JP2004305869A - Adsorbent for removing sulfur compound, and method for producing hydrogen for fuel cell - Google Patents

Adsorbent for removing sulfur compound, and method for producing hydrogen for fuel cell Download PDF

Info

Publication number
JP2004305869A
JP2004305869A JP2003101642A JP2003101642A JP2004305869A JP 2004305869 A JP2004305869 A JP 2004305869A JP 2003101642 A JP2003101642 A JP 2003101642A JP 2003101642 A JP2003101642 A JP 2003101642A JP 2004305869 A JP2004305869 A JP 2004305869A
Authority
JP
Japan
Prior art keywords
adsorbent
alumina
sulfur compound
fuel
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003101642A
Other languages
Japanese (ja)
Inventor
Kozo Takatsu
幸三 高津
Takeji Takekoshi
岳二 竹越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2003101642A priority Critical patent/JP2004305869A/en
Publication of JP2004305869A publication Critical patent/JP2004305869A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an adsorbent for removing a sulfur compound, with which the sulfur compound in hydrocarbon fuel, petrochemical raw material or dimethyl ether fuel can easily be removed efficiently even at room temperature until the sulfur compound concentration becomes lower, to provide a method for manufacturing the adsorbent, and to provide a method for economically producing hydrogen for a fuel cell advantageously by reforming the hydrocarbon fuel, petrochemical raw material or dimethyl ether fuel desulfurized by using the adsorbent. <P>SOLUTION: The adsorbent is formed by depositing silver on alumina or silica-alumina and has ≥50 m<SP>2</SP>/g specific surface area, ≤60Å average pore radius and ≤0.6 ml/g total pore volume. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、特に、炭化水素燃料、石油化学原料又はジメチルエーテル燃料に含まれる硫黄化合物を除去する硫黄化合物除去用吸着剤及びその製造方法、さらに、該硫黄化合物除去用吸着剤を用いて脱硫された炭化水素燃料、石油化学原料もしくはジメチルエーテル燃料からの燃料電池用水素の製造方法に関する。
【0002】
【従来の技術】
近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用あるいは自動車用などとして、実用化研究が積極的になされている。
【0003】
この燃料電池には、使用する電解質の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物型、固体高分子型などのタイプが知られている。一方、水素源としては、メタノール、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、さらには石油系のLPG、ナフサ、灯油、軽油などの石油系炭化水素の使用が研究されている。
これらのガス状又は液状炭化水素を用いて水素を製造する場合、一般に、該炭化水素を、改質触媒の存在下に部分酸化改質、自己熱改質または水蒸気改質などで処理する方法が用いられている。
【0004】
LPGや都市ガスなどを改質して燃料電池用水素を製造する場合、改質触媒の被毒を抑制するためには、ガス中の硫黄分を低減させることが要求される。また、プロピレンやブテンなどは、石油化学製品の原料として使用する場合、やはり触媒の被毒を防ぐためには、硫黄分を低減させることが要求される。また、使用される脱硫剤の性能を最大限に発揮させるには、できるだけ硫黄分含有量の少ないLPG等を用いることが望ましい。
【0005】
前記LPG中の硫黄化合物について詳細に分析すると、一般にメチルメルカブタンや硫化カルボニルなどに加えて、付臭剤として添加されたジメチルサルファイド(DMS)、t−ブチルメルカプタン(TBM)、メチルエチルサルファイド(MES)などが含まれている。このような硫黄分をLPGなどの燃料ガスから吸着除去するための各種吸着剤が知られている。しかしながら、これらの吸着剤は、150〜300℃程度では高い脱硫性能を示すものがあるが、100℃以下の低い温度での脱硫性能については、必ずしも充分に満足し得るものではないのが実状であった。
【0006】
例えば、疎水性ゼオライトにAg、Cu、Zn、Fe、Co、Niなどをイオン交換により担持させた脱硫剤(例えば特許文献1参照)や、Y型ゼオライト、β型ゼオライト又はX型ゼオライトにAg又はCuを担持した脱硫剤(例えば、特許文献2参照)が開示されている。しかしながら、これらの脱硫剤は、メルカプタン類やサルファイド類を室温において効率的に吸着除去し得るものの、硫化カルボニルをほとんど吸着しないことがわかった。
【0007】
また、銅−亜鉛系脱硫剤が開示されている(例えば、特許文献3参照)。しかしながら、この脱硫剤においては、150℃以上の温度では硫化カルボニルを含む各種硫黄化合物を吸着除去できるが、100℃以下の低い温度では、硫黄化合物に対する吸着性能が低い。さらに、アルミナなどの多孔質担体に銅を担持した脱硫剤が開示されている(例えば、特許文献4参照)。この脱硫剤は100℃以下の温度でも使用できるとしているが、その吸着性能については十分に満足し得るものではない。
さらに、担体上に銀を担持した脱硫剤が開示されている(特許文献5参照)が、性能面で改良の余地があった。
【0008】
【特許文献1】
特開2001−286753号公報(第2頁)
【特許文献2】
特開2001−305123号公報(第2頁)
【特許文献3】
特開平2−302496号公報(第2頁)
【特許文献4】
特開2001−123188号公報(第2頁)
【特許文献5】
特開2002−316043号公報(第2頁)
【0009】
【発明が解決しようとする課題】
本発明は、このような状況下でなされたもので、炭化水素燃料、石油化学原料又はジメチルエーテル燃料中の硫黄化合物を、100℃以下の低い温度においても低濃度まで容易にかつ効率よく除去することができる硫黄化合物除去用吸着剤及びその製造方法、さらに、該硫黄化合物除去用吸着剤を用いて脱硫された炭化水素燃料、石油化学原料もしくはジメチルエーテル燃料を改質して、燃料電池用水素を経済的に有利に製造する方法を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明者らは、鋭意研究を重ねた結果、アルミナ又はシリカ−アルミナに銀を担持した吸着剤であって、特定の細孔特性を有するものが本発明の硫黄化合物除去用吸着剤に適していることを見出し本発明を完成した。
【0011】
すなわち、本発明の要旨は下記のとおりである。
1.アルミナ又はシリカ−アルミナに銀を担持した吸着剤であって、比表面積が50m/g以上、平均細孔半径が60Å以下、全細孔容量が0.6ml/g以下であることを特徴とする硫黄化合物除去用吸着剤。
2.炭化水素燃料、石油化学原料又はジメチルエーテル燃料に含有される硫黄化合物を除去する上記1記載の硫黄化合物除去用吸着剤。
3.銀の含有量が、吸着剤全量基準で、金属銀として3〜40質量%である上記1又は2に記載の硫黄化合物除去用吸着剤。
4.銀の含有量が、吸着剤全量基準で、金属銀として10〜40質量%であり、比表面積が50〜300m/g、平均細孔半径が5〜60Å、全細孔容量が0.2〜0.6ml/gである上記1〜3のいずれかに記載の硫黄化合物除去用吸着剤。
5.銀の含有量が、吸着剤全量基準で、金属銀として10〜30質量%であり、比表面積が50〜200m/g、平均細孔半径が20〜60Å、全細孔容量が0.2〜0.5ml/gである上記1〜4のいずれかに記載の硫黄化合物除去用吸着剤。
6.アルミナがγ−アルミナ又はχ−アルミナである上記1〜5のいずれかに記載の硫黄化合物除去用吸着剤。
7.炭化水素燃料が、LPG、都市ガス、天然ガス、エタン、プロパン、プロピレン、ブタン、ブテン、ナフサ、灯油及び軽油から選ばれる少なくとも一種である上記1〜6のいずれかに記載の硫黄化合物除去用吸着剤。
8.アルミナ又はシリカ−アルミナに硝酸銀を担持し、乾燥した後、100〜400℃で焼成することを特徴とする上記1〜7のいずれかに記載の硫黄化合物除去用吸着剤の製造方法。
9.アルミナ又はシリカ−アルミナに硝酸銀を担持し、乾燥した後、150〜350℃で焼成することを特徴とする上記1〜7のいずれかに記載の硫黄化合物除去用吸着剤の製造方法。
10.上記1〜7のいずれかに記載の硫黄化合物除去用吸着剤を用いて炭化水素燃料、石油化学原料又はジメチルエーテル燃料中の硫黄化合物を除去した後、脱硫された炭化水素燃料、石油化学原料もしくはジメチルエーテル燃料を、部分酸化改質触媒、自己熱改質触媒又は水蒸気改質触媒と接触させることを特徴とする燃料電池用水素の製造方法。
11.部分酸化改質触媒、自己熱改質触媒又は水蒸気改質触媒が、ルテニウム系又はニッケル系触媒である上記10記載の燃料電池用水素の製造方法。
【0012】
【発明の実施の形態】
以下に、本発明を更に詳細に説明する。
本発明の硫黄化合物除去用吸着剤は、アルミナ又はシリカ−アルミナに銀を担持した吸着剤であって、比表面積が50m/g以上、平均細孔半径が60Å以下、全細孔容量が0.6ml/g以下であることを特徴とする。
担体としてアルミナ又はシリカ−アルミナが用いられる。アルミナとして、特に限定されないが、γ−アルミナ、χ−アルミナが性能の面で好ましい。
担持される銀化合物として、硝酸銀、フッ化銀、塩化銀、酢酸銀、炭酸銀、過塩素酸銀等を挙げることができる。中でも、入手のし易さと取り扱い易さの点で硝酸銀が好ましい。
本発明においては、銀の担持量は、吸着剤全量基準で金属銀として3〜40質量%の範囲が好ましい。3質量%未満であると、充分な脱硫性能が発揮されない恐れがある。40質量%を超えると、銀が凝集して銀の粒子径が増大し、また比表面積が低下して充分な脱硫性能が発揮されない恐れがあり好ましくない。より好ましくは10〜40質量%、さらに好ましくは10〜30質量%の範囲である。
【0013】
本発明の吸着剤の比表面積は50m/g以上である。50m/g未満未満であると、充分な脱硫性能が発揮されない。好ましくは50〜300m/gの範囲であり、300m/gを超えると、吸着剤の強度が低下する恐れがある。より好ましくは50〜200m/gの範囲である。
また、本発明の吸着剤の平均細孔半径は60Å以下である。60Åを超えると、硫黄化合物とその他の物質の競争吸着により充分な脱硫性能が発揮されない。好ましくは5〜60Åの範囲である。5Å未満であると、吸着する硫黄化合物の拡散が阻害され、充分な脱硫性能が発揮されない恐れがある。より好ましくは20〜60Åの範囲である。
さらに、本発明の吸着剤の全細孔容量は0.6ml/g以下である。0.6ml/gを超えると、吸着剤が嵩張る結果、吸着剤単位体積当たりの硫黄吸着量が少なくなり、効率的でない。好ましくは0.2〜0.6ml/gの範囲である。0.2ml/g以下であると、充分に硫黄化合物を吸着できない恐れがある。より好ましくは0.2〜0.5ml/gの範囲である。なお、上記の比表面積、平均細孔半径、全細孔容量は、BJH法により測定された値である。
【0014】
本発明の吸着剤の好ましい製造方法については、アルミナ又はシリカ−アルミナに硝酸銀を担持し、乾燥した後、焼成するものである。硝酸銀の担持方法については特に制限はなく、ポアフィリング法、含浸法、浸漬法、蒸発乾固法などが挙げられる。乾燥は、通常50〜200℃で、3〜20時間行えばよい。焼成は、通常100〜400℃で1〜10時間行えばよい。100℃未満であると、焼成にならないし、400℃を超えると、銀粒子が凝集し、脱硫性能が低下する恐れがある。好ましくは150〜350℃の範囲である。
本発明の吸着剤の形状については、粉末状、ペレット状、錠剤状、ハニカム状などを好適に挙げることができる。
【0015】
本発明の硫黄化合物除去用吸着剤が適用される炭化水素燃料、石油化学原料又はジメチルエーテル燃料としては、例えばLPG、天然ガス、都市ガス、エタン、エチレン、プロパン、プロピレン、ブタン、ブテン、ナフサ、灯油、軽油、ジメチルエーテルの中から選ばれる少なくとも一種を含む燃料等が挙げられるが、これらの中で、気体燃料としては、LPG、天然ガス、都市ガス、ナフサ又はジメチルエーテルが好ましい。
また、該硫黄化合物除去用吸着剤を使用する脱硫条件としては、通常温度は−50〜350℃、好ましくは−20〜100℃の範囲で選ばれ、GHSV(ガス時空間速度)は100〜1,000,000h−1、好ましくは100〜100,000h−1、より好ましくは100〜30,000h−1の範囲で選ばれる。
本発明の硫黄化合物除去用吸着剤が適用される液体の炭化水素燃料としては、硫黄化合物の含有量が80ppm以下のナフサ、灯油、軽油が好ましいが、より好ましくは水素化脱硫などにより硫黄化合物の含有量を20ppm以下にしたものがよい。また、該硫黄化合物除去用吸着剤を使用する脱硫条件としては、温度は−20〜300℃の範囲で選ばれ、圧力は常圧〜10MPaの範囲で選ばれ、LHSV(液時空間速度)は10h−1以下が好ましい。
【0016】
次に、本発明の燃料電池用水素の製造方法においては、前述の本発明の硫黄化合物除去用吸着剤を用いて炭化水素燃料、石油化学原料又はジメチルエーテル燃料中の硫黄化合物を除去した後、脱硫された炭化水素燃料、石油化学原料もしくはジメチルエーテル燃料を、部分酸化改質触媒、自己熱改質触媒又は水蒸気改質触媒と接触させることにより、それぞれ部分酸化改質、自己熱改質又は水蒸気改質して、水素を製造する。
この改質処理においては、脱硫された炭化水素燃料もしくはジメチルエーテル燃料中の硫黄化合物の濃度は、各改質触媒の寿命の点から、0.05容量ppm以下が好ましく、特に0.02容量ppm以下が好ましい。
【0017】
前記部分酸化改質は、炭化水素の部分酸化反応により、水素を製造する方法であって、部分酸化改質触媒の存在下、通常、反応圧力常圧〜5MPa、反応温度400〜1,100℃、GHSV1,000〜100,000h−1、酸素(O)/炭素比0.2〜0.8の条件で改質反応が行われる。
また、自己熱改質は、部分酸化改質と水蒸気改質とを組み合わせた方法であって、自己熱改質触媒の存在下、通常、反応圧力常圧〜5MPa、反応温度400〜1,100℃、酸素(O)/炭素比0.1〜1、スチーム/炭素比0.1〜10、GHSV1,000〜100,000h−1の条件で改質反応が行われる。
【0018】
さらに、水蒸気改質は、炭化水素に水蒸気を接触させて、水素を製造する方法であって、水蒸気改質触媒の存在下、通常、反応圧力常圧〜3MPa、反応温度200〜900℃、スチーム/炭素比1.5〜10、GHSV1,000〜100,000h−1の条件で改質反応が行われる。
本発明においては、前記の部分酸化改質触媒、自己熱改質触媒、水蒸気改質触媒としては、従来公知の各触媒の中から適宣選択して用いることができるが、特にルテニウム系及びニッケル系触媒が好適である。また、これらの触媒の担体としては、酸化マンガン、酸化セリウム及びジルコニアの中から選ばれる少なくとも一種を含む担体を好ましく挙げることができる。該担体は、これらの金属酸化物のみからなる担体であってもよく、アルミナなどの他の耐火性多孔質無機酸化物に、上記金属酸化物を含有させてなる担体であってもよい。
【0019】
【実施例】
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
実施例1〜4及び比較例1〜3
下記に示す各種アルミナ又はシリカ−アルミナ(担体A〜G)に硝酸銀溶液を10重量%のAg担持量になるように含浸担持し、110℃で12時間乾燥させた後、400℃で3時間焼成し、吸着剤1〜7を得た。その吸着剤について、下記の要領で脱硫性能を評価した。その結果を第1表に示す。
【0020】
○担体
担体A:γ−アルミナ、NKHD−24(住友化学社製)
担体B:χ−アルミナ、KHD−24(住友化学社製)
担体C:シリカ−アルミナ、N−631(日揮化学社製)
担体D:γ−アルミナ、KHO−24(住友化学社製)
担体E:χ−アルミナ、NKHO−24(住友化学社製)
担体F:γ−アルミナ、NK−124(住友化学社製)
担体G:α−アルミナ、AKP−20(住友化学社製)
【0021】
○脱硫性能評価
吸着剤を0.5〜1mmに成型し、吸着剤1ccを内径9mmの反応管に充填した。常圧で吸着剤温度を20℃とし、ジメチルサルファイド、t−ブチルメルカプタンを各々20容量ppm(合計40容量ppm)含むプロパンガスを常圧、GHSV=30,000hr−1で流通させた。反応管出口ガスの硫黄化合物濃度をSCD(化学発光硫黄検出器)ガスクロマトグラフィーにより1時間毎に測定し、第1表に硫黄化合物濃度が0.1容量ppmを超える時間(以下、0.1ppm破過時間という。)を示す。
【0022】
【表1】

Figure 2004305869
【0023】
第1表より以下のことがわかる。
▲1▼比表面積はある程度以上あれば、脱硫性能への影響は小さい。
▲2▼平均細孔半径については、大きいものはむしろ性能に劣る。20〜60Å程度が好ましい。
▲3▼全細孔容量については、大きいほど性能が優れるわけでなく、0.2〜0.5ml/g程度が好ましい。
実施例5〜9、参考例1,2
前記のアルミナ担体及びシリカ−アルミナ担体を用いて、Ag担持量を変えた吸着剤8〜14を調製し、各吸着剤の脱硫性能を求めた。その結果を第2表に示す。
【0024】
【表2】
Figure 2004305869
【0025】
実施例10〜13
前記のアルミナ担体Bに20質量%のAgを含浸担持したものを110℃で12時間乾燥させた後、温度を変えて3時間焼成を行ない、吸着剤15〜18を調製し、各吸着剤の脱硫性能を求めた。その結果を第3表に示す。
【0026】
【表3】
Figure 2004305869
【0027】
第3表より、200〜400℃で焼成した吸着剤は極めて優れた性能を示すことがわかる。
実施例14及び比較例4
前記のアルミナ担体Fに20質量%のAgを含浸担持したものを110℃で12時間乾燥させた後、400℃で3時間焼成を行ない、吸着剤19を調製し、前記の吸着剤8とともに、以下の要領で灯油の脱硫試験を行った。結果を第4表に示す。
▲1▼吸着剤15ccを内径17mmのSUS製反応管に充填した。
▲2▼JIS1号灯油(硫黄濃度;28ppm)を常圧下、LHSV;10h−1で反応管に流通させ、16時間経過後の硫黄濃度を分析した。
【0028】
【表4】
Figure 2004305869
【0029】
【発明の効果】
本発明の方法によれば、炭化水素燃料、石油化学原料又は及びジメチルエーテル燃料中の硫黄化合物を、100℃以下の低い温度においても低濃度まで容易にかつ効率よく除去することができる硫黄化合物除去用吸着剤及びその製造方法、さらに、該硫黄化合物除去用吸着剤を用いて脱硫された炭化水素燃料、石油化学原料もしくはジメチルエーテル燃料を改質して、燃料電池用水素を経済的に有利に製造する方法を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention particularly relates to a sulfur compound removing adsorbent for removing a sulfur compound contained in a hydrocarbon fuel, a petrochemical raw material or a dimethyl ether fuel and a method for producing the same, and further desulfurized using the sulfur compound removing adsorbent. The present invention relates to a method for producing hydrogen for a fuel cell from a hydrocarbon fuel, a petrochemical raw material or a dimethyl ether fuel.
[0002]
[Prior art]
In recent years, new energy technologies have been spotlighted due to environmental problems, and fuel cells have attracted attention as one of the new energy technologies. This fuel cell converts chemical energy into electric energy by electrochemically reacting hydrogen and oxygen, and has the characteristic of high energy use efficiency. In addition, research for practical use has been actively conducted for use in automobiles and the like.
[0003]
Known types of fuel cells include a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type, depending on the type of electrolyte used. On the other hand, as a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of natural gas, synthetic liquid fuel composed of natural gas as a raw material, petroleum-based LPG, naphtha, kerosene, The use of petroleum hydrocarbons such as light oil has been studied.
When hydrogen is produced using these gaseous or liquid hydrocarbons, a method of treating the hydrocarbons by partial oxidation reforming, autothermal reforming or steam reforming in the presence of a reforming catalyst is generally used. Used.
[0004]
When producing hydrogen for a fuel cell by reforming LPG, city gas, or the like, it is required to reduce the sulfur content in the gas in order to suppress poisoning of the reforming catalyst. Further, when propylene, butene, or the like is used as a raw material for petrochemical products, it is required to reduce the sulfur content in order to prevent poisoning of the catalyst. Further, in order to maximize the performance of the desulfurizing agent used, it is desirable to use LPG or the like having as low a sulfur content as possible.
[0005]
When the sulfur compound in the LPG is analyzed in detail, dimethyl sulfide (DMS), t-butyl mercaptan (TBM), and methyl ethyl sulfide (MES) added as an odorant are generally added in addition to methyl mercaptan and carbonyl sulfide. ) Etc. are included. Various adsorbents for adsorbing and removing such sulfur from fuel gas such as LPG are known. However, some of these adsorbents show high desulfurization performance at about 150 to 300 ° C., but the actual desulfurization performance at a low temperature of 100 ° C. or less is not always satisfactory. there were.
[0006]
For example, a desulfurizing agent in which Ag, Cu, Zn, Fe, Co, Ni, etc. are supported on a hydrophobic zeolite by ion exchange (for example, see Patent Document 1), or Ag or Y on a zeolite, a β zeolite or an X zeolite A desulfurizing agent supporting Cu (for example, see Patent Document 2) is disclosed. However, it has been found that these desulfurizing agents can efficiently adsorb and remove mercaptans and sulfides at room temperature, but hardly adsorb carbonyl sulfide.
[0007]
Further, a copper-zinc-based desulfurizing agent is disclosed (for example, see Patent Document 3). However, this desulfurizing agent can adsorb and remove various sulfur compounds including carbonyl sulfide at a temperature of 150 ° C. or higher, but has low adsorption performance for sulfur compounds at a low temperature of 100 ° C. or lower. Furthermore, a desulfurizing agent in which copper is supported on a porous carrier such as alumina is disclosed (for example, see Patent Document 4). Although it is stated that this desulfurizing agent can be used at a temperature of 100 ° C. or less, its adsorption performance is not sufficiently satisfactory.
Furthermore, although a desulfurizing agent in which silver is supported on a carrier is disclosed (see Patent Document 5), there is room for improvement in performance.
[0008]
[Patent Document 1]
JP 2001-286755 A (page 2)
[Patent Document 2]
JP 2001-305123 A (page 2)
[Patent Document 3]
JP-A-2-302496 (page 2)
[Patent Document 4]
JP 2001-123188 A (page 2)
[Patent Document 5]
JP-A-2002-316043 (page 2)
[0009]
[Problems to be solved by the invention]
The present invention has been made under such circumstances, and is intended to easily and efficiently remove a sulfur compound in a hydrocarbon fuel, a petrochemical raw material or a dimethyl ether fuel to a low concentration even at a low temperature of 100 ° C. or less. For removing sulfur compounds and a method for producing the same, and furthermore, reforming hydrocarbon fuel, petrochemical raw material or dimethyl ether fuel using the adsorbent for removing sulfur compounds to economically produce hydrogen for fuel cells. It is an object of the present invention to provide a method for producing the present invention in an advantageous manner.
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and found that an adsorbent obtained by carrying silver on alumina or silica-alumina and having a specific pore characteristic is suitable for the adsorbent for removing sulfur compounds of the present invention. And completed the present invention.
[0011]
That is, the gist of the present invention is as follows.
1. An adsorbent having silver supported on alumina or silica-alumina, having a specific surface area of 50 m 2 / g or more, an average pore radius of 60 ° or less, and a total pore volume of 0.6 ml / g or less. Adsorbent for removing sulfur compounds.
2. 2. The adsorbent for removing sulfur compounds according to 1 above, which removes sulfur compounds contained in hydrocarbon fuel, petrochemical raw material or dimethyl ether fuel.
3. 3. The adsorbent for removing a sulfur compound according to 1 or 2, wherein the content of silver is 3 to 40% by mass as metallic silver based on the total amount of the adsorbent.
4. The content of silver is 10 to 40% by mass as metallic silver based on the total amount of the adsorbent, the specific surface area is 50 to 300 m 2 / g, the average pore radius is 5 to 60 °, and the total pore volume is 0.2. 4. The adsorbent for removing sulfur compounds according to any one of the above 1 to 3, which has a concentration of 0.6 ml / g.
5. The content of silver is 10 to 30% by mass as metallic silver based on the total amount of the adsorbent, the specific surface area is 50 to 200 m 2 / g, the average pore radius is 20 to 60 °, and the total pore volume is 0.2. The adsorbent for removing sulfur compounds according to any one of the above items 1 to 4, which has a concentration of from 0.5 ml / g to 0.5 ml / g.
6. 6. The adsorbent for removing a sulfur compound according to any one of the above 1 to 5, wherein the alumina is γ-alumina or χ-alumina.
7. 7. The adsorption for removing a sulfur compound according to any one of the above 1 to 6, wherein the hydrocarbon fuel is at least one selected from LPG, city gas, natural gas, ethane, propane, propylene, butane, butene, naphtha, kerosene and light oil. Agent.
8. 8. The method for producing a sulfur compound-removing adsorbent according to any one of 1 to 7 above, wherein silver nitrate is supported on alumina or silica-alumina, dried, and then calcined at 100 to 400 ° C.
9. 8. The method for producing a sulfur compound-removing adsorbent according to any one of the above items 1 to 7, wherein silver nitrate is supported on alumina or silica-alumina, dried, and then calcined at 150 to 350 ° C.
10. After removing a sulfur compound in a hydrocarbon fuel, a petrochemical raw material or a dimethyl ether fuel using the sulfur compound removing adsorbent according to any one of the above 1 to 7, a desulfurized hydrocarbon fuel, a petrochemical raw material or dimethyl ether A method for producing hydrogen for a fuel cell, comprising contacting a fuel with a partial oxidation reforming catalyst, an autothermal reforming catalyst, or a steam reforming catalyst.
11. 11. The method for producing hydrogen for a fuel cell according to the above item 10, wherein the partial oxidation reforming catalyst, the autothermal reforming catalyst, or the steam reforming catalyst is a ruthenium-based or nickel-based catalyst.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
The adsorbent for removing sulfur compounds of the present invention is an adsorbent obtained by supporting silver on alumina or silica-alumina, having a specific surface area of 50 m 2 / g or more, an average pore radius of 60 ° or less, and a total pore volume of 0 or less. 0.6 ml / g or less.
Alumina or silica-alumina is used as a carrier. The alumina is not particularly limited, but γ-alumina and χ-alumina are preferred in terms of performance.
Examples of the supported silver compound include silver nitrate, silver fluoride, silver chloride, silver acetate, silver carbonate, and silver perchlorate. Among them, silver nitrate is preferable in terms of availability and handling.
In the present invention, the supported amount of silver is preferably in the range of 3 to 40% by mass as metallic silver based on the total amount of the adsorbent. If it is less than 3% by mass, sufficient desulfurization performance may not be exhibited. If it exceeds 40% by mass, silver is aggregated to increase the particle size of silver, and the specific surface area is decreased, so that sufficient desulfurization performance may not be exhibited. It is more preferably in the range of 10 to 40% by mass, and still more preferably in the range of 10 to 30% by mass.
[0013]
The specific surface area of the adsorbent of the present invention is 50 m 2 / g or more. If it is less than 50 m 2 / g, sufficient desulfurization performance is not exhibited. Preferably in the range of 50 to 300 m 2 / g, when more than 300m 2 / g, there is a possibility that the strength of the adsorbent is lowered. More preferably, it is in the range of 50 to 200 m 2 / g.
The average pore radius of the adsorbent of the present invention is 60 ° or less. If it exceeds 60 °, sufficient desulfurization performance cannot be exhibited due to competitive adsorption of sulfur compounds and other substances. Preferably it is in the range of 5-60 °. If it is less than 5 °, the diffusion of the adsorbed sulfur compound is hindered, and sufficient desulfurization performance may not be exhibited. More preferably, it is in the range of 20 to 60 °.
Further, the total pore volume of the adsorbent of the present invention is 0.6 ml / g or less. If it exceeds 0.6 ml / g, the adsorbent becomes bulky, resulting in a reduced amount of sulfur adsorbed per unit volume of the adsorbent, which is not efficient. Preferably it is in the range of 0.2 to 0.6 ml / g. When it is 0.2 ml / g or less, there is a possibility that the sulfur compound cannot be sufficiently adsorbed. More preferably, it is in the range of 0.2 to 0.5 ml / g. The above specific surface area, average pore radius, and total pore volume are values measured by the BJH method.
[0014]
In a preferred method for producing the adsorbent of the present invention, silver nitrate is supported on alumina or silica-alumina, dried and then fired. The method for supporting silver nitrate is not particularly limited, and examples thereof include a pore filling method, an impregnation method, an immersion method, and an evaporation to dryness method. Drying may be performed usually at 50 to 200 ° C. for 3 to 20 hours. The firing may be usually performed at 100 to 400 ° C. for 1 to 10 hours. If the temperature is lower than 100 ° C., sintering does not take place. If the temperature exceeds 400 ° C., silver particles may aggregate and the desulfurization performance may decrease. Preferably, it is in the range of 150 to 350 ° C.
Regarding the shape of the adsorbent of the present invention, a powder, a pellet, a tablet, a honeycomb, and the like can be suitably mentioned.
[0015]
Examples of the hydrocarbon fuel, petrochemical raw material or dimethyl ether fuel to which the adsorbent for removing sulfur compounds of the present invention is applied include LPG, natural gas, city gas, ethane, ethylene, propane, propylene, butane, butene, naphtha, and kerosene. , Light oil, and fuel containing at least one selected from dimethyl ether. Among them, the gaseous fuel is preferably LPG, natural gas, city gas, naphtha or dimethyl ether.
As the desulfurization conditions using the adsorbent for removing sulfur compounds, the temperature is usually selected from the range of -50 to 350 ° C, preferably -20 to 100 ° C, and the GHSV (gas hourly space velocity) is 100 to 1 , 000,000h -1, is preferably selected in the range of 100~100,000h -1, more preferably 100~30,000h -1.
As the liquid hydrocarbon fuel to which the adsorbent for removing sulfur compounds of the present invention is applied, naphtha, kerosene, and gas oil having a sulfur compound content of 80 ppm or less are preferable, and more preferably, sulfur compounds are obtained by hydrodesulfurization or the like. It is preferable that the content be 20 ppm or less. As the desulfurization conditions using the sulfur compound removal adsorbent, the temperature is selected in the range of −20 to 300 ° C., the pressure is selected in the range of normal pressure to 10 MPa, and the LHSV (liquid hourly space velocity) is 10 h -1 or less is preferable.
[0016]
Next, in the method for producing hydrogen for a fuel cell according to the present invention, the sulfur compound in the hydrocarbon fuel, petrochemical raw material or dimethyl ether fuel is removed using the aforementioned sulfur compound removing adsorbent of the present invention, and then desulfurization is performed. Contacting the obtained hydrocarbon fuel, petrochemical feedstock or dimethyl ether fuel with a partial oxidation reforming catalyst, an autothermal reforming catalyst or a steam reforming catalyst to perform partial oxidation reforming, autothermal reforming or steam reforming, respectively. To produce hydrogen.
In the reforming treatment, the concentration of the sulfur compound in the desulfurized hydrocarbon fuel or dimethyl ether fuel is preferably 0.05 vol ppm or less, particularly preferably 0.02 vol ppm or less, from the viewpoint of the life of each reforming catalyst. Is preferred.
[0017]
The partial oxidation reforming is a method for producing hydrogen by a partial oxidation reaction of hydrocarbons. In the presence of a partial oxidation reforming catalyst, usually, the reaction pressure is normal pressure to 5 MPa, and the reaction temperature is 400 to 1,100 ° C. , GHSV of 1,000 to 100,000 h -1 and an oxygen (O 2 ) / carbon ratio of 0.2 to 0.8.
Autothermal reforming is a method in which partial oxidation reforming and steam reforming are combined, and in the presence of an autothermal reforming catalyst, usually, the reaction pressure is normal pressure to 5 MPa, and the reaction temperature is 400 to 1,100. The reforming reaction is carried out at a temperature of 0.1 ° C., an oxygen (O 2 ) / carbon ratio of 0.1 to 1, a steam / carbon ratio of 0.1 to 10, and a GHSV of 1,000 to 100,000 h −1 .
[0018]
Further, steam reforming is a method for producing hydrogen by bringing steam into contact with a hydrocarbon, and usually in the presence of a steam reforming catalyst, at a reaction pressure of normal pressure to 3 MPa, a reaction temperature of 200 to 900 ° C., and steam. The reforming reaction is carried out under the conditions of a / carbon ratio of 1.5 to 10 and a GHSV of 1,000 to 100,000 h -1 .
In the present invention, the partial oxidation reforming catalyst, the autothermal reforming catalyst, and the steam reforming catalyst can be appropriately selected from conventionally known catalysts. Based catalysts are preferred. Further, as a carrier of these catalysts, a carrier containing at least one selected from manganese oxide, cerium oxide and zirconia can be preferably exemplified. The carrier may be a carrier composed of only these metal oxides, or a carrier in which the above-mentioned metal oxide is contained in another refractory porous inorganic oxide such as alumina.
[0019]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Examples 1-4 and Comparative Examples 1-3
A silver nitrate solution is impregnated and supported on various aluminas or silica-aluminas (carriers A to G) shown below so that the Ag loading amount is 10% by weight, dried at 110 ° C. for 12 hours, and then calcined at 400 ° C. for 3 hours. Thus, adsorbents 1 to 7 were obtained. The desulfurization performance of the adsorbent was evaluated in the following manner. Table 1 shows the results.
[0020]
○ Carrier A: γ-alumina, NKHD-24 (Sumitomo Chemical Co., Ltd.)
Support B: χ-alumina, KHD-24 (Sumitomo Chemical Co., Ltd.)
Carrier C: silica-alumina, N-631 (manufactured by JGC Chemicals)
Support D: γ-alumina, KHO-24 (manufactured by Sumitomo Chemical Co., Ltd.)
Support E: χ-alumina, NKHO-24 (manufactured by Sumitomo Chemical Co., Ltd.)
Support F: γ-alumina, NK-124 (Sumitomo Chemical Co., Ltd.)
Support G: α-alumina, AKP-20 (Sumitomo Chemical Co., Ltd.)
[0021]
O Desulfurization performance evaluation The adsorbent was molded to 0.5 to 1 mm, and 1 cc of the adsorbent was filled in a reaction tube having an inner diameter of 9 mm. The adsorbent temperature was 20 ° C. at normal pressure, and propane gas containing dimethyl sulfide and t-butyl mercaptan each at 20 vol ppm (total 40 vol ppm) was passed at normal pressure and GHSV = 30,000 hr −1 . The sulfur compound concentration in the gas at the outlet of the reaction tube was measured every hour by SCD (chemiluminescence sulfur detector) gas chromatography, and Table 1 shows that the sulfur compound concentration exceeded 0.1 ppm by volume (hereinafter referred to as 0.1 ppm). Breakthrough time).
[0022]
[Table 1]
Figure 2004305869
[0023]
Table 1 shows the following.
{Circle around (1)} If the specific surface area is more than a certain level, the influence on the desulfurization performance is small.
{Circle around (2)} With respect to the average pore radius, a larger one is inferior in performance. The angle is preferably about 20-60 °.
{Circle around (3)} As for the total pore volume, the larger the larger, the better the performance is, and preferably about 0.2 to 0.5 ml / g.
Examples 5 to 9, Reference Examples 1 and 2
Using the alumina carrier and the silica-alumina carrier, adsorbents 8 to 14 with different amounts of Ag supported were prepared, and the desulfurization performance of each adsorbent was determined. Table 2 shows the results.
[0024]
[Table 2]
Figure 2004305869
[0025]
Examples 10 to 13
After the alumina carrier B impregnated and supported with 20% by mass of Ag was dried at 110 ° C. for 12 hours, the temperature was changed and calcination was performed for 3 hours to prepare adsorbents 15 to 18, and the adsorbents 15 to 18 were prepared. The desulfurization performance was determined. Table 3 shows the results.
[0026]
[Table 3]
Figure 2004305869
[0027]
From Table 3, it can be seen that the adsorbent calcined at 200 to 400 ° C. shows extremely excellent performance.
Example 14 and Comparative Example 4
After the alumina carrier F impregnated with 20% by mass of Ag was dried at 110 ° C. for 12 hours, it was calcined at 400 ° C. for 3 hours to prepare an adsorbent 19, and together with the adsorbent 8, A desulfurization test of kerosene was performed in the following manner. The results are shown in Table 4.
{Circle around (1)} 15 cc of an adsorbent was filled in a SUS reaction tube having an inner diameter of 17 mm.
{Circle around (2)} JIS No. 1 kerosene (sulfur concentration: 28 ppm) was passed through a reaction tube under normal pressure with an LHSV of 10 h -1 and the sulfur concentration after 16 hours was analyzed.
[0028]
[Table 4]
Figure 2004305869
[0029]
【The invention's effect】
According to the method of the present invention, a sulfur compound in a hydrocarbon fuel, a petrochemical raw material or a dimethyl ether fuel can be easily and efficiently removed to a low concentration even at a low temperature of 100 ° C. or less. Adsorbent and method for producing the same, and further reforming hydrocarbon fuel, petrochemical raw material or dimethyl ether fuel desulfurized using the adsorbent for removing sulfur compounds to produce hydrogen for fuel cells economically and advantageously. A method can be provided.

Claims (11)

アルミナ又はシリカ−アルミナに銀を担持した吸着剤であって、比表面積が50m/g以上、平均細孔半径が60Å以下、全細孔容量が0.6ml/g以下であることを特徴とする硫黄化合物除去用吸着剤。An adsorbent having silver supported on alumina or silica-alumina, having a specific surface area of 50 m 2 / g or more, an average pore radius of 60 ° or less, and a total pore volume of 0.6 ml / g or less. Adsorbent for removing sulfur compounds. 炭化水素燃料、石油化学原料又はジメチルエーテル燃料に含有される硫黄化合物を除去する請求項1記載の硫黄化合物除去用吸着剤。The adsorbent for removing a sulfur compound according to claim 1, which removes a sulfur compound contained in a hydrocarbon fuel, a petrochemical raw material or a dimethyl ether fuel. 銀の含有量が、吸着剤全量基準で、金属銀として3〜40質量%である請求項1又は2に記載の硫黄化合物除去用吸着剤。The adsorbent for removing a sulfur compound according to claim 1 or 2, wherein the content of silver is 3 to 40% by mass as metallic silver based on the total amount of the adsorbent. 銀の含有量が、吸着剤全量基準で、金属銀として10〜40質量%であり、比表面積が50〜300m/g、平均細孔半径が5〜60Å、全細孔容量が0.2〜0.6ml/gである請求項1〜3のいずれかに記載の硫黄化合物除去用吸着剤。The content of silver is 10 to 40% by mass as metallic silver based on the total amount of the adsorbent, the specific surface area is 50 to 300 m 2 / g, the average pore radius is 5 to 60 °, and the total pore volume is 0.2. The adsorbent for removing sulfur compounds according to any one of claims 1 to 3, wherein the adsorbent has a concentration of from 0.6 to 0.6 ml / g. 銀の含有量が、吸着剤全量基準で、金属銀として10〜30質量%であり、比表面積が50〜200m/g、平均細孔半径が20〜60Å、全細孔容量が0.2〜0.5ml/gである請求項1〜4のいずれかに記載の硫黄化合物除去用吸着剤。The content of silver is 10 to 30% by mass as metallic silver based on the total amount of the adsorbent, the specific surface area is 50 to 200 m 2 / g, the average pore radius is 20 to 60 °, and the total pore volume is 0.2. The adsorbent for removing a sulfur compound according to any one of claims 1 to 4, wherein the adsorbent is -0.5 ml / g. アルミナがγ−アルミナ又はχ−アルミナである請求項1〜5のいずれかに記載の硫黄化合物除去用吸着剤。The adsorbent for removing sulfur compounds according to any one of claims 1 to 5, wherein the alumina is γ-alumina or χ-alumina. 炭化水素燃料が、LPG、都市ガス、天然ガス、エタン、プロパン、プロピレン、ブタン、ブテン、ナフサ、灯油及び軽油から選ばれる少なくとも一種である請求項1〜6のいずれかに記載の硫黄化合物除去用吸着剤。The hydrocarbon compound is at least one selected from the group consisting of LPG, city gas, natural gas, ethane, propane, propylene, butane, butene, naphtha, kerosene and gas oil, for removing sulfur compounds according to any one of claims 1 to 6. Sorbent. アルミナ又はシリカ−アルミナに硝酸銀を担持し、乾燥した後、100〜400℃で焼成することを特徴とする請求項1〜7のいずれかに記載の硫黄化合物除去用吸着剤の製造方法。The method for producing an adsorbent for removing sulfur compounds according to any one of claims 1 to 7, wherein silver nitrate is supported on alumina or silica-alumina, dried, and then calcined at 100 to 400 ° C. アルミナ又はシリカ−アルミナに硝酸銀を担持し、乾燥した後、150〜350℃で焼成することを特徴とする請求項1〜7のいずれかに記載の硫黄化合物除去用吸着剤の製造方法。The method for producing a sulfur compound-removing adsorbent according to any one of claims 1 to 7, wherein silver nitrate is supported on alumina or silica-alumina, dried, and then calcined at 150 to 350 ° C. 請求項1〜7のいずれかに記載の硫黄化合物除去用吸着剤を用いて炭化水素燃料、石油化学原料又はジメチルエーテル燃料中の硫黄化合物を除去した後、脱硫された炭化水素燃料、石油化学原料もしくはジメチルエーテル燃料を、部分酸化改質触媒、自己熱改質触媒又は水蒸気改質触媒と接触させることを特徴とする燃料電池用水素の製造方法。After removing a sulfur compound in a hydrocarbon fuel, a petrochemical raw material or a dimethyl ether fuel using the sulfur compound removing adsorbent according to any one of claims 1 to 7, a desulfurized hydrocarbon fuel, a petrochemical raw material or A method for producing hydrogen for a fuel cell, comprising contacting a dimethyl ether fuel with a partial oxidation reforming catalyst, an autothermal reforming catalyst or a steam reforming catalyst. 部分酸化改質触媒、自己熱改質触媒又は水蒸気改質触媒が、ルテニウム系又はニッケル系触媒である請求項10記載の燃料電池用水素の製造方法。The method for producing hydrogen for a fuel cell according to claim 10, wherein the partial oxidation reforming catalyst, the autothermal reforming catalyst, or the steam reforming catalyst is a ruthenium-based or nickel-based catalyst.
JP2003101642A 2003-04-04 2003-04-04 Adsorbent for removing sulfur compound, and method for producing hydrogen for fuel cell Pending JP2004305869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003101642A JP2004305869A (en) 2003-04-04 2003-04-04 Adsorbent for removing sulfur compound, and method for producing hydrogen for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003101642A JP2004305869A (en) 2003-04-04 2003-04-04 Adsorbent for removing sulfur compound, and method for producing hydrogen for fuel cell

Publications (1)

Publication Number Publication Date
JP2004305869A true JP2004305869A (en) 2004-11-04

Family

ID=33465371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003101642A Pending JP2004305869A (en) 2003-04-04 2003-04-04 Adsorbent for removing sulfur compound, and method for producing hydrogen for fuel cell

Country Status (1)

Country Link
JP (1) JP2004305869A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068135A1 (en) * 2004-12-24 2006-06-29 Idemitsu Kosan Co., Ltd. Desulfurizing agent for organosulfur compound-containing fuel oil, and process for producing hydrogen for fuel cell
WO2006068069A1 (en) * 2004-12-20 2006-06-29 Idemitsu Kosan Co., Ltd. Liquid fuel for fuel cell and method of desulfurization
WO2008007899A1 (en) * 2006-07-11 2008-01-17 Sk Energy Co., Ltd. Discoloration indicators for checking life span of desulfurization adsorbent, and desulfurization reactor and desulfurization system comprising the same
JP2012142175A (en) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp Desulfurization system for fuel cell, hydrogen manufacturing system for fuel cell, fuel cell system and desulfurization method of hydrocarbon-based fuel
CN103693629A (en) * 2012-09-27 2014-04-02 住友精化株式会社 Method for purifying nitric oxide
JPWO2019189550A1 (en) * 2018-03-29 2020-04-30 日揮触媒化成株式会社 Adsorbent
JP2020081968A (en) * 2018-11-26 2020-06-04 日立化成株式会社 Gas-capturing material and vacuum heat insulator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068069A1 (en) * 2004-12-20 2006-06-29 Idemitsu Kosan Co., Ltd. Liquid fuel for fuel cell and method of desulfurization
JP2006173045A (en) * 2004-12-20 2006-06-29 Idemitsu Kosan Co Ltd Liquid fuel for fuel cell, and desulfurizating method
WO2006068135A1 (en) * 2004-12-24 2006-06-29 Idemitsu Kosan Co., Ltd. Desulfurizing agent for organosulfur compound-containing fuel oil, and process for producing hydrogen for fuel cell
JP2006176721A (en) * 2004-12-24 2006-07-06 Idemitsu Kosan Co Ltd Desulfurizing agent for fuel oil containing organic sulfur compound and manufacturing method of hydrogen for fuel cell
WO2008007899A1 (en) * 2006-07-11 2008-01-17 Sk Energy Co., Ltd. Discoloration indicators for checking life span of desulfurization adsorbent, and desulfurization reactor and desulfurization system comprising the same
JP2012142175A (en) * 2010-12-28 2012-07-26 Jx Nippon Oil & Energy Corp Desulfurization system for fuel cell, hydrogen manufacturing system for fuel cell, fuel cell system and desulfurization method of hydrocarbon-based fuel
CN103693629A (en) * 2012-09-27 2014-04-02 住友精化株式会社 Method for purifying nitric oxide
JP2014069977A (en) * 2012-09-27 2014-04-21 Sumitomo Seika Chem Co Ltd Nitric oxide purification method
TWI619674B (en) * 2012-09-27 2018-04-01 住友精化股份有限公司 Refining method of nitric oxide
JPWO2019189550A1 (en) * 2018-03-29 2020-04-30 日揮触媒化成株式会社 Adsorbent
JP2020081968A (en) * 2018-11-26 2020-06-04 日立化成株式会社 Gas-capturing material and vacuum heat insulator
US11643867B2 (en) 2018-11-26 2023-05-09 Panasonic Holdings Corporation Gas trapping member and vacuum heat insulation equipment

Similar Documents

Publication Publication Date Title
EP1577369B1 (en) Method for removing sulfur compound in hydrocarbon-containing gas
EP2438145B1 (en) Method for desulfurizing a fuel stream
JP4096128B2 (en) Method for producing desulfurizing agent and method for desulfurizing hydrocarbon
US20050121365A1 (en) Process for removal of sulfur compounds from a fuel cell feed stream
JP5329403B2 (en) Method for reforming sulfur-containing hydrocarbons using sulfur-resistant catalysts
KR100973876B1 (en) Adsorbent for removing sulfur compound, process for producing hydrogen and fuel cell system
JP4722429B2 (en) Method for producing metal-supported zeolite molding and adsorbent for removing sulfur compound containing the zeolite
JP4452097B2 (en) Method for producing cerium oxide molded body
JP5755999B2 (en) Method for producing desulfurizing agent, desulfurizing agent, and method for desulfurizing hydrocarbon
JP2004305869A (en) Adsorbent for removing sulfur compound, and method for producing hydrogen for fuel cell
JP4079743B2 (en) Desulfurizing agent for hydrocarbon-containing gas and method for producing hydrogen for fuel cell
JP5911551B2 (en) Method for producing desulfurizing agent and method for desulfurizing hydrocarbon
JP4267483B2 (en) Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cells
JP4749589B2 (en) Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method
JP4521172B2 (en) Desulfurization agent and desulfurization method using the same
JP4580070B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
WO2006068069A1 (en) Liquid fuel for fuel cell and method of desulfurization
JP2004075778A (en) Desulfurizing agent for hydrocarbon and method for producing hydrogen for fuel cell
JP4722454B2 (en) Method for producing adsorbent for removing sulfur compound, adsorbent for removing sulfur compound, and method for removing sulfur compound
JP2001278602A (en) Desulfurization agent, method of desulfurization and method of manufacturing hydrogen for fuel cell
JP2010001480A (en) Desulfurizing agent and desulfurization method using the same
JP4216548B2 (en) Adsorbent for removing sulfur compounds and method for producing hydrogen for fuel cell
JP2013199533A (en) Method for producing desulfurized gaseous fuel
JP2003290660A (en) Desulfurizing agent and method for manufacturing hydrogen for fuel battery using it
JP2009057421A (en) Desulfurization agent for liquid fuel and desulfurization method for liquid fuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080122