JP2001279274A - Fuel oil for fuel cell, desulfurization method and method for producing hydrogen - Google Patents

Fuel oil for fuel cell, desulfurization method and method for producing hydrogen

Info

Publication number
JP2001279274A
JP2001279274A JP2000097726A JP2000097726A JP2001279274A JP 2001279274 A JP2001279274 A JP 2001279274A JP 2000097726 A JP2000097726 A JP 2000097726A JP 2000097726 A JP2000097726 A JP 2000097726A JP 2001279274 A JP2001279274 A JP 2001279274A
Authority
JP
Japan
Prior art keywords
desulfurization
fuel oil
fuel
weight
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000097726A
Other languages
Japanese (ja)
Inventor
Takashi Katsuno
尚 勝野
Mitsuru Osawa
満 大澤
Satoshi Matsuda
聡 松田
Kazuhito Saito
一仁 齋藤
Masahiro Yoshinaka
正浩 吉仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2000097726A priority Critical patent/JP2001279274A/en
Publication of JP2001279274A publication Critical patent/JP2001279274A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To produce a petroleum-based hydrocarbon easy to undergo desulfurization treatment and suitable as a raw fuel oil for fuel cells, to provide a desulfurization method for producing a fuel oil for fuel cells through desulfurization treatment of the above hydrocarbon, and to provide a method for producing hydrogen for fuel cells by using the fuel oil obtained above. SOLUTION: The raw fuel oil for fuel cells is characterized by being <=15 wt.ppm in alkyldibenzothiophene content. The hydrocarbon desulfurization method comprises subjecting the above raw fuel oil to desulfurization treatment, and the method for producing hydrogen for fuel cells comprises catalyzing the thus obtained fuel oil with a reforming catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池用燃料
油、該燃料油の脱硫方法及び燃料電池用水素の製造方法
に関する。さらに詳しくは、本発明は、脱硫処理を容易
に行うことができ、燃料電池用の原料油として好適な石
油系炭化水素系燃料油、このものを脱硫処理して硫黄分
が低濃度の燃料電池用燃料油を製造する脱硫方法、及び
該燃料油を改質処理して、燃料電池用水素を効果的に製
造する方法に関するものである。
The present invention relates to a fuel oil for a fuel cell, a method for desulfurizing the fuel oil, and a method for producing hydrogen for a fuel cell. More specifically, the present invention provides a petroleum-based hydrocarbon fuel oil that can be easily subjected to desulfurization treatment and is suitable as a raw material oil for a fuel cell. The present invention relates to a desulfurization method for producing fuel oil for fuel cells and a method for effectively producing hydrogen for fuel cells by reforming the fuel oil.

【0002】[0002]

【従来の技術】近年、環境問題から新エネルギー技術が
脚光を浴びており、この新エネルギー技術の一つとして
燃料電池が注目されている。この燃料電池は、水素と酸
素を電気化学的に反応させることにより、化学エネルギ
ーを電気エネルギーに変換するものであって、エネルギ
ーの利用効率が高いという特徴を有しており、民生用、
産業用あるいは自動車用などとして、実用化研究が積極
的になされている。この燃料電池には、使用する電解質
の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物
型、固体高分子型などのタイプが知られている。一方、
水素源としては、メタノール、メタンを主体とする液化
天然ガス、この天然ガスを主成分とする都市ガス、天然
ガスを原料とする合成液体燃料、さらには石油系のLP
G、ナフサ、灯油などの炭化水素の使用が研究されてい
る。
2. Description of the Related Art In recent years, new energy technologies have been spotlighted due to environmental problems, and fuel cells have attracted attention as one of the new energy technologies. This fuel cell converts chemical energy into electric energy by electrochemically reacting hydrogen and oxygen, and has the feature of high energy use efficiency.
Practical research is being actively conducted for industrial or automotive use. As the fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type are known according to the type of electrolyte used. on the other hand,
As a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of natural gas, synthetic liquid fuel composed of natural gas as raw material, and petroleum LP
The use of hydrocarbons such as G, naphtha, kerosene is being studied.

【0003】燃料電池を民生用や自動車用などに利用す
る場合、上記石油系炭化水素は保管及び取扱いが容易で
ある上、ガソリンスタンドや販売店など、供給システム
が整備されていることから、水素源として有利である。
しかしながら、石油系炭化水素は、メタノールや天然ガ
ス系のものに比べて、硫黄分の含有量が多いという問題
がある。この石油系炭化水素を用いて水素を製造する場
合、一般に、該炭化水素を、改質触媒の存在下に水蒸気
改質又は部分酸化改質処理する方法が用いられる。この
ような改質処理においては、上記改質触媒は、炭化水素
中の硫黄分により被毒するため、触媒寿命の点から、該
炭化水素に脱硫処理を施し、硫黄分含有量を、0.2重
量ppm以下にすることが肝要である。
[0003] When a fuel cell is used for consumer or automobile use, the petroleum-based hydrocarbon is easily stored and handled, and is supplied with a hydrogen gas supply system such as a gas station or a store. It is advantageous as a source.
However, petroleum hydrocarbons have a problem that the sulfur content is higher than that of methanol or natural gas. When hydrogen is produced using this petroleum hydrocarbon, a method is generally used in which the hydrocarbon is subjected to steam reforming or partial oxidation reforming treatment in the presence of a reforming catalyst. In such a reforming treatment, the reforming catalyst is poisoned by the sulfur content in the hydrocarbon. Therefore, from the viewpoint of catalyst life, the hydrocarbon is subjected to desulfurization treatment to reduce the sulfur content to 0.1%. It is important that the content be 2 ppm by weight or less.

【0004】このため、石油系炭化水素の脱硫触媒につ
いて種々研究がなされ、有効な脱硫触媒として、様々な
ニッケル系吸着脱硫剤が開発されている(特公平6−6
5602号公報、同平7−115842号公報、同平7
−115843号公報、特許第2591971号、特開
平2−275701号公報、同平2−204301号公
報、同平5−70780号公報、同平6−80972号
公報、同平6−91173号公報、同平6−22857
0号公報)。しかしながら、これまで、石油系炭化水素
を脱硫処理する際、脱硫の難易さについての指標となる
ものは、知られていなかった。この脱硫の難易さの指標
が分かれば、それに基づいて被脱硫処理油の性状を制御
することにより、容易に所望の硫黄分濃度まで脱硫処理
することができると考えられる。
For this reason, various studies have been made on desulfurization catalysts for petroleum hydrocarbons, and various nickel-based adsorptive desulfurization agents have been developed as effective desulfurization catalysts (JP-B-6-6).
No. 5602, No. 7-115842, No. 7
JP-A-115843, JP-A-2591971, JP-A-2-275701, JP-A-2-204301, JP-A-5-70780, JP-A-6-80972, JP-A-6-91173, Same Hei 6-22857
No. 0). However, there has hitherto not been known any index that indicates the difficulty of desulfurization when desulfurizing petroleum hydrocarbons. If the index of the degree of difficulty of the desulfurization is known, it is considered that the desulfurization treatment can be easily performed to a desired sulfur concentration by controlling the properties of the oil to be desulfurized based on the index.

【0005】[0005]

【発明が解決しようとする課題】本発明は、このような
状況下で、脱硫処理を容易に行うことができ、燃料電池
用の原料油として好適な石油系炭化水素系燃料油、この
ものを脱硫処理して硫黄分が低濃度の燃料電池用燃料油
を製造する脱硫方法、及び該燃料油を改質処理して、燃
料電池用水素を効果的に製造する方法を提供することを
目的とするものである。
SUMMARY OF THE INVENTION The present invention provides a petroleum-based hydrocarbon fuel oil which can be easily subjected to desulfurization treatment in such a situation and is suitable as a fuel oil for a fuel cell. It is an object of the present invention to provide a desulfurization method for producing a fuel oil for fuel cells having a low sulfur content by desulfurization treatment, and a method for effectively producing hydrogen for fuel cells by reforming the fuel oil. Is what you do.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記目的
を達成するために鋭意研究を重ねた結果、アルキルジベ
ンゾチオフェンの含有量がある値以下の石油系炭化水素
が脱硫しやすいこと、そしてこれを脱硫処理し、さらに
改質処理することにより、その目的を達成しうることを
見出した。本発明は、かかる知見に基づいて完成したも
のである。すなわち、本発明は、アルキルジベンゾチオ
フェン含有量が15重量ppm以下であることを特徴と
する燃料電池用燃料油、この燃料油を脱硫処理すること
を特徴とする脱硫方法、及び上記製造方法で得られた燃
料油を改質触媒と接触させることを特徴とする燃料電池
用水素の製造方法を提供するものである。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and have found that petroleum hydrocarbons having an alkyldibenzothiophene content below a certain value are easily desulfurized. It has been found that the object can be achieved by desulfurizing this and further modifying it. The present invention has been completed based on such findings. That is, the present invention provides a fuel oil for fuel cells, wherein the content of the alkyldibenzothiophene is 15 ppm by weight or less, a desulfurization method comprising desulfurizing this fuel oil, and the above-mentioned production method. A method for producing hydrogen for a fuel cell, comprising contacting the obtained fuel oil with a reforming catalyst.

【0007】[0007]

【発明の実施の形態】本発明の燃料電池用燃料油として
は、常温、常圧で液体である石油系炭化水素、例えば、
ガソリン、ナフサ、灯油、軽油などが用いられるが、こ
れらの中で灯油が好ましく、特に硫黄分含有量が80重
量ppm以下のJIS1号灯油が好適である。このJI
S1号灯油は、原油を常圧蒸留して得た粗灯油を脱硫す
ることにより得られる。本発明の燃料電池用燃料油は、
アルキルジベンゾチオフェン含有量が15重量ppm以
下、好ましくは10重量ppm以下のものである。この
アルキルジベンゾチオフェン含有量が15重量ppmを
超えると脱硫しにくくなり、通常の脱硫条件では硫黄分
濃度を0.2重量ppm以下に脱硫することが困難とな
る。
BEST MODE FOR CARRYING OUT THE INVENTION The fuel oil for a fuel cell according to the present invention is a petroleum hydrocarbon which is liquid at normal temperature and normal pressure, for example,
Gasoline, naphtha, kerosene, light oil and the like are used. Among them, kerosene is preferable, and JIS No. 1 kerosene having a sulfur content of 80 ppm by weight or less is particularly preferable. This JI
S1 kerosene is obtained by desulfurizing crude kerosene obtained by distilling crude oil under normal pressure. The fuel oil for a fuel cell of the present invention,
It has an alkyldibenzothiophene content of 15 ppm by weight or less, preferably 10 ppm by weight or less. If the alkyldibenzothiophene content exceeds 15 ppm by weight, desulfurization becomes difficult, and it becomes difficult to reduce the sulfur content to 0.2 ppm by weight or less under ordinary desulfurization conditions.

【0008】このように、アルキルジベンゾチオフェン
含有量が15重量ppm以下の石油系炭化水素を用いて
脱硫処理することにより、脱硫剤の性能が最大限に発揮
され、硫黄分濃度を容易に0.2重量ppm以下にする
ことができる。本発明の脱硫方法においては、前記石油
系炭化水素を脱硫剤と接触させることにより、硫黄分濃
度が低濃度、通常0.2重量ppm以下の燃料油を製造
することができる。
As described above, by performing desulfurization treatment using a petroleum hydrocarbon having an alkyldibenzothiophene content of 15 ppm by weight or less, the performance of the desulfurizing agent is maximized, and the sulfur concentration can be easily reduced to 0.1%. It can be 2 ppm by weight or less. In the desulfurization method of the present invention, by bringing the petroleum hydrocarbon into contact with a desulfurizing agent, it is possible to produce a fuel oil having a low sulfur concentration, usually 0.2 ppm by weight or less.

【0009】この際、脱硫剤としては、適当な担体上に
ニッケルが担持されたニッケル系脱硫剤が好ましく用い
られる。このニッケル系脱硫剤におけるニッケルの担持
量は、脱硫剤全量に基づき、金属ニッケルとして30重
量%以上であることが好ましい。この金属ニッケルの量
が30重量%未満では脱硫性能が充分に発揮されないお
それがある。また、担持量があまり多すぎると担体の割
合が少なくなって、脱硫剤の機械的強度や脱硫性能が低
下する原因となる。脱硫性能及び機械的強度などを考慮
すると、このニッケルのより好ましい担持量は40〜8
0重量%の範囲であり、更に好ましい担持量としては5
0〜70重量%の範囲である。
In this case, as the desulfurizing agent, a nickel-based desulfurizing agent in which nickel is supported on a suitable carrier is preferably used. The amount of nickel carried in the nickel-based desulfurizing agent is preferably at least 30% by weight as metallic nickel based on the total amount of the desulfurizing agent. If the amount of the metallic nickel is less than 30% by weight, the desulfurization performance may not be sufficiently exhibited. On the other hand, if the supported amount is too large, the ratio of the carrier is reduced, which causes a decrease in the mechanical strength and desulfurization performance of the desulfurizing agent. Considering desulfurization performance and mechanical strength, the more preferred amount of nickel supported is 40 to 8
0% by weight, and more preferably 5% by weight.
It is in the range of 0 to 70% by weight.

【0010】また、担体としては、多孔質担体が好まし
く、特に多孔質の無機酸化物が好ましい。このようなも
のとしては、例えばシリカ、アルミナ、シリカ−アルミ
ナ、チタニア、ジルコニア、マグネシア、酸化亜鉛、白
土、粘土及び珪藻土などを挙げることができる。これら
は単独で用いてもよく、二種以上を組み合わせて用いて
もよい。これらの中で、特にシリカ−アルミナが好適で
ある。また、この脱硫剤においては、ニッケルに、必要
に応じ、銅、コバルト、鉄、マンガン、クロムなどの他
の金属を混在させてもよい。
[0010] The carrier is preferably a porous carrier, particularly preferably a porous inorganic oxide. Such materials include, for example, silica, alumina, silica-alumina, titania, zirconia, magnesia, zinc oxide, clay, clay and diatomaceous earth. These may be used alone or in combination of two or more. Among these, silica-alumina is particularly preferred. In this desulfurizing agent, other metals such as copper, cobalt, iron, manganese, and chromium may be mixed with nickel, if necessary.

【0011】上記担体に、金属を担持させる方法につい
ては特に制限はなく、含浸法、共沈法、混練法などの公
知の任意の方法を採用することができる。好ましい脱硫
剤であるシリカ−アルミナ担体上にニッケルを担持させ
てなる脱硫剤は、例えば以下に示すような共沈法によっ
て製造することができる。この共沈法においては、まず
ニッケル源及びアルミニウム源を含む酸性水溶液又は酸
性水分散液と、ケイ素源及び無機塩基を含む塩基性水溶
液を調製する。前者の酸性水溶液又は酸性水分散液に用
いられるニッケル源としては、例えば塩化ニッケル、硝
酸ニッケル、硫酸ニッケル及びこれらの水和物などが挙
げられる。また、アルミニウム源としては、硝酸アルミ
ニウム、擬ベーマイト、ベーマイトアルミナ、バイヤラ
イト、ジブサイトなどのアルミナ水和物や、γ−アルミ
ナなどが挙げられる。
The method for supporting the metal on the carrier is not particularly limited, and any known method such as an impregnation method, a coprecipitation method, and a kneading method can be employed. A desulfurizing agent, which is a preferable desulfurizing agent, in which nickel is supported on a silica-alumina carrier, can be produced by, for example, a coprecipitation method described below. In this coprecipitation method, first, an acidic aqueous solution or an acidic aqueous dispersion containing a nickel source and an aluminum source and a basic aqueous solution containing a silicon source and an inorganic base are prepared. Examples of the nickel source used in the former acidic aqueous solution or acidic aqueous dispersion include nickel chloride, nickel nitrate, nickel sulfate and hydrates thereof. Examples of the aluminum source include aluminum hydrates such as aluminum nitrate, pseudoboehmite, boehmite alumina, bayerite, and gibbsite, and γ-alumina.

【0012】一方、塩基性水溶液に用いられるケイ素源
としては、アルカリ水溶液に可溶であって、焼成により
シリカになるものであればよく、特に制限されず、例え
ばオルトケイ酸、メタケイ酸及びそれらのナトリウム塩
やカリウム塩、水ガラスなどが挙げられる。また、無機
塩基としては、アルカリ金属の炭酸塩や水酸化物などが
挙げられる。次に、このようにして調製した酸性水溶液
又は酸性水分散液と塩基性水溶液を、それぞれ50〜9
0℃程度に加温して、両者を混合し、さらに50〜90
℃程度の温度に保持して反応を完結させる。
On the other hand, the silicon source used in the basic aqueous solution is not particularly limited as long as it is soluble in an alkaline aqueous solution and becomes silica upon firing. For example, orthosilicic acid, metasilicic acid, Sodium salts, potassium salts, water glass and the like can be mentioned. In addition, examples of the inorganic base include carbonates and hydroxides of alkali metals. Next, the acidic aqueous solution or the acidic aqueous dispersion thus prepared and the basic aqueous solution were each added to 50 to 9 parts.
The mixture is heated to about 0 ° C., and the mixture is mixed.
The reaction is completed by maintaining the temperature at about ° C.

【0013】次に、生成した固形物を充分に洗浄したの
ち固液分離するか、あるいは生成した固形物を固液分離
したのち充分に洗浄し、次いで、この固形物を公知の方
法により80〜150℃程度の温度で乾燥処理する。こ
のようにして得られた乾燥処理物を、好ましくは200
〜400℃の範囲の温度において焼成することにより、
シリカ−アルミナ担体上にニッケルが担持された脱硫剤
が得られる。上記ニッケル系脱硫剤を用いて、本発明の
アルキルジベンゾチオフェン含有量が15重量ppm以
下の石油系炭化水素を脱硫処理する方法としては、例え
ば以下に示す方法を用いることができる。
Next, the produced solid is thoroughly washed and then subjected to solid-liquid separation, or the produced solid is subjected to solid-liquid separation and thoroughly washed. Drying is performed at a temperature of about 150 ° C. The dried product obtained in this manner is preferably
By firing at a temperature in the range of ~ 400 ° C,
A desulfurizing agent in which nickel is supported on a silica-alumina carrier is obtained. As a method for desulfurizing a petroleum hydrocarbon having an alkyldibenzothiophene content of 15% by weight or less according to the present invention using the nickel-based desulfurizing agent, for example, the following method can be used.

【0014】まず、該ニッケル系脱硫剤が充填された脱
硫塔に、予め水素を供給し、150〜400℃程度の温
度において、ニッケル系脱硫剤の還元処理を行う。次
に、前記石油系炭化水素を、脱硫塔中を上向き又は下向
きの流れで通過させ、温度:常温〜400℃程度、圧
力:常圧〜1MPa・G程度、液時空間速度(LHS
V):0.02〜10hr-1程度の条件で脱硫処理す
る。この際、必要により、少量の水素を共存させてもよ
い。このようにして、硫黄分濃度0.2重量ppm以下
の燃料電池用燃料油を得ることができる。
First, hydrogen is supplied in advance to a desulfurization tower filled with the nickel-based desulfurizing agent, and the nickel-based desulfurizing agent is reduced at a temperature of about 150 to 400 ° C. Next, the petroleum hydrocarbon is passed through the desulfurization tower in an upward or downward flow, and the temperature is about normal temperature to about 400 ° C., the pressure is about normal pressure to about 1 MPa · G, and the liquid hourly space velocity (LHS)
V): Desulfurization is performed under the conditions of about 0.02 to 10 hr -1 . At this time, if necessary, a small amount of hydrogen may be allowed to coexist. Thus, fuel oil for a fuel cell having a sulfur concentration of 0.2 wt ppm or less can be obtained.

【0015】本発明の燃料電池用水素の製造方法におい
ては、前記の脱硫方法で得られた燃料油を改質触媒と接
触させることにより、水素を製造する。この方法におい
ては、水蒸気改質法と部分酸化改質法のいずれも用いる
ことができるが、本発明においては、水蒸気改質法が好
ましい。水蒸気改質法で用いる触媒としては特に制限は
なく、従来炭化水素の水蒸気改質触媒として知られてい
る公知のものの中から、任意のものを適宜選択して用い
ることができる。このような水蒸気改質触媒としては、
例えば適当な担体に、ニッケルやジルコニウム、あるい
はルテニウム、ロジウム、白金などの貴金属を担持した
ものを挙げることができる。上記担持金属は一種担持さ
せてもよく、二種以上を組み合わせて担持させてもよ
い。これらの触媒の中で、ルテニウムを担持させたもの
(以下、ルテニウム系触媒と称す。)が好ましい。
In the method for producing hydrogen for a fuel cell according to the present invention, hydrogen is produced by bringing the fuel oil obtained by the above desulfurization method into contact with a reforming catalyst. In this method, both the steam reforming method and the partial oxidation reforming method can be used, but in the present invention, the steam reforming method is preferable. The catalyst used in the steam reforming method is not particularly limited, and any catalyst may be appropriately selected and used from known catalysts conventionally known as hydrocarbon steam reforming catalysts. As such a steam reforming catalyst,
For example, a carrier in which a noble metal such as nickel, zirconium, ruthenium, rhodium, and platinum is supported on a suitable carrier can be used. One of the above-mentioned supported metals may be supported, or two or more may be supported in combination. Among these catalysts, those supporting ruthenium (hereinafter referred to as ruthenium-based catalyst) are preferable.

【0016】このルテニウム系触媒の場合、ルテニウム
の担持量は、担体基準で0.05〜20重量%の範囲が
好ましく、より好ましくは0.05〜15重量%、特に
好ましくは0.1〜2重量%の範囲である。このルテニ
ウムを担持する場合、所望により、他の金属と組み合わ
せて担持することができる。該他の金属としては、例え
ばジルコニウム、コバルト、マグネシウムなどが挙げら
れる。
In the case of this ruthenium-based catalyst, the supported amount of ruthenium is preferably in the range of 0.05 to 20% by weight, more preferably 0.05 to 15% by weight, and particularly preferably 0.1 to 2% by weight, based on the carrier. % By weight. When the ruthenium is supported, it can be supported in combination with another metal, if desired. Examples of the other metal include zirconium, cobalt, and magnesium.

【0017】一方、担体としては、無機酸化物が好まし
く、具体的にはアルミナ、シリカ、ジルコニア、マグネ
シア及びこれらの混合物などが挙げられる。これらの中
で、特にアルミナ及びジルコニアが好適である。水蒸気
改質処理における反応条件としては、水蒸気と該炭化水
素に由来する炭素との比S/C(モル比)は、通常2〜
5、好ましくは2〜4、より好ましくは2〜3の範囲で
選定される。
On the other hand, the carrier is preferably an inorganic oxide, and specific examples thereof include alumina, silica, zirconia, magnesia, and mixtures thereof. Of these, alumina and zirconia are particularly preferred. As the reaction conditions in the steam reforming treatment, the ratio S / C (molar ratio) between steam and carbon derived from the hydrocarbon is usually 2 to 2.
5, preferably 2 to 4, more preferably 2 to 3.

【0018】また、水蒸気改質触媒層の入口温度を63
0℃以下、さらには600℃以下に保って水蒸気改質を
行うのが好ましい。なお、触媒層出口温度は特に制限は
ないが、650〜800℃の範囲が好ましい。反応圧力
は、通常常圧〜3MPa、好ましくは常圧〜1MPaの
範囲であり、また、LHSVは、通常0.1〜100h
-1、好ましくは0.2〜50h-1の範囲である。このよ
うにして、燃料電池用水素を効率よく製造することがで
きる。
Further, the inlet temperature of the steam reforming catalyst layer is set to 63
It is preferable to carry out steam reforming at a temperature of 0 ° C. or lower, more preferably 600 ° C. or lower. The outlet temperature of the catalyst layer is not particularly limited, but is preferably in the range of 650 to 800 ° C. The reaction pressure is usually in the range of normal pressure to 3 MPa, preferably normal pressure to 1 MPa, and the LHSV is usually 0.1 to 100 h.
-1 , preferably in the range of 0.2 to 50 h -1 . In this way, hydrogen for a fuel cell can be efficiently produced.

【0019】[0019]

【実施例】次に、本発明を実施例により、さらに詳細に
説明するが、本発明は、これらの例によってなんら限定
されるものではない。調製例1 ニッケル系脱硫剤の調
製水500ミリリットルに塩化ニッケル50.9gを溶
解し、これに担体(アルミナ)0.6gを加えたのち、
1モル/リットル濃度の硝酸水溶液20ミリリットルを
加え、pH1に調整し、(A)液を調製した。一方、水
500ミリリットルに炭酸ナトリウム33.1gを溶解
したのち、水ガラス11.7g(SiO2 濃度29重量
%)を加え、(B)液を調製した。次に、上記(A)液
と(B)液を、それぞれ80℃に加熱したのち、両者を
瞬時に混合し、混合液の温度を80℃に保持したまま1
時間撹拌した。その後、蒸留水60リットルを用いて生
成物を充分に洗浄したのち、ろ過し、次いで固形物を1
20℃送風乾燥機にて12時間乾燥し、さらに300℃
で1時間焼成処理することにより、シリカ−アルミナ担
体上にニッケルが63重量%担持された脱硫剤を得た。
各石油系炭化水素の脱硫試験は、下記の方法に従って実
施した。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Preparation Example 1 Preparation of nickel-based desulfurizing agent 50.9 g of nickel chloride was dissolved in 500 ml of water, and 0.6 g of a carrier (alumina) was added thereto.
20 ml of a 1 mol / liter nitric acid aqueous solution was added to adjust the pH to 1 to prepare solution (A). On the other hand, after 33.1 g of sodium carbonate was dissolved in 500 ml of water, 11.7 g of water glass (SiO 2 concentration: 29% by weight) was added to prepare solution (B). Next, after the above solution (A) and solution (B) were heated to 80 ° C., respectively, they were instantaneously mixed, and the mixture was kept at 80 ° C. for 1 hour.
Stirred for hours. Thereafter, the product was thoroughly washed with 60 liters of distilled water, filtered, and then the solid was removed.
Dry for 12 hours in a blast dryer at 20 ° C, then 300 ° C
For 1 hour to obtain a desulfurizing agent in which 63% by weight of nickel was supported on a silica-alumina carrier.
The desulfurization test of each petroleum hydrocarbon was performed according to the following method.

【0020】<脱硫試験>調製例1で得た脱硫剤15ミ
リリットルを、内径17mmのステンレス鋼製反応管に
充填する。次いで、常圧下、水素気流中にて120℃に
昇温し、1時間保持したのち、さらに昇温し、380℃
で1時間保持することにより、脱硫剤を活性化する。次
に、反応管の温度を150℃に保持し、被処理炭化水素
を常圧下にLHSV10h-1で反応管に流通させ、5時
間経過した時点の処理油中の硫黄分濃度をJIS K2
541微量電量滴定法に準じて分析する。 実施例1〜3及び比較例1 第1表に示す性状の灯油について、脱硫試験を実施し
た。脱硫処理後の硫黄分濃度を第1表に示す。灯油中の
アルキルジベンゾチオフェンの含有量は、GC−AED
分析法(原子発光検出器付きガスクロマトグラフ)によ
り測定した。
<Desulfurization Test> 15 ml of the desulfurizing agent obtained in Preparation Example 1 is charged into a stainless steel reaction tube having an inner diameter of 17 mm. Next, the temperature was increased to 120 ° C. in a hydrogen stream under normal pressure, and the temperature was maintained for 1 hour.
For one hour to activate the desulfurizing agent. Next, the temperature of the reaction tube was maintained at 150 ° C., and the hydrocarbon to be treated was passed through the reaction tube under normal pressure at an LHSV of 10 h −1 , and the sulfur concentration in the treated oil after 5 hours was measured according to JIS K2
Analyze according to 541 microcoulometric titration method. Examples 1 to 3 and Comparative Example 1 A desulfurization test was performed on kerosene having the properties shown in Table 1. Table 1 shows the sulfur content after the desulfurization treatment. The content of alkyldibenzothiophene in kerosene is determined by GC-AED
It was measured by an analytical method (gas chromatograph with an atomic emission detector).

【0021】[0021]

【表1】 [Table 1]

【0022】実施例4 調製例1で得た脱硫剤15ミリリットルを、内径17m
mのステンレス鋼製反応管に充填した。次いで、常圧
下、水素気流中にて120℃に昇温し、1時間保持した
のち、さらに昇温し、380℃で1時間保持することに
より、脱硫剤を活性化した。次に、反応管の温度を15
0℃に保持し、実施例1で用いた灯油Aを、常圧下、L
HSV2h-1で反応管を通過させ、さらに、下流にルテ
ニウム系改質触媒(ルテニウム担持量0.5重量%)3
0ミリリットルが充填された改質器により、水蒸気改質
処理した。改質処理条件は、圧力:大気圧、水蒸気/炭
素(S/C)モル比2.5、LHSV:1.0h-1、入
口温度:500℃、出口温度:750℃である。その結
果、200時間経過後の改質器出口での転化率は100
%であった。また、この反応期間中の脱硫処理灯油の硫
黄分は0.2重量ppm以下であった。なお、転化率
は、式 転化率(%)=100×B/A (ただし、Aは時間当たりの供給灯油中の全炭素量(モ
ル流量)であり、Bは時間当たりの改質器出口ガス中の
C1化合物の全炭素量(モル流量)である。)によって
算出した値である。なお、分析はガスクロマトグラフィ
ー法による。
Example 4 15 ml of the desulfurizing agent obtained in Preparation Example 1 was mixed with an inner diameter of 17 m.
m stainless steel reaction tube. Next, the temperature was raised to 120 ° C. in a hydrogen stream under normal pressure, and the temperature was maintained for 1 hour. Then, the temperature was further raised and the temperature was maintained at 380 ° C. for 1 hour to activate the desulfurizing agent. Next, the temperature of the reaction tube was reduced to 15
The kerosene A used in Example 1 was kept at 0 ° C.
HSV2h -1 is passed through the reaction tube, and further downstream is a ruthenium-based reforming catalyst (ruthenium loading 0.5% by weight) 3
Steam reforming treatment was performed by a reformer filled with 0 ml. The reforming treatment conditions are as follows: pressure: atmospheric pressure, steam / carbon (S / C) molar ratio: 2.5, LHSV: 1.0 h −1 , inlet temperature: 500 ° C., outlet temperature: 750 ° C. As a result, the conversion at the outlet of the reformer after the elapse of 200 hours is 100
%Met. The sulfur content of the desulfurized kerosene during this reaction period was 0.2 ppm by weight or less. The conversion rate is expressed by the formula: conversion rate (%) = 100 × B / A (where A is the total amount of carbon in the supplied kerosene (molar flow rate) and B is the reformer outlet gas per hour. This is the total carbon amount (molar flow rate) of the C1 compound in the formula (1). The analysis is based on a gas chromatography method.

【0023】比較例2 実施例4において、比較例1で用いた灯油Dを用いた以
外は、実施例4と同様にして、灯油の脱硫処理及び水蒸
気改質処理を行った。その結果、50時間経過後、改質
器出口の転化率は100%を下回り、70時間経過後に
改質器出口で油滴が確認された。なお、50時間及び7
0時間経過した時点における脱硫処理灯油中の硫黄分
は、それぞれ4.4重量ppm及び10.0重量ppm
であった。
Comparative Example 2 A desulfurization treatment and a steam reforming treatment of kerosene were performed in the same manner as in Example 4 except that kerosene D used in Comparative Example 1 was used. As a result, the conversion at the outlet of the reformer was less than 100% after 50 hours, and oil droplets were confirmed at the outlet of the reformer after 70 hours. In addition, 50 hours and 7
The sulfur content in the desulfurized kerosene at the time when 0 hour has passed is 4.4 ppm by weight and 10.0 ppm by weight, respectively.
Met.

【0024】[0024]

【発明の効果】本発明の燃料電池用燃料油は、アルキル
ジベンゾチオフェン含有量が15重量ppm以下のもの
であって、脱硫しやすく、脱硫剤への負荷を低減させる
と共に、硫黄分を低濃度まで除去することができ、燃料
電池用として好適な燃料油である。また、該燃料油を脱
硫処理した後、改質処理することにより、改質触媒の長
寿命化を図ることができる。
The fuel oil for a fuel cell according to the present invention has an alkyldibenzothiophene content of not more than 15 ppm by weight, is easily desulfurized, reduces the load on the desulfurizing agent, and has a low sulfur content. It is a fuel oil suitable for use in fuel cells. In addition, the desulfurization treatment of the fuel oil followed by the reforming treatment can prolong the service life of the reforming catalyst.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉仲 正浩 千葉県袖ヶ浦市上泉1280 Fターム(参考) 4G040 EA03 EA06 EB01 EC03 5H027 AA02 BA01 BA16  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masahiro Yoshinaka 1280 Kamiizumi Kamiizumi, Sodegaura-shi, Chiba F-term (reference) 4G040 EA03 EA06 EB01 EC03 5H027 AA02 BA01 BA16

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アルキルジベンゾチオフェン含有量が1
5重量ppm以下であることを特徴とする燃料電池用燃
料油。
1. An alkyldibenzothiophene content of 1
A fuel oil for a fuel cell, wherein the content is 5 ppm by weight or less.
【請求項2】 アルキルジベンゾチオフェン含有量が1
0重量ppm以下である請求項1記載の燃料油。
2. An alkyldibenzothiophene content of 1
The fuel oil according to claim 1, wherein the content is 0 ppm by weight or less.
【請求項3】 請求項1又は2記載の燃料油を脱硫処理
することを特徴とする脱硫方法。
3. A desulfurization method comprising desulfurizing the fuel oil according to claim 1.
【請求項4】 請求項3記載の方法で脱硫した後、燃料
油を改質触媒と接触させることを特徴とする燃料電池用
水素の製造方法。
4. A method for producing hydrogen for a fuel cell, comprising, after desulfurization according to the method according to claim 3, contacting the fuel oil with a reforming catalyst.
JP2000097726A 2000-03-31 2000-03-31 Fuel oil for fuel cell, desulfurization method and method for producing hydrogen Pending JP2001279274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000097726A JP2001279274A (en) 2000-03-31 2000-03-31 Fuel oil for fuel cell, desulfurization method and method for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000097726A JP2001279274A (en) 2000-03-31 2000-03-31 Fuel oil for fuel cell, desulfurization method and method for producing hydrogen

Publications (1)

Publication Number Publication Date
JP2001279274A true JP2001279274A (en) 2001-10-10

Family

ID=18612309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000097726A Pending JP2001279274A (en) 2000-03-31 2000-03-31 Fuel oil for fuel cell, desulfurization method and method for producing hydrogen

Country Status (1)

Country Link
JP (1) JP2001279274A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083626A (en) * 2000-06-28 2002-03-22 Nippon Mitsubishi Oil Corp Fuel for fuel cell system
WO2004009735A1 (en) * 2002-07-22 2004-01-29 Idemitsu Kosan Co., Ltd. Method for desulfurization of liquid hydrocarbons and process for production of hydrogen for fuel cells
JP2004055483A (en) * 2002-07-24 2004-02-19 Idemitsu Kosan Co Ltd Method for manufacturing hydrogen for fuel cell
JP2004319400A (en) * 2003-04-18 2004-11-11 Nippon Oil Corp Fuel for fuel cell system and fuel cell system
JP2004319401A (en) * 2003-04-18 2004-11-11 Nippon Oil Corp Fuel for fuel cell system, its manufacturing method, and fuel cell system
WO2006068069A1 (en) * 2004-12-20 2006-06-29 Idemitsu Kosan Co., Ltd. Liquid fuel for fuel cell and method of desulfurization
JP2008525587A (en) * 2004-12-27 2008-07-17 エクソンモービル リサーチ アンド エンジニアリング カンパニー Method for removing sulfur from sulfur-containing hydrocarbon streams
JP2008239811A (en) * 2007-03-27 2008-10-09 Nippon Oil Corp Fuel oil composition
JP2009067994A (en) * 2007-08-20 2009-04-02 Cosmo Oil Co Ltd Fuel oil for fuel cell
JP2009067991A (en) * 2007-08-20 2009-04-02 Cosmo Oil Co Ltd Fuel oil for fuel cell
JP2009067993A (en) * 2007-08-20 2009-04-02 Cosmo Oil Co Ltd Fuel oil for fuel cell
JP2009209252A (en) * 2008-03-04 2009-09-17 Cosmo Oil Co Ltd Fuel oil for fuel cell
JP2011202184A (en) * 2011-07-15 2011-10-13 Cosmo Oil Co Ltd Kerosene composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335403A (en) * 1986-07-25 1988-02-16 Nippon Oil Co Ltd Production of hydrogen for distributed fuel cell
JPH0691173A (en) * 1992-09-16 1994-04-05 Sekiyu Sangyo Kasseika Center Catalyst for low pressure degradation-desulfurization and its utilization
JPH0820782A (en) * 1994-07-11 1996-01-23 Mitsui Eng & Shipbuild Co Ltd Production of low-sulfur gas oil
JPH0929098A (en) * 1995-07-21 1997-02-04 Idemitsu Kosan Co Ltd Steam reforming catalyst of hydrocarbon
JP2000104081A (en) * 1998-09-28 2000-04-11 Showa Shell Sekiyu Kk High-quality gas oil and its production
JP2001279257A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335403A (en) * 1986-07-25 1988-02-16 Nippon Oil Co Ltd Production of hydrogen for distributed fuel cell
JPH0691173A (en) * 1992-09-16 1994-04-05 Sekiyu Sangyo Kasseika Center Catalyst for low pressure degradation-desulfurization and its utilization
JPH0820782A (en) * 1994-07-11 1996-01-23 Mitsui Eng & Shipbuild Co Ltd Production of low-sulfur gas oil
JPH0929098A (en) * 1995-07-21 1997-02-04 Idemitsu Kosan Co Ltd Steam reforming catalyst of hydrocarbon
JP2000104081A (en) * 1998-09-28 2000-04-11 Showa Shell Sekiyu Kk High-quality gas oil and its production
JP2001279257A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083626A (en) * 2000-06-28 2002-03-22 Nippon Mitsubishi Oil Corp Fuel for fuel cell system
JP4632281B2 (en) * 2000-06-28 2011-02-16 Jx日鉱日石エネルギー株式会社 Fuel for fuel cell system
WO2004009735A1 (en) * 2002-07-22 2004-01-29 Idemitsu Kosan Co., Ltd. Method for desulfurization of liquid hydrocarbons and process for production of hydrogen for fuel cells
KR100976296B1 (en) 2002-07-22 2010-08-16 이데미쓰 고산 가부시키가이샤 Method for desulfurization of liquid hydrocarbons and process for production of hydrogen for fuel cells
US7510648B2 (en) 2002-07-22 2009-03-31 Idemitsu Kosan Co., Ltd. Method for desulfurization of liquid hydrocarbons and process for production of hydrogen for fuel cells
JP2004055483A (en) * 2002-07-24 2004-02-19 Idemitsu Kosan Co Ltd Method for manufacturing hydrogen for fuel cell
JP2004319400A (en) * 2003-04-18 2004-11-11 Nippon Oil Corp Fuel for fuel cell system and fuel cell system
JP4684539B2 (en) * 2003-04-18 2011-05-18 Jx日鉱日石エネルギー株式会社 Fuel for fuel cell system, method for producing the same, and fuel cell system
JP2004319401A (en) * 2003-04-18 2004-11-11 Nippon Oil Corp Fuel for fuel cell system, its manufacturing method, and fuel cell system
JP4537666B2 (en) * 2003-04-18 2010-09-01 新日本石油株式会社 Fuel for fuel cell system and fuel cell system
JP2006173045A (en) * 2004-12-20 2006-06-29 Idemitsu Kosan Co Ltd Liquid fuel for fuel cell, and desulfurizating method
WO2006068069A1 (en) * 2004-12-20 2006-06-29 Idemitsu Kosan Co., Ltd. Liquid fuel for fuel cell and method of desulfurization
JP2008525587A (en) * 2004-12-27 2008-07-17 エクソンモービル リサーチ アンド エンジニアリング カンパニー Method for removing sulfur from sulfur-containing hydrocarbon streams
JP2008239811A (en) * 2007-03-27 2008-10-09 Nippon Oil Corp Fuel oil composition
JP2009067993A (en) * 2007-08-20 2009-04-02 Cosmo Oil Co Ltd Fuel oil for fuel cell
JP2009067991A (en) * 2007-08-20 2009-04-02 Cosmo Oil Co Ltd Fuel oil for fuel cell
JP2009067994A (en) * 2007-08-20 2009-04-02 Cosmo Oil Co Ltd Fuel oil for fuel cell
JP2009209252A (en) * 2008-03-04 2009-09-17 Cosmo Oil Co Ltd Fuel oil for fuel cell
JP2011202184A (en) * 2011-07-15 2011-10-13 Cosmo Oil Co Ltd Kerosene composition

Similar Documents

Publication Publication Date Title
EP1270069B1 (en) Use of a desulfurizing agent
JP2001279274A (en) Fuel oil for fuel cell, desulfurization method and method for producing hydrogen
JP2002322483A (en) Method for desulfurization of liquid oil containing organic sulfur compound
JP2001279256A (en) Desulfurization device for fuel battery and method for operating the same
US7510648B2 (en) Method for desulfurization of liquid hydrocarbons and process for production of hydrogen for fuel cells
JP4749589B2 (en) Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method
JP4388665B2 (en) Ni-Cu desulfurizing agent and method for producing hydrogen for fuel cell
JP4580070B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP2001279259A (en) Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery
JP4531939B2 (en) Method for producing nickel-copper desulfurization agent
JP2001279257A (en) Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery
JP4521172B2 (en) Desulfurization agent and desulfurization method using the same
JP2004075778A (en) Desulfurizing agent for hydrocarbon and method for producing hydrogen for fuel cell
JP4580071B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP2004130216A (en) Desulfurizing agent for hydrocarbon-containing gas and method for producing hydrogen for fuel cell
JP2005146054A6 (en) Desulfurization agent and desulfurization method using the same
JP2005146054A (en) Desulfurizing agent and desulfurizing method using the same
JP2001294874A (en) Fuel oil for kerosene-based fuel cell
JP2001276605A (en) Desulfurization agent and method of producing hydrogen for fuel cell
JP2001278602A (en) Desulfurization agent, method of desulfurization and method of manufacturing hydrogen for fuel cell
JP2001279273A (en) Kerosene-based fuel oil for fuel cell
JP2010001480A (en) Desulfurizing agent and desulfurization method using the same
JP2001279275A (en) Method for producing fuel oil for fuel cell and hydrogen for fuel cell
JP2001279258A (en) Method for producing fuel oil for fuel battery
JP4531917B2 (en) Method for producing nickel-based desulfurization agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817