、炭化水素原料及び/又は酸素含有炭化水素原料から水素を製造するための触媒を有効に機能させることができ、かつ改質触媒の寿命を延長させることができる。 ADVANTAGE OF THE INVENTION According to this invention, the sulfur content in a hydrocarbon raw material and / or oxygen-containing hydrocarbon raw material can be efficiently removed to very low concentration, and the desulfurization agent with a long lifetime can be provided. By applying this desulfurization agent to the production of hydrogen for fuel cells, the catalyst for producing hydrogen from the hydrocarbon raw material and / or the oxygen-containing hydrocarbon raw material can function effectively, and the life of the reforming catalyst Can be extended.
本発明の脱硫剤は、担体に金属成分を担持してなる炭化水素原料及び/又は酸素含有炭化水素原料中の硫黄化合物を除去する脱硫剤であって、該金属成分の80モル%以上が金属状態であり、かつ金属結晶子径が4.0nm以下であることを特徴とする。
本発明の脱硫剤においては、金属成分の80モル%以上が金属状態であること、すなわち還元度が80%以上であることを必須とする。金属状態である金属成分の割合が80モル%未満であると、脱硫剤表面の活性点の数が少なく、所望の脱硫活性が得られないおそれがある。脱硫活性の点から、金属状態である金属成分の割合が85モル%以上であることが好ましく、さらには90モル%以上であることが好ましい。
また、金属結晶子径が4.0nm以下であることを必須とする。金属結晶子径が4.0nm以上であると活性点の数が減少し、十分な脱硫活性を得ることができない。脱硫活性の観点から、金属結晶子径は3.5nm以下であることが好ましい。
The desulfurization agent of the present invention is a desulfurization agent for removing sulfur compounds in a hydrocarbon raw material and / or oxygen-containing hydrocarbon raw material obtained by supporting a metal component on a carrier, and 80 mol% or more of the metal component is a metal. The metal crystallite diameter is 4.0 nm or less.
In the desulfurization agent of this invention, it is essential that 80 mol% or more of a metal component is a metal state, ie, a reduction degree is 80% or more. If the ratio of the metal component in the metal state is less than 80 mol%, the number of active sites on the surface of the desulfurizing agent is small, and the desired desulfurization activity may not be obtained. From the viewpoint of desulfurization activity, the ratio of the metal component in the metal state is preferably 85 mol% or more, and more preferably 90 mol% or more.
Moreover, it is essential that the metal crystallite diameter is 4.0 nm or less. When the metal crystallite diameter is 4.0 nm or more, the number of active sites decreases, and sufficient desulfurization activity cannot be obtained. From the viewpoint of desulfurization activity, the metal crystallite diameter is preferably 3.5 nm or less.
上記金属成分としては、本発明の効果を奏する範囲で特に限定されないが、ニッケルを含有することが好ましい。ニッケル成分としては、通常酸化ニッケル、これを還元して得られる金属ニッケル、その他、炭酸ニッケル、硝酸ニッケル、塩化ニッケル、硫酸ニッケル、酢酸ニッケル等が挙げられる。
ニッケルの含有量としては、脱硫剤全量に基づいて、NiO(酸化ニッケル)換算量として、50〜90質量%の範囲であることが好ましい。ニッケル含有量が50質量%以上であると高い脱硫活性が得られ、90質量%以下であると、後に詳述する担体の含有量が確保されることによって、脱硫剤の表面積が十分となり脱硫性能が低下することがない。こうした観点からニッケル含有量としては、さらに60〜90質量%の範囲であることが好ましく、特に65〜85質量%の範囲であることが好ましい。
Although it does not specifically limit as said metal component in the range with the effect of this invention, It is preferable to contain nickel. Examples of the nickel component include nickel oxide, metallic nickel obtained by reducing the nickel oxide, nickel carbonate, nickel nitrate, nickel chloride, nickel sulfate, nickel acetate and the like.
As content of nickel, it is preferable that it is the range of 50-90 mass% as NiO (nickel oxide) conversion amount based on the desulfurization agent whole quantity. When the nickel content is 50% by mass or more, a high desulfurization activity is obtained. When the nickel content is 90% by mass or less, the content of the carrier, which will be described in detail later, is ensured, so that the surface area of the desulfurizing agent becomes sufficient. Will not drop. From this viewpoint, the nickel content is preferably in the range of 60 to 90% by mass, and more preferably in the range of 65 to 85% by mass.
また、本発明の脱硫剤は金属成分として銅を含有することが好ましい。銅成分の含有量は脱硫剤全量に基づき、CuO(酸化銅)換算量として40質量%以下であることが好ましい。銅含有量が40質量%以下であると、上記ニッケルの効果を阻害することがなく、脱硫剤としての機能を十分に発揮し得る。上記観点及び共存するニッケルの還元度を高めるとの観点から、銅の含有量は0.1〜40質量%の範囲であることがさらに好ましく、特には0.1〜30質量%の範囲であることが好ましい。
さらに、本発明の脱硫剤においては、NiOとCuOの総和量が、脱硫剤全量に基づき、60〜90質量%の範囲であることが好ましい。総和量がこの範囲であると、脱硫に必要な活性点数が十分であり、所望の脱硫性能が得られるとともに、後に詳述する担体の割合が十分あるために脱硫剤の表面積が低下して、脱硫性能が低くなるという不都合がない。上記観点からNiOとCuOの総和量はさらに70〜90質量%の範囲であることが好ましい。
Moreover, it is preferable that the desulfurization agent of this invention contains copper as a metal component. The content of the copper component is preferably 40% by mass or less in terms of CuO (copper oxide) based on the total amount of the desulfurizing agent. When the copper content is 40% by mass or less, the function as a desulfurizing agent can be sufficiently exhibited without inhibiting the effect of the nickel. From the viewpoints described above and from the viewpoint of increasing the degree of reduction of the coexisting nickel, the copper content is more preferably in the range of 0.1 to 40% by mass, and particularly in the range of 0.1 to 30% by mass. It is preferable.
Furthermore, in the desulfurization agent of the present invention, the total amount of NiO and CuO is preferably in the range of 60 to 90% by mass based on the total amount of the desulfurization agent. When the total amount is within this range, the number of active points necessary for desulfurization is sufficient, the desired desulfurization performance is obtained, and the surface area of the desulfurization agent is reduced because the ratio of the carrier described in detail later is sufficient, There is no inconvenience that the desulfurization performance is lowered. From the above viewpoint, the total amount of NiO and CuO is preferably in the range of 70 to 90% by mass.
次に、本発明で用いる担体としては、多孔質の無機酸化物が特に好ましく、具体的にはシリカ、アルミナ、シリカ−アルミナ、チタニア、ジルコニア、マグネシア、酸化亜鉛、白土、粘土及び珪藻土などを挙げることができる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中で、特にシリカ、アルミナ、シリカ−アルミナ及びこれらの混合物が好ましい。本発明において、これらの担体に担持させる金属成分は、上述のようにニッケル成分及び/又は銅成分を含有することが好ましく、さらに所望によりコバルト、鉄、マンガン、クロムなどの他の金属成分を少量混在させてもよい。 Next, as the carrier used in the present invention, a porous inorganic oxide is particularly preferable, and specific examples include silica, alumina, silica-alumina, titania, zirconia, magnesia, zinc oxide, white clay, clay and diatomaceous earth. be able to. These may be used alone or in combination of two or more. Of these, silica, alumina, silica-alumina and mixtures thereof are particularly preferable. In the present invention, the metal component supported on these carriers preferably contains a nickel component and / or a copper component as described above, and further, if desired, a small amount of other metal components such as cobalt, iron, manganese, and chromium. You may mix.
次に、担体を用い、これにニッケル等の金属成分を担持する場合の製造方法について、以下詳細に説明する。
上記した担体にニッケル及び銅、その他の金属成分を担持させる方法としては、特に制限はなく、含浸法、共沈法、混練法などの公知の任意の方法を採用することができる。本発明の好ましい脱硫剤の1つである、シリカ−アルミナ担体上にニッケル−銅を担持させてなる脱硫剤は、例えば以下に示すような共沈法によって製造することができる。この共沈法においては、まずニッケル源、アルミニウム源、及び銅源を含む酸性水溶液又は酸性水性分散液と、ケイ素源及び無機塩基を含む塩基性水溶液を調製する。前者の酸性水溶液又は酸性水分散液に用いられるニッケル源としては、例えば塩化ニッケル、硝酸ニッケル、硫酸ニッケル、酢酸ニッケル、炭酸ニッケル及びこれらの水和物などが挙げられる。また銅源としては、例えば塩化銅、硝酸銅、硫酸銅、酢酸銅及びこれらの水和物などが挙げられる。更にアルミニウム源としては、硝酸アルミニウム、擬ベーマイト、ベーマイトアルミナ、バイヤライト、ジブサイトなどのアルミナ水和物や、γ−アルミナなどが挙げられる。
Next, a manufacturing method in the case where a carrier is used and a metal component such as nickel is supported thereon will be described in detail below.
The method for supporting nickel, copper, and other metal components on the carrier is not particularly limited, and any known method such as an impregnation method, a coprecipitation method, or a kneading method can be employed. A desulfurization agent in which nickel-copper is supported on a silica-alumina support, which is one of the preferred desulfurization agents of the present invention, can be produced, for example, by a coprecipitation method as shown below. In this coprecipitation method, first, an acidic aqueous solution or acidic aqueous dispersion containing a nickel source, an aluminum source, and a copper source, and a basic aqueous solution containing a silicon source and an inorganic base are prepared. Examples of the nickel source used in the former acidic aqueous solution or acidic aqueous dispersion include nickel chloride, nickel nitrate, nickel sulfate, nickel acetate, nickel carbonate, and hydrates thereof. Examples of the copper source include copper chloride, copper nitrate, copper sulfate, copper acetate, and hydrates thereof. Furthermore, examples of the aluminum source include alumina hydrates such as aluminum nitrate, pseudoboehmite, boehmite alumina, bayerite, and dibsite, and γ-alumina.
一方、塩基性水溶液に用いられるケイ素源としては、アルカリ水溶液に可溶であって、焼成によりシリカになるものであればよく、特に制限されず、例えばオルトケイ酸、メタケイ酸及びそれらのナトリウム塩やカリウム塩、水ガラスなどが挙げられる。また、無機塩基としては、アルカリ金属の炭酸塩や水酸化物などが挙げられる。次に、このようにして調製した酸性の水溶液又は水分散液と塩基性水溶液をそれぞれ50〜90℃程度に加温して、両者を混合し、さらに50〜90℃程度の温度に保持して反応を完結させる。次に、生成した固形物を充分に洗浄したのち固液分離するか、あるいは生成した固形物を固液分離したのち充分に洗浄し、次いで、この固形物を公知の方法により80〜150℃程度の温度で乾燥処理する。このようにして得られた乾燥処理物を、好ましくは200〜400℃の範囲の温度において焼成することにより、シリカ−アルミナ担体上に金属成分が担持された脱硫剤が得られる。 On the other hand, the silicon source used in the basic aqueous solution is not particularly limited as long as it is soluble in an alkaline aqueous solution and becomes silica upon firing. For example, orthosilicic acid, metasilicic acid and their sodium salts A potassium salt, water glass, etc. are mentioned. Examples of the inorganic base include alkali metal carbonates and hydroxides. Next, the acidic aqueous solution or aqueous dispersion thus prepared and the basic aqueous solution are each heated to about 50 to 90 ° C., mixed together, and further maintained at a temperature of about 50 to 90 ° C. Complete the reaction. Next, the produced solid is sufficiently washed and separated into solid and liquid, or the produced solid is separated into solid and liquid and washed sufficiently, and then this solid is obtained at a temperature of about 80 to 150 ° C. by a known method. Dry at a temperature of The dried product thus obtained is preferably calcined at a temperature in the range of 200 to 400 ° C. to obtain a desulfurization agent having a metal component supported on a silica-alumina support.
担体として、アルミナ−シリカ以外の担体を用いる場合も、適宜上記の方法に準じて行うことができる。また、上記方法で得られた脱硫剤を更に還元処理して、金属ニッケルの量を本発明の範囲内とするには、当業界において通常用いられる方法が適宜用いられる。該還元処理は、燃料電池用水素の製造においては、その脱硫処理工程の直前に行うか、あるいは脱硫剤製造工程終了後に行う。脱硫剤製造後に還元を行う場合には、空気、希釈酸素、二酸化炭素などを用いて脱硫剤の安定化処理を行うことが好ましい。この安定化処理脱硫剤を用いる場合には、脱硫反応器に充填した後、再度還元処理を行うことが必要である。還元処理を行った後は不活性ガス、脱硫灯油で封入するとよい。
本発明の脱硫剤は、0.15mmol/g以上の水素吸着量を有することが好ましい。この水素吸着量が0.15mmol/g以上であると、脱硫に必要な活性点数が十分あり、高い脱硫性能が得られる。
When a carrier other than alumina-silica is used as the carrier, it can be carried out according to the above method as appropriate. In order to further reduce the desulfurizing agent obtained by the above-described method so that the amount of metallic nickel is within the scope of the present invention, a method usually used in the art is appropriately used. In the production of hydrogen for a fuel cell, the reduction treatment is performed immediately before the desulfurization treatment step or after the completion of the desulfurization agent production step. When the reduction is performed after the production of the desulfurizing agent, it is preferable that the desulfurizing agent is stabilized using air, diluted oxygen, carbon dioxide, or the like. When this stabilizing treatment desulfurizing agent is used, it is necessary to perform reduction treatment again after filling the desulfurization reactor. After performing the reduction treatment, it may be sealed with an inert gas or desulfurized kerosene.
The desulfurizing agent of the present invention preferably has a hydrogen adsorption amount of 0.15 mmol / g or more. When the hydrogen adsorption amount is 0.15 mmol / g or more, the number of active sites necessary for desulfurization is sufficient, and high desulfurization performance is obtained.
本発明の脱硫剤を用いて脱硫する燃料は、炭化水素原料及び/又は酸素含有炭化水素原料であって、例えば灯油、軽油、液化石油ガス(LPG)、ナフサ、ガソリン、天然ガス、ジメチルエーテル等、もしくはこれらの混合物が挙げられる。これらのうち、本発明の脱硫剤を適用するのに好適なものとしては灯油及び、液化石油ガス(LPG)が挙げられ、特に灯油においては、硫黄分含有量が80質量ppm以下のJIS1号灯油が好ましい。このJIS1号灯油は、原油を常圧蒸留して得た粗灯油を脱硫することにより得られるもので、該粗灯油は、通常硫黄分が多く、そのままではJIS1号灯油とはならず、硫黄分を低減させる必要がある。この硫黄分を低減させる方法としては、一般に工業的に実施されている水素化精製法で脱硫処理するのが好ましい。この場合、脱硫触媒として、通常ニッケル、コバルト、モリブデン、タングステンなどの遷移金属を適当な割合で混合したものを金属、酸化物、硫化物などの形態でアルミナを主成分とする担体に担持させたものが用いられる。反応条件は、例えば反応温度250〜400℃、圧力2〜10MPa・G、水素/油モル比2〜10、液時空間速度(LHSV)1〜5hr-1などの条件が用いられる。 The fuel to be desulfurized using the desulfurizing agent of the present invention is a hydrocarbon raw material and / or an oxygen-containing hydrocarbon raw material, such as kerosene, light oil, liquefied petroleum gas (LPG), naphtha, gasoline, natural gas, dimethyl ether, etc. Or a mixture thereof may be mentioned. Of these, kerosene and liquefied petroleum gas (LPG) are suitable for applying the desulfurizing agent of the present invention. In particular, in kerosene, JIS No. 1 kerosene having a sulfur content of 80 mass ppm or less. Is preferred. This JIS No. 1 kerosene is obtained by desulfurizing crude kerosene obtained by atmospheric distillation of crude oil. The crude kerosene usually has a high sulfur content, and as such, it does not become JIS No. 1 kerosene, Need to be reduced. As a method for reducing the sulfur content, it is preferable to perform a desulfurization treatment by a hydrorefining method which is generally carried out industrially. In this case, as a desulfurization catalyst, usually a mixture of transition metals such as nickel, cobalt, molybdenum, tungsten, etc., mixed at an appropriate ratio is supported on a carrier mainly composed of alumina in the form of metal, oxide, sulfide or the like. Things are used. As the reaction conditions, for example, the reaction temperature is 250 to 400 ° C., the pressure is 2 to 10 MPa · G, the hydrogen / oil molar ratio is 2 to 10, and the liquid hourly space velocity (LHSV) is 1 to 5 hr −1 .
本発明の脱硫剤を用いて、燃料を脱硫する条件としては、燃料の性状に応じて適宜選択することができ、特に限定されないが、通常−40〜300℃の範囲で脱硫することができる。燃料として炭化水素、例えばJIS1号灯油を、液相で本発明の脱硫剤を充填した脱硫塔中を上向き又は下向きの流れで通過させて脱硫する場合には、温度130〜230℃程度、圧力常圧〜1Mpa・G程度、LHSV2hr-1以下程度の条件で脱硫処理することが好ましい。この際、必要により、少量の水素を共存させてもよい。脱硫条件を上記範囲で適当に選択することにより、例えば硫黄分3ppm以下の炭化水素を得ることができる。
The conditions for desulfurizing the fuel using the desulfurizing agent of the present invention can be appropriately selected according to the properties of the fuel, and are not particularly limited, but can be desulfurized usually in the range of -40 to 300 ° C. When a hydrocarbon such as JIS No. 1 kerosene as a fuel is passed through a desulfurization tower filled with the desulfurization agent of the present invention in a liquid phase in an upward or downward flow, the temperature is about 130 to 230 ° C. The desulfurization treatment is preferably performed under conditions of a pressure of about 1 Mpa · G and about
次に本発明の燃料電池用水素の製造方法は、上記のようにして脱硫処理した燃料を、水蒸気改質、部分酸化改質又はオートサーマル改質を行って、より具体的には水蒸気改質触媒、部分酸化改質触媒又はオートサーマル改質触媒と接触させることにより、燃料電池用水素を製造するものである。
ここで用いられる改質触媒としては特に制限はなく、従来から炭化水素の改質触媒として知られている公知のものの中から任意のものを適宜選択して用いることができる。このような改質触媒としては、例えば適当な担体にニッケルやジルコニウム、あるいはルテニウム、ロジウム、白金などの貴金属を担持したものを挙げることができる。上記担持金属は一種でもよく、二種以上を組み合わせてもよい。これらの触媒の中で、ニッケルを担持させたもの(以下、ニッケル系触媒という)とルテニウムを担持させたもの(以下、ルテニウム系触媒という)が好ましく、これらは、水蒸気改質処理、部分酸化改質処理又はオートサーマル改質処理中の炭素析出を抑制する効果が大きい。
上記改質触媒を担持させる担体には、酸化マンガン、酸化セリウム、酸化ジルコニウム等が含まれていることが好ましく、特にこれらのうち少なくとも1種を含む担体が特に好ましい。
Next, in the method for producing hydrogen for a fuel cell according to the present invention, the fuel desulfurized as described above is subjected to steam reforming, partial oxidation reforming or autothermal reforming, more specifically steam reforming. Hydrogen for fuel cells is produced by contacting with a catalyst, a partial oxidation reforming catalyst or an autothermal reforming catalyst.
There is no restriction | limiting in particular as a reforming catalyst used here, Arbitrary things can be suitably selected and used from the well-known things conventionally known as a hydrocarbon reforming catalyst. As such a reforming catalyst, for example, a catalyst in which noble metal such as nickel, zirconium, ruthenium, rhodium or platinum is supported on a suitable carrier can be exemplified. The supported metal may be one kind or a combination of two or more kinds. Among these catalysts, those supporting nickel (hereinafter referred to as nickel-based catalyst) and those supporting ruthenium (hereinafter referred to as ruthenium-based catalyst) are preferable. The effect of suppressing carbon deposition during quality treatment or autothermal reforming treatment is great.
The carrier for supporting the reforming catalyst preferably contains manganese oxide, cerium oxide, zirconium oxide or the like, and particularly preferably a carrier containing at least one of these.
ニッケル系触媒の場合、ニッケルの担持量は担体基準で3〜60質量%の範囲が好ましい。この担持量が上記範囲内であると、水蒸気改質触媒、部分酸化改質触媒又はオートサーマル改質触媒の活性が十分に発揮されるとともに、経済的にも有利なものとなる。触媒活性及び経済性などを考慮すると、ニッケルのより好ましい担持量は5〜50質量%であり、特に10〜30質量%の範囲が好ましい。
また、ルテニウム系触媒の場合、ルテニウムの担持量は担体基準で0.05〜20質量%の範囲が好ましい。ルテニウムの担持量が上記範囲内であると、水蒸気改質触媒、部分酸化改質触媒又はオートサーマル改質触媒の活性が十分に発揮されるとともに経済的にも有利なものとなる。触媒活性及び経済性などを考慮すると、ルテニウムのより好ましい担持量は0.05〜15質量%であり、特に0.1〜2質量%の範囲が好ましい。
In the case of a nickel-based catalyst, the supported amount of nickel is preferably in the range of 3 to 60% by mass based on the carrier. When the supported amount is within the above range, the activity of the steam reforming catalyst, the partial oxidation reforming catalyst or the autothermal reforming catalyst is sufficiently exhibited, and it is economically advantageous. In view of catalyst activity and economy, the more preferable amount of nickel is 5 to 50% by mass, and particularly preferably 10 to 30% by mass.
In the case of a ruthenium-based catalyst, the supported amount of ruthenium is preferably in the range of 0.05 to 20% by mass based on the carrier. When the supported amount of ruthenium is within the above range, the activity of the steam reforming catalyst, the partial oxidation reforming catalyst or the autothermal reforming catalyst is sufficiently exhibited and it is economically advantageous. Considering catalytic activity and economic efficiency, the more preferable loading of ruthenium is 0.05 to 15% by mass, and particularly preferably 0.1 to 2% by mass.
水蒸気改質処理における反応条件としては、水蒸気と燃料油に由来する炭素との比であるスチーム/カーボン(モル比)は、通常1.5〜10の範囲で選定される。スチーム/カーボン(モル比)が1.5以上であると水素の生成量が十分であり、10以下であると過剰の水蒸気を必要としないため、熱ロスが小さく、水素製造が効率的に行える。上記観点から、スチーム/カーボン(モル比)は1.5〜5の範囲であることが好ましく、さらには2〜4の範囲であることが好ましい。
また、水蒸気改質触媒層の入口温度を630℃以下に保って水蒸気改質を行うのが好ましい。入口温度が630℃以下であると、燃料油の熱分解が起こらないため、炭素ラジカルを経由した触媒あるいは反応管壁への炭素析出が生じにくい。以上の観点から、さらに水蒸気改質触媒層の入口温度は600℃以下であることが好ましい。なお、触媒層出口温度は特に制限はないが、650〜800℃の範囲が好ましい。650℃以上であると水素の生成量が十分であり、800℃以下であると、反応装置を耐熱材料で構成する必要がなく、経済的に好ましい。
As a reaction condition in the steam reforming treatment, steam / carbon (molar ratio), which is a ratio of steam and carbon derived from fuel oil, is usually selected in the range of 1.5 to 10. When the steam / carbon (molar ratio) is 1.5 or more, the amount of hydrogen generated is sufficient, and when it is 10 or less, excess water vapor is not required, so heat loss is small and hydrogen production can be performed efficiently. . From the above viewpoint, the steam / carbon (molar ratio) is preferably in the range of 1.5 to 5, and more preferably in the range of 2 to 4.
Moreover, it is preferable to perform steam reforming while maintaining the inlet temperature of the steam reforming catalyst layer at 630 ° C. or lower. If the inlet temperature is 630 ° C. or lower, thermal decomposition of the fuel oil does not occur, so that carbon deposition on the catalyst or reaction tube wall via the carbon radical is unlikely to occur. From the above viewpoint, the inlet temperature of the steam reforming catalyst layer is preferably 600 ° C. or lower. The catalyst layer outlet temperature is not particularly limited, but is preferably in the range of 650 to 800 ° C. When the temperature is 650 ° C. or higher, the amount of hydrogen generated is sufficient, and when it is 800 ° C. or lower, the reaction apparatus does not need to be made of a heat-resistant material, which is economically preferable.
部分酸化改質処理における反応条件としては、通常、圧力は常圧〜5MPa・G、温度は400〜1100℃、酸素(O2)/カーボン(モル比)は0.2〜0.8、液時空間速度(LHSV)は0.1〜100hr-1の条件が採用される。
また、オートサーマル改質処理における反応条件としては、通常、圧力は常圧〜5MPa・G、温度は400〜1100℃、スチーム/カーボン(モル比)は0.1〜10、酸素(O2)/カーボン(モル比)は0.1〜1、液時空間速度(LHSV)は0.1〜2hr-1、ガス時空間速度(GHSV)は1000〜100000hr-1の条件が採用される。
なお、上記水蒸気改質、部分酸化改質又はオートサーマル改質により得られるCOが水素生成に悪影響を及ぼすため、COを反応によりCO2に変換して除くことが好ましい。このように、本発明の方法によれば、燃料電池用水素を効率よく製造することができる。
液体燃料を使用する燃料電池システムは、通常、燃料供給装置、脱硫装置、改質装置、燃料電池から構成され、上記本発明の方法によって製造された水素は燃料電池に供給される。
As reaction conditions in the partial oxidation reforming treatment, the pressure is usually normal pressure to 5 MPa · G, the temperature is 400 to 1100 ° C., the oxygen (O 2 ) / carbon (molar ratio) is 0.2 to 0.8, and the liquid The space-time velocity (LHSV) is 0.1 to 100 hr −1 .
As reaction conditions in the autothermal reforming treatment, the pressure is usually normal pressure to 5 MPa · G, the temperature is 400 to 1100 ° C., the steam / carbon (molar ratio) is 0.1 to 10, and oxygen (O 2 ). / Carbon (molar ratio) is 0.1 to 1, liquid hourly space velocity (LHSV) is 0.1 to 2 hr −1 , and gas hourly space velocity (GHSV) is 1000 to 100,000 hr −1 .
In addition, since CO obtained by the steam reforming, partial oxidation reforming or autothermal reforming adversely affects hydrogen generation, it is preferable to convert CO to CO 2 by reaction and remove it. Thus, according to the method of the present invention, hydrogen for fuel cells can be produced efficiently.
A fuel cell system using a liquid fuel is usually composed of a fuel supply device, a desulfurization device, a reforming device, and a fuel cell, and the hydrogen produced by the method of the present invention is supplied to the fuel cell.
次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
(物性測定方法)
(1)還元度(%)
還元度は(株)大倉理研製昇温還元装置(TPR;Temperature Programmed Reduction)「TP2000」を用いて測定される水素消費量から計算した。
各製造例にて製造される脱硫剤(還元処理前)20mgを試料管に充填し、100%のアルゴンガスを1時間流通させて、空気を置換した。その後、水素(65%)/アルゴン(35%)の混合ガスを20cm3/分で流通させ、室温で90分保持した。次に、10℃/分の昇温速度で827℃まで加熱しながら、TCD検出器(熱伝導型検出器)で水素の消費量を測定した。図1は脱硫剤(還元処理前)のTPRプロファイルであり、図1に示されるピークの面積Aは金属成分が酸化物から金属状態に全量還元されるのに必要な水素量を示す。
次に、各実施例及び比較例で製造される脱硫剤を還元処理及び安定化処理を行った後、上記と同様の方法で該脱硫剤の水素の消費量を測定した。その結果は図2に示すTPRプロファイルを示し、図2中の400K(127℃)付近で消費される水素(ピークの面積Cに該当)は、安定化処理によって表面酸化された部分の再還元によるものであり、770K(497℃)付近で消費される水素(ピークの面積Bに該当)は、還元処理後の未還元部分の還元によるものである。これらから、還元度は以下の式により求めた。
還元度(%)=100×(面積A−面積B)/面積A
(2)金属結晶子径
金属結晶子径は、(株)リガク製X線回折装置「RAD−B」を用いて以下のように測定した。
各実施例及び比較例で製造される還元・安定化処理を行った脱硫剤を資料板に充填し、X線源として、銅のKα線(波長λ=0.15405nm)を用い、回折角2θ=5〜80度を掃引してX線回折パターンを得た(図3)。該パターンのピーク分離を行い、2θが52度付近の金属に由来するピークの半値幅β(rad)を算出し、それを用いて、以下の式により金属結晶子径を求めた。
金属結晶子径(nm)=0.9λ/((β−b)・cosθ)
(b:装置の光学系によるピークの広がり(rad))
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
(Physical property measurement method)
(1) Degree of reduction (%)
The degree of reduction was calculated from the amount of hydrogen consumption measured using a temperature programmed reduction (TPR) “TP2000” manufactured by Okura Riken Co., Ltd.
The sample tube was filled with 20 mg of the desulfurization agent (before reduction treatment) produced in each production example, and 100% argon gas was passed for 1 hour to replace the air. Thereafter, a mixed gas of hydrogen (65%) / argon (35%) was circulated at 20 cm 3 / min and held at room temperature for 90 minutes. Next, the hydrogen consumption was measured with a TCD detector (heat conduction type detector) while heating to 827 ° C. at a rate of temperature increase of 10 ° C./min. FIG. 1 is a TPR profile of a desulfurization agent (before reduction treatment), and the peak area A shown in FIG. 1 indicates the amount of hydrogen necessary for the total reduction of the metal component from the oxide to the metal state.
Next, after reducing and stabilizing the desulfurizing agent produced in each Example and Comparative Example, the hydrogen consumption of the desulfurizing agent was measured in the same manner as described above. The result shows the TPR profile shown in FIG. 2, and the hydrogen consumed in the vicinity of 400 K (127 ° C.) in FIG. 2 (corresponding to the peak area C) is due to re-reduction of the surface oxidized portion by the stabilization treatment. The hydrogen consumed in the vicinity of 770 K (497 ° C.) (corresponding to the peak area B) is due to the reduction of the unreduced portion after the reduction treatment. From these, the degree of reduction was determined by the following equation.
Degree of reduction (%) = 100 × (area A−area B) / area A
(2) Metal crystallite diameter The metal crystallite diameter was measured as follows using X-ray diffractometer "RAD-B" manufactured by Rigaku Corporation.
The sample plate was filled with the desulfurization agent subjected to reduction / stabilization treatment manufactured in each Example and Comparative Example, and using copper Kα ray (wavelength λ = 0.15405 nm) as an X-ray source, diffraction angle 2θ X-ray diffraction pattern was obtained by sweeping from 5 to 80 degrees (FIG. 3). The peak separation of the pattern was performed, and the half width β (rad) of the peak derived from the metal having 2θ of around 52 degrees was calculated, and the metal crystallite diameter was determined by the following formula.
Metal crystallite diameter (nm) = 0.9λ / ((β−b) · cos θ)
(B: Peak broadening (rad) by the optical system of the apparatus)
(評価方法)
灯油及び液化石油ガス(LPG)の脱硫試験によって、実施例1〜5及び比較例1〜3で製造される脱硫剤の脱硫性能を評価した。
(1)灯油の脱硫試験
各実施例及び比較例で製造される脱硫剤15cm3を内径17mmのSUS製反応管に充填した。常圧下、水素気流中200℃に昇温し、該温度で2時間保持して脱硫剤を活性化した。次いで、第1表に示す性状を有するJIS−1号灯油を200℃、圧力0.6MPa、液空間速度(SV)20h-1で反応管に流通させた。30時間経過後の硫黄濃度で脱硫性能を評価した。
(Evaluation methods)
By the desulfurization test of kerosene and liquefied petroleum gas (LPG), the desulfurization performance of the desulfurization agents produced in Examples 1 to 5 and Comparative Examples 1 to 3 was evaluated.
(1) Desulfurization test of kerosene 15 cm 3 of the desulfurizing agent produced in each example and comparative example was filled in a SUS reaction tube having an inner diameter of 17 mm. Under normal pressure, the temperature was raised to 200 ° C. in a hydrogen stream and maintained at that temperature for 2 hours to activate the desulfurizing agent. Next, JIS-1 kerosene having the properties shown in Table 1 was circulated through the reaction tube at 200 ° C., pressure 0.6 MPa, and liquid space velocity (SV) 20 h −1 . Desulfurization performance was evaluated by the sulfur concentration after 30 hours.
(2)液化石油ガス(LPG)の脱硫試験
実施例1で製造される脱硫剤15cm3を内径17mmのSUS製反応管に充填した。常圧下、水素気流中200℃に昇温し、2時間保持して脱硫剤を活性化した。その後、温度を180℃に降温し、該温度で保持した。ついで、第2表に示す性状を有するJIS−1種−1号LPGを常圧下、ガス空間速度(SV)4000h-1で反応管に流通させた。800時間経過後の硫黄濃度を分析し、脱硫性能を評価した。
(2) Desulfurization test of liquefied petroleum gas (LPG) 15 cm 3 of the desulfurizing agent produced in Example 1 was charged into a SUS reaction tube having an inner diameter of 17 mm. Under normal pressure, the temperature was raised to 200 ° C. in a hydrogen stream and maintained for 2 hours to activate the desulfurizing agent. Thereafter, the temperature was lowered to 180 ° C. and kept at that temperature. Subsequently, JIS-1 type-1 No. LPG having the properties shown in Table 2 was circulated through the reaction tube at a gas space velocity (SV) of 4000 h -1 under normal pressure. The sulfur concentration after elapse of 800 hours was analyzed to evaluate the desulfurization performance.
製造例1
硫酸ニッケル・6水和物(特級、和光純薬株式会社製)730.2gおよび硫酸銅・5水和物(特級、和光純薬株式会社製)151.3gを80℃に加温したイオン交換水8Lに溶解し、これに擬ベーマイト(C−AP、Al2O3として67質量%、触媒化成工業株式会社製)を16.0g混合した。これに1規定の硫酸300mLを加えて、pHを2に調整し、調製液Xを得た。
次に、別に用意した、80℃に加温したイオン交換水8Lに炭酸ナトリウム600.0gを溶解し、水ガラス180.2g(J−1号、Si濃度量29質量%、日本化学工業株式会社製)を加えて、調製液Yを得た。
調製液X,Yの温度をそれぞれ80℃に保ちながら両者を混合し、1時間攪拌して沈殿ケーキを得た。その後、イオン交換水60Lを用いて得られた沈殿ケーキの洗浄・ろ過を行い、120℃送風乾燥機にて生成物を12時間乾燥後、350℃で3時間焼成した。その後、該焼成物を打錠成型により成型し、粉砕することによって平均粒径0.8mmの脱硫剤aを得た。
該脱硫剤aのニッケル含有量(NiO換算)は65質量%、銅含有量(CuO換算)は15質量%、担体であるシリカ−アルミナ量は20質量%、Si/Al比(原子比)は5.6であった。
Production Example 1
Ion exchange in which 730.2 g of nickel sulfate hexahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and 151.3 g of copper sulfate pentahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) were heated to 80 ° C. It was dissolved in water 8L, which pseudoboehmite (C-AP, 67 wt% as Al 2 O 3, manufactured by catalysts & Chemicals Industries Co., Ltd.) was 16.0g mixed. To this, 300 mL of 1N sulfuric acid was added to adjust the pH to 2, whereby Preparation Solution X was obtained.
Next, 600.0 g of sodium carbonate was dissolved in 8 L of ion-exchanged water heated to 80 ° C. separately, and 180.2 g of water glass (No. J-1, Si concentration 29 mass%, Nippon Chemical Industry Co., Ltd.) Preparation liquid Y was obtained.
While maintaining the temperature of each of the preparation liquids X and Y at 80 ° C., both were mixed and stirred for 1 hour to obtain a precipitation cake. Thereafter, the precipitate cake obtained using 60 L of ion-exchanged water was washed and filtered, and the product was dried for 12 hours in a 120 ° C. blower dryer and then calcined at 350 ° C. for 3 hours. Thereafter, the fired product was molded by tableting and pulverized to obtain a desulfurization agent a having an average particle size of 0.8 mm.
The nickel content (NiO equivalent) of the desulfurizing agent a is 65% by mass, the copper content (CuO equivalent) is 15% by mass, the amount of silica-alumina as a support is 20% by mass, and the Si / Al ratio (atomic ratio) is 5.6.
製造例2
硫酸ニッケル・6水和物の仕込み量を808.8gおよび硫酸銅・5水和物の仕込み量を80.7gとした以外は製造例1と同様にして脱硫剤bを得た。
該脱硫剤bのニッケル含有量(NiO換算)は72質量%、銅含有量(CuO換算)は8質量%、担体であるシリカ−アルミナ量は20質量%、Si/Al比(原子比)は5.6であった。
Production Example 2
A desulfurizing agent b was obtained in the same manner as in Production Example 1, except that the amount of nickel sulfate hexahydrate charged was 808.8 g and the amount of copper sulfate pentahydrate charged was 80.7 g.
The desulfurization agent b has a nickel content (NiO equivalent) of 72% by mass, a copper content (CuO equivalent) of 8% by mass, the amount of silica-alumina as a support is 20% by mass, and the Si / Al ratio (atomic ratio) is 5.6.
実施例1
製造例1で調製した脱硫剤aを常圧下、水素気流中180℃まで昇温し、6時間保持した後、さらに30分かけて300℃まで昇温し、該温度で50時間保持して、還元を行った。次いで、室温まで降温し、希釈酸素(酸素濃度1%)で脱硫剤の最表面酸化処理(安定化処理)を行った。このような処理を行った脱硫剤aについて、上記物性測定方法によって、還元度及び金属結晶子径を測定し、また上記評価方法によって、脱硫活性を評価した。結果を第3表及び第4表に示す。
実施例2
製造例2で製造した脱硫剤bを実施例1と同様の方法で還元及び安定化処理を行い、還元度及び金属結晶子径の測定、脱硫活性の評価を行った。結果を第3表及び第4表に示す。
Example 1
The desulfurizing agent a prepared in Production Example 1 was heated to 180 ° C. in a hydrogen stream under normal pressure, held for 6 hours, further heated to 300 ° C. over 30 minutes, held at the temperature for 50 hours, Reduction was performed. Next, the temperature was lowered to room temperature, and the outermost surface oxidation treatment (stabilization treatment) of the desulfurizing agent was performed with diluted oxygen (
Example 2
The desulfurization agent b produced in Production Example 2 was reduced and stabilized in the same manner as in Example 1, and the degree of reduction and metal crystallite diameter were measured and the desulfurization activity was evaluated. The results are shown in Tables 3 and 4.
実施例3
製造例1で調製した脱硫剤aを常圧下、水素気流中180℃まで昇温し、6時間保持した後、さらに30分かけて400℃まで昇温し、該温度で20時間保持して、還元を行った。その後直ちに、希釈酸素(酸素濃度1%)で脱硫剤の最表面酸化処理(安定化処理)を行った。このような処理を行った脱硫剤aについて、上記物性測定方法によって、還元度及び金属結晶子径を測定し、また上記評価方法によって、脱硫活性を評価した。結果を第3表及び第4表に示す。
実施例4
製造例2で製造した脱硫剤bを実施例3と同様の方法で還元及び安定化処理を行い、還元度及び金属結晶子径の測定、脱硫活性の評価を行った。結果を第3表及び第4表に示す。
Example 3
The desulfurizing agent a prepared in Production Example 1 was heated to 180 ° C. in a hydrogen stream under normal pressure, held for 6 hours, further heated to 400 ° C. over 30 minutes, held at the temperature for 20 hours, Reduction was performed. Immediately thereafter, the outermost surface oxidation treatment (stabilization treatment) of the desulfurizing agent was performed with diluted oxygen (
Example 4
The desulfurizing agent b produced in Production Example 2 was subjected to reduction and stabilization treatment in the same manner as in Example 3, and the degree of reduction and metal crystallite diameter were measured and the desulfurization activity was evaluated. The results are shown in Tables 3 and 4.
比較例1
製造例1で調製した脱硫剤aを常圧下、水素気流中180℃まで昇温し、6時間保持した後、さらに30分かけて300℃まで昇温し、該温度で3時間保持して、還元を行った。その後直ちに、希釈酸素(酸素濃度1%)で脱硫剤の最表面酸化処理(安定化処理)を行った。このような処理を行った脱硫剤aについて、上記物性測定方法によって、還元度及び金属結晶子径を測定し、また上記評価方法によって、脱硫活性を評価した。結果を第3表及び第4表に示す。
比較例2
製造例2で製造した脱硫剤bを比較例1と同様の方法で還元及び安定化処理を行い、還元度及び金属結晶子径の測定、脱硫活性の評価を行った。結果を第3表及び第4表に示す。
Comparative Example 1
The desulfurizing agent a prepared in Production Example 1 was heated to 180 ° C. in a hydrogen stream under normal pressure, held for 6 hours, further heated to 300 ° C. over 30 minutes, held at that temperature for 3 hours, Reduction was performed. Immediately thereafter, the outermost surface oxidation treatment (stabilization treatment) of the desulfurizing agent was performed with diluted oxygen (
Comparative Example 2
The desulfurization agent b produced in Production Example 2 was reduced and stabilized in the same manner as in Comparative Example 1, and the degree of reduction and metal crystallite diameter were measured and the desulfurization activity was evaluated. The results are shown in Tables 3 and 4.
比較例3
製造例1で調製した脱硫剤aを常圧下、水素気流中180℃まで昇温し、6時間保持した後、さらに30分かけて500℃まで昇温し、該温度で3時間保持して、還元を行った。その後直ちに、希釈酸素(酸素濃度1%)で脱硫剤の最表面酸化処理(安定化処理)を行った。このような処理を行った脱硫剤aについて、上記物性測定方法によって、還元度及び金属結晶子径を測定し、また上記評価方法によって、脱硫活性を評価した。結果を第3表及び第4表に示す。
比較例4
製造例2で製造した脱硫剤bを比較例3と同様の方法で還元及び安定化処理を行い、還元度及び金属結晶子径の測定、脱硫活性の評価を行った。結果を第3表及び第4表に示す。
Comparative Example 3
The desulfurizing agent a prepared in Production Example 1 was heated to 180 ° C. in a hydrogen stream under normal pressure, held for 6 hours, further heated to 500 ° C. over 30 minutes, held at that temperature for 3 hours, Reduction was performed. Immediately thereafter, the outermost surface oxidation treatment (stabilization treatment) of the desulfurizing agent was performed with diluted oxygen (
Comparative Example 4
The desulfurization agent b produced in Production Example 2 was reduced and stabilized in the same manner as in Comparative Example 3, and the degree of reduction and metal crystallite diameter were measured and the desulfurization activity was evaluated. The results are shown in Tables 3 and 4.
本発明の脱硫剤は、炭化水素原料及び/又は酸素含有炭化水素原料中の硫黄分を極めて低濃度まで効率よく除去することができ、かつ寿命の長い工業的に有利な脱硫剤である。従って、燃料供給装置、脱硫装置、改質装置、燃料電池から構成される通常の燃料電池システムの脱硫装置に適用した場合に、長期間にわたって改質装置の触媒を高活性な状態に保つことができ、燃料電池用の水素を効率的に製造することができる。また、硫黄化合物からなる付臭剤が添加された水素や都市ガスの脱硫にも適用可能な脱硫剤である。 The desulfurization agent of the present invention is an industrially advantageous desulfurization agent that can efficiently remove the sulfur content in the hydrocarbon raw material and / or the oxygen-containing hydrocarbon raw material to a very low concentration and has a long life. Accordingly, when applied to a desulfurization device of a normal fuel cell system composed of a fuel supply device, a desulfurization device, a reformer, and a fuel cell, the catalyst of the reformer can be kept highly active for a long period of time. And hydrogen for a fuel cell can be produced efficiently. Moreover, it is a desulfurization agent applicable also to desulfurization of hydrogen or city gas to which an odorant composed of a sulfur compound is added.
Claims (11)
11. A fuel cell system using hydrogen produced by the method according to claim 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003382794A JP2005146054A (en) | 2003-11-12 | 2003-11-12 | Desulfurizing agent and desulfurizing method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003382794A JP2005146054A (en) | 2003-11-12 | 2003-11-12 | Desulfurizing agent and desulfurizing method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005146054A true JP2005146054A (en) | 2005-06-09 |
JP2005146054A6 JP2005146054A6 (en) | 2005-11-17 |
Family
ID=34691757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003382794A Pending JP2005146054A (en) | 2003-11-12 | 2003-11-12 | Desulfurizing agent and desulfurizing method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005146054A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008169100A (en) * | 2007-01-15 | 2008-07-24 | Idemitsu Kosan Co Ltd | Desulfurization method, desulfurization apparatus, apparatus for manufacturing reformed gas for fuel cell and fuel cell system |
JP2008248195A (en) * | 2007-03-30 | 2008-10-16 | Japan Energy Corp | Porous desulfurization agent and method for desulfurizing hydrocarbon oil using the same |
WO2010113506A1 (en) | 2009-03-31 | 2010-10-07 | 新日本石油株式会社 | Desulfurizing agent precursor for hydrocarbons and method for producing same, fired desulfurizing agent precursor for hydrocarbons and method for producing same, desulfurizing agent for hydrocarbons and method for producing same, method for desulfurizing hydrocarbons, and fuel cell system |
JP2011195730A (en) * | 2010-03-19 | 2011-10-06 | Japan Petroleum Energy Center | Method of desulfurizing hydrocarbon oil |
JP5170591B2 (en) * | 2008-03-10 | 2013-03-27 | 独立行政法人産業技術総合研究所 | Adsorption desulfurization agent for liquid phase |
CN111491727A (en) * | 2017-12-29 | 2020-08-04 | 韩华思路信株式会社 | Catalyst for hydrogenation reaction and preparation method thereof |
CN116983991A (en) * | 2023-08-03 | 2023-11-03 | 西安元创化工科技股份有限公司 | Preparation method and application of reduced copper/nickel-based adsorption catalyst |
-
2003
- 2003-11-12 JP JP2003382794A patent/JP2005146054A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008169100A (en) * | 2007-01-15 | 2008-07-24 | Idemitsu Kosan Co Ltd | Desulfurization method, desulfurization apparatus, apparatus for manufacturing reformed gas for fuel cell and fuel cell system |
JP2008248195A (en) * | 2007-03-30 | 2008-10-16 | Japan Energy Corp | Porous desulfurization agent and method for desulfurizing hydrocarbon oil using the same |
JP5170591B2 (en) * | 2008-03-10 | 2013-03-27 | 独立行政法人産業技術総合研究所 | Adsorption desulfurization agent for liquid phase |
WO2010113506A1 (en) | 2009-03-31 | 2010-10-07 | 新日本石油株式会社 | Desulfurizing agent precursor for hydrocarbons and method for producing same, fired desulfurizing agent precursor for hydrocarbons and method for producing same, desulfurizing agent for hydrocarbons and method for producing same, method for desulfurizing hydrocarbons, and fuel cell system |
JP2011195730A (en) * | 2010-03-19 | 2011-10-06 | Japan Petroleum Energy Center | Method of desulfurizing hydrocarbon oil |
CN111491727A (en) * | 2017-12-29 | 2020-08-04 | 韩华思路信株式会社 | Catalyst for hydrogenation reaction and preparation method thereof |
EP3733288A4 (en) * | 2017-12-29 | 2021-08-25 | Hanwha Solutions Corporation | Hydrogenation reaction catalyst and preparation method therefor |
CN111491727B (en) * | 2017-12-29 | 2023-12-15 | 韩华思路信株式会社 | Catalyst for hydrogenation reaction and preparation method thereof |
US11987659B2 (en) | 2017-12-29 | 2024-05-21 | Hanwha Solutions Corporation | Hydrogenation reaction catalyst and preparation method therefor |
CN116983991A (en) * | 2023-08-03 | 2023-11-03 | 西安元创化工科技股份有限公司 | Preparation method and application of reduced copper/nickel-based adsorption catalyst |
CN116983991B (en) * | 2023-08-03 | 2024-04-30 | 西安元创化工科技股份有限公司 | Preparation method and application of reduced copper/nickel-based adsorption catalyst |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1270069B1 (en) | Use of a desulfurizing agent | |
EP1577369B1 (en) | Method for removing sulfur compound in hydrocarbon-containing gas | |
CA2601124C (en) | Desulfurizing agent and method of desulfurization with the same | |
TW200836833A (en) | Catalyst for carbon monoxide conversion and method of carbon monoxide modification with the same | |
US7556872B2 (en) | Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system | |
JP2001279274A (en) | Fuel oil for fuel cell, desulfurization method and method for producing hydrogen | |
JP4521172B2 (en) | Desulfurization agent and desulfurization method using the same | |
JP2005146054A (en) | Desulfurizing agent and desulfurizing method using the same | |
JP2005146054A6 (en) | Desulfurization agent and desulfurization method using the same | |
JP4322804B2 (en) | Method for desulfurizing liquid hydrocarbon and method for producing hydrogen for fuel cell | |
JP4079743B2 (en) | Desulfurizing agent for hydrocarbon-containing gas and method for producing hydrogen for fuel cell | |
JP2004075778A (en) | Desulfurizing agent for hydrocarbon and method for producing hydrogen for fuel cell | |
JP2005007383A (en) | Adsorbent for removing sulfur compound and method for producing hydrogen for fuel cell | |
JP4580070B2 (en) | Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells | |
JP4531939B2 (en) | Method for producing nickel-copper desulfurization agent | |
JP2001279259A (en) | Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery | |
JP2002316043A (en) | Desulfurizing agent for organic sulfur compound- containing fuel oil and method of manufacturing hydrogen for fuel cell | |
JP2010001480A (en) | Desulfurizing agent and desulfurization method using the same | |
EP1591416A2 (en) | Process for reducing concentration of carbon monoxide in hydrogen-containing gas and catalyst used therefor | |
JP2001279260A (en) | Nickel-copper-based desulfurizing agent and method for producing hydrogen for fuel battery | |
JP4580071B2 (en) | Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells | |
JP2005146055A (en) | Desulfurizing method and manufacturing method of hydrogen for fuel cell | |
JP2008297451A (en) | Porous desulfurizing agent, and desulfurizing method using the same | |
JP2001276605A (en) | Desulfurization agent and method of producing hydrogen for fuel cell | |
JP2006117921A (en) | Method for removing sulfur from liquid fuel and method for producing hydrogen and fuel battery system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080722 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080922 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091208 |