JP4598896B2 - Fuel for fuel cell system - Google Patents

Fuel for fuel cell system Download PDF

Info

Publication number
JP4598896B2
JP4598896B2 JP2001575120A JP2001575120A JP4598896B2 JP 4598896 B2 JP4598896 B2 JP 4598896B2 JP 2001575120 A JP2001575120 A JP 2001575120A JP 2001575120 A JP2001575120 A JP 2001575120A JP 4598896 B2 JP4598896 B2 JP 4598896B2
Authority
JP
Japan
Prior art keywords
fuel
volume
less
fuel cell
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001575120A
Other languages
Japanese (ja)
Inventor
健一郎 斎藤
巌 安斎
修 定兼
三千郎 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Application granted granted Critical
Publication of JP4598896B2 publication Critical patent/JP4598896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/583Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being the selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components

Description

技術分野
本発明は、燃料電池システムに用いられる燃料に関する。
背景技術
近年、将来の地球環境に対する危機感の高まりから、地球にやさしいエネルギー供給システムの開発が求められている。特に、地球温暖化防止のためのCOの低減、THC(排出ガス中の未反応の炭化水素)、NOx、PM(排出ガス中の粒子状物質:すす、燃料・潤滑油の高沸点・高分子の未燃成分)等有害物質の低減を、高度に達成することが要求されている。そのシステムの具体例としては、従来のオットー・ディーゼルシステムに代わる自動車動力システム、あるいは火力に代わる発電システムが挙げられる。
そこで、理想に近いエネルギー効率を持ち、基本的にはHOとCOしか排出しない燃料電池が、社会の要望に応えるにもっとも有望なシステムと期待されている。そして、このようなシステムの達成のためには、機器の技術開発だけではなく、それに最適な燃料の開発が必要不可欠である。
従来、燃料電池システム用の燃料としては、水素、メタノール、炭化水素系燃料が考えられている。
燃料電池システム用の燃料として、水素は、特別の改質装置を必要としない点で有利であるが、常温で気体のため、貯蔵性並びに車両等への搭載性に問題があり、供給に特別な設備が必要である。また引火の危険性も高く取り扱いに注意が必要である。
一方、メタノールは、水素への改質が比較的容易である点で有利であるが、重量あたりの発電量が小さく、有毒のため取り扱いにも注意が必要である。また、腐食性があるため、貯蔵・供給に特殊な設備が必要である。
このように、燃料電池システムの能力を充分に発揮させるための燃料は未だ開発されていない。特に、燃料電池システム用燃料としては、重量当りの発電量が多いこと、CO発生量当りの発電量が多いこと、燃料電池システム全体としての燃費が良いこと、蒸発ガス(エバポエミッション)が少ないこと、改質触媒、水性ガスシフト反応触媒、一酸化炭素除去触媒、燃料電池スタック等、燃料電池システムの劣化が小さく初期性能が長時間持続できること、システムの起動時間が短いこと、貯蔵安定性や引火点など取り扱い性が良好なことなどが求められる。
なお、燃料電池システムでは、燃料および改質器を所定の温度に保つことが必要なため、発電量からそれに必要な熱量(予熱及び反応に伴う吸発熱をバランスさせる熱量)を差し引いた発電量が、燃料電池システム全体の発電量となる。したがって、燃料を改質させるために必要な温度が低い方が予熱量が小さく有利になり、更にシステムの起動時間が短く有利になり、また燃料の予熱に必要な重量当りの熱量が小さいことも必要である。予熱が十分でない場合、排出ガス中に未反応の炭化水素(THC)が多くなり、重量当りの発電量を低下させるだけでなく、大気汚染の原因となる可能性がある。逆に言えば、同一システムを同一温度で稼働させた場合に、排出ガス中のTHCが少なく、水素への変換率が高い方が有利である。
本発明は、このような状況を鑑み、上記したような要求性状をバランス良く満たした燃料電池システムに適した燃料を提供することを目的とする。
発明の開示
本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、特定の炭素数の炭化水素化合物を特定量含有する燃料が、燃料電池システムに適していることを見出した。
すなわち、本発明に係る燃料電池システム用燃料は、
(1)炭素数7と炭素数8の炭化水素化合物の合計含有量が20容量%以上であり、炭素数10以上の炭化水素化合物の合計含有量が20容量%以下であるものである。
上記特定の炭素数の炭化水素化合物を特定量含有する燃料に、更に、以下のような付加的要件を満たすものがより好ましい。
(2)硫黄分含有量が50質量ppm以下である燃料電池システム用燃料。
(3)飽和分が30容量%以上である燃料電池システム用燃料。
(4)オレフィン分が35容量%以下である燃料電池システム用燃料。
(5)芳香族分が50容量%以下である燃料電池システム用燃料。
(6)飽和分中のパラフィン分の割合が60容量%以上である燃料電池システム用燃料。
(7)パラフィン分中の分岐型パラフィンの割合が30容量%以上である燃料電池システム用燃料。
発明を実施するための最良の形態
以下、本発明の内容をさらに詳細に説明する。
本発明において、特定の炭素数の炭化水素化合物量は次のようなものである。 本発明においては、炭素数7および8の炭化水素化合物の合計含有量(V(C+C))は、燃料全量を基準とした炭素数7および8の炭化水素化合物の合計含有量を示し、重量当りの発電量が多いこと、CO発生量当りの発電量が多いこと、燃料電池システム全体としての燃費が良いことなどから、20容量%以上であることが必要であり、25容量%以上であることが好ましく、30容量%以上であることがより好ましく、35容量%以上であることがさらにより好ましく、40容量%以上であることが最も好ましい。
また、本発明においては、炭素数10以上の炭化水素化合物の含有量は、CO発生量当りの発電量が多いこと、燃料電池システム全体としての燃費が良いこと、改質触媒の劣化が小さく初期性能が長時間持続できることなどから、燃料全量を基準として炭素数10以上の炭化水素化合物の合計量(V(C10+))が20容量%以下であることが必要であり、10容量%以下であることが好ましく、5容量%以下であることが最も好ましい。
また、本発明において、炭素数4の炭化水素化合物の含有量について特に制限はないが、燃料全量を基準とした炭素数4の炭化水素化合物の含有量(V(C))は、蒸発ガス(エバポエミッション)の量を低く押さえることができ、引火点等の取扱性が良い点から、15容量%以下であることが好ましく、10容量%以下であることがより好ましく、5容量%以下であることが最も好ましい。
炭素数5の炭化水素化合物の含有量について特に制限はないが、燃料全量を基準とした炭素数5の炭化水素化合物の含有量(V(C))は、通常5容量%未満のものが好ましく用いられる。
炭素数6の炭化水素化合物の含有量について特に制限はないが、燃料全量を基準とした炭素数6の炭化水素化合物の含有量(V(C))は、通常10容量%未満のものが好ましく用いられる。
なお、上記したV(C)、V(C)、V(C)、V(C+C)、V(C10+)、は、以下に示すガスクロマトグラフィー法により定量される値である。すなわち、カラムにはメチルシリコンのキャピラリーカラム、キャリアガスにはヘリウムまたは窒素を、検出器には水素イオン化検出器(FID)を用い、カラム長25〜50m、キャリアガス流量0.5〜1.5ミリリットル/min、分割比1:50〜1:250、注入口温度150〜250℃、初期カラム温度−10〜10℃、終期カラム温度150〜250℃、検出器温150〜250℃の条件で測定した値である。
また、本発明の燃料の硫黄分含有量については何ら制限はないが、改質触媒、水性ガスシフト反応触媒、一酸化炭素除去触媒、燃料電池スタック等、燃料電池システムの劣化が小さく初期性能が長時間持続できることなどから、燃料全量基準で、50質量ppm以下であることが好ましく、30質量ppm以下であることがより好ましく、10質量ppm以下であることがさらにより好ましく、1質量ppm以下であることがさらにより一層好ましく、0.1質量ppm以下であることが最も好ましい。
ここで、硫黄分とは、1質量ppm以上の場合、JIS K 2541「原油及び石油製品−硫黄分試験方法」により測定される硫黄分を、1質量ppm未満の場合、ASTM D4045−96 「Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric Colorimetry」により測定される硫黄分を意味している。
本発明において、飽和分、オレフィン分および芳香族分の各含有量にはなんら制限はないが、飽和分(V(S))は30容量%以上、オレフィン分(V(O))は35容量%以下、芳香族分(V(Ar))は50容量%以下であることが好ましい。以下、これらを個別に説明する。
V(S)は、重量当りの発電量が多いこと、CO発生量当りの発電量が多いこと、燃料電池システム全体としての燃費が良いこと、排出ガス中のTHCが少ないこと、システムの起動時間が短いことなどから、30容量%以上であることが好ましく、40容量%以上であることがより好ましく、50容量%以上であることがさらにより好ましく、60容量%以上であることがさらにより一層好ましく、70容量%以上であることがさらにより一層好ましく、80容量%以上であることがさらにより一層好ましく、90容量%以上であることがさらにより一層好ましく、95容量%以上であることが最も好ましい。
V(O)は、重量当りの発電量が多いこと、CO発生量当りの発電量が多いこと、改質触媒の劣化が小さく初期性能が長時間持続できること、貯蔵安定性が良好なことなどから、35容量%以下であることが好ましく、25容量%以下であることがより好ましく、20容量%以下であることがさらにより好ましく、15容量%以下であることがさらにより一層好ましく、10容量%以下であることが最も好ましい。
V(Ar)は、重量当りの発電量が多いこと、CO発生量当りの発電量が多いこと、燃料電池システム全体としての燃費が良いこと、排出ガス中のTHCが少ないこと、システムの起動時間が短いこと、改質触媒の劣化が小さく初期性能が長時間持続できることなどから、50容量%以下であることが好ましく、45容量%以下であることがより好ましく、40容量%以下であることがさらにより好ましく、35容量%以下であることがさらにより一層好ましく、30容量%以下であることがさらにより一層好ましく、20容量%以下であることがさらにより一層好ましく、10容量%以下であることがさらにより一層好ましく、5容量%以下であることが最も好ましい。
そして、上記硫黄分の好ましい範囲と上記芳香族分の好ましい範囲が二つながらに満足することが、改質触媒の劣化が小さく初期性能を長く維持できることから、最も好ましい。
上記のV(S)、V(O)およびV(Ar)は、全てJIS K 2536「石油製品−炭化水素タイプ試験方法」の蛍光指示薬吸着法により測定される値である。
また、本発明において、燃料の飽和分中のパラフィン分の割合については何ら制限はないが、重量当りの発電量が多いことなどから、CO発生量当りの発電量が多いこと、飽和分中のパラフィン分の割合が60容量%以上であることが好ましく、65容量%以上であることがより好ましく、70容量%以上であることがさらにより好ましく、75容量%以上であることがさらにより一層好ましく、80容量%以上であることがさらにより一層好ましく、85容量%以上であることがさらにより一層好ましく、90容量%以上であることがさらにより一層好ましく、95容量%以上であることが最も好ましい。
上記の飽和分およびパラフィン分は、上記したガスクロマトグラフィー法により定量された値である。
また、上記パラフィン分中の分岐型パラフィンの割合については何ら制限はないが、重量当りの発電量が多く、CO発生量当りの発電量が多いこと、燃料電池システム全体としての燃費が良いこと、排出ガス中のTHCが少ないこと、システムの起動時間が短いことなどから、パラフィン分中の分岐型パラフィンの割合が30容量%以上であることが好ましく、50容量%以上であることがより好ましく、70容量%以上であることが最も好ましい。
上記のパラフィン分および分岐型パラフィンの量は、上記したガスクロマトグラフィー法により定量された値である。
本発明の燃料の製造方法については、特に制限はない。具体的には例えば、原油を常圧蒸留して得られる軽質ナフサ、原油を常圧蒸留して得られる重質ナフサ、軽質ナフサを脱硫した脱硫軽質ナフサ、重質ナフサを脱硫した脱硫重質ナフサ、軽質ナフサを異性化装置でイソパラフィンに転化して得られる異性化ガソリン、イソブタン等の炭化水素に低級オレフィンを付加(アルキル化)することによって得られるアルキレート、アルキレートを脱硫処理した脱硫アルキレート、脱硫されたイソブタン等の炭化水素と脱硫された低級オレフィンによる低硫黄アルキレート、接触改質法で得られる改質ガソリン、改質ガソリンより芳香族分を抽出した残分であるラフィネート、改質ガソリンの軽質留分、改質ガソリンの中重質留分、改質ガソリンの重質留分、接触分解法、水素化分解法等で得られる分解ガソリン、分解ガソリンの軽質留分、分解ガソリンの重質留分、分解ガソリンを脱硫処理した脱硫分解ガソリン、分解ガソリンの軽質留分を脱硫処理した脱硫軽質分解ガソリン、分解ガソリンの重質留分を脱硫処理した脱硫重質分解ガソリン、天然ガス等を一酸化炭素と水素に分解した後にF−T(Fischer−Tropsch)合成で得られる「GTL(Gas to Liquids)」の軽質留分、LPGを脱硫処理した脱硫LPG、等の基材を1種または2種以上を用いて製造される。また、上記の基材を1種または2種以上を混合した後に、水素化あるいは吸着等によって脱硫することによっても製造できる。
これらの中でも、本発明の燃料の製造基材として好ましいものとしては、重質ナフサ、脱硫重質ナフサ、アルキレート、アルキレートを脱硫処理した脱硫アルキレート、脱硫されたイソブタン等の炭化水素と脱硫された低級オレフィンによる低硫黄アルキレート、分解ガソリンの軽質留分を脱硫処理した脱硫軽質分解ガソリン、ラフィネート、GTLの軽質留分、LPGを脱硫処理した脱硫LPG、等が挙げられる。
本発明の燃料電池システム用燃料には、識別のために着色剤、酸化安定度向上のために酸化防止剤、金属不活性化剤、腐食防止のための腐食防止剤、燃料ラインの清浄性維持のために清浄剤、潤滑性向上のための潤滑性向上剤等の添加剤を添加することもできる。
しかし、改質触媒の劣化が小さく初期性能が長時間維持できることから、着色剤は10ppm以下が好ましく、5ppm以下がより好ましい。同様の理由により、酸化防止剤は300ppm以下が好ましく、200ppm以下がより好ましく、100ppm以下が更により好ましく、10ppm以下が最も好ましい。同様の理由により金属不活性化剤は50ppm以下が好ましく、30ppm以下がより好ましく、10ppm以下が更により好ましく、5ppm以下が最も好ましい。また、同様に改質触媒の劣化が小さく初期性能を長時間維持できることから、腐食防止剤は50ppm以下が好ましく、30ppm以下がより好ましく、10ppm以下が更により好ましく、5ppm以下が最も好ましい。同様の理由により清浄剤は300ppm以下が好ましく、200pm以下がより好ましく、100ppm以下がもっとも好ましい。同様の理由により潤滑性向上剤は300ppm以下が好ましく、200ppm以下がより好ましく、100pm以下がもっとも好ましい。
本発明の燃料は、燃料電池システム用燃料として用いられる。本発明でいう燃料電池システムには、燃料の改質器、一酸化炭素浄化装置、燃料電池等が含まれるが、本発明の燃料は如何なる燃料電池システムにも好適に用いられる。
燃料の改質器は、燃料を改質して燃料電池の燃料である水素を得るためのものである。改質器としては、具体的には、例えば、
(1)加熱気化した燃料と水蒸気を混合し、銅、ニッケル、白金、ルテニウム等の触媒中で加熱反応させることにより、水素を主成分とする生成物を得る水蒸気改質型改質器、
(2)加熱気化した燃料を空気と混合し、銅、ニッケル、白金、ルテニウム等の触媒中または無触媒で反応させることにより、水素を主成分とする生成物を得る部分酸化型改質器、
(3)加熱気化した燃料を水蒸気及び空気と混合し、銅、ニッケル、白金、ルテニウム等の触媒層前段にて、(2)の部分酸化型改質を行ない、後段にて部分酸化反応の熱発生を利用して、(1)の水蒸気型改質を行なうことにより、水素を主成分とする生成物を得る部分酸化・水蒸気改質型改質器、
等が挙げられる。
一酸化炭素浄化装置とは、上記の改質装置で生成されたガスに含まれ、燃料電池の触媒毒となる一酸化炭素の除去を行なうものであり、具体的には、
(1)改質ガスと加熱気化した水蒸気を混合し、銅、ニッケル、白金、ルテニウム等の触媒中で反応させることにより、一酸化炭素と水蒸気より二酸化炭素と水素を生成物として得る水性ガスシフト反応器、
(2)改質ガスを圧縮空気と混合し、白金、ルテニウム等の触媒中で反応させることにより、一酸化炭素を二酸化炭素に変換する選択酸化反応器等が挙げられ、これらを単独または組み合わせて使用される。
燃料電池としては、具体的には、例えば、固体高分子型燃料電池(PEFC)、リン酸型燃料電池(PAFC)、溶融炭酸塩型燃料電池(MCFC)、固体酸化物型燃料電池(SOFC)等が挙げられる。
また、上記したような燃料電池システムは、電気自動車、従来エンジンと電気のハイブリッド自動車、可搬型電源、分散型電源、家庭用電源、コージェネレーションシステム等に用いられる。
実施例
実施例および比較例の各燃料に用いた基材の性状等を第1表に示す。
なお、熱容量及び蒸発潜熱は、上記したガスクロマトグラフィー法により定量された各成分毎の含有量と、「Technical Data Book−Petroleum Refining」の「Vol.1,Chap.1 General Data,Table 1C1」に記載されている各成分ごとの単位重量当たりの数値を基に計算で求めた。
また、実施例および比較例に用いた各燃料の性状等を第2表に示す。

Figure 0004598896
Figure 0004598896
Figure 0004598896
これら各燃料について、燃料電池システム評価試験、蒸発ガス試験、貯蔵安定性試験を行なった。
燃料電池システム評価試験
(1)水蒸気改質型
燃料と水を電気加熱により気化させ、貴金属系触媒を充填し電気ヒーターで所定の温度に維持した改質器に導き、水素分に富む改質ガスを発生させた。
改質器の温度は、試験の初期段階において改質が完全に行なわれる最低の温度(改質ガスにTHCが含まれない最低温度)とした。
改質ガスを水蒸気と共に一酸化炭素処理装置(水性ガスシフト反応)に導き、改質ガス中の一酸化炭素を二酸化炭素に変換した後、生成したガスを固体高分子型燃料電池に導き発電を行なった。
評価に用いた水蒸気改質型の燃料電池システムのフローチャートを第1図に示す。
(2)部分酸化型
燃料を電気加熱により気化させ、予熱した空気と共に貴金属系触媒を充填し電気ヒーターで1100℃に維持した改質器に導き、水素分に富む改質ガスを発生させた。
改質ガスを水蒸気と共に一酸化炭素処理装置(水性ガスシフト反応)に導き、改質ガス中の一酸化炭素を二酸化炭素に変換した後、生成したガスを固体高分子型燃料電池に導き発電を行なった。
評価に用いた部分酸化型の燃料電池システムのフローチャートを第2図に示す。
(3)評価方法
評価試験開始直後に改質器から発生する改質ガス中のH、CO、CO、THC量について測定を行った。同じく、評価試験開始直後に一酸化炭素処理装置から発生する改質ガス中のH、CO、CO、THC量について測定を行った。
評価試験開始直後および開始100時間後の燃料電池における発電量、燃料消費量、並びに燃料電池から排出されるCO量について測定を行なった。
各燃料を所定の改質器温度にまで導くために要する熱量(予熱量)は、熱容量、蒸発潜熱から計算した。
また、これら測定値・計算値および燃料発熱量から、改質触媒の性能劣化割合(試験開始100時間後の発電量/試験開始直後の発電量)、熱効率(試験開始直後の発電量/燃料発熱量)、予熱量割合(予熱量/発電量)を計算した。
蒸発ガス試験
20リットルのガソリン携行缶の給油口に試料充填用ホースを装着し、装着部を完全にシールした。缶の空気抜きバルブは開けたまま、各燃料を5リットル充填した。充填後に空気抜きバルブを閉め、30分間放置した。放置後、空気抜きバルブの先に活性炭吸着装置を取付けてバルブを開けた。直ちに給油口から各燃料を10リットル給油した。給油後5分間、空気抜きバルブを開けたまま放置し活性炭に蒸気を吸収させ、その後に活性炭の重量増を測定した。なお、試験は25℃の一定温度下で行なった。
貯蔵安定度試験
各燃料を耐圧密閉容器に酸素と共に充填し、100℃に加熱、温度を保ったまま24時間放置した後、JIS K2261に定める実在ガム試験法にて評価を行なった。
各測定値・計算値を第3表に示す。
Figure 0004598896
産業上の利用可能性
上記の通り、本発明にかかる燃料電池システム用燃料は、性能劣化割合の少ない電気エネルギーを高出力で得ることができる他、燃料電池用として各種性能を満足する燃料である。
【図面の簡単な説明】
第1図は、本発明の燃料電池システム用燃料の評価に用いた水蒸気改質型燃料電池システムのフローチャートである。第2図は、本発明の燃料電池システム用燃料の評価に用いた部分酸化型燃料電池システムのフローチャートである。TECHNICAL FIELD The present invention relates to a fuel used in a fuel cell system.
BACKGROUND ART In recent years, development of an energy supply system that is kind to the earth has been demanded due to the growing sense of crisis for the future global environment. In particular, the reduction of CO 2 to prevent global warming, THC (unreacted hydrocarbons in the exhaust gas), NOx, PM (particulate matter in exhaust gas: soot, the fuel-lubricant high boiling point and high It is required to achieve a high degree of reduction of harmful substances such as molecular unburned components. Specific examples of the system include an automobile power system that replaces the conventional Otto diesel system or a power generation system that replaces thermal power.
Therefore, a fuel cell that has energy efficiency close to ideal and basically emits only H 2 O and CO 2 is expected to be the most promising system to meet the demands of society. In order to achieve such a system, it is indispensable not only to develop the technology of the equipment but also to develop the optimal fuel for it.
Conventionally, hydrogen, methanol, and hydrocarbon fuels have been considered as fuels for fuel cell systems.
As a fuel for fuel cell systems, hydrogen is advantageous in that it does not require a special reformer. However, since it is a gas at room temperature, it has problems in storage and mounting in vehicles, and is specially supplied. Equipment is necessary. In addition, there is a high risk of ignition and caution is required in handling.
On the other hand, methanol is advantageous in that it can be relatively easily reformed to hydrogen, but the amount of power generation per weight is small and it is toxic, so it must be handled with care. In addition, since it is corrosive, special equipment is required for storage and supply.
Thus, the fuel for fully exhibiting the capability of the fuel cell system has not been developed yet. In particular, as fuel for fuel cell systems, there is a large amount of power generation per weight, a large amount of power generation per CO 2 generation amount, good fuel economy as a whole fuel cell system, and low evaporation gas (evaporation). Reforming catalyst, water gas shift reaction catalyst, carbon monoxide removal catalyst, fuel cell stack, etc., fuel cell system has little deterioration and initial performance can be sustained for a long time, system startup time is short, storage stability and ignition Good handling properties such as dots are required.
In the fuel cell system, since it is necessary to keep the fuel and the reformer at a predetermined temperature, the amount of power generation obtained by subtracting the amount of heat required for the power generation (the amount of heat that balances the heat absorption and heat generation associated with preheating and reaction) is This is the amount of power generated by the entire fuel cell system. Therefore, the lower the temperature required for reforming the fuel, the smaller the preheating amount, which is advantageous, the shorter the system startup time, and the smaller the amount of heat per weight necessary for preheating the fuel. is necessary. When preheating is not sufficient, unreacted hydrocarbons (THC) increase in the exhaust gas, which may not only reduce the amount of power generation per weight but also cause air pollution. In other words, when the same system is operated at the same temperature, it is advantageous that the THC in the exhaust gas is small and the conversion rate to hydrogen is high.
In view of such circumstances, an object of the present invention is to provide a fuel suitable for a fuel cell system that satisfies the above-described required properties in a well-balanced manner.
DISCLOSURE OF THE INVENTION As a result of intensive studies to solve the above problems, the present inventors have found that a fuel containing a specific amount of a hydrocarbon compound having a specific carbon number is suitable for a fuel cell system.
That is, the fuel for a fuel cell system according to the present invention is:
(1) The total content of hydrocarbon compounds having 7 and 8 carbon atoms is 20% by volume or more, and the total content of hydrocarbon compounds having 10 or more carbon atoms is 20% by volume or less.
More preferably, the fuel containing a specific amount of the hydrocarbon compound having a specific carbon number satisfies the following additional requirements.
(2) A fuel for a fuel cell system having a sulfur content of 50 mass ppm or less.
(3) A fuel for a fuel cell system having a saturation content of 30% by volume or more.
(4) A fuel for a fuel cell system having an olefin content of 35% by volume or less.
(5) A fuel for a fuel cell system having an aromatic content of 50% by volume or less.
(6) A fuel for a fuel cell system, wherein the ratio of the paraffin content in the saturated content is 60% by volume or more.
(7) A fuel for a fuel cell system, wherein the proportion of branched paraffin in the paraffin content is 30% by volume or more.
BEST MODE FOR CARRYING OUT THE INVENTION The contents of the present invention will be described in more detail below.
In the present invention, the amount of the hydrocarbon compound having a specific carbon number is as follows. In the present invention, the total content of hydrocarbon compounds having 7 and 8 carbon atoms (V (C 7 + C 8 )) indicates the total content of hydrocarbon compounds having 7 and 8 carbon atoms based on the total amount of fuel. Because of the large amount of power generation per weight, the large amount of power generation per CO 2 generation amount, and the good fuel economy of the fuel cell system as a whole, it is necessary to be 20% by volume or more, and 25% by volume Preferably, it is 30% by volume or more, more preferably 35% by volume or more, and most preferably 40% by volume or more.
In the present invention, the content of the hydrocarbon compound having 10 or more carbon atoms is such that the amount of power generation per CO 2 generation amount is large, the fuel efficiency of the fuel cell system as a whole is good, and the reforming catalyst is less deteriorated. Since the initial performance can be maintained for a long time, the total amount of hydrocarbon compounds having 10 or more carbon atoms (V (C 10 +)) based on the total amount of fuel is required to be 20% by volume or less, and 10% by volume. Or less, and most preferably 5% by volume or less.
In the present invention, the content of the hydrocarbon compound having 4 carbon atoms is not particularly limited, but the content (V (C 4 )) of the hydrocarbon compound having 4 carbon atoms based on the total amount of fuel is an evaporative gas. The amount of (evaporation) can be kept low, and it is preferably 15% by volume or less, more preferably 10% by volume or less, and more preferably 5% by volume or less from the viewpoint of good handleability such as flash point. Most preferably it is.
The content of the hydrocarbon compound having 5 carbon atoms is not particularly limited, but the content of the hydrocarbon compound having 5 carbon atoms (V (C 5 )) based on the total amount of fuel is usually less than 5% by volume. Preferably used.
The content of the hydrocarbon compound having 6 carbon atoms is not particularly limited, but the content of the hydrocarbon compound having 6 carbon atoms based on the total amount of fuel (V (C 6 )) is usually less than 10% by volume. Preferably used.
The above V (C 4 ), V (C 5 ), V (C 6 ), V (C 7 + C 8 ), V (C 10 +) are quantified by the gas chromatography method shown below. Value. That is, a capillary column of methyl silicon is used for the column, helium or nitrogen is used for the carrier gas, a hydrogen ionization detector (FID) is used for the detector, the column length is 25 to 50 m, and the carrier gas flow rate is 0.5 to 1.5 ml. / Min, split ratio 1:50 to 1: 250, inlet temperature 150 to 250 ° C., initial column temperature −10 to 10 ° C., final column temperature 150 to 250 ° C., detector temperature 150 to 250 ° C. Value.
Further, the sulfur content of the fuel of the present invention is not limited at all, but the deterioration of the fuel cell system such as a reforming catalyst, water gas shift reaction catalyst, carbon monoxide removal catalyst, fuel cell stack, etc. is small and the initial performance is long. From the fact that it can last for a long time, it is preferably 50 ppm by mass or less, more preferably 30 ppm by mass or less, still more preferably 10 ppm by mass or less, and even more preferably 1 ppm by mass or less based on the total amount of fuel. Even more preferably, it is most preferably 0.1 ppm by mass or less.
Here, when the sulfur content is 1 ppm by mass or more, the sulfur content measured by JIS K 2541 “Crude oil and petroleum products—sulfur content test method” is used, and when it is less than 1 ppm by mass, ASTM D4045-96 “Standard” It means the sulfur content measured by “Test Method for Sulfur in Petroleum Products by Hydrology and Rateometric Colorimetry”.
In the present invention, there is no limitation on the content of each of the saturated component, olefin component and aromatic component, but the saturated component (V (S)) is 30% by volume or more and the olefin component (V (O)) is 35 volumes. % Or less, and the aromatic content (V (Ar)) is preferably 50% by volume or less. These will be described individually below.
V (S) is a large amount of power generation per weight, a large amount of power generation per CO 2 generation amount, good fuel economy as a whole fuel cell system, low THC in exhaust gas, system startup In view of short time, it is preferably 30% by volume or more, more preferably 40% by volume or more, still more preferably 50% by volume or more, and even more preferably 60% by volume or more. More preferably, it is 70% by volume or more, still more preferably 80% by volume or more, still more preferably 90% by volume or more, still more preferably 95% by volume or more. Most preferred.
V (O) has a large amount of power generation per weight, a large amount of power generation per amount of CO 2 generation, little deterioration of the reforming catalyst and long-term initial performance, good storage stability, etc. Therefore, it is preferably 35% by volume or less, more preferably 25% by volume or less, still more preferably 20% by volume or less, still more preferably 15% by volume or less, and even more preferably 10% by volume. % Is most preferred.
V (Ar) has a large amount of power generation per weight, a large amount of power generation per CO 2 generation amount, good fuel economy as a whole fuel cell system, low THC in exhaust gas, system startup In view of the short time, the deterioration of the reforming catalyst is small and the initial performance can be sustained for a long time, etc., it is preferably 50% by volume or less, more preferably 45% by volume or less and 40% by volume or less. Is more preferably 35% by volume or less, still more preferably 30% by volume or less, still more preferably 20% by volume or less, still more preferably 10% by volume or less. Even more preferred is 5% by volume or less.
And, it is most preferable that the preferable range of the sulfur content and the preferable range of the aromatic content are satisfied, since the deterioration of the reforming catalyst is small and the initial performance can be maintained for a long time.
The above V (S), V (O) and V (Ar) are all values measured by the fluorescent indicator adsorption method of JIS K 2536 “Petroleum products-hydrocarbon type test method”.
Further, in the present invention, there is no limitation on the ratio of the paraffin content in the saturated portion of the fuel, but since the power generation amount per weight is large, the power generation amount per CO 2 generation amount is large. The ratio of the paraffin content is preferably 60% by volume or more, more preferably 65% by volume or more, still more preferably 70% by volume or more, and even more preferably 75% by volume or more. Preferably, it is still more preferably 80% by volume or more, still more preferably 85% by volume or more, still more preferably 90% by volume or more, and most preferably 95% by volume or more. preferable.
The saturated content and the paraffin content are values determined by the gas chromatography method described above.
In addition, there is no limitation on the ratio of the branched paraffin in the paraffin content, but the power generation amount per weight is large, the power generation amount per CO 2 generation amount is large, and the fuel consumption of the fuel cell system as a whole is good. The ratio of branched paraffin in the paraffin content is preferably 30% by volume or more, more preferably 50% by volume or more, because THC in the exhaust gas is low and the start-up time of the system is short. 70% by volume or more is most preferable.
The amounts of the paraffin content and the branched paraffin are values determined by the gas chromatography method described above.
There is no restriction | limiting in particular about the manufacturing method of the fuel of this invention. Specifically, for example, light naphtha obtained by atmospheric distillation of crude oil, heavy naphtha obtained by atmospheric distillation of crude oil, desulfurized light naphtha desulfurized light naphtha, desulfurized heavy naphtha desulfurized heavy naphtha. , Isomerized gasoline obtained by converting light naphtha to isoparaffin using an isomerization unit, alkylate obtained by adding (alkylating) lower olefin to hydrocarbon such as isobutane, desulfurized alkylate obtained by desulfurizing alkylate , Low-sulfur alkylates with hydrocarbons such as desulfurized isobutane and desulfurized lower olefins, reformed gasoline obtained by catalytic reforming, raffinate that is a residue obtained by extracting aromatics from reformed gasoline, reforming Light fraction of gasoline, medium heavy fraction of reformed gasoline, heavy fraction of reformed gasoline, fraction obtained by catalytic cracking method, hydrocracking method, etc. Gasoline, light fraction of cracked gasoline, heavy fraction of cracked gasoline, desulfurized cracked gasoline obtained by desulfurizing cracked gasoline, desulfurized light cracked gasoline obtained by desulfurizing cracked gasoline light fraction, and heavy fraction of cracked gasoline Desulfurized heavy desulfurized gasoline, degassed natural gas, etc. into carbon monoxide and hydrogen, and then desulfurized LPG, a light fraction of "GTL (Gas to Liquids)" obtained by FT (Fischer-Tropsch) synthesis The base material such as treated desulfurized LPG is produced using one or more kinds. Moreover, it can manufacture also by desulfurization by hydrogenation or adsorption | suction etc., after mixing the said base material 1 type (s) or 2 or more types.
Among these, preferable as a production base of the fuel of the present invention are heavy naphtha, desulfurized heavy naphtha, alkylate, desulfurized alkylate obtained by desulfurizing alkylate, desulfurized hydrocarbon such as isobutane and desulfurization. Low sulfur olefins by the lower olefins produced, desulfurized light cracked gasoline obtained by desulfurizing the light fraction of cracked gasoline, raffinate, GTL light fraction, desulfurized LPG obtained by desulfurizing LPG, and the like.
The fuel for the fuel cell system of the present invention includes a colorant for identification, an antioxidant for improving oxidation stability, a metal deactivator, a corrosion inhibitor for preventing corrosion, and maintaining the cleanliness of the fuel line. Therefore, additives such as a detergent and a lubricity improver for improving lubricity can be added.
However, since the deterioration of the reforming catalyst is small and the initial performance can be maintained for a long time, the colorant is preferably 10 ppm or less, more preferably 5 ppm or less. For the same reason, the antioxidant is preferably 300 ppm or less, more preferably 200 ppm or less, still more preferably 100 ppm or less, and most preferably 10 ppm or less. For the same reason, the metal deactivator is preferably 50 ppm or less, more preferably 30 ppm or less, still more preferably 10 ppm or less, and most preferably 5 ppm or less. Similarly, since the deterioration of the reforming catalyst is small and the initial performance can be maintained for a long time, the corrosion inhibitor is preferably 50 ppm or less, more preferably 30 ppm or less, still more preferably 10 ppm or less, and most preferably 5 ppm or less. For the same reason, the detergent is preferably 300 ppm or less, more preferably 200 pm or less, and most preferably 100 ppm or less. For the same reason, the lubricity improver is preferably 300 ppm or less, more preferably 200 ppm or less, and most preferably 100 pm or less.
The fuel of the present invention is used as a fuel for a fuel cell system. The fuel cell system referred to in the present invention includes a fuel reformer, a carbon monoxide purifier, a fuel cell, and the like, but the fuel of the present invention can be suitably used in any fuel cell system.
The fuel reformer is for reforming the fuel to obtain hydrogen which is the fuel of the fuel cell. Specifically, as the reformer, for example,
(1) A steam reforming reformer that obtains a product containing hydrogen as a main component by mixing heat-vaporized fuel and water vapor and reacting them in a catalyst such as copper, nickel, platinum, ruthenium, etc.
(2) A partially oxidized reformer that obtains a product mainly composed of hydrogen by mixing heat-vaporized fuel with air and reacting in a catalyst such as copper, nickel, platinum, ruthenium, or the like without a catalyst.
(3) The fuel vaporized by heating is mixed with water vapor and air, and the partial oxidation reforming of (2) is performed in the preceding stage of the catalyst layer of copper, nickel, platinum, ruthenium, etc., and the heat of the partial oxidation reaction in the subsequent stage. A partial oxidation / steam reforming reformer that obtains a product mainly composed of hydrogen by performing steam reforming of (1) using generation,
Etc.
The carbon monoxide purifier is a device that removes carbon monoxide, which is contained in the gas generated by the reformer and becomes the catalyst poison of the fuel cell. Specifically,
(1) A water-gas shift reaction in which carbon dioxide and hydrogen are obtained as products from carbon monoxide and steam by mixing the reformed gas and steam vaporized by heating and reacting in a catalyst such as copper, nickel, platinum, and ruthenium. vessel,
(2) A selective oxidation reactor that converts carbon monoxide into carbon dioxide by mixing the reformed gas with compressed air and reacting in a catalyst such as platinum, ruthenium, etc. can be mentioned. used.
Specific examples of the fuel cell include a polymer electrolyte fuel cell (PEFC), a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), and a solid oxide fuel cell (SOFC). Etc.
The fuel cell system as described above is used for electric vehicles, conventional engine-electric hybrid vehicles, portable power sources, distributed power sources, household power sources, cogeneration systems, and the like.
Table 1 shows the properties of the base materials used for the fuels of the examples and comparative examples.
The heat capacity and latent heat of vaporization are the content of each component quantified by the gas chromatography method described above, and “Vol.1, Chap.1 General Data, Table 1C1” of “Technical Data Book-Petroleum Refining”. It calculated | required by calculation based on the numerical value per unit weight for each component described.
Table 2 shows the properties of the fuels used in the examples and comparative examples.
Figure 0004598896
Figure 0004598896
Figure 0004598896
Each fuel was subjected to a fuel cell system evaluation test, an evaporative gas test, and a storage stability test.
Fuel cell system evaluation test (1) Steam reforming fuel and water are vaporized by electric heating, led to a reformer filled with a noble metal catalyst and maintained at a predetermined temperature with an electric heater, and reformed gas rich in hydrogen Was generated.
The temperature of the reformer was set to the lowest temperature at which the reforming was completely performed in the initial stage of the test (the lowest temperature at which the reformed gas did not contain THC).
The reformed gas together with water vapor is led to a carbon monoxide treatment device (water gas shift reaction). After converting the carbon monoxide in the reformed gas to carbon dioxide, the generated gas is led to a polymer electrolyte fuel cell for power generation. It was.
FIG. 1 shows a flow chart of a steam reforming fuel cell system used for evaluation.
(2) The partially oxidized fuel was vaporized by electric heating, led to a reformer filled with preheated air with a precious metal catalyst and maintained at 1100 ° C. with an electric heater, and a reformed gas rich in hydrogen was generated.
The reformed gas together with water vapor is led to a carbon monoxide treatment device (water gas shift reaction). After converting the carbon monoxide in the reformed gas to carbon dioxide, the generated gas is led to a polymer electrolyte fuel cell for power generation. It was.
A flowchart of the partially oxidized fuel cell system used for the evaluation is shown in FIG.
(3) Evaluation method The amount of H 2 , CO, CO 2 and THC in the reformed gas generated from the reformer immediately after the start of the evaluation test was measured. Similarly, the amount of H 2 , CO, CO 2 , and THC in the reformed gas generated from the carbon monoxide treatment apparatus immediately after the start of the evaluation test was measured.
Immediately after the start of the evaluation test and 100 hours after the start of the evaluation, the amount of power generation, fuel consumption, and the amount of CO 2 discharged from the fuel cell were measured.
The amount of heat (preheating amount) required to lead each fuel to a predetermined reformer temperature was calculated from the heat capacity and latent heat of vaporization.
Also, from these measured / calculated values and fuel calorific value, the reforming catalyst performance deterioration rate (power generation 100 hours after the start of the test / power generation immediately after the start of the test), thermal efficiency (power generation immediately after the start of the test / fuel heat generation) Amount) and preheating amount ratio (preheating amount / power generation amount).
An evaporative gas test A sample filling hose was attached to the refueling port of a 20 liter gasoline carrying can, and the mounting portion was completely sealed. With the can vent valve open, 5 liters of each fuel was filled. After filling, the air vent valve was closed and left for 30 minutes. After leaving, the activated carbon adsorber was attached to the tip of the air vent valve and the valve was opened. Immediately, 10 liters of each fuel was supplied from the filler port. For 5 minutes after refueling, the air vent valve was left open to allow the activated carbon to absorb the vapor, and then the weight increase of the activated carbon was measured. The test was performed at a constant temperature of 25 ° C.
Storage stability test Each fuel was filled with oxygen in a pressure-resistant airtight container, heated to 100 ° C and allowed to stand for 24 hours while maintaining the temperature, and then evaluated by the existing gum test method defined in JIS K2261. .
Table 3 shows the measured and calculated values.
Figure 0004598896
Industrial Applicability As described above, the fuel for a fuel cell system according to the present invention is a fuel that satisfies various performances for a fuel cell in addition to being able to obtain electric energy with a low performance deterioration rate at a high output. .
[Brief description of the drawings]
FIG. 1 is a flowchart of a steam reforming fuel cell system used for evaluation of fuel for a fuel cell system of the present invention. FIG. 2 is a flowchart of the partially oxidized fuel cell system used for evaluating the fuel for the fuel cell system of the present invention.

Claims (2)

炭素数7と炭素数8の炭化水素化合物の合計含有量が20容量%以上であり、炭素数10以上の炭化水素化合物の合計含有量が20容量%以下であり、飽和分が80容量%以上であり、芳香族分が10容量%以下であり、硫黄分含有量が10質量ppm以下であり、飽和分中のパラフィン分の割合が60容量%以上であり、パラフィン分中の分岐型パラフィンの割合が30容量%以上である燃料電池システム用燃料。The total content of hydrocarbon compounds having 7 and 8 carbon atoms is 20% by volume or more, the total content of hydrocarbon compounds having 10 or more carbon atoms is 20% by volume or less, and the saturated content is 80% by volume or more The aromatic content is 10% by volume or less, the sulfur content is 10 mass ppm or less, the ratio of the paraffin content in the saturated content is 60% by volume or more, and the branched paraffin in the paraffin content is A fuel for a fuel cell system having a ratio of 30% by volume or more . オレフィン分が35容量%以下である請求の範囲第1項に記載の燃料電池システム用燃料。  The fuel for a fuel cell system according to claim 1, wherein the olefin content is 35% by volume or less.
JP2001575120A 2000-04-10 2001-04-10 Fuel for fuel cell system Expired - Fee Related JP4598896B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000107835 2000-04-10
PCT/JP2001/003095 WO2001077266A1 (en) 2000-04-10 2001-04-10 Fuel for use in fuel cell system

Publications (1)

Publication Number Publication Date
JP4598896B2 true JP4598896B2 (en) 2010-12-15

Family

ID=18620778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001575120A Expired - Fee Related JP4598896B2 (en) 2000-04-10 2001-04-10 Fuel for fuel cell system

Country Status (3)

Country Link
JP (1) JP4598896B2 (en)
AU (1) AU4688901A (en)
WO (1) WO2001077266A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340702A (en) * 1986-08-01 1988-02-22 Nippon Oil Co Ltd Production of hydrogen for fuel cell
NL8802357A (en) * 1988-09-26 1990-04-17 Kinetics Technology METHOD FOR GENERATING ELECTRICITY
US5284717A (en) * 1989-12-27 1994-02-08 Petroleum Energy Center Method for producing raw materials for a reformer by cracking and desulfurizing petroleum fuels
JPH07119424B2 (en) * 1990-09-19 1995-12-20 出光興産株式会社 Heavy naphtha reforming method
JPH0570780A (en) * 1991-09-12 1993-03-23 Sekiyu Sangyo Kasseika Center Depth desulfurization of middle-or low-boiling oil
JP3276679B2 (en) * 1992-07-15 2002-04-22 財団法人石油産業活性化センター Steam reforming catalyst and hydrogen production method
JPH0971788A (en) * 1995-09-07 1997-03-18 Cosmo Sogo Kenkyusho:Kk Unleaded, high performance gasoline

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010033767, Proc.3rd Int.Fuel Cell Conf.1999, 1999, p.173−177 *

Also Published As

Publication number Publication date
AU4688901A (en) 2001-10-23
WO2001077266A1 (en) 2001-10-18

Similar Documents

Publication Publication Date Title
JP4598892B2 (en) Fuel for fuel cell system
JP4598894B2 (en) Fuel for fuel cell system
JPWO2002031090A1 (en) Gasoline vehicle and fuel for fuel cell system, and storage and / or supply system thereof
JP4583666B2 (en) Fuel for fuel cell system
JP4598893B2 (en) Fuel for fuel cell system
JP4598890B2 (en) Fuel for fuel cell system
EP1273651A1 (en) Fuel for use in fuel cell system
JP4598898B2 (en) Fuel for fuel cell system
JP4598891B2 (en) Fuel for fuel cell system
US6837909B2 (en) Fuel for use in a fuel cell system
JP4598889B2 (en) Fuel for fuel cell system
JP4598897B2 (en) Fuel for fuel cell system
JP4598895B2 (en) Fuel for fuel cell system
JP4598896B2 (en) Fuel for fuel cell system
JP4632281B2 (en) Fuel for fuel cell system
JP2002083625A (en) Fuel for fuel cell system
JP2004027082A (en) Fuel for fuel cell system
JP2004027083A (en) Fuel for producing hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061031

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees