JP4537666B2 - Fuel for fuel cell system and fuel cell system - Google Patents

Fuel for fuel cell system and fuel cell system Download PDF

Info

Publication number
JP4537666B2
JP4537666B2 JP2003114940A JP2003114940A JP4537666B2 JP 4537666 B2 JP4537666 B2 JP 4537666B2 JP 2003114940 A JP2003114940 A JP 2003114940A JP 2003114940 A JP2003114940 A JP 2003114940A JP 4537666 B2 JP4537666 B2 JP 4537666B2
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
cell system
power generation
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003114940A
Other languages
Japanese (ja)
Other versions
JP2004319400A (en
Inventor
健一郎 斎藤
倫明 足立
敦司 瀬川
修 定兼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2003114940A priority Critical patent/JP4537666B2/en
Publication of JP2004319400A publication Critical patent/JP2004319400A/en
Application granted granted Critical
Publication of JP4537666B2 publication Critical patent/JP4537666B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池システム用燃料および燃料電池システムに関する。
【0002】
【従来の技術】
近年、将来の地球環境に対する危機感の高まりから、地球にやさしいエネルギー供給システムの開発が求められ、エネルギー効率が高いこと及び排出ガスがクリーンである点から、燃料電池、水素エンジン等の水素を燃料とするシステムが脚光を浴びている。なかでも、燃料電池への水素の供給方法としては、圧縮あるいは液化といった形で直接水素を供給する方法の他、メタノール等の含酸素燃料、及びナフサ等の炭化水素系燃料の改質による供給方法が知られている(例えば、非特許文献1参照。)このうち、直接水素を供給する方法は、そのまま燃料として利用できる利点はあるが、常温で気体のため貯蔵性および車両等に用いた場合の搭載性に問題がある。また、メタノールはシステム内での改質による水素の製造が比較的容易であるが、重量当たりのエネルギー効率が低く、有毒かつ腐食性を持つために、取り扱い性、貯蔵性にも難点がある。一方、ナフサ等の炭化水素系燃料の改質による水素の製造は、既存の燃料供給インフラが使用できること、トータルでのエネルギー効率が高いこと等により注目を集めている。こうした炭化水素燃料は水素発生のために動力システム内での改質工程が必要であると共に、システム各部の劣化を防ぐためにシステム内あるいは外にて脱硫工程が必要となる。しかしながら、炭化水素系燃料によっては、必ずしも脱硫工程において十分な脱硫率が得られず、改質触媒の耐久性に問題が生じ、高い水素発生効率の得られない場合があった。
【0003】
【非特許文献1】
池松正樹,「エンジンテクノロジー」,山海堂社,2001年1月,第3巻,第1号,p.35
【0004】
【発明が解決しようとする課題】
本発明は、このような状況に鑑み、高効率で水素発生並びに発電することができ、また改質触媒の劣化によるシステムの耐久性の低下も少ない燃料電池システムに適した燃料を提供し、併せて長期にわたって高効率の発電が可能な燃料電池システムを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは鋭意研究した結果、特定性状を有する炭化水素混合物が前記課題を解決できることを見いだし、本発明を完成したものである。
すなわち、本発明は、沸点範囲が100℃〜320℃であり、アルキルベンゾチオフェン含有量が0.02質量ppm以上、0.3質量ppm以下である炭化水素混合物であることを特徴とする燃料電池システム用燃料に関する。
【0006】
本発明の燃料電池システム用燃料においては、アルキルジベンゾチオフェン含有量が0.1質量ppm以下であることが好ましい。
本発明の燃料電池システム用燃料においては、硫黄の含有量が10質量ppm以下であることが好ましい。
本発明の燃料電池システム用燃料においては、アルキルベンゾチオフェン含有量が0.02質量ppm以上であることが好ましい。
【0007】
また本発明は、前記の燃料電池システム用燃料を脱硫処理することを特徴とする脱硫方法に関する。
さらにまた本発明は、前記燃料電池システム用燃料または前記燃料電池システム用燃料を脱硫処理して得られる燃料を、水素を主成分とする燃料ガスに改質するための改質装置を備えた燃料電池システムに関する。
【0008】
【発明の実施の形態】
本発明の燃料電池システム用燃料(以下、本発明の燃料ともいう。)は、沸点範囲が100℃〜320℃であることが必要である。
沸点範囲は、引火性が高くなる、蒸発ガス(THC)が発生しやすくなる、取扱性に問題が生じる等の点から、100℃以上であることが必要であり、重量当りの発電量が多い、排出ガス中のTHCが少ない、システムの起動時間が短い、改質触媒の劣化が小さく初期性能を持続できる点から、320℃以下であることが必要である。
【0009】
本発明の燃料は、アルキルベンゾチオフェンの含有量が7質量ppm以下であり、好ましくは3質量ppm以下であり、より好ましくは1質量ppm以下であり、さらに好ましくは0.3質量ppm以下であり、最も好ましくは0.1質量ppm以下である。アルキルベンゾチオフェンの含有量が7質量ppmを超えると、脱硫率の低下、脱硫触媒の耐久性の低下、改質触媒の耐久性の低下、改質反応性の低下、一酸化炭素浄化触媒の耐久性の低下、一酸化炭素除去率の低下、発電エネルギーの低下、燃料電池スタック触媒の耐久性の低下、発電効率の低下、二酸化炭素(CO2)発生量あたり発電量の低下という問題が生じるので好ましくない。一方、改質触媒、装置へのコーキング防止、耐久性の点からアルキルベンゾチオフェンの含有量が0.02質量ppm以上であることが好ましい。
【0010】
本発明の燃料のアルキルジベンゾチオフェンの含有量は0.1質量ppm以下であることが好ましく、0.05質量ppm以下がより好ましく、0.02質量ppm以下が最も好ましい。アルキルジベンゾチオフェンの含有量が0.1質量ppmを超えると、脱硫率の低下、脱硫触媒の耐久性の低下、改質触媒の耐久性の低下、改質反応性の低下、一酸化炭素浄化触媒の耐久性の低下、一酸化炭素除去率の低下、発電エネルギーの低下、燃料電池スタック触媒の耐久性の低下、発電効率の低下、CO2発生量あたり発電量の低下という問題が生じるので好ましくない。
なお、ここでいうアルキルベンゾチオフェン及びアルキルジベンゾチオフェンは、以下に示す炎光光度検出器付きガスクロマトグラフィー法により定量される値である。すなわち、カラムにはメチルシリコンのキャピラリーカラム(ZB−1)、キャリアガスにはヘリウムを、検出器には炎光光度検出器(GC−FPD)を用い、カラム長25m、キャリアガス流量0.8mL/min、分割比1:10〜1:50、注入口温度300℃、カラム昇温条件80℃→5℃/min→180℃→3℃/min→280℃、検出器温度290℃の条件で測定された値である。
【0011】
本発明の燃料の硫黄分は、10質量ppm以下であることが好ましく、3質量ppm以下がより好ましく、1質量ppm以下がさらに好ましく、0.3質量ppm以下が更により好ましく、0.1質量ppm以下が最も好ましい。硫黄分含有量が10質量ppmを超えると、脱硫率の低下、脱硫触媒の耐久性の低下、改質触媒の耐久性の低下、改質反応性の低下、発電エネルギーの低下、燃料電池スタック触媒の耐久性の低下、発電効率の低下、CO2発生量あたり発電量の低下という問題が生じるので好ましくない。ここで、硫黄分とは、1質量ppm以上の場合、JIS K 2541「原油及び石油製品−硫黄分試験方法」により測定される硫黄分であり、1質量ppm未満の場合、ASTM D4045−96「Standard Test Method for Sulfur inPetroleum Products by Hydrogenolysis and Rateometric Colorimetry」により測定される値である。
【0012】
本発明の燃料の蒸留性状について蒸留初留点(IBP)の下限及び蒸留終点(EP)の上限以外は何ら制限はないが、IBPは、引火性、蒸発ガス(THC)の発生、取扱性の問題から、前述のとおり100℃以上が必要であり、130℃以上が好ましく、145℃以上が最も好ましく、上限は190℃以下が好ましい。
10容量%留出温度(T10)の下限は120℃以上が好ましく、140℃以上がより好ましく、160℃以上が最も好ましい。また、上限は230℃以下が好ましく、220℃以下がより好ましい。T10が低いと、引火性が高くなり、蒸発ガス(THC)が発生しやすくなり、取扱性に問題が生じる。
【0013】
30容量%留出温度(T30)は160℃以上220℃以下が好ましく、50容量%留出温度(T50)は180℃以上230℃以下が好ましく、70容量%留出温度(T70)は200℃以上250℃以下が好ましく、90容量%留出温度(T90)は210℃以上270℃以下が好ましく、95容量%留出温度(T95)は220℃以上300℃以下が好ましく、220℃以上270℃以下がより好ましく、220℃以上250℃以下が最も好ましい。T95の上限値は、重量当りの発電量が多い、CO2発生量当りの発電量が多い、燃料電池システム全体としての燃費が良い、排出ガス中のTHCが少ない、システムの起動時間が短い、改質触媒の劣化が小さく初期性能が持続できる点から規定できる。
【0014】
EPは230℃以上であることが好ましく、前述のとおり320℃以下であることが必要である。重量当りの発電量が多い、CO2発生量当りの発電量が多い、燃料電池システム全体としての燃費が良い、排出ガス中のTHCが少ない、システム起動時間が短い、改質触媒の劣化が小さく初期性能が持続できるなどの点から、290℃以下が好ましく、265℃以下がより好ましい。
なお、ここでいうIBP、T10、T30、T50、T70、T90、T95、及びEPは、JIS K2254「石油製品−蒸留試験方法」によって測定される値である。
【0015】
本発明の燃料の芳香族分については何ら制限はないが、重量当りの発電量が多いこと、CO2発生量当りの発電量が多いこと、燃料電池システム全体としての燃費が良いこと、排出ガス中のTHCが少ないこと、システム起動時間が短いこと、改質触媒の劣化が小さく初期性能が長時間持続できることなどの点から、15容量%以下が好ましく、10容量%以下がより好ましく、5容量%以下が最も好ましい。
【0016】
本発明の燃料のオレフィン分については何ら制限はないが、重量当りの発電量が多いこと、CO2発生量当りの発電量が多いこと、燃料電池システム全体としての燃費が良いこと、排出ガス中のTHCが少ないこと、システム起動時間が短いこと、改質触媒の劣化が小さく初期性能が長時間持続できること、貯蔵安定性が良いことなどの点から、5容量%以下が好ましく、1容量%以下がより好ましい。
【0017】
本発明の燃料の飽和分については何ら制限はないが、重量当りの発電量が多いこと、CO2発生量当りの発電量が多いこと、燃料電池システム全体としての燃費が良いこと、排出ガス中のTHCが少ないこと、システム起動時間が短いことなどの点から、85容量%以上が好ましく、90容量%以上がより好ましく、95容量%以上が最も好ましい。
なお、上述の芳香族分、オレフィン分、飽和分は、JIS K2536「石油製品−炭化水素タイプ試験方法」の蛍光指示薬吸着法により測定される値である。
【0018】
本発明の燃料は、具体的には、原油蒸留装置から得られる灯油留分を脱硫した脱硫灯油、脱硫灯油を更に厳しい条件で脱硫した深度脱硫灯油、脱硫灯油または深度脱硫灯油より抽出によりノルマルパラフィン分を除去した残分である脱ノルマルパラフィン脱硫灯油、また除去された脱硫ノルマルパラフィン分、原油蒸留装置等から得られた減圧軽油留分を水素化分解した水素化分解灯油、及び天然ガス等を一酸化炭素と水素に分解した後にF−T(Fischer−Tropsch)合成で得られるGTL(Gas to Liquids)の灯油留分等の基材を1種又は2種以上を混合することで製造することができる。本発明の燃料の調製には、深度脱硫灯油、脱ノルマルパラフィン脱硫灯油、又はGTLの灯油留分等を単独であるいは組み合わせて用いることが好ましい。
【0019】
本発明の燃料には、クマリン等の識別剤を添加することができる。改質触媒の劣化が小さく、初期性能を長く維持できることから、識別剤は1mg/L以下が好ましい。
【0020】
本発明の燃料は、そのままでも燃料電池システム内または外における改質装置の原料とすることができるが、より好適には本発明の燃料を燃料電池システム内または外で脱硫することで、燃料電池システム内または外における改質装置の原料とすることができる。特に本発明の燃料を用いることにより、脱硫装置における脱硫効率を高め、且つ長期間安定的に脱硫することが可能となる。脱硫器は、燃料を接触脱硫する装置であり、脱硫方法としては、例えば、金属触媒の存在下で水素化脱硫する方法、及び酸化亜鉛等により吸着脱硫する方法を挙げることができる。水素化脱硫条件は、特にこの条件に限定されるものではないが、例えば反応温度170〜400℃、水素圧力0.5〜15MPa、LHSV1.0〜10.0h-1、水素/油比40〜200NL/Lである。水素化脱硫触媒は水素化活性金属を多孔質担体に担持したものである。多孔質担体としては、アルミナ、チタニア、ジルコニア、ボリア、シリカ、ゼオライトなどが挙げられる。活性金属としては、Mo、Wなどの周期律表第6A族あるいは、Co−Mo、Co−W、Ni−Mo、Ni−W、Co−Ni−Mo、Co−Ni−Wなど第6A族と第8族金属の組み合わせが挙げられる。吸着脱硫条件は特にこの条件に限定されるものではないが、例えば反応温度20〜400℃、圧力30〜300kPa、LHSV0.1〜20.0h-1である。吸着脱硫触媒としては、酸化亜鉛、酸化マンガン、酸化鉄、酸化銅などが挙げられ、特に酸化亜鉛が好ましい。
【0021】
本発明の燃料は、燃料電池システム用の燃料として使用される。燃料電池システムは、例えば、脱硫器、改質器、及び一酸化炭素浄化装置等と燃料電池を組み合わせたシステムが用いられる。これらを配置した主なシステムとしては、例えば、(1)脱硫器、改質器、一酸化炭素浄化装置及び燃料電池からなるシステム、(2)脱硫器、改質器、脱硫器(再脱硫)、一酸化炭素浄化装置及び燃料電池からなるシステム、及び(3)改質器、脱硫器、一酸化炭素浄化装置及び燃料電池からなるシステムを挙げることができる。燃料電池としては、固体高分子型燃料電池(PEFC)、リン酸型燃料電池(PAFC)、溶融炭酸塩型燃料電池(MCFC)、及び固体酸化物型燃料電池(SOFC)を挙げることができる。
【0022】
改質器は、燃料を改質して水素を得るための装置であり、具体的に例えば、下記の改質器を挙げることができる。
(1)加熱気化した燃料と水蒸気とを混合し、銅、ニッケル、白金、ルテニウム等の触媒中で加熱反応させることにより、水素を主成分とする生成物を得る水蒸気改質型改質器
(2)加熱気化した燃料を空気と混合し、銅、ニッケル、白金、ルテニウム等の触媒中又は無触媒で加熱反応させることにより、水素を主成分とする生成物を得る部分酸化型改質器
(3)加熱気化した燃料を水蒸気及び空気と混合し、銅、ニッケル、白金、ルテニウム等の触媒層前段にて、(2)の部分酸化型改質を行い、後段にて部分酸化反応により発生した熱を利用して、(1)の水蒸気改質型改質を行うことにより、水素を主成分とする生成物を得る部分酸化・水蒸気改質型(オートサーマル型)改質器
【0023】
一酸化炭素浄化装置は、上記改質装置で生成したガスに含まれ、燃料電池の触媒毒となる一酸化炭素の除去を行うものであり、具体的には、下記の装置を挙げることができる。これらの装置は単独で又は組み合わせて使用することができる。
(1)改質ガスと加熱気化した水蒸気を混合し、銅、ニッケル、白金、ルテニウム等の触媒中で反応させることにより、一酸化炭素と水蒸気より二酸化炭素と水素を生成物として得る水性ガスシフト反応器
(2)改質ガスを圧縮空気と混合し、白金、ルテニウム等の触媒中で反応させることにより、一酸化炭素を二酸化炭素に変換する選択酸化反応器
【0024】
上記の燃料電池システムを用いて発電を実施する場合、脱硫器における脱硫操作を、脱硫後の燃料の硫黄含有量が、好ましくは0.1質量ppm以下、より好ましくは0.05質量ppm以下となるように行うことが好ましい。
また改質操作は、エネルギー効率、実用性の観点から、改質器入口温度で750℃以下、LHSVが3h-1以上の条件で行うことが好ましい。
【0025】
【実施例】
以下に、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。
【0026】
[実施例1〜及び比較例1〜
表1に示すように本発明の燃料(実施例1〜)及び比較用の燃料(比較例1〜)を調製した。
得られた各燃料を下記の二つの燃料電池システムに用いて評価した。
【0027】
(1)水蒸気改質型システム
脱硫器により脱硫した燃料と水を電気加熱によりそれぞれ気化させ、貴金属系触媒を充填し、電気ヒーターで所定の温度に維持した改質器に導き、水素分に富む改質ガスを発生させた。改質器の温度は、試験初期段階において改質が完全に行われる最低の温度(改質ガスにHCが含まれない最低温度)とした。
改質ガスを水蒸気と共に一酸化炭素浄化装置に導き、改質ガスの中の一酸化炭素を二酸化炭素に変換した後、生成したガスを固体高分子型燃料電池に導き、発電を行った。
水蒸気改質型改質器を含む固体高分子型燃料電池システム(水蒸気改質型システム)を用いた発電のフローチャートを図1に示す。
【0028】
(2)部分酸化型システム
脱硫器により脱硫した燃料を電気加熱により気化させ、予熱した空気と共に貴金属系触媒を充填し、電気ヒーターで1200℃に維持した改質器に導き、水素分に富む改質ガスを発生させた。
改質ガスを水蒸気と共に一酸化炭素浄化装置に導き、改質ガスの中の一酸化炭素を二酸化炭素に変換した後、生成したガスを固体高分子型燃料電池に導き、発電を行った。
部分酸化型改質器を含む固体高分子型燃料電池システム(部分酸化型システム)を用いた発電のフローチャートを図2に示す。
【0029】
上記二つの燃料電池システムを用いた場合の燃料の性能を下記の方法で評価した。
まず、システムの試験開始直後に改質器から発生する改質ガス中の水素、一酸化炭素、二酸化炭素、及び炭化水素(HC)の各量を測定した。
また、試験開始直後及び開始24時間後の燃料電池における発電量、燃料消費量、及び燃料電池から排出される二酸化炭素量を測定した。更に脱硫器後の燃料の硫黄分含有量についても測定を行った。
得られた測定値、及び燃料発熱量から、改質触媒の性能劣化割合(試験開始124時間後の発電量/試験開始直後の発電量)、及び熱効率(試験開始直後の電気エネルギー/燃料発熱量)を計算し、評価した。以上の評価結果を表2に示す。
【0030】
【表1】

Figure 0004537666
【0031】
【表2】
Figure 0004537666
【0032】
表2に示す結果から、本発明の燃料(実施例1〜)を用いた場合には、比較例の燃料に比べて、脱硫後の硫黄分含有量が低く、高い発電量が得られ、しかも長時間安定して高発電量を持続できることがわかる。
【0033】
【発明の効果】
本発明の燃料電池システム用燃料を用いることで、脱硫率が向上し、水素を効率良く発生させることができ、また改質触媒の劣化も少なく、長時間安定して水素を発生させることができる。従って本発明の燃料を用いることで高い発電量を長時間安定して供給することができる。
【図面の簡単な説明】
【図1】水蒸気改質型改質器を含む固体高分子型燃料電池システムを用いた発電のフローチャートである。
【図2】部分酸化型改質器を含む固体高分子型燃料電池システムを用いた発電のフローチャートである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel for a fuel cell system and a fuel cell system.
[0002]
[Prior art]
In recent years, due to the growing sense of crisis about the global environment in the future, development of an energy supply system that is friendly to the earth has been demanded. From the viewpoint of high energy efficiency and clean exhaust gas, fuel such as fuel cells and hydrogen engines can be used as fuel. The system is in the limelight. In particular, as a method of supplying hydrogen to the fuel cell, in addition to a method of directly supplying hydrogen in the form of compression or liquefaction, a supply method by reforming oxygen-containing fuel such as methanol and hydrocarbon fuel such as naphtha. (For example, see Non-Patent Document 1.) Among these, the method of directly supplying hydrogen has an advantage that it can be used as a fuel as it is, but it is a gas at room temperature, so it is used for storage and vehicles. There is a problem with the mountability. Methanol is relatively easy to produce hydrogen by reforming in the system, but has low energy efficiency per weight and is toxic and corrosive, so that it is difficult to handle and store. On the other hand, the production of hydrogen by reforming hydrocarbon fuels such as naphtha has attracted attention due to the fact that the existing fuel supply infrastructure can be used and the total energy efficiency is high. Such hydrocarbon fuels require a reforming process in the power system for hydrogen generation, and a desulfurization process in or outside the system to prevent deterioration of each part of the system. However, depending on the hydrocarbon-based fuel, a sufficient desulfurization rate is not necessarily obtained in the desulfurization process, and there is a problem in durability of the reforming catalyst, and high hydrogen generation efficiency may not be obtained.
[0003]
[Non-Patent Document 1]
Masaki Ikematsu, “Engine Technology”, Sankaidosha, January 2001, Vol. 3, No. 1, p. 35
[0004]
[Problems to be solved by the invention]
In view of such a situation, the present invention provides a fuel suitable for a fuel cell system that can generate hydrogen and generate power with high efficiency, and that has little reduction in system durability due to deterioration of the reforming catalyst. An object of the present invention is to provide a fuel cell system capable of generating power efficiently over a long period of time.
[0005]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that a hydrocarbon mixture having specific properties can solve the above-mentioned problems, and has completed the present invention.
That is, the present invention is a fuel cell characterized by being a hydrocarbon mixture having a boiling range of 100 ° C. to 320 ° C. and an alkylbenzothiophene content of 0.02 ppm by mass or more and 0.3 ppm by mass or less. It relates to fuel for the system.
[0006]
In the fuel for a fuel cell system of the present invention, the alkyl dibenzothiophene content is preferably 0.1 mass ppm or less.
In the fuel for a fuel cell system of the present invention, the sulfur content is preferably 10 ppm by mass or less.
In the fuel for a fuel cell system of the present invention, the alkylbenzothiophene content is preferably 0.02 mass ppm or more.
[0007]
The present invention also relates to a desulfurization method comprising desulfurizing the fuel for the fuel cell system.
Furthermore, the present invention provides a fuel provided with a reforming device for reforming the fuel for the fuel cell system or the fuel obtained by desulfurizing the fuel for the fuel cell system into a fuel gas mainly containing hydrogen. The present invention relates to a battery system.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The fuel for the fuel cell system of the present invention (hereinafter also referred to as the fuel of the present invention) needs to have a boiling point range of 100 ° C to 320 ° C.
The boiling point range needs to be 100 ° C. or higher from the viewpoint of high flammability, evaporative gas (THC) is easily generated, problems in handling properties, etc., and a large amount of power generation per weight. In view of the low THC in the exhaust gas, the short startup time of the system, the deterioration of the reforming catalyst is small and the initial performance can be maintained, it is necessary to be 320 ° C. or lower.
[0009]
The fuel of the present invention has an alkylbenzothiophene content of 7 mass ppm or less, preferably 3 mass ppm or less, more preferably 1 mass ppm or less, and even more preferably 0.3 mass ppm or less. Most preferably, it is 0.1 mass ppm or less. When the content of alkylbenzothiophene exceeds 7 mass ppm, the desulfurization rate decreases, the durability of the desulfurization catalyst decreases, the durability of the reforming catalyst decreases, the reforming reactivity decreases, the durability of the carbon monoxide purification catalyst As a result, there are problems such as reduction in carbon dioxide, carbon monoxide removal rate, power generation energy, fuel cell stack catalyst durability, power generation efficiency, and power generation per carbon dioxide (CO 2 ) generation. It is not preferable. On the other hand, the content of alkylbenzothiophene is preferably 0.02 ppm by mass or more from the viewpoints of reforming catalyst, coking to the apparatus, and durability.
[0010]
The content of the alkyldibenzothiophene in the fuel of the present invention is preferably 0.1 mass ppm or less, more preferably 0.05 mass ppm or less, and most preferably 0.02 mass ppm or less. When the content of alkyldibenzothiophene exceeds 0.1 mass ppm, the desulfurization rate decreases, the durability of the desulfurization catalyst decreases, the durability of the reforming catalyst decreases, the reforming reactivity decreases, the carbon monoxide purification catalyst This is not preferable because of problems such as a decrease in durability, a decrease in carbon monoxide removal rate, a decrease in power generation energy, a decrease in durability of the fuel cell stack catalyst, a decrease in power generation efficiency, and a decrease in power generation per CO 2 generation amount. .
The alkylbenzothiophene and alkyldibenzothiophene mentioned here are values determined by the gas chromatography method with a flame photometric detector shown below. That is, a capillary column of methyl silicon (ZB-1) is used for the column, helium is used for the carrier gas, a flame photometric detector (GC-FPD) is used for the detector, the column length is 25 m, and the carrier gas flow rate is 0.8 mL / min, split ratio 1:10 to 1:50, inlet temperature 300 ° C., column temperature rising condition 80 ° C. → 5 ° C./min→180° C. → 3 ° C./min→280° C., detector temperature 290 ° C. Value.
[0011]
The sulfur content of the fuel of the present invention is preferably 10 ppm by mass or less, more preferably 3 ppm by mass or less, still more preferably 1 ppm by mass or less, still more preferably 0.3 ppm by mass or less, and even more preferably 0.1 ppm by mass. Most preferred is ppm or less. When the sulfur content exceeds 10 mass ppm, the desulfurization rate decreases, the durability of the desulfurization catalyst decreases, the durability of the reforming catalyst decreases, the reforming reactivity decreases, the power generation energy decreases, the fuel cell stack catalyst This is not preferable because of problems such as a decrease in durability, a decrease in power generation efficiency, and a decrease in power generation per CO 2 generation amount. Here, when the sulfur content is 1 mass ppm or more, the sulfur content is measured by JIS K 2541 “Crude oil and petroleum products—Sulfur content test method”. When the content is less than 1 ppm by mass, ASTM D4045-96 “ It is a value measured by “Standard Test Method for Sulfur in Petroleum Products by Hydrology and Rateometric Colorimetry”.
[0012]
There are no restrictions on the distillation properties of the fuel of the present invention except for the lower limit of the initial distillation point (IBP) and the upper limit of the distillation end point (EP), but IBP has flammability, generation of evaporative gas (THC), and handling properties. From the problem, as described above, 100 ° C. or higher is necessary, preferably 130 ° C. or higher, most preferably 145 ° C. or higher, and the upper limit is preferably 190 ° C. or lower.
The lower limit of the 10 vol% distillation temperature (T10) is preferably 120 ° C or higher, more preferably 140 ° C or higher, and most preferably 160 ° C or higher. Further, the upper limit is preferably 230 ° C. or less, and more preferably 220 ° C. or less. If T10 is low, the flammability becomes high, evaporative gas (THC) is likely to be generated, and a problem arises in handling.
[0013]
The 30 vol% distillation temperature (T30) is preferably 160 ° C or higher and 220 ° C or lower, the 50 vol% distillation temperature (T50) is preferably 180 ° C or higher and 230 ° C or lower, and the 70 vol% distillation temperature (T70) is 200 ° C. It is preferably 250 ° C. or lower, 90% by volume distillation temperature (T90) is preferably 210 ° C. or higher and 270 ° C. or lower, and 95% by volume distillation temperature (T95) is preferably 220 ° C. or higher and 300 ° C. or lower, and 220 ° C. or higher and 270 ° C. The following is more preferable, and 220 ° C. or higher and 250 ° C. or lower is most preferable. The upper limit of T95 is a large amount of power generation per weight, a large amount of power generation per CO 2 generation amount, good fuel economy as a whole fuel cell system, low THC in exhaust gas, and short system startup time. This can be defined from the point that the deterioration of the reforming catalyst is small and the initial performance can be sustained.
[0014]
EP is preferably 230 ° C. or higher, and needs to be 320 ° C. or lower as described above. Large amount of power generation per weight, large amount of power generation per CO 2 generation, good fuel economy as a whole fuel cell system, low THC in exhaust gas, short system start-up time, small deterioration of reforming catalyst In view of sustaining the initial performance, it is preferably 290 ° C. or lower, and more preferably 265 ° C. or lower.
Here, IBP, T10, T30, T50, T70, T90, T95, and EP are values measured by JIS K2254 “Petroleum products-distillation test method”.
[0015]
The aromatic content of the fuel of the present invention is not limited at all, but the amount of power generation per weight is large, the amount of power generation per CO 2 generation amount is large, the fuel consumption of the fuel cell system as a whole is good, the exhaust gas 15% by volume or less is preferable, 10% by volume or less is more preferable, and 5% by volume is preferable from the viewpoints that the amount of THC is small, the system start-up time is short, the deterioration of the reforming catalyst is small, and the initial performance can be sustained for a long time. % Or less is most preferable.
[0016]
There is no restriction on the olefin content of the fuel of the present invention, but there is a large amount of power generation per weight, a large amount of power generation per CO 2 generation amount, good fuel consumption as a whole fuel cell system, Is preferably 5% by volume or less, preferably 1% by volume or less from the viewpoints of low THC, short system start-up time, low degradation of the reforming catalyst, long-term initial performance, and good storage stability. Is more preferable.
[0017]
There is no restriction on the saturated amount of the fuel of the present invention, but there is a large amount of power generation per weight, a large amount of power generation per CO 2 generation amount, good fuel consumption as a whole fuel cell system, 85% by volume or higher is preferable, 90% by volume or higher is more preferable, and 95% by volume or higher is most preferable.
In addition, the above-mentioned aromatic content, olefin content, and saturation content are values measured by the fluorescent indicator adsorption method of JIS K2536 “Petroleum products-hydrocarbon type test method”.
[0018]
Specifically, the fuel of the present invention includes desulfurized kerosene obtained by desulfurizing kerosene fraction obtained from a crude oil distillation apparatus, deep desulfurized kerosene obtained by desulfurizing desulfurized kerosene under more severe conditions, desulfurized kerosene, or normal paraffin by extraction from deep desulfurized kerosene. Hydrocracked kerosene obtained by hydrocracking the degassed normal paraffin desulfurized kerosene, the removed desulfurized normal paraffin content, the vacuum gas oil fraction obtained from the crude oil distillation equipment, etc. Manufacture by mixing one or more base materials such as GTL (Gas to Liquids) kerosene fraction obtained by FT (Fischer-Tropsch) synthesis after decomposition into carbon monoxide and hydrogen Can do. For the preparation of the fuel of the present invention, it is preferable to use a deep desulfurized kerosene, a denormalized paraffin desulfurized kerosene, a GTL kerosene fraction or the like alone or in combination.
[0019]
An identification agent such as coumarin can be added to the fuel of the present invention. Since the deterioration of the reforming catalyst is small and the initial performance can be maintained for a long time, the discriminating agent is preferably 1 mg / L or less.
[0020]
The fuel of the present invention can be used as a raw material for the reformer in or outside the fuel cell system as it is, but more preferably, the fuel of the present invention is desulfurized inside or outside the fuel cell system, thereby It can be used as a raw material for the reformer inside or outside the system. In particular, by using the fuel of the present invention, it is possible to increase the desulfurization efficiency in the desulfurization apparatus and stably desulfurize for a long period of time. The desulfurizer is a device that catalytically desulfurizes fuel. Examples of the desulfurization method include a hydrodesulfurization method in the presence of a metal catalyst and an adsorption desulfurization method using zinc oxide or the like. The hydrodesulfurization conditions are not particularly limited to these conditions. For example, the reaction temperature is 170 to 400 ° C., the hydrogen pressure is 0.5 to 15 MPa, the LHSV is 1.0 to 10.0 h −1 , and the hydrogen / oil ratio is 40 to 40. 200 NL / L. The hydrodesulfurization catalyst is a catalyst in which a hydrogenation active metal is supported on a porous carrier. Examples of the porous carrier include alumina, titania, zirconia, boria, silica, zeolite, and the like. Examples of the active metal include Group 6A of the periodic table such as Mo and W, or Group 6A such as Co—Mo, Co—W, Ni—Mo, Ni—W, Co—Ni—Mo, and Co—Ni—W. A combination of Group 8 metals is included. The adsorptive desulfurization conditions are not particularly limited to these conditions. For example, the reaction temperature is 20 to 400 ° C., the pressure is 30 to 300 kPa, and the LHSV is 0.1 to 20.0 h −1 . Examples of the adsorptive desulfurization catalyst include zinc oxide, manganese oxide, iron oxide, and copper oxide, and zinc oxide is particularly preferable.
[0021]
The fuel of the present invention is used as a fuel for a fuel cell system. For example, a system in which a fuel cell is combined with a desulfurizer, a reformer, a carbon monoxide purifier, and the like is used as the fuel cell system. The main system in which these are arranged is, for example, (1) a system comprising a desulfurizer, reformer, carbon monoxide purifier and fuel cell, (2) desulfurizer, reformer, desulfurizer (re-desulfurization) And a system comprising a carbon monoxide purification device and a fuel cell, and (3) a system comprising a reformer, a desulfurizer, a carbon monoxide purification device and a fuel cell. Examples of the fuel cell include a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), and a solid oxide fuel cell (SOFC).
[0022]
The reformer is a device for reforming fuel to obtain hydrogen, and specific examples include the following reformers.
(1) A steam reforming reformer that obtains a product containing hydrogen as a main component by mixing heat-vaporized fuel and water vapor and reacting them in a catalyst such as copper, nickel, platinum, or ruthenium. 2) Partial oxidation reformer that obtains a product containing hydrogen as the main component by mixing heat-vaporized fuel with air and reacting it in a catalyst such as copper, nickel, platinum, ruthenium, etc. or without a catalyst. 3) The fuel vaporized by heating was mixed with water vapor and air, and the partial oxidation type reforming of (2) was performed in the previous stage of the catalyst layer of copper, nickel, platinum, ruthenium, etc., and generated by the partial oxidation reaction in the subsequent stage. Partial oxidation / steam reforming type (autothermal type) reformer to obtain a product mainly composed of hydrogen by performing steam reforming type reforming of (1) using heat.
The carbon monoxide purifier removes carbon monoxide contained in the gas generated by the reformer and becomes the catalyst poison of the fuel cell, and specifically includes the following devices. . These devices can be used alone or in combination.
(1) A water-gas shift reaction in which carbon dioxide and hydrogen are obtained as products from carbon monoxide and water vapor by mixing the reformed gas and heat-vaporized water vapor and reacting them in a catalyst such as copper, nickel, platinum or ruthenium. (2) A selective oxidation reactor that converts carbon monoxide to carbon dioxide by mixing the reformed gas with compressed air and reacting in a catalyst such as platinum or ruthenium.
When power generation is performed using the above fuel cell system, the sulfur content of the fuel after desulfurization is preferably 0.1 mass ppm or less, more preferably 0.05 mass ppm or less. It is preferable to do so.
Further, the reforming operation is preferably performed under the condition that the reformer inlet temperature is 750 ° C. or lower and the LHSV is 3 h −1 or higher from the viewpoint of energy efficiency and practicality.
[0025]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to these examples.
[0026]
[Examples 1 to 3 and Comparative Examples 1 to 3 ]
As shown in Table 1, fuels of the present invention (Examples 1 to 3 ) and comparative fuels (Comparative Examples 1 to 3 ) were prepared.
Each obtained fuel was evaluated using the following two fuel cell systems.
[0027]
(1) Fuel and water desulfurized by a steam reforming system desulfurizer are vaporized by electric heating, filled with a precious metal catalyst, and led to a reformer maintained at a predetermined temperature by an electric heater, rich in hydrogen. A reformed gas was generated. The temperature of the reformer was set to the lowest temperature at which reforming was completely performed in the initial test stage (the lowest temperature at which HC was not included in the reformed gas).
The reformed gas was introduced into a carbon monoxide purifier together with water vapor, and after converting the carbon monoxide in the reformed gas into carbon dioxide, the generated gas was introduced into a polymer electrolyte fuel cell for power generation.
A flow chart of power generation using a polymer electrolyte fuel cell system (steam reforming system) including a steam reforming reformer is shown in FIG.
[0028]
(2) Fuel desulfurized by a partial oxidation system desulfurizer is vaporized by electric heating, filled with pre-heated air and a precious metal catalyst, and led to a reformer maintained at 1200 ° C with an electric heater. A quality gas was generated.
The reformed gas was introduced into a carbon monoxide purifier together with water vapor, and after converting the carbon monoxide in the reformed gas into carbon dioxide, the generated gas was introduced into a polymer electrolyte fuel cell for power generation.
A flow chart of power generation using a polymer electrolyte fuel cell system (partial oxidation system) including a partial oxidation reformer is shown in FIG.
[0029]
The performance of the fuel when the above two fuel cell systems were used was evaluated by the following method.
First, the amounts of hydrogen, carbon monoxide, carbon dioxide, and hydrocarbon (HC) in the reformed gas generated from the reformer immediately after the start of the system test were measured.
Further, the power generation amount, fuel consumption amount, and carbon dioxide amount discharged from the fuel cell were measured immediately after the start of the test and 24 hours after the start of the test. Furthermore, the sulfur content of the fuel after the desulfurizer was also measured.
From the obtained measured value and fuel calorific value, the performance deterioration rate of the reforming catalyst (power generation amount 124 hours after the start of the test / power generation amount immediately after the start of the test) and thermal efficiency (electric energy / fuel heat generation amount immediately after the start of the test) ) Was calculated and evaluated. The above evaluation results are shown in Table 2.
[0030]
[Table 1]
Figure 0004537666
[0031]
[Table 2]
Figure 0004537666
[0032]
From the results shown in Table 2, when the fuel of the present invention (Examples 1 to 3 ) is used, the sulfur content after desulfurization is low compared to the fuel of the comparative example, and a high power generation amount is obtained. Moreover, it can be seen that high power generation can be sustained stably for a long time.
[0033]
【The invention's effect】
By using the fuel for the fuel cell system of the present invention, the desulfurization rate is improved, hydrogen can be generated efficiently, the reforming catalyst is less deteriorated, and hydrogen can be generated stably for a long time. . Therefore, a high power generation amount can be stably supplied for a long time by using the fuel of the present invention.
[Brief description of the drawings]
FIG. 1 is a flowchart of power generation using a polymer electrolyte fuel cell system including a steam reforming reformer.
FIG. 2 is a flowchart of power generation using a polymer electrolyte fuel cell system including a partial oxidation reformer.

Claims (5)

沸点範囲が100℃〜320℃であり、アルキルベンゾチオフェン含有量が0.02質量ppm以上、0.3質量ppm以下である炭化水素混合物であることを特徴とする燃料電池システム用燃料。A fuel for a fuel cell system, which is a hydrocarbon mixture having a boiling point range of 100 ° C to 320 ° C and an alkylbenzothiophene content of 0.02 ppm by mass to 0.3 ppm by mass. アルキルジベンゾチオフェン含有量が0.1質量ppm以下であることを特徴とする請求項1に記載の燃料。  The fuel according to claim 1, wherein the alkyldibenzothiophene content is 0.1 mass ppm or less. 硫黄の含有量が10質量ppm以下であることを特徴とする請求項1または2に記載の燃料。  The fuel according to claim 1 or 2, wherein the sulfur content is 10 ppm by mass or less. 請求項1〜3のいずれかの項に記載の燃料を脱硫処理することを特徴とする脱硫方法。  A desulfurization method comprising desulfurizing the fuel according to any one of claims 1 to 3. 請求項1〜3のいずれかの項に記載の燃料または請求項記載の方法で脱硫処理した燃料を、水素を主成分とする燃料ガスに改質するための改質装置を備えた燃料電池システム。A fuel cell comprising a reforming device for reforming the fuel according to any one of claims 1 to 3 or the fuel desulfurized by the method according to claim 4 into a fuel gas mainly containing hydrogen. system.
JP2003114940A 2003-04-18 2003-04-18 Fuel for fuel cell system and fuel cell system Expired - Fee Related JP4537666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003114940A JP4537666B2 (en) 2003-04-18 2003-04-18 Fuel for fuel cell system and fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114940A JP4537666B2 (en) 2003-04-18 2003-04-18 Fuel for fuel cell system and fuel cell system

Publications (2)

Publication Number Publication Date
JP2004319400A JP2004319400A (en) 2004-11-11
JP4537666B2 true JP4537666B2 (en) 2010-09-01

Family

ID=33474359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114940A Expired - Fee Related JP4537666B2 (en) 2003-04-18 2003-04-18 Fuel for fuel cell system and fuel cell system

Country Status (1)

Country Link
JP (1) JP4537666B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568008B2 (en) * 2004-03-31 2010-10-27 出光興産株式会社 Low foaming kerosene
JP5148072B2 (en) * 2006-05-17 2013-02-20 Jx日鉱日石エネルギー株式会社 Liquid raw fuel for fuel cell cogeneration system and fuel cell cogeneration system
JP4881663B2 (en) * 2006-06-20 2012-02-22 コスモ石油株式会社 Kerosene composition and method for producing kerosene composition
JP2008239916A (en) * 2007-03-29 2008-10-09 Cosmo Oil Co Ltd Fuel oil for fuel cell
JP2009067994A (en) * 2007-08-20 2009-04-02 Cosmo Oil Co Ltd Fuel oil for fuel cell
JP2009067991A (en) * 2007-08-20 2009-04-02 Cosmo Oil Co Ltd Fuel oil for fuel cell
JP2009067992A (en) * 2007-08-20 2009-04-02 Cosmo Oil Co Ltd Fuel oil for fuel cell
JP2009067993A (en) * 2007-08-20 2009-04-02 Cosmo Oil Co Ltd Fuel oil for fuel cell
JP5114183B2 (en) * 2007-12-20 2013-01-09 Jx日鉱日石エネルギー株式会社 Fuel oil for hydrogen production and hydrogen production method using the same
JP2009209252A (en) * 2008-03-04 2009-09-17 Cosmo Oil Co Ltd Fuel oil for fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001029065A (en) * 1999-07-21 2001-02-06 Petroleum Energy Center Desulfurization using microorganism capable of degrading alkylbenzothiophene and alkyldibenzothiophene
JP2001279274A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Fuel oil for fuel cell, desulfurization method and method for producing hydrogen
JP2003049172A (en) * 2001-08-08 2003-02-21 Corona Corp Desulfurization of liquid hydrocarbon fuel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001029065A (en) * 1999-07-21 2001-02-06 Petroleum Energy Center Desulfurization using microorganism capable of degrading alkylbenzothiophene and alkyldibenzothiophene
JP2001279274A (en) * 2000-03-31 2001-10-10 Idemitsu Kosan Co Ltd Fuel oil for fuel cell, desulfurization method and method for producing hydrogen
JP2003049172A (en) * 2001-08-08 2003-02-21 Corona Corp Desulfurization of liquid hydrocarbon fuel

Also Published As

Publication number Publication date
JP2004319400A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
KR20070115991A (en) Desulfurizing agent and method of desulfurization with the same
CN101087646A (en) Desulfurizing agent for fuel oil containing organic sulfur compound and process for producing hydrogen for fuel cell
JP4537666B2 (en) Fuel for fuel cell system and fuel cell system
JP4684539B2 (en) Fuel for fuel cell system, method for producing the same, and fuel cell system
KR101218840B1 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
JP4583666B2 (en) Fuel for fuel cell system
JP4598892B2 (en) Fuel for fuel cell system
JP4598894B2 (en) Fuel for fuel cell system
JP4598889B2 (en) Fuel for fuel cell system
JP4227927B2 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
JP4632281B2 (en) Fuel for fuel cell system
JP4548765B2 (en) Fuel for fuel cell system
WO2001077263A9 (en) Fuel for use in fuel cell system
JP4598898B2 (en) Fuel for fuel cell system
JP4227929B2 (en) Hydrocarbon oil and hydrogen fuel for hydrogen production in hydrogen production system
JP2004319403A (en) Fuel for fuel cell system
JP4598891B2 (en) Fuel for fuel cell system
KR101163249B1 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
JP4227928B2 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
JP4202058B2 (en) Fuel for fuel cell system
JP4598897B2 (en) Fuel for fuel cell system
JP4598895B2 (en) Fuel for fuel cell system
WO2001077260A1 (en) Fuel for use in fuel cell system
JP4598896B2 (en) Fuel for fuel cell system
JP2004027082A (en) Fuel for fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4537666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees