JP2014069977A - Nitric oxide purification method - Google Patents

Nitric oxide purification method Download PDF

Info

Publication number
JP2014069977A
JP2014069977A JP2012215065A JP2012215065A JP2014069977A JP 2014069977 A JP2014069977 A JP 2014069977A JP 2012215065 A JP2012215065 A JP 2012215065A JP 2012215065 A JP2012215065 A JP 2012215065A JP 2014069977 A JP2014069977 A JP 2014069977A
Authority
JP
Japan
Prior art keywords
adsorbent
nitric oxide
gas
aqueous solution
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012215065A
Other languages
Japanese (ja)
Other versions
JP2014069977A5 (en
JP6196434B2 (en
Inventor
Junichi Kawakami
純一 川上
Shinichi Tai
慎一 田井
Koji Yokono
孝爾 横野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2012215065A priority Critical patent/JP6196434B2/en
Priority to TW102125341A priority patent/TWI619674B/en
Priority to KR1020130106887A priority patent/KR102101999B1/en
Priority to CN201310445107.2A priority patent/CN103693629B/en
Publication of JP2014069977A publication Critical patent/JP2014069977A/en
Publication of JP2014069977A5 publication Critical patent/JP2014069977A5/ja
Application granted granted Critical
Publication of JP6196434B2 publication Critical patent/JP6196434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/24Nitric oxide (NO)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Gas Separation By Absorption (AREA)
  • Drying Of Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nitric oxide purification method which inhibits the production of by-products and is suitable for obtaining high-purity nitric oxide gas.SOLUTION: A nitric oxide purification method includes an adsorption step in which material gas including nitric oxide and moisture is fed to an adsorption pipe 2 filled with adsorbent for making moisture adsorbed to the adsorbent. As the adsorbent, used is pretreated adsorbent obtained by applying inorganic adsorbent to pretreatment for generating inorganic acid salt.

Description

本発明は、一酸化窒素を精製するための方法に関する。   The present invention relates to a method for purifying nitric oxide.

一酸化窒素は、例えば、半導体プロセスにおいてシリコン表面に酸窒化膜を形成するための材料ガスとして用いられる場合がある。一酸化窒素は、アンモニア酸化法、亜硝酸ソーダと塩化第一鉄とを反応させる方法、硝酸と亜硫酸ガスとを反応させる方法など様々な方法で生成され得るが、一般に、粗一酸化窒素ガスには、水分や、二酸化窒素および二酸化硫黄のような酸性ガスが不純物ないし副生成物として含まれる。特に硝酸を二酸化硫黄で還元して一酸化窒素を製造する方法においては、粗一酸化窒素中に二酸化硫黄が不純物として含まれてくる。半導体プロセスにおいて上述の酸窒化膜を形成するうえでは、材料ガスとしての一酸化窒素については、より高純度であることが望まれる。   Nitric oxide may be used as a material gas for forming an oxynitride film on a silicon surface in a semiconductor process, for example. Nitric oxide can be produced by various methods such as an ammonia oxidation method, a method of reacting sodium nitrite and ferrous chloride, and a method of reacting nitric acid and sulfurous acid gas. Contains moisture and acidic gases such as nitrogen dioxide and sulfur dioxide as impurities or by-products. In particular, in a method for producing nitric oxide by reducing nitric acid with sulfur dioxide, sulfur dioxide is contained as an impurity in the crude nitric oxide. In forming the above-described oxynitride film in a semiconductor process, it is desired that nitrogen monoxide as a material gas has higher purity.

一酸化窒素を高純度化ないし精製するための手法のうち比較的簡易な方法として、活性アルミナ、ゼオライト、シリカゲルなどの無機系吸着剤に所定条件で粗一酸化窒素ガス(混合ガス)を通流する手法が知られている。この手法によると、混合ガス中の主に水分が、無機系吸着剤に吸着されて除去される。無機系吸着剤を利用するこのような手法は、例えば、下記の特許文献1および特許文献2に記載されている。特許文献1では水、二酸化窒素、二酸化硫黄を含有する一酸化窒素を精製するのに、金属カチオンを含有しないシリカ、アルミナ、ゼオライト類およびこれらの混合物を、吸着剤として用いている。特許文献2では、ガス流から水分、窒素酸化物を吸着除去するのに、シリカで脱水し、8〜30%の金属カチオンを含むゼオライトYを用いている。   As a relatively simple method for purifying or purifying nitric oxide, crude nitric oxide gas (mixed gas) is passed through inorganic adsorbents such as activated alumina, zeolite, and silica gel under specified conditions. There is a known technique to do this. According to this method, mainly water in the mixed gas is adsorbed and removed by the inorganic adsorbent. Such a technique using an inorganic adsorbent is described in, for example, Patent Document 1 and Patent Document 2 below. In Patent Document 1, silica, alumina, zeolites and a mixture thereof containing no metal cation are used as adsorbents to purify nitric oxide containing water, nitrogen dioxide, and sulfur dioxide. In Patent Document 2, zeolite Y dehydrated with silica and containing 8-30% metal cations is used to adsorb and remove moisture and nitrogen oxides from a gas stream.

しかしながら、無機系吸着剤を用いた上述の従来の一酸化窒素精製方法では、混合ガス中の水分は効果的に吸着除去されるが、一酸化窒素の不純物副生反応(例えば、3NO→N2O+NO2)により混合ガス中の窒素酸化物量や窒素量を増大させてしまう場合があることが知られている。そのため、従来の技術においては、特殊な吸着剤を用いても、充分に高純度な一酸化窒素を得られていない。 However, in the above-described conventional nitric oxide purification method using an inorganic adsorbent, moisture in the mixed gas is effectively adsorbed and removed, but an impurity by-product reaction of nitric oxide (for example, 3NO → N 2 It is known that the amount of nitrogen oxides or nitrogen in the mixed gas may increase due to O + NO 2 ). Therefore, in the conventional technology, even if a special adsorbent is used, sufficiently high-purity nitric oxide cannot be obtained.

また、比較的簡易な他の一酸化窒素精製方法として、アルカリ水溶液に混合ガスを接触させる手法が古くから知られている。この手法によると、混合ガス中の主に二酸化窒素や二酸化硫黄が、アルカリ水溶液に吸収除去される。   Further, as another relatively simple method of purifying nitric oxide, a method of bringing a mixed gas into contact with an alkaline aqueous solution has been known for a long time. According to this technique, mainly nitrogen dioxide and sulfur dioxide in the mixed gas are absorbed and removed by the alkaline aqueous solution.

しかしながら、例えばアルカリ水溶液として水酸化ナトリウム水溶液を用いた従来の一酸化窒素精製手法では、混合ガス中の二酸化窒素や二酸化硫黄は除去されるが、水分が精製ガス中に残り、水分除去が必要である。   However, for example, in the conventional nitric oxide purification method using an aqueous sodium hydroxide solution as an alkaline aqueous solution, nitrogen dioxide and sulfur dioxide in the mixed gas are removed, but moisture remains in the purified gas, and moisture removal is necessary. is there.

また特許文献3においては、他の一酸化窒素精製方法として、液体窒素を用いて−164℃での深冷分離を行う手法が開示されている。しかしながら、この手法では、液体窒素による冷却操作が複雑で装置も高価なものとなり、更に液体一酸化窒素の爆発の可能性も有り、工業化するのに適しているとは言えない。   Patent Document 3 discloses a method of performing cryogenic separation at −164 ° C. using liquid nitrogen as another nitric oxide purification method. However, in this method, the cooling operation with liquid nitrogen is complicated and the apparatus is expensive, and further, there is a possibility of explosion of liquid nitric oxide, so it cannot be said that it is suitable for industrialization.

特開平8−319104号公報JP-A-8-319104 特開昭51−141784号公報JP 51-141784 A 韓国特許20100007188(A)号明細書Korean Patent No. 20100007188 (A) Specification

本発明は、以上のような事情の下で考え出されたものであり、副生成物の生成を抑制し、高純度の一酸化窒素ガスを得るのに適した一酸化窒素精製方法を提供することを目的とする。   The present invention has been conceived under the circumstances as described above, and provides a method for purifying nitric oxide suitable for suppressing the production of by-products and obtaining high-purity nitric oxide gas. For the purpose.

本発明によって提供される一酸化窒素精製方法は、少なくとも一酸化窒素および水分を含む混合ガスを吸着剤に通流させて水分を当該吸着剤に吸着させるための吸着工程を含む一酸化窒素精製方法であって、上記吸着剤として、無機系吸着剤に対して、無機酸塩を生成するための前処理が予め施された前処理済吸着剤を用いることを特徴としている。ここで言う無機酸塩とは、硝酸塩を代表として、この他に硫酸塩、リン酸塩、塩酸塩などがある。   The nitric oxide purification method provided by the present invention includes an adsorption step for allowing a mixed gas containing at least nitric oxide and moisture to flow through the adsorbent and adsorbing moisture on the adsorbent. Then, as the adsorbent, a pretreated adsorbent in which a pretreatment for generating an inorganic acid salt is performed in advance is used for the inorganic adsorbent. The inorganic acid salt referred to here is represented by nitrate, and in addition, there are sulfate, phosphate, hydrochloride and the like.

粗一酸化窒素ガス(以下混合ガスと呼ぶ)を吸着剤に通流させて当該混合ガスから不純物を吸着除去するに際し、予め無機系吸着剤に対して所定の前処理を施しておくと一酸化窒素の不純物副生反応が抑制されることを、本発明者らは見出した。具体的には、例えば前処理として無機系吸着剤に対して比較的極性の強い鉱酸水溶液を接触させた場合には、鉱酸の一部が無機系吸着剤と化学吸着を起こして無機酸塩が生成され、これにより、無機系吸着剤の一酸化窒素の不純物副生反応に係る触媒活性点が封鎖された状態にあると考えられる。そして、本発明に係る一酸化窒素精製方法によると、その吸着工程にて、一酸化窒素の不純物副生反応による副生成物の生成量の低減を図ることができる。したがって、本方法は、より高純度の一酸化窒素を得るうえで好適である。   When a crude nitrogen monoxide gas (hereinafter referred to as a mixed gas) is passed through the adsorbent and impurities are adsorbed and removed from the mixed gas, the inorganic adsorbent is subjected to a predetermined pretreatment in advance. The present inventors have found that nitrogen by-product reaction is suppressed. Specifically, for example, when a mineral acid aqueous solution having a relatively strong polarity is brought into contact with the inorganic adsorbent as a pretreatment, a part of the mineral acid undergoes chemical adsorption with the inorganic adsorbent to cause an inorganic acid. It is considered that a salt is generated, and the catalytically active sites related to the by-product reaction of nitric oxide as an inorganic adsorbent are blocked. And according to the nitric oxide purification method which concerns on this invention, the production amount of the by-product by the impurity byproduct reaction of nitric oxide can be aimed at in the adsorption | suction process. Therefore, this method is suitable for obtaining higher-purity nitric oxide.

一つの実施形態によれば、上記前処理は、鉱酸水溶液と上記無機系吸着剤とを接触させる操作を含む。この場合、好ましくは、上記鉱酸水溶液は硝酸水溶液である。   According to one embodiment, the pretreatment includes an operation of bringing the mineral acid aqueous solution into contact with the inorganic adsorbent. In this case, preferably, the mineral acid aqueous solution is a nitric acid aqueous solution.

他の実施形態によれば、上記前処理は、酸性ガスと上記無機系吸着剤とを接触させる操作を含む。   According to another embodiment, the pretreatment includes an operation of bringing the acidic gas into contact with the inorganic adsorbent.

好ましい実施の形態においては、上記混合ガスは、不純物として二酸化窒素および二酸化硫黄の少なくとも一方を含み、上記混合ガスを上記吸着工程に付す前に、当該混合ガスをアルカリ水溶液に接触させて上記不純物(二酸化窒素や二酸化硫黄)を吸収除去するためのアルカリ洗浄工程を更に含む。   In a preferred embodiment, the mixed gas contains at least one of nitrogen dioxide and sulfur dioxide as an impurity, and before the mixed gas is subjected to the adsorption step, the mixed gas is brought into contact with an alkaline aqueous solution to form the impurity ( It further includes an alkali cleaning step for absorbing and removing nitrogen dioxide and sulfur dioxide).

本方法によると、混合ガスに不純物としての二酸化窒素や二酸化硫黄が含まれている場合においても、アルカリ洗浄工程にて、二酸化窒素や二酸化硫黄をアルカリ水溶液により有意に吸収除去することができる。したがって、本方法は、より高純度の一酸化窒素を得るうえで好適である。   According to this method, even when the mixed gas contains nitrogen dioxide or sulfur dioxide as impurities, nitrogen dioxide and sulfur dioxide can be significantly absorbed and removed by the alkaline aqueous solution in the alkali cleaning step. Therefore, this method is suitable for obtaining higher-purity nitric oxide.

本発明に係る一酸化窒素精製方法を実行するのに使用することのできる精製ラインの概略構成図である。It is a schematic block diagram of the refinement | purification line which can be used to implement the nitric oxide refinement | purification method concerning this invention.

次に、添付図面に基づき、本発明の好ましい実施形態について説明する。   Next, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、本発明に係る一酸化窒素(以下NOと呼ぶ)精製方法を実行するのに使用することのできる精製ラインX1の概略構成図である。精製ラインX1は、NOシリンダーY1から供給される粗NOガスを精製するように構成されており、二酸化窒素(以下NO2と呼ぶ)および二酸化硫黄(以下SO2と呼ぶ)除去用の吸収液接触装置1と、水分(以下H2Oと呼ぶ)除去用の吸着管2と、圧力調整弁3と、開閉弁4A〜4Eと、製品NO導出口5と、パージガス導入口6と、ガス排出口7と、真空ポンプ8と、これらを連結する配管とを備える。 FIG. 1 is a schematic configuration diagram of a purification line X1 that can be used to perform a nitric oxide (hereinafter referred to as NO) purification method according to the present invention. The purification line X1 is configured to purify the crude NO gas supplied from the NO cylinder Y1, and contacts the absorbing liquid for removing nitrogen dioxide (hereinafter referred to as NO 2 ) and sulfur dioxide (hereinafter referred to as SO 2 ). Apparatus 1, adsorption pipe 2 for removing moisture (hereinafter referred to as H 2 O), pressure regulating valve 3, on-off valves 4 </ b> A to 4 </ b> E, product NO outlet 5, purge gas inlet 6, and gas outlet 7, a vacuum pump 8, and piping connecting them.

NOシリンダーY1は、粗NOガスを原料ガス(混合ガス)として精製ラインX1に供給するためのものであり、高圧条件で粗NOガスが封入されているシリンダーである。封入されている粗NOガスは、主成分としてNOを含み、不純物としてNO2、SO2およびH2Oを含む。 The NO cylinder Y1 is for supplying crude NO gas as a raw material gas (mixed gas) to the purification line X1, and is a cylinder in which the crude NO gas is sealed under high pressure conditions. The sealed crude NO gas contains NO as a main component and NO 2 , SO 2 and H 2 O as impurities.

吸収液接触装置1は、原料ガスを吸収液であるアルカリ水溶液に接触させるためのものであり、吸収液槽1A、ガス導入管1a、ガス導出口1b、吸収液供給口1c、および液体排出口1dを有している。吸収液槽1Aは容器状とされており、その内部にはNO2吸収能およびSO2吸収能を発揮し得るアルカリ水溶液が充填されている。ガス導入管1aは、吸収液槽1Aの内部において下方に延出しており、その下端部がアルカリ水溶液中にて開放されている。吸収液供給口1cは新しいアルカリ水溶液を吸収液槽1A内に供給するための通路であり、液体排出口1dは吸収液槽1A内のアルカリ水溶液を吸収液槽1A外に排出するための通路である。 The absorbing liquid contact device 1 is for bringing a raw material gas into contact with an alkaline aqueous solution that is an absorbing liquid, and includes an absorbing liquid tank 1A, a gas inlet pipe 1a, a gas outlet 1b, an absorbing liquid supply port 1c, and a liquid outlet. 1d. The absorbing liquid tank 1A has a container shape, and the inside thereof is filled with an alkaline aqueous solution capable of exhibiting NO 2 absorbing ability and SO 2 absorbing ability. The gas introduction pipe 1a extends downward in the absorption liquid tank 1A, and its lower end is opened in an alkaline aqueous solution. The absorption liquid supply port 1c is a passage for supplying a new alkaline aqueous solution into the absorption liquid tank 1A, and the liquid discharge port 1d is a passage for discharging the alkaline aqueous solution in the absorption liquid tank 1A to the outside of the absorption liquid tank 1A. is there.

本実施形態で用いられるアルカリ水溶液としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム等の水溶液を採用することができる。なかでも、取り扱い易さなどの観点から、水酸化ナトリウム水溶液が好適である。   As the alkaline aqueous solution used in the present embodiment, for example, an aqueous solution of sodium hydroxide, potassium hydroxide, magnesium hydroxide or the like can be employed. Of these, an aqueous sodium hydroxide solution is preferred from the viewpoint of ease of handling.

なお、本実施形態ではアルカリ水溶液に、原料ガスを効率よく接触させる観点から、吸収液接触装置1は、原料ガスを微細気泡状にアルカリ水溶液中に放出するように構成されているのが好ましい。   In the present embodiment, from the viewpoint of efficiently bringing the raw material gas into contact with the alkaline aqueous solution, the absorbent liquid contact device 1 is preferably configured to discharge the raw material gas into the alkaline aqueous solution in the form of fine bubbles.

吸着管2は、ガスが通過可能に構成されており、本実施形態では円筒形状を有する。吸着管2の内部には、H2O吸着能、NO2吸着能およびSO2吸収能を発揮し得る無機系吸着剤が充填されている。そのような無機系吸着剤としては、活性アルミナ、ゼオライト、およびシリカゲルを採用することができる。なかでも、脱水用に一般的に用いられる活性アルミナやA型のゼオライトが好適である。これら吸着剤には、後述するように、NOの精製に先立って予め所定の前処理が施されている。また、吸着管2には、その内部温度を調整するための温度調整機構(図示せず)が取り付けられている。 The adsorption tube 2 is configured to allow gas to pass through and has a cylindrical shape in the present embodiment. The inside of the adsorption tube 2 is filled with an inorganic adsorbent that can exhibit H 2 O adsorption ability, NO 2 adsorption ability and SO 2 absorption ability. As such an inorganic adsorbent, activated alumina, zeolite, and silica gel can be employed. Of these, activated alumina and A-type zeolite generally used for dehydration are preferred. As will be described later, these adsorbents are subjected to a predetermined pretreatment prior to purification of NO. The adsorption pipe 2 is attached with a temperature adjustment mechanism (not shown) for adjusting the internal temperature.

圧力調整弁3は、NOシリンダーY1から供給された原料ガスを減圧して所定圧力に調整するためのものである。開閉弁4A〜4Eは、各々、ガスの通過を許容する開状態と阻止する閉状態とが選択可能に構成されている。   The pressure adjusting valve 3 is for reducing the pressure of the raw material gas supplied from the NO cylinder Y1 to a predetermined pressure. Each of the on-off valves 4A to 4E is configured to be selectable between an open state that allows passage of gas and a closed state that blocks passage of gas.

本発明に係るNO精製方法では、精製ラインX1を使用してNOの精製を実行するのに先立ち、吸着管2に充填される無機系吸着剤に対して、無機酸塩を生成するための所定の前処理を行なう。   In the NO purification method according to the present invention, prior to performing the purification of NO using the purification line X1, a predetermined amount for generating an inorganic acid salt for the inorganic adsorbent filled in the adsorption pipe 2 is obtained. Pre-processing is performed.

本発明に係る前処理は、鉱酸水溶液と無機系吸着剤との接触により行う。鉱酸水溶液と無機系吸着剤との接触は、例えば、当該無機系吸着剤に鉱酸水溶液を含浸させることにより行なうことができる。鉱酸としては、例えば、塩酸、硫酸、硝酸、リン酸などが使用できるが、NO精製での副生成物である硝酸の使用が異物質混入防止の観点から好ましい。鉱酸水溶液としての硝酸水溶液と無機系吸着剤とを接触させると硝酸塩が生成し、前処理済吸着剤を得ることができる。ここで、使用する鉱酸水溶液の濃度は特に限定されないが、通常、0.01〜1規定の鉱酸水溶液が使用される。鉱酸水溶液の無機系吸着剤への含浸は、例えば、精製ラインX1の外において1〜20時間程度行なえばよい。含浸方法は鉱酸水溶液と吸着剤を攪拌せず室温で静置する場合は10時間以上必要だが、40〜50℃で攪拌する場合は2時間程度で済む。この後吸着剤をろ過し乾燥する。乾燥方法としては減圧乾燥または熱風乾燥は効率が良いが、静置乾燥、コニカルドライヤーを用いる乾燥方法でも良い。乾燥済みの含浸処理された吸着剤は、吸湿しないように保存容器を窒素置換して保存する。   The pretreatment according to the present invention is performed by contacting the mineral acid aqueous solution with an inorganic adsorbent. The contact between the mineral acid aqueous solution and the inorganic adsorbent can be performed, for example, by impregnating the inorganic acid adsorbent with the mineral acid aqueous solution. As the mineral acid, for example, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and the like can be used. However, the use of nitric acid which is a by-product in NO purification is preferable from the viewpoint of preventing foreign substances from being mixed. When a nitric acid aqueous solution as a mineral acid aqueous solution and an inorganic adsorbent are brought into contact with each other, nitrate is generated, and a pretreated adsorbent can be obtained. Here, although the density | concentration of the mineral acid aqueous solution to be used is not specifically limited, Usually, 0.01-1 normal mineral acid aqueous solution is used. The impregnation of the mineral acid aqueous solution into the inorganic adsorbent may be performed, for example, for about 1 to 20 hours outside the purification line X1. The impregnation method requires 10 hours or more when the mineral acid aqueous solution and the adsorbent are allowed to stand at room temperature without stirring, but when stirring at 40 to 50 ° C., it takes about 2 hours. Thereafter, the adsorbent is filtered and dried. As the drying method, reduced-pressure drying or hot-air drying is efficient, but a stationary drying method or a drying method using a conical dryer may be used. The dried impregnated adsorbent is stored by replacing the storage container with nitrogen so as not to absorb moisture.

なお、本発明に係る前処理は、上述の方法に限定されるものではなく、酸性ガスと無機系吸着剤との接触により行ってもよい。例えば、オートクレイブなどの加圧ができる容器に無機系吸着剤とNO2あるいはSO2等の酸性ガスを含むガスを仕込み、30〜60℃で数時間、0.1〜1.5MpaGで保つことによっても出来る。ここで、窒素、アルゴン(Ar)、ヘリウム(He)、NO等の不活性ガスまたは製品に混入しても問題がないガスを希釈ガスとして用いることができる。そして、得られた前処理済吸着剤を吸着管2に充填すれば良い。 The pretreatment according to the present invention is not limited to the above-described method, and may be performed by contact between an acidic gas and an inorganic adsorbent. For example, an inorganic adsorbent and a gas containing an acidic gas such as NO 2 or SO 2 are charged in a pressurizable container such as an autoclave and kept at 30 to 60 ° C. for several hours at 0.1 to 1.5 MpaG. You can also do it. Here, an inert gas such as nitrogen, argon (Ar), helium (He), or NO, or a gas that does not cause a problem even if mixed into the product can be used as the dilution gas. And what is necessary is just to fill the adsorption pipe 2 with the obtained pre-processed adsorbent.

上述した前処理を施すことにより吸着管2内に前処理済吸着剤が充填された状態において、精製ラインX1を使用してNO精製を実行する。まず、開閉弁4A,4Cを開状態とし且つ開閉弁4B,4D,4Eを閉状態とする。そして、NOシリンダーY1から圧力調整弁3を経て吸収液接触装置1に原料ガス(粗NOガス)を供給し続け、吸収液接触装置1にてアルカリ洗浄工程を実行する。原料ガスは、上述のように主成分としてNOを含み且つ不純物としてNO2、SO2およびH2Oを含むが、NOシリンダーY1から供給される原料ガスのNO2濃度およびH2O濃度は、各々、例えば0.1〜1000ppmである。圧力調整弁3に設定される圧力は、例えば0.05〜20MPaであり、好ましくは0.1〜2MPaである。 In the state in which the pretreated adsorbent is filled in the adsorption pipe 2 by performing the pretreatment described above, NO purification is performed using the purification line X1. First, the on-off valves 4A, 4C are opened and the on-off valves 4B, 4D, 4E are closed. Then, the raw material gas (crude NO gas) is continuously supplied from the NO cylinder Y <b> 1 through the pressure regulating valve 3 to the absorbent contact device 1, and the alkali cleaning process is executed in the absorbent solution contact device 1. The source gas contains NO as a main component and contains NO 2 , SO 2 and H 2 O as impurities as described above, but the NO 2 concentration and H 2 O concentration of the source gas supplied from the NO cylinder Y1 are as follows: Each is, for example, 0.1 to 1000 ppm. The pressure set in the pressure regulating valve 3 is, for example, 0.05 to 20 MPa, preferably 0.1 to 2 MPa.

アルカリ洗浄工程では、ガス導入管1aの下端部から原料ガスを放出させることにより当該原料ガスをアルカリ水溶液に接触させ、不純物であるNO2およびSO2を当該アルカリ水溶液に吸収させたうえで、非吸収ガスをガス導出口1bから吸収液接触装置1外に導出する。アルカリ洗浄工程ではまた、新しいアルカリ水溶液を一定流量で吸収液供給口1cを介して補充するとともに、吸収液槽1A内に受容されたアルカリ水溶液を一定流量で液体排出口1dから吸収液接触装置1外に排出する。吸収液槽1A内のアルカリ水溶液の温度は、例えば10〜50℃であり、好ましくは20〜40℃である。 In the alkali cleaning step, the raw material gas is released from the lower end of the gas introduction pipe 1a so that the raw material gas is brought into contact with the alkaline aqueous solution, and impurities NO 2 and SO 2 are absorbed into the alkaline aqueous solution. Absorbed gas is led out of the absorbing liquid contact device 1 from the gas outlet 1b. In the alkali cleaning step, a new alkaline aqueous solution is replenished at a constant flow rate through the absorption liquid supply port 1c, and the alkaline aqueous solution received in the absorption liquid tank 1A is replenished from the liquid discharge port 1d at a constant flow rate. Drain outside. The temperature of the alkaline aqueous solution in the absorption liquid tank 1A is, for example, 10 to 50 ° C, and preferably 20 to 40 ° C.

吸収液接触装置1でのアルカリ洗浄工程を終えた原料ガス(非吸収ガス)は、次に、開閉弁4Aを経て吸着管2に至り、吸着工程に付される。吸着工程では、吸着管2内の前処理済吸着剤に非吸収ガスを通流させ、不純物H2OないしNO2を、当該前処理済吸着剤に吸着ないし保持させたうえで、非吸着ガスを吸着管2外に導出する。吸着管2の内部温度は、例えば−40〜50℃であり、好ましくは0〜40℃である。ここで、前処理済吸着剤には硝酸塩が生成されているため、無機系吸着剤の触媒活性点が、封鎖された状態にあると考えられる。したがって、吸着工程では、NOの不純物副生反応が抑制され、当該不純物副生反応によって副生するN2OやNO2の生成量は低減する。このような吸着工程は、例えばH2Oが充分に吸収され、破過が始まる時点(破過点)まで実行してもよいし、破過点より前に終了してもよい。NOシリンダーY1から精製ラインX1に原料ガスを供給し続けつつも、開閉弁4Cを閉状態とし且つ開閉弁4Dを開状態とすることにより、吸着工程を終了することができる。吸着工程終了時まで、吸着管2を経たガスを精製NOガスとして製品NO導出口5から取り出すことができる。 The raw material gas (non-absorbed gas) that has finished the alkali cleaning process in the absorbing liquid contact device 1 then reaches the adsorption pipe 2 via the on-off valve 4A and is subjected to the adsorption process. In the adsorption process, the non-adsorbed gas is passed through the pretreated adsorbent in the adsorption tube 2 to adsorb or retain the impurities H 2 O or NO 2 in the pretreated adsorbent, and then the non-adsorbed gas. To the outside of the adsorption tube 2. The internal temperature of the adsorption tube 2 is, for example, −40 to 50 ° C., preferably 0 to 40 ° C. Here, since nitrate is produced in the pretreated adsorbent, it is considered that the catalytic activity point of the inorganic adsorbent is in a blocked state. Therefore, in the adsorption step, the NO by-product reaction of NO is suppressed, and the amount of N 2 O and NO 2 produced as a by-product by the impurity by-product reaction is reduced. Such an adsorption process may be performed until, for example, H 2 O is sufficiently absorbed and breakthrough starts (breakthrough point), or may be terminated before the breakthrough point. The adsorption process can be completed by closing the on-off valve 4C and opening the on-off valve 4D while continuing to supply the raw material gas from the NO cylinder Y1 to the purification line X1. Until the end of the adsorption process, the gas passing through the adsorption pipe 2 can be taken out from the product NO outlet 5 as purified NO gas.

以上のようにして、不純物としてNO2、SO2およびH2Oを含む粗NOガス(原料ガス)を精製して高純度NOガスを得ることができる。 As described above, a high-purity NO gas can be obtained by refining the crude NO gas (raw material gas) containing NO 2 , SO 2 and H 2 O as impurities.

本発明に係るNOガス精製方法を精製ラインX1にて繰り返し実行するためには、上述のような精製プロセス終了後に吸着管2ないしそれら内部の吸着剤を再生または洗浄する。   In order to repeatedly execute the NO gas purification method according to the present invention in the purification line X1, the adsorption tubes 2 or the adsorbents inside them are regenerated or washed after the purification process as described above is completed.

吸着管2ないし内部の前処理済吸着剤の再生または洗浄に際しては、開閉弁4A,4C,4Eを閉状態とし且つ開閉弁4B,4Dを開状態とする。そして、パージガス導入口6から精製ラインX1に不活性ガスを導入し続ける。パージガス導入口6から導入される不活性ガスは、図外のヒータにて予め所定温度に昇温されており、開閉弁4B、吸着管2、および開閉弁4Dを経てガス排出口7からライン外に排出される。不活性ガスとしては、例えばN2やアルゴン(Ar)、ヘリウム(He)を採用することができる。上記ヒータにより実現される不活性ガスの温度は、例えば100〜300℃であり、好ましくは150〜250℃である。このようにして、吸着管2ないしその内部の前処理済吸着剤に、所定量かつ所定圧力の不活性ガスを通流することにより、当該吸着管2ないし前処理済吸着剤を再生または洗浄することができる。 At the time of regeneration or washing of the adsorption pipe 2 or the pretreated adsorbent inside, the on-off valves 4A, 4C, 4E are closed and the on-off valves 4B, 4D are opened. Then, the inert gas is continuously introduced from the purge gas inlet 6 into the purification line X1. The inert gas introduced from the purge gas introduction port 6 is heated to a predetermined temperature in advance by a heater (not shown), and passes through the on-off valve 4B, the adsorption pipe 2, and the on-off valve 4D, and goes out of the line from the gas discharge port 7. To be discharged. As the inert gas, for example, N 2 , argon (Ar), or helium (He) can be employed. The temperature of the inert gas realized by the heater is, for example, 100 to 300 ° C, and preferably 150 to 250 ° C. In this way, the adsorbing tube 2 or the pretreated adsorbent is regenerated or washed by passing an inert gas of a predetermined amount and a predetermined pressure through the adsorbing tube 2 or the pretreated adsorbent inside thereof. be able to.

本発明に係るNO精製方法によると、吸収液接触装置1での上述のアルカリ洗浄工程にて、原料ガス中のNO2をアルカリ水溶液により吸収除去することができる。加えて、吸着管2での吸着工程にて、前処理済吸着剤を用いることによりNOの不純物副生反応が抑制され、副生成物であるN2OやNO2の生成量が低減する。このように、本方法では、原料ガスに不純物としてNO2やSO2、H2Oが含まれている場合において、アルカリ洗浄工程および吸着工程にてNO2、SO2およびH2Oを効果的に除去し、各工程における副生成物の生成量を低減することができ、高純度のNOが得られる。 According to the NO purification method of the present invention, NO 2 in the raw material gas can be absorbed and removed by the alkaline aqueous solution in the above-described alkali cleaning step in the absorbent liquid contact device 1. In addition, by using the pretreated adsorbent in the adsorption step in the adsorption tube 2, NO by-product reactions of NO are suppressed, and the production amounts of N 2 O and NO 2 as by-products are reduced. Thus, in this method, when it contains NO 2 or SO 2, H 2 O as impurities in the raw material gas, effectively NO 2, SO 2 and H 2 O at alkaline washing step and the adsorption step The amount of by-products generated in each step can be reduced, and high-purity NO can be obtained.

NOシリンダーY1から供給される原料ガスにおいて、NO2およびSO2を実質的に含まない、或いはNO2含量およびSO2含量が少量である場合には、アルカリ洗浄工程を省略することによっても、本発明に係るNO精製方法を適切に実行することが可能である。この場合、当該NO精製方法を実行するための精製ラインとしては、吸収液接触装置1を備えない構成とすることができる。 If the raw material gas supplied from the NO cylinder Y1 is substantially free of NO 2 and SO 2 , or if the NO 2 content and SO 2 content are small, the present invention can be realized by omitting the alkali cleaning step. It is possible to appropriately execute the NO purification method according to the invention. In this case, as the purification line for executing the NO purification method, the absorbent liquid contact device 1 may not be provided.

以下に、実施例1〜4および比較例に基づいて本発明をさらに詳しく述べる。   Below, this invention is described further in detail based on Examples 1-4 and a comparative example.

[実施例1]
本実施例では、上記実施形態に係る吸着管2を使用して、本NO精製方法における吸着工程を実行した。本実施例では、無機系吸着剤として活性アルミナ(商品名:KHD−12,住友化学(株)製)を用いた。吸着剤の前処理として、18.6gの当該活性アルミナを0.3規定の硝酸水溶液と40℃で2時間混合攪拌し、その後60℃で6時間真空乾燥した。このようにして得られた前処理済吸着剤を、吸着管2(内径7.5mm,長さ500mmのステンレス製円筒吸着管)に充填した。その後、吸着管2を150℃まで昇温するとともに開閉弁4A〜4Dを閉状態とし且つ開閉弁4Eを開状態とし、真空ポンプ8を稼働させて、吸着管2内の圧力が270Pa(abs)となるように約2時間真空吸引した。次いで、原料ガスとしての粗NOガス(H2O含量=100ppm、NO2含量=500ppm、N2O含量=50ppm)を0.15MPaGの圧力のもと、25℃にて吸着管2に通流した。吸着管2への原料ガス通流量は60ml/minとした。このようにして、吸着工程を行なった。通流開始後1時間経過した時に、吸着管2から導出する非吸着ガスを露点計およびFT−IRで分析した結果、H2O含量=1ppm、NO2含量=30ppm、N2O含量=65ppmであり、通流前後でのN2O含量増分は15ppmであった。
[Example 1]
In this example, the adsorption step in the present NO purification method was executed using the adsorption tube 2 according to the above embodiment. In this example, activated alumina (trade name: KHD-12, manufactured by Sumitomo Chemical Co., Ltd.) was used as the inorganic adsorbent. As a pretreatment of the adsorbent, 18.6 g of the activated alumina was mixed and stirred with a 0.3 N aqueous nitric acid solution at 40 ° C. for 2 hours, and then vacuum dried at 60 ° C. for 6 hours. The pretreated adsorbent thus obtained was filled into an adsorption tube 2 (a stainless steel cylindrical adsorption tube having an inner diameter of 7.5 mm and a length of 500 mm). Thereafter, the temperature of the adsorption tube 2 is increased to 150 ° C., the on-off valves 4A to 4D are closed, the on-off valve 4E is opened, the vacuum pump 8 is operated, and the pressure in the adsorption tube 2 is 270 Pa (abs). Then, vacuum suction was performed for about 2 hours. Next, crude NO gas (H 2 O content = 100 ppm, NO 2 content = 500 ppm, N 2 O content = 50 ppm) as a raw material gas is passed through the adsorption pipe 2 at 25 ° C. under a pressure of 0.15 MPaG. did. The raw material gas flow rate to the adsorption tube 2 was 60 ml / min. In this way, the adsorption step was performed. As a result of analyzing the non-adsorbed gas derived from the adsorption pipe 2 with a dew point meter and FT-IR when 1 hour has passed after the start of flow, H 2 O content = 1 ppm, NO 2 content = 30 ppm, N 2 O content = 65 ppm The increment of N 2 O content before and after flow was 15 ppm.

[実施例2]
本実施例では、無機系吸着剤として、実施例1の活性アルミナに代えて、モレキュラシーブ4A(商品名:ゼオラムA−4,東ソー(株)製)を使用した。無機系吸着剤の変更以外は実施例1と同様にして、NO精製(前処理および吸着工程)を行なった。吸着管2への原料ガス通流開始後1時間経過した時に、吸着管2から導出する非吸着ガスを分析した結果、H2O含量=1ppm、NO2含量=25ppm、N2O含量=60ppmであり、通流前後でのN2O含量増分は10ppmであった。
[Example 2]
In this example, molecular sieve 4A (trade name: Zeolum A-4, manufactured by Tosoh Corporation) was used as the inorganic adsorbent instead of the activated alumina of Example 1. NO purification (pretreatment and adsorption step) was carried out in the same manner as in Example 1 except that the inorganic adsorbent was changed. As a result of analyzing the non-adsorbed gas derived from the adsorption pipe 2 after 1 hour has passed since the start of the flow of the raw material gas to the adsorption pipe 2, the H 2 O content = 1 ppm, the NO 2 content = 25 ppm, and the N 2 O content = 60 ppm. The increment of N 2 O content before and after flow was 10 ppm.

[実施例3]
本実施例では、吸着剤の前処理として、内容量300mlの耐圧3Mpaのステンレス製オートクレイブに活性アルミナ(商品名:KHD−12、住友化学(株)製)を150ml仕込み、NO/NO2=1/1の混合ガスを1.5MpaGになるまで添加した。40℃で4時間保持したのち、ガスをパージし、再度NO/NO2=1/1のガスを1.5MpaGになるまで添加し30℃で5時間保持した。このようにして前処理した吸着剤を実施例1と同様の吸着管2に充填し、実施例1と同様の原料ガス供給態様にて精製を行なった。通流開始後1時間経過した時に、吸着管2から導出する非吸着ガスを分析した結果、H2O含量=1ppm、NO2含量=30ppm、N2O含量=63ppmであり、通流前後でのN2O含量増分は13ppmであった。
[Example 3]
In this example, as a pretreatment of the adsorbent, 150 ml of activated alumina (trade name: KHD-12, manufactured by Sumitomo Chemical Co., Ltd.) was charged into a stainless autoclave having an internal capacity of 300 ml and a pressure resistance of 3 Mpa, and NO / NO 2 = A 1/1 gas mixture was added until 1.5 MpaG. After holding at 40 ° C. for 4 hours, the gas was purged, and a gas of NO / NO 2 = 1/1 was added again to 1.5 MPag and held at 30 ° C. for 5 hours. The adsorbent pretreated in this way was filled in the same adsorption tube 2 as in Example 1 and purified in the same raw material gas supply manner as in Example 1. As a result of analyzing the non-adsorbed gas derived from the adsorption pipe 2 when 1 hour has passed since the start of the flow, the H 2 O content = 1 ppm, the NO 2 content = 30 ppm, and the N 2 O content = 63 ppm. The increment of N 2 O content was 13 ppm.

[実施例4]
本実施例では、上記実施形態に係る吸収液接触装置1および吸着管2を使用して、本NO精製方法におけるアルカリ洗浄工程および吸着工程を実施した。本実施例では、容積1000mlの吸収液接触装置1に、アルカリ水溶液として1重量%の水酸化ナトリウム水溶液500mlを充填した。吸着管2に、実施例1と同様に前処理を行った活性アルミナを充填し、昇温と真空引きを行った。次いで、原料ガスとしての粗NOガス(H2O含量=100ppm、NO2含量=500ppm、SO2含量=500ppm、N2O含量=50ppm)を0.15MPaGの圧力のもと、25℃にて吸収液接触装置1および吸着管2に通流した。吸収液接触装置1および吸着管2への原料ガス通流開始後1時間経過した時に、吸着管2から導出する非吸着ガスを分析した結果、H2O含量=1ppm、NO2含量=10ppm、SO2含量=1ppm未満、N2O含量=63ppmであり、通流前後でのN2O含量増分は13ppmであった。
[Example 4]
In this example, the alkali cleaning step and the adsorption step in the present NO purification method were carried out using the absorbent contact device 1 and the adsorption tube 2 according to the above embodiment. In this embodiment, the absorbent contact device 1 having a volume of 1000 ml was filled with 500 ml of a 1% by weight sodium hydroxide aqueous solution as an alkaline aqueous solution. The adsorption tube 2 was filled with activated alumina that had been pretreated in the same manner as in Example 1, and the temperature was raised and vacuuming was performed. Next, crude NO gas (H 2 O content = 100 ppm, NO 2 content = 500 ppm, SO 2 content = 500 ppm, N 2 O content = 50 ppm) as a raw material gas at 25 ° C. under a pressure of 0.15 MPaG The absorbent liquid contact device 1 and the adsorption tube 2 were passed through. As a result of analyzing the non-adsorbed gas derived from the adsorption pipe 2 when 1 hour has passed after starting the flow of the raw material gas to the absorption liquid contact device 1 and the adsorption pipe 2, the H 2 O content = 1 ppm, the NO 2 content = 10 ppm, The SO 2 content was less than 1 ppm, the N 2 O content was 63 ppm, and the increment of N 2 O content before and after flow was 13 ppm.

[比較例]
本比較例では、実施例1と同様の吸着管2および無機系吸着剤を用い、前処理を行なわずにNO精製を行なった。吸着管2に活性アルミナ(商品名:KHD−12,住友化学(株)製)を18.6g充填し、吸着管2を150℃まで昇温するとともに開閉弁4A〜4Dを閉状態とし且つ開閉弁4Eを開状態とし、真空ポンプ8を稼働させて、吸着管2内の圧力が270Pa(abs)となるように約2時間真空吸引した。次いで、原料ガスとしての粗NOガス(H2O含量=100ppm、NO2含量=500ppm、N2O含量=50ppm)を1.5MPaGの圧力のもと、25℃にて吸着管2に通流した。吸着管2への原料ガス通流量は60ml/minとした。このようにして、吸着工程を行なった。即ち、本比較例では、前処理の不実施以外は実施例1と同様にして、NO精製を行なった。吸着管2への原料ガス通流開始後1時間経過した時に、吸着管2から導出する非吸着ガスを分析した結果、H2O含量=1ppm、NO2含量=30ppm、N2O含量=250ppmであり、通流前後でのN2O含量増分は200ppmであった。
[Comparative example]
In this comparative example, NO purification was performed without pretreatment using the same adsorption tube 2 and inorganic adsorbent as in Example 1. The adsorption tube 2 is filled with 18.6 g of activated alumina (trade name: KHD-12, manufactured by Sumitomo Chemical Co., Ltd.), the temperature of the adsorption tube 2 is increased to 150 ° C., and the on-off valves 4A to 4D are closed and opened and closed. The valve 4E was opened, the vacuum pump 8 was operated, and vacuum suction was performed for about 2 hours so that the pressure in the adsorption tube 2 was 270 Pa (abs). Next, crude NO gas (H 2 O content = 100 ppm, NO 2 content = 500 ppm, N 2 O content = 50 ppm) as a raw material gas is passed through the adsorption pipe 2 at 25 ° C. under a pressure of 1.5 MPaG. did. The raw material gas flow rate to the adsorption tube 2 was 60 ml / min. In this way, the adsorption step was performed. That is, in this comparative example, NO purification was performed in the same manner as in Example 1 except that no pretreatment was performed. As a result of analyzing the non-adsorbed gas derived from the adsorption pipe 2 when 1 hour has passed after starting the feed of the raw material gas to the adsorption pipe 2, the H 2 O content = 1 ppm, the NO 2 content = 30 ppm, and the N 2 O content = 250 ppm. The increment of N 2 O content before and after flow was 200 ppm.

実施例1〜4のN2O含量増分と比較例のN2O含量増分とを比較すると理解できるように、実施例における吸着工程では、比較例に比べてN2O含量増分が大幅に減少していた。このことは、無機系吸着剤に対して所定の前処理を施すことにより、NOの不純物副生反応が抑制され、N2Oの生成量が低減したことに起因すると考えられる。また、当該不純物副生反応の抑制によりNO2の発生量も低減する。このため、NO2含量増分についても、前処理を施さない場合に比べて減少効果を見込むことができる。このように、実施例では、前処理済吸着剤を用いた吸着工程を経ることにより、副生成物(N2OやNO2)の生成量が低減し、その結果、NOをより高純度化することができた。 As can be understood when compared with the N 2 O content increment of comparative example N 2 O content increment of Examples 1 to 4, in the adsorption step in Example, N 2 O content increment significantly reduced as compared with the comparative example Was. This is considered to be because the impurity by-product reaction of NO was suppressed and the production amount of N 2 O was reduced by applying a predetermined pretreatment to the inorganic adsorbent. In addition, the amount of NO 2 generated is reduced by suppressing the impurity by-product reaction. For this reason, the NO 2 content increment can be expected to be reduced as compared with the case where the pretreatment is not performed. Thus, in the examples, the amount of by-products (N 2 O and NO 2 ) is reduced through the adsorption process using the pretreated adsorbent, and as a result, NO is further purified. We were able to.

X1 精製ライン
Y1 NOシリンダー
1 吸収接触装置
2 吸着管
3 圧力調整弁
4A〜4E 開閉弁
5 製品NO導出口
6 パージガス導入口
7 ガス排出口
8 真空ポンプ
X1 Purification line Y1 NO cylinder 1 Absorption contact device 2 Adsorption pipe 3 Pressure regulating valve 4A-4E On-off valve 5 Product NO outlet 6 Purge gas inlet 7 Gas outlet 8 Vacuum pump

Claims (5)

少なくとも一酸化窒素および水分を含む混合ガスを、吸着剤に通流させて水分を当該吸着剤に吸着させるための吸着工程を含む一酸化窒素精製方法であって、
上記吸着剤として、無機系吸着剤に対して、無機酸塩を生成するための前処理が予め施された前処理済吸着剤を用いることを特徴とする、一酸化窒素精製方法。
A method for purifying nitric oxide comprising an adsorption step for allowing a mixed gas containing at least nitrogen monoxide and moisture to flow through the adsorbent and adsorbing moisture to the adsorbent,
A method for purifying nitric oxide, comprising using, as the adsorbent, a pretreated adsorbent in which a pretreatment for generating an inorganic acid salt is performed in advance on an inorganic adsorbent.
上記前処理は、鉱酸水溶液と上記無機系吸着剤とを接触させる操作を含む、請求項1に記載の一酸化窒素精製方法。   The nitric oxide purification method according to claim 1, wherein the pretreatment includes an operation of bringing a mineral acid aqueous solution into contact with the inorganic adsorbent. 上記鉱酸水溶液は硝酸水溶液である、請求項2に記載の一酸化窒素精製方法。   The nitric oxide purification method according to claim 2, wherein the mineral acid aqueous solution is a nitric acid aqueous solution. 上記前処理は、酸性ガスと上記無機系吸着剤とを接触させる操作を含む、請求項1に記載の一酸化窒素精製方法。   The nitric oxide purification method according to claim 1, wherein the pretreatment includes an operation of bringing an acidic gas into contact with the inorganic adsorbent. 上記混合ガスは、不純物として二酸化窒素および二酸化硫黄の少なくとも一方を含み、
上記混合ガスを上記吸着工程行う前に、当該混合ガスをアルカリ水溶液に接触させて上記不純物を吸収除去するためのアルカリ洗浄工程を更に含む請求項1〜4のいずれかに記載の一酸化窒素精製方法。
The mixed gas contains at least one of nitrogen dioxide and sulfur dioxide as impurities,
The nitric oxide purification according to any one of claims 1 to 4, further comprising an alkali cleaning step for bringing the mixed gas into contact with an alkaline aqueous solution to absorb and remove the impurities before performing the adsorption step. Method.
JP2012215065A 2012-09-27 2012-09-27 Nitric oxide purification method Active JP6196434B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012215065A JP6196434B2 (en) 2012-09-27 2012-09-27 Nitric oxide purification method
TW102125341A TWI619674B (en) 2012-09-27 2013-07-16 Refining method of nitric oxide
KR1020130106887A KR102101999B1 (en) 2012-09-27 2013-09-05 Method for purifying nitric oxide
CN201310445107.2A CN103693629B (en) 2012-09-27 2013-09-26 Nitric oxide production process for purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012215065A JP6196434B2 (en) 2012-09-27 2012-09-27 Nitric oxide purification method

Publications (3)

Publication Number Publication Date
JP2014069977A true JP2014069977A (en) 2014-04-21
JP2014069977A5 JP2014069977A5 (en) 2015-08-27
JP6196434B2 JP6196434B2 (en) 2017-09-13

Family

ID=50355328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012215065A Active JP6196434B2 (en) 2012-09-27 2012-09-27 Nitric oxide purification method

Country Status (4)

Country Link
JP (1) JP6196434B2 (en)
KR (1) KR102101999B1 (en)
CN (1) CN103693629B (en)
TW (1) TWI619674B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111547690A (en) * 2020-06-19 2020-08-18 大连大特气体有限公司 High-purity electronic grade nitric oxide production device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112591722B (en) * 2020-12-16 2022-05-17 四川金象赛瑞化工股份有限公司 Method for co-producing industrial-grade nitric acid and electronic-grade nitric acid
CN113753868A (en) * 2021-10-14 2021-12-07 苏州金宏气体股份有限公司 Purification method, purification device and production device for nitric oxide gas

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503165A (en) * 1992-11-23 1996-04-09 オリン コーポレイション Method for removing NO x x x / SO x x x oxide from gas
JP2004305869A (en) * 2003-04-04 2004-11-04 Idemitsu Kosan Co Ltd Adsorbent for removing sulfur compound, and method for producing hydrogen for fuel cell
JP2007169108A (en) * 2005-12-22 2007-07-05 Sumitomo Seika Chem Co Ltd Method for purifying nitric oxide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4153429A (en) 1975-05-21 1979-05-08 Union Carbide Corporation Selective adsorption of NOx from gas streams
JPH07163837A (en) * 1993-12-14 1995-06-27 Kobe Steel Ltd Method for removing nitrogen oxide
US5514204A (en) * 1994-07-07 1996-05-07 The Boc Group, Inc. Process for the purification of nitric oxide
KR100978805B1 (en) 2008-07-11 2010-08-30 (주)이노메이트 Refining method and equipment of high purity nitric oxide using cryogenic freezing trap

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08503165A (en) * 1992-11-23 1996-04-09 オリン コーポレイション Method for removing NO x x x / SO x x x oxide from gas
JP2004305869A (en) * 2003-04-04 2004-11-04 Idemitsu Kosan Co Ltd Adsorbent for removing sulfur compound, and method for producing hydrogen for fuel cell
JP2007169108A (en) * 2005-12-22 2007-07-05 Sumitomo Seika Chem Co Ltd Method for purifying nitric oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111547690A (en) * 2020-06-19 2020-08-18 大连大特气体有限公司 High-purity electronic grade nitric oxide production device
CN111547690B (en) * 2020-06-19 2024-03-29 大连大特气体有限公司 High-purity electronic grade nitric oxide production device

Also Published As

Publication number Publication date
KR102101999B1 (en) 2020-04-17
JP6196434B2 (en) 2017-09-13
TW201420495A (en) 2014-06-01
TWI619674B (en) 2018-04-01
CN103693629B (en) 2017-06-13
KR20140041339A (en) 2014-04-04
CN103693629A (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP4315666B2 (en) Syngas purification method
KR102278991B1 (en) Purification of argon through liquid phase cryogenic adsorption
TW555587B (en) Process for the decarbonation of gas flows using zeolite adsorbents
TW200536786A (en) Ingredient and process for producing copper (I) chloride, adsorbent and adsorbing method for reductive gas each with the use of copper (I) chloride, and recovering method of carbon monoxide gas
JP2008537720A (en) Purification of nitrogen trifluoride
JP6196434B2 (en) Nitric oxide purification method
KR101812532B1 (en) Purification process of nitrous oxide
JP2010227936A (en) Method for removing water from ammonia
JP2007500123A (en) Phosgene production method and apparatus
KR20090117886A (en) Absorbent for carbon monooxide, gas purification method, and gas purification apparatus
JP2015163556A (en) Method and apparatus for purifying hydrogen chloride
JP2019512390A (en) Temperature swing adsorption process
JPH01164418A (en) Method for removing carbon dioxide
JPH10101318A (en) Pressure swing adsorption type high purity carbon dioxide production
JP2015182927A (en) Method of and equipment for refining hydrogen chloride
JPS63182206A (en) Process and apparatus for producing nitrogen having high purity
TWI793793B (en) A method for removing oxygen molecules and a method for purifying carbon monoxide
JP2013194004A (en) Method for purifying dissolved acetylene
JP2000140549A (en) Removal of carbon dioxide
JPS63123417A (en) Refining method for methane
JP2004300035A (en) Method for separating methane gas and apparatus therefor
EP3218086A1 (en) Process for removing a small-molecule contaminant from a chlorine compound stream
JP2024071553A (en) High-purity nitric oxide production method
AU2022390711A1 (en) Method for preparing hydrogen from ammonia by using pressure swing adsorption
TW201938487A (en) Method of removing oxygen from crude carbon monoxide gas and method of purifying carbon monoxide gas

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160629

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160706

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170818

R150 Certificate of patent or registration of utility model

Ref document number: 6196434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250