JP2004130216A - Desulfurizing agent for hydrocarbon-containing gas and method for producing hydrogen for fuel cell - Google Patents

Desulfurizing agent for hydrocarbon-containing gas and method for producing hydrogen for fuel cell Download PDF

Info

Publication number
JP2004130216A
JP2004130216A JP2002297229A JP2002297229A JP2004130216A JP 2004130216 A JP2004130216 A JP 2004130216A JP 2002297229 A JP2002297229 A JP 2002297229A JP 2002297229 A JP2002297229 A JP 2002297229A JP 2004130216 A JP2004130216 A JP 2004130216A
Authority
JP
Japan
Prior art keywords
hydrocarbon
desulfurizing agent
containing gas
oxide
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002297229A
Other languages
Japanese (ja)
Other versions
JP4079743B2 (en
Inventor
Takeji Takekoshi
竹越 岳二
Kozo Takatsu
高津 幸三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2002297229A priority Critical patent/JP4079743B2/en
Publication of JP2004130216A publication Critical patent/JP2004130216A/en
Application granted granted Critical
Publication of JP4079743B2 publication Critical patent/JP4079743B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desulfurizing agent for a hydrocarbon-containing gas that can be used in the desulfurization of the hydrocarbon-containing gas without being subjected to a previous reduction and can efficiently remove sulfur from the gas to a high degree of desulfurization even at room temperature and to provide a method for producing hydrogen for fuel cells. <P>SOLUTION: The desulfurizing agent is prepared by supporting nickel oxide or both nickel oxide and copper oxide on a support and can be used in the desulfurization of a hydrocarbon-containing gas without being subjected to the previous reduction. The method for producing hydrogen for fuel cells comprises the step of desulfurizing a hydrocarbon-containing gas with the desulfurizing agent and reforming the desulfurized hydrocarbon-containing gas. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術】
本発明は、炭化水素含有ガス用脱硫剤及び燃料電池用水素の製造方法に関する。さらに詳しくは、本発明は、予め還元処理を施すことなく、燃料電池用燃料などとして用いられる炭化水素含有ガスの脱硫処理に使用し得る脱硫剤、及び該脱硫剤を用いて脱硫処理された炭化水素含有ガスを改質して、燃料電池用水素を効率よく、かつ経済的に有利に製造する方法に関するものである。
【0002】
【従来の技術】
近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。
この燃料電池には、使用する電解質の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物型、固体高分子型などのタイプが知られている。一方、水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とするジメチルエーテルなどの合成液体燃料、さらには石油系のLPG、ナフサ、灯油などの石油系炭化水素の使用が研究されている。
これらのガス状又は液状炭化水素を用いて水素を製造する場合、一般に、該炭化水素を改質触媒の存在下に部分酸化改質、オートサーマル改質又は水蒸気改質などで処理する方法が用いられている。
LPGや都市ガスなどを改質して燃料電池用水素を製造する場合、改質触媒の被毒を抑制するためには、ガス中の硫黄分を0.1ppm以下に低減させることが要求される。また、プロピレンやブテンなどは、石油化学製品の原料として使用する場合、やはり触媒の被毒を防ぐためには、硫黄分を0.1ppm以下に低減させることが要求される。
前記LPG中には、硫黄化合物として、一般にメチルメルカプタンや硫化カルボニル(COS)などに加えて、付臭剤として添加されたジメチルサルファイド(DMS)、t−ブチルメルカプタン(TBM)、メチルエチルサルファイド(MES)などが含まれている。このようなLPGなどの燃料ガス中の硫黄分を吸着除去するための各種吸着剤、例えばゼオライト系や遷移金属系の吸着剤などが知られている。
【0003】
しかしながら、ゼオライト系吸着剤は、吸着容量が不十分であるし、一方遷移金属系吸着剤においては、脱硫性能を発揮させるには、前処理として還元処理が必要であり、また、還元処理後に空気が混入した場合には、脱硫性能が低下するなどの問題があり、必ずしも十分に満足し得るものではなかった。
一方、疎水性ゼオライトにAg、Cu、Zn、Fe、Co、Niなどをイオン交換により担持させた脱硫剤(例えば特許文献1参照)や、Y型ゼオライト、β型ゼオライト又はX型ゼオライトにAg又はCuを担持した脱硫剤(例えば、特許文献2参照)が開示されている。しかしながら、これらの脱硫剤は、メルカプタン類やサルファイド類を室温において効率的に吸着除去し得るものの、硫化カルボニルをほとんど吸着しないことがわかった。
また、銅−亜鉛系脱硫剤が開示されている(例えば、特許文献3参照)。しかしながら、この脱硫剤においては、150℃以上の温度ではCOSを含む各種硫黄化合物を吸着除去できるが、100℃以下の低い温度では、硫黄化合物に対する吸着性能が低い。さらに、アルミナなどの多孔質担体に銅を担持した脱硫剤が開示されている(例えば、特許文献4参照)。この脱硫剤は100℃以下の温度でも使用できるとしているが、その吸着性能については十分に満足し得るものではない。また、銅−亜鉛−酸化アルミニウム系の脱硫剤が開示されている(例えば、特許文献5参照)。しかしながら、この脱硫剤においては、前処理として水素による還元処理が必要となる。
【0004】
【特許文献1】
特開2001−286753号公報
【特許文献2】
特開2001−305123号公報
【特許文献3】
特開平2−302496号公報(第2頁)
【特許文献4】
特開2001−123188号公報(第3頁)
【特許文献5】
特開平11−139803号公報
【0005】
【発明が解決しようとする課題】
本発明は、このような状況下で、予め還元処理を施すことなく、炭化水素含有ガスの脱硫処理に使用することができ、かつ該炭化水素含有ガス中の硫黄分を、室温においても低濃度まで効率よく除去し得る炭化水素含有ガス用脱硫剤、及び上記脱硫剤を用いて脱硫処理した炭化水素含有ガスを改質して、燃料電池用水素を効率よく、経済的に有利に製造する方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、担体に、酸化ニッケル、又は酸化ニッケルと酸化銅を担持してなる脱硫剤が、炭化水素含有ガス用脱硫剤として、その目的に適合し得ること、そして、この脱硫剤を用いて脱硫処理した炭化水素含有ガスに、部分酸化改質、オートサーマル改質、水蒸気改質などの改質処理を施すことにより、効率よく、経済的に有利に燃料電池用水素が得られることを見出した。本発明は、かかる知見に基づいて完成したものである。
【0007】
すなわち、本発明は、
(1)担体上に酸化ニッケル、又は酸化ニッケルと酸化銅を担持してなる脱硫剤であって、予め還元処理を施すことなく、炭化水素含有ガスの脱硫処理に使用することを特徴とする炭化水素含有ガス用脱硫剤、
(2)脱硫剤全量に基づき、酸化ニッケル含有量が5〜90質量%、酸化銅含有量が0〜85質量%及び酸化ニッケルと酸化銅の合計含有量が60〜90質量%である上記(1)の炭化水素含有ガス用脱硫剤、
(3)担体が、シリカ、アルミナ、シリカ−アルミナ、チタニア、ジルコニア、マグネシア、珪藻土、白土、粘土及び酸化亜鉛の中から選ばれる少なくとも一種の無機多孔質担体である上記(1)又は(2)の炭化水素含有ガス用脱硫剤、
(4)炭化水素含有ガスが、LPG、天然ガス、都市ガス又はジメチルエーテルである上記(1)、(2)又は(3)の炭化水素含有ガス用脱硫剤、
(5)担体上に酸化ニッケル、又は酸化ニッケルと酸化銅を担持してなる脱硫剤を、これに予め還元処理を施すことなく用いて炭化水素含有ガスの脱硫処理を行うことを特徴とする炭化水素含有ガスの脱硫方法、
(6)炭化水素含有ガスが、LPG、天然ガス、都市ガス又はジメチルエーテルである上記(5)の脱硫方法。
(7)−20〜100℃の温度で行う上記(5)又は(6)の脱硫方法、
(8)上記(1)〜(4)のいずれかの脱硫剤を用いて、炭化水素含有ガスを脱硫処理したのち、改質することを特徴とする燃料電池用水素の製造方法、
(9)改質が、部分酸化改質、オートサーマル改質又は水蒸気改質である上記(8)の燃料電池用水素の製造方法、
(10)部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒が、ルテニウム系又はニッケル系触媒である上記(9)の燃料電池用水素の製造方法、及び
(11)触媒に用いられる担体が、酸化マンガン、酸化セリウム及びジルコニアの中から選ばれる少なくとも一種を含むものである上記(10)の燃料電池用水素の製造方法、
を提供するものである。
【0008】
【発明の実施の形態】
本発明の炭化水素含有ガス用脱硫剤は、担体上に酸化ニッケル、又は酸化ニッケルと酸化銅を担持してなり、かつ予め還元処理を施すことなく、炭化水素含有ガスの脱硫処理に用いられる。
当該脱硫剤における担体としては、無機多孔質担体が好ましく、例えばシリカ、アルミナ、シリカ−アルミナ、チタニア、ジルコニア、マグネシア、珪藻土、白土、粘土及び酸化亜鉛などを挙げることができる。これらは単独で用いてもよく、二種以上を組み合わせて用いてもよい。これらの中で、特にシリカ−アルミナが好適である。
【0009】
これらの担体上に担持される酸化ニッケルの担持量は、脱硫剤全量に基づき、5〜90質量%の範囲が好ましい。この量が5質量%未満では十分な脱硫性能が発揮されないおそれがあり、一方90質量%を超えると担体の割合が少なくなって、脱硫剤の機械的強度や脱硫性能が低下する原因となる。脱硫性能及び機械的強度などを考慮すると、この酸化ニッケルのより好ましい担持量は、10〜85質量%の範囲である。また、酸化銅の担持量は、脱硫剤全量に基づき、0〜85質量%の範囲が好ましい。この量が85質量%を超えると脱硫剤の機械的強度や脱硫性能が低下する場合がある。該酸化銅のより好ましい担持量は、0〜80質量%の範囲である。また、酸化ニッケルと酸化銅の合計担持量は、脱硫性能及び機械的強度のバランスなどの点から、脱硫剤全量に基づき、60〜90質量%の範囲が好ましく、特に65〜85質量%の範囲が好ましい。
【0010】
該担体に酸化ニッケル、又は酸化ニッケルと酸化銅を担持させる方法については特に制限はなく、含浸法、共沈法、混練法などの公知の任意の方法を採用することができる。本発明の好ましい脱硫剤である、シリカ−アルミナ担体上に酸化ニッケル、又は酸化ニッケルと酸化銅を担持させてなる脱硫剤は、例えば以下に示すような共沈法によって製造することができる。
この共沈法においては、まずニッケル源及びアルミニウム源、必要に応じ銅源を含む酸性水溶液又は酸性水性分散液と、ケイ素源及び無機塩基を含む塩基性水溶液を調製する。前者の酸性水溶液又は酸性水分散液に用いられるニッケル源としては、例えば塩化ニッケル、硝酸ニッケル、硫酸ニッケル、酢酸ニッケル及びこれらの水和物などが挙げられる。また銅源としては、例えば塩化銅、硝酸銅、硫酸銅、酢酸銅及びこれらの水和物が挙げられる。更にアルミニウム源としては、硝酸アルミニウム、擬ベーマイト、ベーマイトアルミナ、バイヤライト、ジブサイトなどのアルミナ水和物や、γ−アルミナなどが挙げられる。
【0011】
一方、塩基性水溶液に用いられるケイ素源としては、アルカリ水溶液に可溶であって、焼成によりシリカになるものであればよく、特に制限されず、例えばオルトケイ酸、メタケイ酸及びそれらのナトリウム塩やカリウム塩、水ガラスなどが挙げられる。また、無機塩基としては、アルカリ金属の炭酸塩や水酸化物などが挙げられる。
次に、このようにして調製した酸性の水溶液又は水分散液と塩基性水溶液を、それぞれ50〜90℃程度に加温して、両者を混合し、さらに50〜90℃程度の温度に保持して反応を完結させる。
次に、生成した固形物を充分に洗浄したのち固液分離するか、あるいは生成した固形物を固液分離したのち充分に洗浄し、次いで、この固形物を公知の方法により80〜150℃程度の温度で乾燥処理する。このようにして得られた乾燥処理物を、好ましくは200〜400℃の範囲の温度において焼成することにより、シリカ−アルミナ担体上に酸化ニッケル、又は酸化ニッケルと酸化銅が担持された脱硫剤が得られる。
【0012】
本発明の脱硫方法は、上記脱硫剤を、これに予め還元処理を施すことなく用いて炭化水素含有ガスの脱硫処理を行うものである。本発明の脱硫剤は、予め還元処理することなく、炭化水素含有ガスの脱硫処理に用いられる。上記炭化水素含有ガスとしては、例えばLPG、天然ガス、ジメチルエーテル、都市ガス、あるいはエタン、エチレン、プロパン、プロピレン、ブタンなどの中から選ばれる少なくとも一種を含むガスなどが挙げられるが、これらの中で市場での流通の面でLPG、天然ガス、都市ガス又はジメチルエーテルの脱硫処理に、本発明の脱硫剤を用いるのが好ましい。
本発明の脱硫剤が適用される炭化水素含有ガス中の硫黄化合物の濃度としては、0.001〜10,000容量ppmが好ましく、特に0.1〜100容量ppmが好ましい。また、脱硫条件としては、通常温度は−20〜100℃、好ましくは−10〜80℃の範囲で選ばれ、GHSV(ガス時空間速度)は100〜100,000h−1の範囲で選ばれる。
【0013】
本発明の脱硫剤は、以下に示す効果を奏する。
(1)炭化水素含有ガス中の硫黄分を、室温においても低濃度まで効率よく除去することができる。
(2)予め還元処理を施すことなく、炭化水素含有ガスの脱硫処理に使用し得るので、脱硫コストの低減を図ることができる。
(3)燃料電池システムに組み込んだ場合、脱硫剤を交換するたびに、還元処理を施す必要がなく、例えば予め別の場所で還元処理を行った脱硫剤を交換する際にも、空気の流入を気にすることがないため、利便性が高い。また、仮に停止時に空気が混入しても、還元処理した遷移金属系脱硫剤のような、急激な発熱や酸化による脱硫剤の劣化のおそれがない。
【0014】
次に、本発明の燃料電池用水素の製造方法においては、前述の本発明の脱硫剤を用いて、炭化水素含有ガス中の硫黄化合物を脱硫処理したのち、脱硫処理炭化水素含有ガスを改質することにより、水素を製造する。
この際、改質方法として、部分酸化改質、オートサーマル改質、水蒸気改質などの方法を用いることができる。この改質方法においては、脱硫処理炭化水素含有ガス中の硫黄化合物の濃度は、各改質触媒の寿命の点から、0.1容量ppm以下が好ましく、特に0.05容量ppm以下が好ましい。
前記部分酸化改質は、炭化水素の部分酸化反応により、水素を製造する方法であって、部分酸化改質触媒の存在下、通常、反応圧力常圧〜5MPa、反応温度400〜1100℃、GHSV1000〜100,000h−1、酸素(O)/炭素比0.2〜0.8の条件で改質反応が行われる。
【0015】
また、オートサーマル改質は、部分酸化改質と水蒸気改質とを組み合わせた方法であって、オートサーマル改質触媒の存在下、通常、反応圧力常圧〜5MPa、反応温度400〜1100℃、酸素(O)/炭素比0.1〜1、スチーム/炭素比0.1〜10、GHSV1000〜100,000h−1の条件で改質反応が行われる。
さらに、水蒸気改質は、炭化水素に水蒸気を接触させて、水素を製造する方法であって、水蒸気改質触媒の存在下、通常、反応圧力常圧〜3MPa、反応温度200〜900℃、スチーム/炭素比1.5〜10、GHSV1000〜100,000h−1の条件で改質反応が行われる。
【0016】
本発明においては、前記の部分酸化改質触媒、オートサーマル改質触媒、水蒸気改質触媒としては、従来公知の各触媒の中から適宜選択して用いることができるが、特にルテニウム系及びニッケル系触媒が好適である。また、これらの触媒の担体としては、酸化マンガン、酸化セリウム及びジルコニアの中から選ばれる少なくとも一種を含む担体を好ましく挙げることができる。該担体は、これらの金属酸化物のみからなる担体であってもよく、アルミナなどの他の耐火性多孔質無機酸化物に、上記金属酸化物を含有させてなる担体であってもよい。
【0017】
【実施例】
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
実施例1
硫酸ニッケル・6水和物[和光純薬(株)製、特級]360.1g及び硫酸銅・5水和物[和光純薬(株)製、特級]85.2gを80℃に加温したイオン交換水4Lに溶解し、これに擬ベーマイト[触媒化成工業(株)製、「C−AP」、Alとして67質量%]7.2gを混合した(調製液A)。
一方、80℃に加温したイオン交換水4Lに炭酸ナトリウム300.0gを溶解し、これに水ガラス[日本化学工業(株)製、「J−1号」、Si濃度29質量%]93.6gを加えた(調製液B)。
次に、前記調製液Aと調製液Bをそれぞれ温度80℃に保ちながら混合し、1時間攪拌したのち、イオン交換水60Lを用いて沈殿ケーキを洗浄、ろ取し、送風乾燥機にて120℃で12時間乾燥した。その後、350℃で3時間焼成処理して、CuO16質量%、NiO64質量%及びSiO・Al20質量%を含む脱硫剤A[CuO(16)NiO(64)/SiAl(20)と示す。]を得た。
【0018】
実施例2
実施例1において、硫酸ニッケル・6水和物427.6g及び硫酸銅・5水和物21.3gを用いた以外は、実施例1と同様にして、CuO4質量%、NiO76質量%及びSiO・Al20質量%を含む脱硫剤B[CuO(4)NiO(76)/SiAl(20)と示す。]を得た。
実施例3
実施例1において、硫酸ニッケル・6水和物225.1g及び硫酸銅・5水和物213.0gを用いた以外は、実施例1と同様にして、CuO40質量%、NiO40質量%及びSiO・Al20質量%を含む脱硫剤C[CuO(40)NiO(40)/SiAl(20)と示す。]を得た。
【0019】
実施例4
実施例1において、硫酸ニッケル・6水和物444.5g及び硫酸銅・5水和物5.3gを用いた以外は、実施例1と同様にして、CuO1質量%、NiO79質量%及びSiO・Al20質量%を含む脱硫剤D[CuO(1)NiO(79)/SiAl(20)と示す。]を得た。
実施例5
実施例1において、硫酸ニッケル・6水和物450.1gを用い、かつ硫酸銅・5水和物を用いることなしに、実施例1と同様にして、NiO80質量%及びSiO・Al20質量%を含む脱硫剤E[NiO(80)/SiAl(20)と示す。]を得た。
【0020】
比較例1
硫酸銅・5水和物[和光純薬(株)製、特級]426.0gを80℃に加温したイオン交換水4Lに溶解し、これに擬ベーマイト[触媒化成工業(株)製、「C−AP」、Alとして67質量%]7.2gを混合した(調製液A)。
一方、80℃に加温したイオン交換水4Lに炭酸ナトリウム300.0gを溶解し、これに水ガラス[日本化学工業(株)製、「J−1号」、Si濃度29質量%]93.6gを加えた(調製液B)。
次に、前記調製液Aと調製液Bをそれぞれ温度80℃に保ちながら混合し、1時間攪拌したのち、イオン交換水60Lを用いて沈殿ケーキを洗浄、ろ取し、送風乾燥機にて120℃で12時間乾燥した。その後、350℃で3時間焼成処理して、CuO80質量%、及びSiO・Al20質量%を含む脱硫剤F[CuO(80)/SiAl(20)と示す。]を得た。
【0021】
比較例2
ズードケミー触媒社製の脱硫剤「G132B」[CuO32質量%及びZnO68質量%を含む。CuO(32)/ZnO(68)と示す。]を比較例2の触媒として用いた。
比較例3
ズードケミー触媒社製の脱硫剤「T2552」[Ag5質量%及びAl95質量%を含む。Ag(5)/Al(95)と示す。]を比較例3の触媒として用いた。
【0022】
比較例4
脱硫剤Aを反応管に1.0cm充填し、100%水素ガスを100cm/minで流通させ、300℃で3時間還元処理したのち、反応管上下部に設置したバルブを開放し、空気が反応管内に入るようにして、3時間放置したものを、比較例4の触媒として用いた。
試験例1
実施例1〜5及び比較例1〜4の各脱硫剤を0.5〜1mmに成型し、脱硫剤1cmを内径9mmの脱硫管に充填した。脱硫剤温度を20℃とし、COS、ジメチルサルファイド(DMS)、t−ブチルメルカブタン(TBM)及びジメチルジサルファイド(DMDS)を各10volppm(合計40volppm)含むプロパンガスを、常圧、GHSV(ガス時空間速度)30,000h−1の条件で流通させた。
脱硫管出口ガスの各硫黄化合物濃度をSCD(化学発光イオウ検出器:SulfurChemiluminescence Detector)ガスクロマトグラフィーにより、1時間毎に測定した。第1表に各硫黄化合物濃度が0.1volppmを超える時間を示した。
比較例5
脱硫剤Aを0.5〜1mmに成型し、脱硫剤1cmを内径9mmの脱硫管に充填した後、比較例4と同様に300℃で3時間還元処理した。その後、還元処理した脱硫剤を空気に触れさせることなく試験例1と同様に試験した。結果を第1表に示す。
【0023】
【表1】

Figure 2004130216
【0024】
第1表から明らかなように、本発明の脱硫剤(実施例1〜5)は、未還元処理で高性能を示すことが分かる。
また、実施例1の脱硫剤を還元処理した後に空気に接触させることで、大幅な性能低下が見られた(比較例4)。[0001]
[Technology to which the Invention belongs]
The present invention relates to a desulfurizing agent for a hydrocarbon-containing gas and a method for producing hydrogen for a fuel cell. More specifically, the present invention relates to a desulfurizing agent that can be used for desulfurizing a hydrocarbon-containing gas used as a fuel for a fuel cell or the like without performing a reducing process in advance, and a desulfurizing process performed using the desulfurizing agent. The present invention relates to a method for efficiently and economically producing hydrogen for fuel cells by reforming a hydrogen-containing gas.
[0002]
[Prior art]
In recent years, new energy technologies have been spotlighted due to environmental problems, and fuel cells have attracted attention as one of the new energy technologies. Fuel cells convert chemical energy into electric energy by electrochemically reacting hydrogen and oxygen, and have the characteristic of high energy use efficiency. Practical research is being actively conducted for use in automobiles and the like.
Known types of fuel cells include a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type, depending on the type of electrolyte used. On the other hand, as a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of natural gas, synthetic liquid fuel such as dimethyl ether using natural gas as a raw material, petroleum-based LPG and naphtha The use of petroleum hydrocarbons such as kerosene has been studied.
When producing hydrogen using these gaseous or liquid hydrocarbons, generally, a method of treating the hydrocarbons by partial oxidation reforming, autothermal reforming or steam reforming in the presence of a reforming catalyst is used. Have been.
When producing hydrogen for fuel cells by reforming LPG or city gas, it is required to reduce the sulfur content in the gas to 0.1 ppm or less in order to suppress the poisoning of the reforming catalyst. . Further, when propylene, butene, or the like is used as a raw material for petrochemical products, it is necessary to reduce the sulfur content to 0.1 ppm or less in order to prevent poisoning of the catalyst.
In the LPG, dimethyl sulfide (DMS), t-butyl mercaptan (TBM), and methyl ethyl sulfide (MES) added as odorants, in addition to sulfur compounds, such as methyl mercaptan and carbonyl sulfide (COS), are generally added. ) Etc. are included. Various adsorbents for adsorbing and removing sulfur in fuel gas such as LPG, for example, zeolite-based and transition metal-based adsorbents are known.
[0003]
However, zeolite-based adsorbents have insufficient adsorption capacity, while transition metal-based adsorbents require a reduction treatment as a pretreatment in order to exhibit desulfurization performance, and air after the reduction treatment. In the case where is mixed, there is a problem such as a decrease in desulfurization performance, and it was not always satisfactory.
On the other hand, a desulfurizing agent in which Ag, Cu, Zn, Fe, Co, Ni, etc. are supported on a hydrophobic zeolite by ion exchange (for example, see Patent Literature 1), or a Y-type zeolite, a β-type zeolite, or an X-type zeolite with Ag or A desulfurizing agent supporting Cu (for example, see Patent Document 2) is disclosed. However, it has been found that these desulfurizing agents can efficiently adsorb and remove mercaptans and sulfides at room temperature, but hardly adsorb carbonyl sulfide.
Further, a copper-zinc-based desulfurizing agent is disclosed (for example, see Patent Document 3). However, this desulfurizing agent can adsorb and remove various sulfur compounds including COS at a temperature of 150 ° C. or higher, but has low adsorption performance for sulfur compounds at a low temperature of 100 ° C. or lower. Furthermore, a desulfurizing agent in which copper is supported on a porous carrier such as alumina is disclosed (for example, see Patent Document 4). Although it is stated that this desulfurizing agent can be used at a temperature of 100 ° C. or less, its adsorption performance is not sufficiently satisfactory. Further, a copper-zinc-aluminum oxide-based desulfurizing agent is disclosed (for example, see Patent Document 5). However, this desulfurizing agent requires a reduction treatment with hydrogen as a pretreatment.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-286753 [Patent Document 2]
JP 2001-305123 A [Patent Document 3]
JP-A-2-302496 (page 2)
[Patent Document 4]
JP 2001-123188 A (page 3)
[Patent Document 5]
JP-A-11-139803
[Problems to be solved by the invention]
Under such circumstances, the present invention can be used for desulfurizing a hydrocarbon-containing gas without performing a reduction treatment in advance, and the sulfur content in the hydrocarbon-containing gas can be reduced even at room temperature. And a method for reforming a hydrocarbon-containing gas desulfurized using the desulfurizing agent to efficiently and economically produce hydrogen for fuel cells. Is provided.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to achieve the above object, and as a result, a carrier, a nickel oxide, or a desulfurizing agent carrying nickel oxide and copper oxide, as a desulfurizing agent for hydrocarbon-containing gas, Efficient by being able to meet the purpose, and by subjecting the hydrocarbon-containing gas desulfurized using this desulfurizing agent to reforming treatment such as partial oxidation reforming, autothermal reforming, and steam reforming, It has been found that hydrogen for fuel cells can be obtained economically advantageously. The present invention has been completed based on such findings.
[0007]
That is, the present invention
(1) A desulfurizing agent comprising nickel oxide or nickel oxide and copper oxide supported on a carrier, wherein the desulfurizing agent is used for desulfurizing a hydrocarbon-containing gas without performing a reduction treatment in advance. Desulfurizing agent for hydrogen-containing gas,
(2) Based on the total amount of the desulfurizing agent, the nickel oxide content is 5 to 90% by mass, the copper oxide content is 0 to 85% by mass, and the total content of nickel oxide and copper oxide is 60 to 90% by mass ( 1) desulfurizing agent for hydrocarbon-containing gas,
(3) The above (1) or (2), wherein the carrier is at least one inorganic porous carrier selected from silica, alumina, silica-alumina, titania, zirconia, magnesia, diatomaceous earth, clay, clay and zinc oxide. Desulfurizing agent for hydrocarbon-containing gas,
(4) The desulfurizing agent for hydrocarbon-containing gas according to (1), (2) or (3), wherein the hydrocarbon-containing gas is LPG, natural gas, city gas, or dimethyl ether.
(5) A desulfurization treatment of a hydrocarbon-containing gas using a desulfurization agent comprising nickel oxide or nickel oxide and copper oxide supported on a carrier without performing a reduction treatment in advance. Hydrogen-containing gas desulfurization method,
(6) The desulfurization method according to (5), wherein the hydrocarbon-containing gas is LPG, natural gas, city gas, or dimethyl ether.
(7) The desulfurization method according to the above (5) or (6), which is performed at a temperature of -20 to 100 ° C.
(8) A method for producing hydrogen for a fuel cell, comprising subjecting a hydrocarbon-containing gas to desulfurization treatment using any of the desulfurizing agents (1) to (4) above, followed by reforming.
(9) The method for producing hydrogen for a fuel cell according to (8) above, wherein the reforming is partial oxidation reforming, autothermal reforming, or steam reforming.
(10) The method for producing hydrogen for a fuel cell according to the above (9), wherein the partial oxidation reforming catalyst, the autothermal reforming catalyst or the steam reforming catalyst is a ruthenium-based or nickel-based catalyst, and (11) a catalyst. The method for producing hydrogen for a fuel cell according to the above (10), wherein the carrier contains at least one selected from manganese oxide, cerium oxide and zirconia;
Is provided.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The desulfurizing agent for a hydrocarbon-containing gas of the present invention comprises nickel oxide or nickel oxide and copper oxide supported on a carrier, and is used for desulfurizing a hydrocarbon-containing gas without performing a reduction treatment in advance.
As the carrier in the desulfurizing agent, an inorganic porous carrier is preferable, and examples thereof include silica, alumina, silica-alumina, titania, zirconia, magnesia, diatomaceous earth, clay, clay and zinc oxide. These may be used alone or in combination of two or more. Of these, silica-alumina is particularly preferred.
[0009]
The amount of nickel oxide supported on these carriers is preferably in the range of 5 to 90% by mass based on the total amount of the desulfurizing agent. If the amount is less than 5% by mass, sufficient desulfurization performance may not be exhibited. On the other hand, if it exceeds 90% by mass, the ratio of the carrier is reduced, and the mechanical strength and desulfurization performance of the desulfurizing agent are reduced. In consideration of desulfurization performance, mechanical strength, and the like, the more preferable amount of nickel oxide to be supported is in the range of 10 to 85% by mass. Further, the supported amount of copper oxide is preferably in the range of 0 to 85% by mass based on the total amount of the desulfurizing agent. If this amount exceeds 85% by mass, the mechanical strength and desulfurization performance of the desulfurizing agent may decrease. The more preferable loading amount of the copper oxide is in the range of 0 to 80% by mass. In addition, the total loading of nickel oxide and copper oxide is preferably in the range of 60 to 90% by mass, and more preferably in the range of 65 to 85% by mass, based on the total amount of the desulfurizing agent from the viewpoint of the balance between the desulfurization performance and the mechanical strength. Is preferred.
[0010]
The method of supporting nickel oxide or nickel oxide and copper oxide on the carrier is not particularly limited, and any known method such as an impregnation method, a coprecipitation method, and a kneading method can be employed. The desulfurizing agent, which is a preferred desulfurizing agent of the present invention, in which nickel oxide or nickel oxide and copper oxide are supported on a silica-alumina carrier, can be produced, for example, by a coprecipitation method as described below.
In this coprecipitation method, first, an acidic aqueous solution or acidic aqueous dispersion containing a nickel source and an aluminum source, and if necessary, a copper source, and a basic aqueous solution containing a silicon source and an inorganic base are prepared. Examples of the nickel source used in the former acidic aqueous solution or acidic aqueous dispersion include nickel chloride, nickel nitrate, nickel sulfate, nickel acetate and hydrates thereof. Examples of the copper source include copper chloride, copper nitrate, copper sulfate, copper acetate and hydrates thereof. Further, examples of the aluminum source include aluminum hydrates such as aluminum nitrate, pseudoboehmite, boehmite alumina, bayerite, and gibbsite, and γ-alumina.
[0011]
On the other hand, the silicon source used in the basic aqueous solution is not particularly limited as long as it is soluble in an alkaline aqueous solution and can be converted into silica by firing, and examples thereof include orthosilicic acid, metasilicic acid, and sodium salts thereof. Potassium salts, water glass and the like can be mentioned. Examples of the inorganic base include alkali metal carbonates and hydroxides.
Next, the acidic aqueous solution or aqueous dispersion thus prepared and the basic aqueous solution are each heated to about 50 to 90 ° C., mixed with each other, and further maintained at a temperature of about 50 to 90 ° C. To complete the reaction.
Next, the produced solid is sufficiently washed and then subjected to solid-liquid separation, or the produced solid is subjected to solid-liquid separation and sufficiently washed, and then the solid is subjected to a known method at about 80 to 150 ° C. Drying at the temperature of By drying the thus obtained dried product, preferably at a temperature in the range of 200 to 400 ° C., a desulfurizing agent in which nickel oxide or nickel oxide and copper oxide are supported on a silica-alumina carrier is obtained. can get.
[0012]
In the desulfurization method of the present invention, a desulfurization treatment of a hydrocarbon-containing gas is performed using the desulfurization agent without subjecting the desulfurization agent to a reduction treatment in advance. The desulfurizing agent of the present invention is used for desulfurizing a hydrocarbon-containing gas without prior reduction. Examples of the hydrocarbon-containing gas include LPG, natural gas, dimethyl ether, city gas, and a gas containing at least one selected from ethane, ethylene, propane, propylene, butane, and the like. From the viewpoint of market distribution, it is preferable to use the desulfurizing agent of the present invention for desulfurizing LPG, natural gas, city gas, or dimethyl ether.
The concentration of the sulfur compound in the hydrocarbon-containing gas to which the desulfurizing agent of the present invention is applied is preferably 0.001 to 10,000 ppm by volume, and particularly preferably 0.1 to 100 ppm by volume. As desulfurization conditions, the temperature is usually selected in the range of -20 to 100C, preferably -10 to 80C, and the GHSV (gas hourly space velocity) is selected in the range of 100 to 100,000h- 1 .
[0013]
The desulfurizing agent of the present invention has the following effects.
(1) The sulfur content in the hydrocarbon-containing gas can be efficiently removed to a low concentration even at room temperature.
(2) Since the gas can be used for desulfurizing a hydrocarbon-containing gas without performing a reduction treatment in advance, the cost of desulfurization can be reduced.
(3) When incorporated in a fuel cell system, it is not necessary to perform a reduction process each time the desulfurizing agent is replaced. For example, when replacing a desulfurizing agent that has been subjected to a reduction process in another place, the inflow of air It is convenient because you don't have to worry about it. Even if air is mixed in at the time of shutdown, there is no fear that the desulfurizing agent is deteriorated due to rapid heat generation or oxidation, such as a transition metal desulfurizing agent subjected to a reduction treatment.
[0014]
Next, in the method for producing hydrogen for a fuel cell of the present invention, after the sulfur compound in the hydrocarbon-containing gas is desulfurized using the desulfurizing agent of the present invention, the desulfurized hydrocarbon-containing gas is reformed. By doing so, hydrogen is produced.
At this time, a method such as partial oxidation reforming, autothermal reforming, and steam reforming can be used as the reforming method. In this reforming method, the concentration of the sulfur compound in the desulfurized hydrocarbon-containing gas is preferably 0.1 ppm by volume or less, particularly preferably 0.05 ppm by volume or less, from the viewpoint of the life of each reforming catalyst.
The partial oxidation reforming is a method for producing hydrogen by a partial oxidation reaction of hydrocarbons. In the presence of a partial oxidation reforming catalyst, usually, the reaction pressure is normal pressure to 5 MPa, the reaction temperature is 400 to 1100 ° C., and the GHSV1000 The reforming reaction is performed under the conditions of 100,000 h −1 and an oxygen (O 2 ) / carbon ratio of 0.2 to 0.8.
[0015]
Autothermal reforming is a method in which partial oxidation reforming and steam reforming are combined, and usually in the presence of an autothermal reforming catalyst, usually at a reaction pressure of normal pressure to 5 MPa, a reaction temperature of 400 to 1100 ° C, The reforming reaction is performed under the conditions of an oxygen (O 2 ) / carbon ratio of 0.1 to 1, a steam / carbon ratio of 0.1 to 10, and a GHSV of 1000 to 100,000 h −1 .
Further, steam reforming is a method for producing hydrogen by bringing steam into contact with a hydrocarbon, and usually in the presence of a steam reforming catalyst, at a reaction pressure of normal pressure to 3 MPa, a reaction temperature of 200 to 900 ° C., and steam. The reforming reaction is carried out under the conditions of a / carbon ratio of 1.5 to 10 and a GHSV of 1000 to 100,000 h -1 .
[0016]
In the present invention, the partial oxidation reforming catalyst, the autothermal reforming catalyst, and the steam reforming catalyst can be appropriately selected from conventionally known catalysts. Particularly, ruthenium-based and nickel-based catalysts can be used. Catalysts are preferred. Further, as a carrier of these catalysts, a carrier containing at least one selected from manganese oxide, cerium oxide and zirconia can be preferably exemplified. The carrier may be a carrier composed of only these metal oxides, or a carrier in which the above-mentioned metal oxide is contained in another refractory porous inorganic oxide such as alumina.
[0017]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
360.1 g of nickel sulfate hexahydrate [manufactured by Wako Pure Chemical Industries, Ltd.] and 85.2 g of copper sulfate pentahydrate [manufactured by Wako Pure Chemical Industries, Ltd.] were heated to 80 ° C. was dissolved in deionized water 4L, which pseudoboehmite [catalysts & Chemicals Industries Co., Ltd., "C-AP", 67 wt% as Al 2 O 3] were mixed 7.2 g (preparation a).
On the other hand, 300.0 g of sodium carbonate was dissolved in 4 L of ion-exchanged water heated to 80 ° C., and water glass [“J-1”, manufactured by Nippon Chemical Industry Co., Ltd., Si concentration 29% by mass] 6 g was added (Preparation solution B).
Next, the prepared liquid A and the prepared liquid B were mixed while keeping the temperature at 80 ° C., respectively, and stirred for 1 hour. Then, the precipitated cake was washed and filtered with 60 L of ion-exchanged water, and dried with a blow dryer. Dry at 12 ° C. for 12 hours. Then, it is calcined at 350 ° C. for 3 hours to obtain a desulfurizing agent A [CuO (16) NiO (64) / SiAl (20) containing 16% by mass of CuO, 64% by mass of NiO and 20% by mass of SiO 2 .Al 2 O 3. Show. ] Was obtained.
[0018]
Example 2
In the same manner as in Example 1, except that 427.6 g of nickel sulfate hexahydrate and 21.3 g of copper sulfate pentahydrate were used, 4% by mass of CuO, 76% by mass of NiO, and SiO 2 A desulfurizing agent B containing 20% by mass of Al 2 O 3 [shown as CuO (4) NiO (76) / SiAl (20). ] Was obtained.
Example 3
In the same manner as in Example 1, except that 225.1 g of nickel sulfate hexahydrate and 213.0 g of copper sulfate pentahydrate were used, 40 mass% of CuO, 40 mass% of NiO and SiO 2 were used. A desulfurizing agent C containing 20% by mass of Al 2 O 3 [shown as CuO (40) NiO (40) / SiAl (20). ] Was obtained.
[0019]
Example 4
In the same manner as in Example 1, except that 444.5 g of nickel sulfate hexahydrate and 5.3 g of copper sulfate pentahydrate were used, 1% by mass of CuO, 79% by mass of NiO, and SiO 2 A desulfurizing agent D containing 20% by mass of Al 2 O 3 [shown as CuO (1) NiO (79) / SiAl (20). ] Was obtained.
Example 5
In Example 1, NiO 80% by mass and SiO 2 .Al 2 O were used in the same manner as in Example 1 except that 450.1 g of nickel sulfate hexahydrate was used and copper sulfate pentahydrate was not used. 3 Desulfurizing agent E containing 20% by mass [NiO (80) / SiAl (20). ] Was obtained.
[0020]
Comparative Example 1
426.0 g of copper sulfate pentahydrate (manufactured by Wako Pure Chemical Industries, Ltd., special grade) was dissolved in 4 L of ion-exchanged water heated to 80 ° C., and pseudo-boehmite [manufactured by Catalyst Chemical Industry Co., Ltd., “ C-AP ", were mixed 67 mass%] 7.2 g as Al 2 O 3 (preparation a).
On the other hand, 300.0 g of sodium carbonate was dissolved in 4 L of ion-exchanged water heated to 80 ° C., and water glass [“J-1”, manufactured by Nippon Chemical Industry Co., Ltd., Si concentration 29% by mass] 6 g was added (Preparation solution B).
Next, the prepared liquid A and the prepared liquid B were mixed while keeping the temperature at 80 ° C., respectively, and stirred for 1 hour. Then, the precipitated cake was washed and filtered with 60 L of ion-exchanged water, and dried with a blow dryer. Dry at 12 ° C. for 12 hours. Then, it is calcined at 350 ° C. for 3 hours, and is indicated as a desulfurizing agent F [CuO (80) / SiAl (20) containing 80% by mass of CuO and 20% by mass of SiO 2 .Al 2 O 3 . ] Was obtained.
[0021]
Comparative Example 2
Desulfurizing agent “G132B” manufactured by Sudo Chemie Catalysts Inc. [Includes 32% by mass of CuO and 68% by mass of ZnO. Indicated as CuO (32) / ZnO (68). ] Was used as the catalyst of Comparative Example 2.
Comparative Example 3
Desulfurizing agent “T2552” manufactured by Sudo Chemie Catalysts Inc. [Includes 5 mass% of Ag and 95 mass% of Al 2 O 3 . Ag (5) / Al 2 O 3 (95). ] Was used as the catalyst of Comparative Example 3.
[0022]
Comparative Example 4
After filling the reaction tube with 1.0 cm 3 of the desulfurizing agent A and flowing 100% hydrogen gas at 100 cm 3 / min, performing a reduction treatment at 300 ° C. for 3 hours, the valves installed at the upper and lower portions of the reaction tube were opened, and air was released. Was left in the reaction tube for 3 hours and used as a catalyst in Comparative Example 4.
Test example 1
Each of the desulfurizing agents of Examples 1 to 5 and Comparative Examples 1 to 4 was molded into 0.5 to 1 mm, and 1 cm 3 of the desulfurizing agent was filled in a desulfurizing tube having an inner diameter of 9 mm. The temperature of the desulfurizing agent was set to 20 ° C., and propane gas containing 10 vol ppm (40 vol ppm in total) of COS, dimethyl sulfide (DMS), t-butyl mercaptan (TBM) and dimethyl disulfide (DMDS) at normal pressure and GHSV (gas time). (Space velocity) 30,000 h -1 .
The concentration of each sulfur compound in the gas at the outlet of the desulfurization tube was measured every hour by SCD (Sulfur Chemiluminescence Detector) gas chromatography. Table 1 shows the time when the concentration of each sulfur compound exceeds 0.1 volppm.
Comparative Example 5
The desulfurizing agent A was molded to a size of 0.5 to 1 mm, and 1 cm 3 of the desulfurizing agent was filled in a desulfurizing tube having an inner diameter of 9 mm. Thereafter, the reduced desulfurizing agent was tested in the same manner as in Test Example 1 without being exposed to air. The results are shown in Table 1.
[0023]
[Table 1]
Figure 2004130216
[0024]
As is clear from Table 1, it can be seen that the desulfurizing agent of the present invention (Examples 1 to 5) shows high performance in the unreduced treatment.
In addition, by bringing the desulfurizing agent of Example 1 into contact with air after the reduction treatment, a significant decrease in performance was observed (Comparative Example 4).

Claims (11)

担体上に酸化ニッケル、又は酸化ニッケルと酸化銅を担持してなる脱硫剤であって、予め還元処理を施すことなく、炭化水素含有ガスの脱硫処理に使用することを特徴とする炭化水素含有ガス用脱硫剤。A desulfurizing agent comprising nickel oxide or nickel oxide and copper oxide supported on a carrier, wherein the gas is used for desulfurizing a hydrocarbon-containing gas without performing a reduction treatment in advance. Desulfurizing agent. 脱硫剤全量に基づき、酸化ニッケル含有量が5〜90質量%、酸化銅含有量が0〜85質量%及び酸化ニッケルと酸化銅の合計含有量が60〜90質量%である請求項1記載の炭化水素含有ガス用脱硫剤。The nickel oxide content is 5 to 90% by mass, the copper oxide content is 0 to 85% by mass, and the total content of nickel oxide and copper oxide is 60 to 90% by mass based on the total amount of the desulfurizing agent. Desulfurizing agent for hydrocarbon-containing gas. 担体が、シリカ、アルミナ、シリカ−アルミナ、チタニア、ジルコニア、マグネシア、珪藻土、白土、粘土及び酸化亜鉛の中から選ばれる少なくとも一種の無機多孔質担体である請求項1又は2記載の炭化水素含有ガス用脱硫剤。The hydrocarbon-containing gas according to claim 1 or 2, wherein the carrier is at least one inorganic porous carrier selected from silica, alumina, silica-alumina, titania, zirconia, magnesia, diatomaceous earth, clay, clay and zinc oxide. Desulfurizing agent. 炭化水素含有ガスが、LPG、天然ガス、都市ガス又はジメチルエーテルである請求項1、2又は3記載の炭化水素含有ガス用脱硫剤。The desulfurizing agent for hydrocarbon-containing gas according to claim 1, 2 or 3, wherein the hydrocarbon-containing gas is LPG, natural gas, city gas or dimethyl ether. 担体上に酸化ニッケル、又は酸化ニッケルと酸化銅を担持してなる脱硫剤を、これに予め還元処理を施すことなく用いて炭化水素含有ガスの脱硫処理を行うことを特徴とする炭化水素含有ガスの脱硫方法。A hydrocarbon-containing gas characterized by performing a desulfurization treatment of a hydrocarbon-containing gas by using a desulfurizing agent comprising nickel oxide or nickel oxide and copper oxide supported on a carrier without previously performing a reduction treatment. Desulfurization method. 炭化水素含有ガスが、LPG、天然ガス、都市ガス又はジメチルエーテルである請求項5記載の脱硫方法。The desulfurization method according to claim 5, wherein the hydrocarbon-containing gas is LPG, natural gas, city gas, or dimethyl ether. −20〜100℃の温度で行う請求項5又は6に記載の脱硫方法。The desulfurization method according to claim 5, wherein the method is performed at a temperature of −20 to 100 ° C. 8. 請求項1ないし4のいずれかに記載の脱硫剤を用いて、炭化水素含有ガスを脱硫処理したのち、改質することを特徴とする燃料電池用水素の製造方法。A method for producing hydrogen for a fuel cell, comprising subjecting a hydrocarbon-containing gas to desulfurization treatment using the desulfurizing agent according to any one of claims 1 to 4, followed by reforming. 改質が、部分酸化改質、オートサーマル改質又は水蒸気改質である請求項8記載の燃料電池用水素の製造方法。The method for producing hydrogen for a fuel cell according to claim 8, wherein the reforming is partial oxidation reforming, autothermal reforming, or steam reforming. 部分酸化改質触媒、オートサーマル改質触媒又は水蒸気改質触媒が、ルテニウム系又はニッケル系触媒である請求項9に記載の燃料電池用水素の製造方法。The method for producing hydrogen for a fuel cell according to claim 9, wherein the partial oxidation reforming catalyst, the autothermal reforming catalyst, or the steam reforming catalyst is a ruthenium-based or nickel-based catalyst. 触媒に用いられる担体が、酸化マンガン、酸化セリウム及びジルコニアの中から選ばれる少なくとも一種を含むものである請求項10記載の燃料電池用水素の製造方法。The method for producing hydrogen for a fuel cell according to claim 10, wherein the carrier used for the catalyst contains at least one selected from manganese oxide, cerium oxide, and zirconia.
JP2002297229A 2002-10-10 2002-10-10 Desulfurizing agent for hydrocarbon-containing gas and method for producing hydrogen for fuel cell Expired - Lifetime JP4079743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002297229A JP4079743B2 (en) 2002-10-10 2002-10-10 Desulfurizing agent for hydrocarbon-containing gas and method for producing hydrogen for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002297229A JP4079743B2 (en) 2002-10-10 2002-10-10 Desulfurizing agent for hydrocarbon-containing gas and method for producing hydrogen for fuel cell

Publications (2)

Publication Number Publication Date
JP2004130216A true JP2004130216A (en) 2004-04-30
JP4079743B2 JP4079743B2 (en) 2008-04-23

Family

ID=32286982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002297229A Expired - Lifetime JP4079743B2 (en) 2002-10-10 2002-10-10 Desulfurizing agent for hydrocarbon-containing gas and method for producing hydrogen for fuel cell

Country Status (1)

Country Link
JP (1) JP4079743B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281358A (en) * 2004-03-29 2005-10-13 Mitsubishi Heavy Ind Ltd Desulfurization agent for hydrocarbonaceous fuel and method for producing the same
WO2006120981A1 (en) * 2005-05-12 2006-11-16 Idemitsu Kosan Co., Ltd. Liquefied petroleum gas for lp gas fuel cell, method of desulfurizing the same and fuel cell system
CN100591418C (en) * 2007-07-19 2010-02-24 武汉理工大学 Nickel base crouse vent gas hydrogenation catalysts and coprecipitation manufacturing method
CN106669670A (en) * 2015-11-11 2017-05-17 中国石油化工股份有限公司 Preparation method of flue gas desulfurization agent
CN112058043A (en) * 2020-08-25 2020-12-11 北京金隅水泥节能科技有限公司 Desulfurizing agent and preparation method thereof
CN114686275A (en) * 2022-04-02 2022-07-01 太原理工大学 Manganese oxide-zinc oxide porous desulfurizer and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104893774A (en) * 2015-05-23 2015-09-09 山东明硕新能源科技有限公司 Normal-temperature iron oxide desulfurizer and preparation method thereof
CN106000027A (en) * 2016-05-26 2016-10-12 张锐 Flue gas desulfurizing agent and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281358A (en) * 2004-03-29 2005-10-13 Mitsubishi Heavy Ind Ltd Desulfurization agent for hydrocarbonaceous fuel and method for producing the same
JP4616569B2 (en) * 2004-03-29 2011-01-19 三菱重工業株式会社 Desulfurization agent for hydrocarbon fuel and method for producing the same
WO2006120981A1 (en) * 2005-05-12 2006-11-16 Idemitsu Kosan Co., Ltd. Liquefied petroleum gas for lp gas fuel cell, method of desulfurizing the same and fuel cell system
CN100591418C (en) * 2007-07-19 2010-02-24 武汉理工大学 Nickel base crouse vent gas hydrogenation catalysts and coprecipitation manufacturing method
CN106669670A (en) * 2015-11-11 2017-05-17 中国石油化工股份有限公司 Preparation method of flue gas desulfurization agent
CN106669670B (en) * 2015-11-11 2019-01-25 中国石油化工股份有限公司 A kind of preparation method of fume desulfurizing agent
CN112058043A (en) * 2020-08-25 2020-12-11 北京金隅水泥节能科技有限公司 Desulfurizing agent and preparation method thereof
CN112058043B (en) * 2020-08-25 2021-07-09 北京金隅水泥节能科技有限公司 Desulfurizing agent and preparation method thereof
CN114686275A (en) * 2022-04-02 2022-07-01 太原理工大学 Manganese oxide-zinc oxide porous desulfurizer and preparation method thereof

Also Published As

Publication number Publication date
JP4079743B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
JP5220265B2 (en) Method for removing sulfur compounds from hydrocarbon-containing gas
US7556872B2 (en) Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
US7268097B2 (en) Desulfurizing agent for hydrocarbon derived from petroleum, method for producing hydrogen for use in fuel cell and method for producing nickel-based desulfurizing agent
CA2607800A1 (en) Liquefied petroleum gas for lp gas fuel cell, method of desulfurizing the same and fuel cell system
KR20070115991A (en) Desulfurizing agent and method of desulfurization with the same
JP4079743B2 (en) Desulfurizing agent for hydrocarbon-containing gas and method for producing hydrogen for fuel cell
JP2013199534A (en) Method for producing desulfurized gaseous fuel
JP4267483B2 (en) Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cells
CA2493034C (en) Method for desulfurization of liquid hydrocarbons and process for production of hydrogen for fuel cells
JP4521172B2 (en) Desulfurization agent and desulfurization method using the same
JP2004075778A (en) Desulfurizing agent for hydrocarbon and method for producing hydrogen for fuel cell
JP2006277980A (en) Desulfurization method of fuel for fuel cell
JP2005146054A (en) Desulfurizing agent and desulfurizing method using the same
JP2005146054A6 (en) Desulfurization agent and desulfurization method using the same
JP2004305869A (en) Adsorbent for removing sulfur compound, and method for producing hydrogen for fuel cell
JP2006316154A (en) Liquefied petroleum gas for lp gas fuel cell, its desulfurization method and fuel cell system
JP2010001480A (en) Desulfurizing agent and desulfurization method using the same
JP4580071B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP4953584B2 (en) Fuel cell system
JP2003290659A (en) Desulfurizing agent and method for manufacturing hydrogen for fuel battery using the same
JP2003290660A (en) Desulfurizing agent and method for manufacturing hydrogen for fuel battery using it
JP2013199533A (en) Method for producing desulfurized gaseous fuel
JP4216548B2 (en) Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cell
JP2005146055A (en) Desulfurizing method and manufacturing method of hydrogen for fuel cell
JP2006299088A (en) Liquefied petroleum gas for lp-gas type fuel cell and manufacturing method of hydrogen for fuel cell using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4079743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

EXPY Cancellation because of completion of term