JP2001262164A - Fuel oil for fuel cell - Google Patents

Fuel oil for fuel cell

Info

Publication number
JP2001262164A
JP2001262164A JP2000077948A JP2000077948A JP2001262164A JP 2001262164 A JP2001262164 A JP 2001262164A JP 2000077948 A JP2000077948 A JP 2000077948A JP 2000077948 A JP2000077948 A JP 2000077948A JP 2001262164 A JP2001262164 A JP 2001262164A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
hydrogen
catalyst
fuel oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000077948A
Other languages
Japanese (ja)
Inventor
Hiroto Matsumoto
寛人 松本
Takashi Katsuno
尚 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2000077948A priority Critical patent/JP2001262164A/en
Priority to PCT/JP2001/000605 priority patent/WO2001057162A1/en
Priority to AU2001228855A priority patent/AU2001228855A1/en
Publication of JP2001262164A publication Critical patent/JP2001262164A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide fuel oil for a fuel cell suitable for transportation of automobile, etc., capable of efficiently producing hydrogen, not exerting a bad influence on a reforming catalyst and a fuel cell electrode, having a slight deterioration of a reforming catalyst, etc. SOLUTION: This fuel oil for a fuel cell contains >=20 vol.% naphthene component, especially comprises a desulfurized heavy naphtha containing >=20 vol.% naphthene component as a main component.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料電池に使用す
る水素を製造するための燃料油に関し、詳しくは、ガソ
リン留分等の石油系炭化水素からなる輸送用の燃料電池
用燃料油に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel oil for producing hydrogen used in a fuel cell, and more particularly, to a fuel oil for transportation of a fuel cell comprising a petroleum hydrocarbon such as a gasoline fraction.

【0002】[0002]

【従来の技術】一般に、燃料電池の燃料として水素が用
いられるが、このような水素としては、水素ガスをその
まま用いるもの、メタノールなどを改質あるいは分解し
て得られる水素を用いるもの、あるいは常温、常圧下で
ガス状であるメタンを主成分とする都市ガスやプロパン
を主成分とするLPGなどから得られる水素を用いるも
の等が提案されている。しかしながら、水素ガスをその
まま使用する場合はそれ自体気体であることからその取
り扱いが困難となり、また、メタノールの場合はエネル
ギー密度が低いこと、高価であること、インフラが整備
されていないなどの問題があり、更に都市ガスやLPG
はその利用が地域的に限定される点、また取り扱いが困
難であるなどの問題があり、特に、自動車用等輸送用の
燃料電池の燃料として用いる場合は実用上大きな課題が
ある。すなわち、近年、エネルギー効率が高く、環境負
荷の小さい燃料電池を動力源とした燃料電池車が注目さ
れてきており、これに使用する燃料電池の開発が求めら
れている。一方で、自動車等の内燃機関用の燃料として
従来使用されてきたガソリンあるいはこれを構成する石
油系炭化水素留分は、通常液体でありかつエネルギー密
度が高い等の利点を有しており、燃料電池に有効に利用
しうると考えられている。また、このようなガソリン留
分に関してはインフラも十分に整備されている。
2. Description of the Related Art In general, hydrogen is used as fuel for fuel cells. Examples of such hydrogen include those using hydrogen gas as it is, those using hydrogen obtained by reforming or decomposing methanol or the like, and those using room temperature. There have been proposed, for example, those using hydrogen obtained from city gas containing methane as a main component and LPG containing propane as a main component, which is gaseous at normal pressure. However, if hydrogen gas is used as it is, it is difficult to handle it because it is a gas itself, and methanol has problems such as low energy density, high cost, and lack of infrastructure. Yes, plus city gas and LPG
However, there is a problem that its use is limited in a region, and it is difficult to handle. Especially, when it is used as a fuel for a fuel cell for transportation such as for an automobile, there is a large practical problem. That is, in recent years, a fuel cell vehicle using a fuel cell having high energy efficiency and a small environmental load as a power source has attracted attention, and development of a fuel cell used for the fuel cell vehicle has been demanded. On the other hand, gasoline or a petroleum hydrocarbon fraction constituting the same, which has been conventionally used as a fuel for an internal combustion engine of an automobile or the like, has advantages such as being usually liquid and having a high energy density. It is thought that it can be used effectively for batteries. In addition, the infrastructure for such gasoline fractions is well developed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記ガ
ソリン留分はメタノール等に比較して、触媒のコーク劣
化あるいは触媒被毒などによりその改質が容易でなく、
また改質触媒の寿命も比較的短いという問題がある。本
発明は上記課題を解決するためになされたものである。
すなわち、本発明は、水素を効率よく製造することがで
き、改質触媒、燃料電池電極に対して悪影響を及ぼすこ
となく改質触媒等の劣化が少ない、自動車等輸送用など
に適した燃料電池用燃料油を提供することを目的とす
る。
However, the gasoline fraction is not easily reformed compared to methanol or the like due to catalyst coke deterioration or catalyst poisoning.
There is also a problem that the life of the reforming catalyst is relatively short. The present invention has been made to solve the above problems.
That is, the present invention provides a fuel cell that can efficiently produce hydrogen, has little deterioration of the reforming catalyst without adversely affecting the reforming catalyst and the fuel cell electrode, and is suitable for transportation of automobiles and the like. It is intended to provide a fuel oil for use.

【0004】[0004]

【課題を解決するための手段】本発明者らは上記課題に
鑑みて鋭意研究の結果、特定の組成・性状のガソリン留
分を上記燃料電池用燃料油として用いることにより本発
明の上記目的を達成しうることを見出した。本発明はか
かる知見に基づいて完成されたものである。すなわち、
本発明は、ナフテン分を20容量%以上含有することを
特徴とする燃料電池用燃料油に関するものであり、特
に、ナフテン分を20容量%以上含有する脱硫重質ナフ
サを主成分とする燃料電池用燃料油に関するものであ
る。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in view of the above problems, and as a result, have found that the above object of the present invention is achieved by using a gasoline fraction having a specific composition and properties as the fuel oil for the fuel cell. It has been found that it can be achieved. The present invention has been completed based on such findings. That is,
The present invention relates to a fuel oil for a fuel cell, characterized by containing a naphthene content of 20% by volume or more, and in particular, a fuel cell mainly containing desulfurized heavy naphtha containing a naphthene content of 20% by volume or more. It relates to fuel oil for use.

【0005】[0005]

【発明の実施の形態】以下に、本発明を更に詳細に説明
する。本発明は、ナフテン分を20容量%以上含有する
ことを特徴とする燃料電池用燃料油に関するものであ
り、特に、ナフテン分を20容量%以上含有する脱硫重
質ナフサからなる輸送用の燃料電池用燃料油に係るもの
である。ここで用いられる脱硫重質ナフサ(以下、DH
Nということがある)とは、C6 〜C10のノルマルパラ
フィン、イソパラフィン、ナフテン等から構成される石
油炭化水素留分をいう。このようなDHNは、通常、原
油を常圧蒸留装置で重質ナフサとして分留し、ナフサ脱
硫装置で脱硫するか、あるいは原油を常圧蒸留装置でフ
ルレンジナフサとして分留し、ナフサ脱硫装置で脱硫し
た後、重質ナフサを分留することにより得られる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The present invention relates to a fuel oil for a fuel cell, comprising a naphthene content of 20% by volume or more, and more particularly to a fuel cell for transportation comprising a desulfurized heavy naphtha containing a naphthene content of 20% by volume or more. Pertaining to fuel oil for industrial use. The desulfurized heavy naphtha used here (hereinafter referred to as DH
N) is a petroleum hydrocarbon fraction composed of C 6 -C 10 normal paraffins, isoparaffins, naphthenes and the like. Such DHN is usually obtained by fractionating crude oil as heavy naphtha using a normal-pressure distillation apparatus and desulfurizing it using a naphtha desulfurization apparatus, or fractionating crude oil using a normal-pressure distillation apparatus as full-range naphtha and using a naphtha desulfurization apparatus. It is obtained by fractionating heavy naphtha after desulfurization.

【0006】本発明の燃料油に用いられるDHNはナフ
テン分を20容量%以上含有するものであるが、ナフテ
ン分が20容量%より少ない場合は、本発明の効果、特
に、改質触媒のコーク劣化を抑制する効果が得られな
い。この点から、上記ナフテン分は30容量%以上、更
に40容量%以上であることが好ましい。このようなナ
フテン分を20容量%以上含有するDHNは、従来公知
の方法、例えば、常圧蒸留前の原油としてナフテン基原
油を用いることにより、または、DHN中のベンゼンの
水素化処理やより重質留分の水素化分解処理等の方法に
より得ることができる。また、本発明の燃料油に使用し
うる基材として、LPG、ナフサ等を熱分解して得られ
た留分のうち蒸留により得られたC5 〜C7 留分を水素
添加後、ベンゼン、トルエン、キシレンを抽出した残り
の留分が用いられる。これらは、ナフテン分を45〜6
5容量%含有するものである。
DHN used in the fuel oil of the present invention contains at least 20% by volume of a naphthene component. When the naphthene component is less than 20% by volume, the effect of the present invention, particularly, The effect of suppressing deterioration cannot be obtained. From this viewpoint, the naphthene content is preferably 30% by volume or more, and more preferably 40% by volume or more. DHN containing such a naphthene content of 20% by volume or more can be prepared by a conventionally known method, for example, by using a naphthenic base crude oil as a crude oil before atmospheric distillation, or by subjecting benzene in DHN to hydrogenation treatment or more heavy treatment. It can be obtained by a method such as hydrocracking of a solid fraction. Further, as a substrate which may be used in a fuel oil of the present invention, LPG, after hydrogenation of C 5 -C 7 fraction obtained by distillation of the fraction obtained was naphtha and pyrolysis, benzene, The remaining fraction obtained by extracting toluene and xylene is used. These have a naphthenic content of 45-6.
It contains 5% by volume.

【0007】本発明に用いられるDHNはパラフィン分
として、ノルマルパラフィン、イソパラフィンを含有す
るが、イソパラフィン/ノルマルパラフィンの比率が重
量比で1以上、更に1.5以上、特に2.5以上であること
が好ましい。上記比率がこの範囲内にある場合、改質触
媒等の劣化が少ない等本発明の特有の効果が得られやす
い。このようなイソパラフィンリッチのDHNは、DH
Nの異性化処理や分子ふるいによるノルマルパラフィン
の分離除去などにより得ることができる。
The DHN used in the present invention contains normal paraffin and isoparaffin as paraffin components, and the weight ratio of isoparaffin / normal paraffin is 1 or more, further 1.5 or more, especially 2.5 or more. Is preferred. When the above ratio is within this range, the effects unique to the present invention, such as little deterioration of the reforming catalyst, are likely to be obtained. Such isoparaffin-rich DHN is DH
It can be obtained by isomerization of N or separation and removal of normal paraffin by a molecular sieve.

【0008】本発明の燃料油は、その硫黄含有量が好ま
しくは1重量ppm以下、更に好ましくは0.5重量pp
m以下、特に好ましくは0.1重量ppm以下のものであ
る。硫黄含有量が上記範囲より多い場合は触媒の硫黄被
毒が起こり、改質触媒、部分酸化触媒の劣化などの問題
が生じることがある。本発明においては、上記のような
低硫黄含量の燃料油を得るため、DHNとして深度脱硫
重質ナフサを使用することができる。ここで、深度脱硫
重質ナフサとは、上記DHNのうちその硫黄含有量が0.
5ppm以下、更には0.1ppm以下となるように処理
したものをいう。上記深度脱硫重質ナフサは、例えば、
Co・Mo/アルミナ、Ni・W/アルミナ等のナフサ
脱硫装置で通常使用される触媒の存在下、1.0〜2.5M
Paの圧力下、温度250〜350℃、液空間速度(L
HSV)3〜10hr-1、水素/原料油50〜150m
3 /klの条件で原料油と水素を反応させることにより
得ることができる。
The fuel oil of the present invention preferably has a sulfur content of 1 ppm by weight or less, more preferably 0.5% by weight pp.
m, particularly preferably 0.1 ppm by weight or less. If the sulfur content is higher than the above range, sulfur poisoning of the catalyst may occur, and problems such as deterioration of the reforming catalyst and the partial oxidation catalyst may occur. In the present invention, in order to obtain a fuel oil having a low sulfur content as described above, deep-desulfurized heavy naphtha can be used as DHN. Here, the deep desulfurized heavy naphtha means that the sulfur content of the DHN is 0.
It refers to one that has been treated so as to have a concentration of 5 ppm or less, further 0.1 ppm or less. The deep desulfurization heavy naphtha, for example,
1.0-2.5M in the presence of a catalyst commonly used in naphtha desulfurization equipment such as Co.Mo/alumina, Ni.W / alumina
Under a pressure of Pa, a temperature of 250 to 350 ° C., a liquid hourly space velocity (L
HSV) 3-10 hr -1 , hydrogen / feed oil 50-150 m
It can be obtained by reacting a feed oil with hydrogen under the condition of 3 / kl.

【0009】本発明における深度脱硫重質ナフサは、上
記の脱硫処理を1回ないし複数回行って得られたDHN
に更に下記特定の触媒を用いた吸着脱硫を行うことによ
り得ることができる。すなわち、この吸着脱硫に用いる
ことができる触媒としては、例えば、活性炭、活性炭繊
維、シリカゲル、疎水性シリカ、ゼオライト、金属交換
ゼオライト、アルカリ/アルカリ土類金属の酸化物、水
酸化物、亜硫酸塩水和物などの化合物塩、または、P
b,Sn,Fe,Ni,Co,Mn,Cr,Cu,Zn
等の金属、その酸化物、これらの混合物、複合酸化物あ
るいはこれらをシリカ、アルミナ、シリカ−アルミナ、
チタニア、ジルコニア、酸化亜鉛、白土、珪藻土、粘土
などの担体に担持したもの、更に、これらにアルカリ/
アルカリ土類金属、Ce,La,Yなどの希土類金属な
どを担持したものを挙げることができる。また、Pt,
Pd,Rh,Ru等の貴金属を上記担体に担持したもの
も使用することができる。
[0009] The deep desulfurized heavy naphtha in the present invention is a DHN obtained by performing the desulfurization treatment once or more times.
Can further be obtained by performing adsorptive desulfurization using the following specific catalyst. That is, examples of the catalyst that can be used for the adsorptive desulfurization include activated carbon, activated carbon fiber, silica gel, hydrophobic silica, zeolite, metal-exchanged zeolite, alkali / alkaline earth metal oxide, hydroxide, and sulfite hydrate. Or a salt of a compound such as
b, Sn, Fe, Ni, Co, Mn, Cr, Cu, Zn
Such metals, oxides thereof, mixtures thereof, composite oxides or these are silica, alumina, silica-alumina,
Those supported on a carrier such as titania, zirconia, zinc oxide, terra alba, diatomaceous earth, and clay;
Examples thereof include those supporting an alkaline earth metal, a rare earth metal such as Ce, La, and Y. Also, Pt,
What carried noble metals, such as Pd, Rh, and Ru, on the above-mentioned carrier can also be used.

【0010】本発明において用いられるDHNは、その
炭素原子/水素原子比が0.55より小さいことが好まし
い。この値が小さい程水素の生成効率に優れ、また、改
質触媒、燃料電池電極に対して悪影響を及ぼす程度が少
なくなる。また、DHN中の芳香族分は10重量%以
下、更に8重量%以下であることが好ましい。芳香族分
が上記量を越える場合は水素の生成効率に劣る場合があ
る。更に、本発明の燃料電池用燃料油は、その蒸気圧が
0.098MPa以下であることが好ましい。蒸気圧が0.
098MPaを越える場合はタンク強度の増強が必要で
あったり、炭化水素の大気への放出が問題となり好まし
くない場合がある。従って、本発明においては、該蒸気
圧は0〜0.098MPaの範囲内にあることが更に好ま
しい。
DHN used in the present invention preferably has a carbon atom / hydrogen atom ratio of less than 0.55. The smaller this value is, the more excellent the hydrogen generation efficiency is, and the less adversely affects the reforming catalyst and the fuel cell electrode. The aromatic content in DHN is preferably 10% by weight or less, more preferably 8% by weight or less. When the aromatic content exceeds the above amount, the efficiency of hydrogen generation may be poor. Further, the fuel oil for a fuel cell of the present invention has a vapor pressure
It is preferably 0.098 MPa or less. The vapor pressure is 0.
When the pressure exceeds 098 MPa, the tank strength needs to be increased, or the release of hydrocarbons into the atmosphere becomes a problem, which may be undesirable. Therefore, in the present invention, the vapor pressure is more preferably in the range of 0 to 0.098 MPa.

【0011】本発明に係るDHNは、これにより製造さ
れる水素の純度が高く、水素分圧の低下が小さいなどの
特徴を有するため、燃料電池用の水素の製造に好適であ
る。特に、液体である点等から自動車等輸送用の燃料電
池に適している。DHNから水素を生成するには、先ず
DHNを必要に応じて脱硫する。脱硫法としては、通
常、水素化脱硫法が用いられ、その方法はCo−Mo/
アルミナあるいはNi−Mo/アルミナなどの水素化脱
硫触媒とZnOなどの硫化水素吸着剤を用い、常圧〜5
MPaの圧力下,温度200〜400℃の条件で行う。
次いで、前記必要に応じて脱硫したDHNに水蒸気改質
及び/又は部分酸化を行う。本発明によれば、水蒸気改
質触媒等への炭素析出がなく効率的に水素を製造できる
燃料油を得ることができる。
The DHN according to the present invention is suitable for producing hydrogen for fuel cells because it has characteristics such as high purity of hydrogen produced by the method and a small decrease in hydrogen partial pressure. In particular, it is suitable as a fuel cell for transporting automobiles and the like because it is liquid. In order to generate hydrogen from DHN, DHN is first desulfurized as required. As the desulfurization method, usually, a hydrodesulfurization method is used, and the method is Co-Mo /
Using a hydrodesulfurization catalyst such as alumina or Ni-Mo / alumina and a hydrogen sulfide adsorbent such as ZnO,
This is carried out under a pressure of MPa and a temperature of 200 to 400 ° C.
Next, the desulfurized DHN is subjected to steam reforming and / or partial oxidation as required. ADVANTAGE OF THE INVENTION According to this invention, the fuel oil which can produce hydrogen efficiently without carbon deposition on a steam reforming catalyst etc. can be obtained.

【0012】水蒸気改質の方法には特に制限はないが、
通常以下のような方法で行われる。まず、この水素製造
方法に用いる水蒸気改質触媒としては、特に制限はない
が、その担持金属として、Ni、ジルコニウムあるいは
ルテニウム(Ru),ロジウム(Rh),白金(Pt)
などの貴金属を用いたものが挙げられる。これらの担持
金属は単独でもよいし、2種以上を組合わせて用いても
よい。上記担持金属の中でも、Ruが特に望ましく、水
蒸気改質反応中の炭素析出を抑制する効果が大きい。こ
のRuの担持量については、担体基準で0.05〜20
重量%、さらには、0.05〜15重量%が好ましい。
担持量が0.05重量%未満では、水蒸気改質反応の活
性が極度に低下する場合があり、20重量%を越えても
活性の顕著な増加は得られ難い。
Although there is no particular limitation on the method of steam reforming,
Usually, the following method is used. First, the steam reforming catalyst used in this hydrogen production method is not particularly limited, but as the supported metal, Ni, zirconium or ruthenium (Ru), rhodium (Rh), platinum (Pt)
And those using a noble metal such as These supported metals may be used alone or in combination of two or more. Among the supported metals, Ru is particularly desirable, and has a large effect of suppressing carbon deposition during the steam reforming reaction. The supported amount of Ru is 0.05 to 20 based on the carrier.
% By weight, more preferably 0.05 to 15% by weight.
If the supported amount is less than 0.05% by weight, the activity of the steam reforming reaction may be extremely reduced, and if it exceeds 20% by weight, a remarkable increase in the activity is hardly obtained.

【0013】また、担持金属の組合わせの具体例として
は、Ruとジルコニウムとを担持したものが挙げられ
る。Ruとジルコニウムは同時に担持してもよく、別々
に担持してもよい。ジルコニウムの含量は、ZrO2
換算して、担体基準で0.5〜20重量%,さらには、
0.5〜15重量%が好ましい。この種の担持金属の場
合、さらにコバルトおよび/またはマグネシウムを添加
したものが好適なものとして挙げられる。ここでコバル
トの含有量は、コバルト/ルテニウムの原子比で、0.
01〜30,さらには、0.1〜30が好ましく、マグ
ネシウムの含有量は、マグネシア(MgO)換算で0.
5〜20重量%,さらには0.5〜15重量%が好適で
ある。一方、水蒸気改質に使用する触媒の担体として
は、無機酸化物が用いられ、具体的には、アルミナ、シ
リカ、ジルコニア、マグネシア及びそれらの混合物が挙
げられる。これらの中でもアルミナとジルコニアが特に
好ましい。
Further, as a specific example of the combination of the supported metals, a combination of supporting Ru and zirconium may be mentioned. Ru and zirconium may be supported simultaneously or separately. The content of zirconium is 0.5 to 20% by weight, based on the carrier, in terms of ZrO 2 ,
0.5 to 15% by weight is preferred. In the case of this type of supported metal, a metal further added with cobalt and / or magnesium is mentioned as a preferable one. Here, the content of cobalt is expressed as an atomic ratio of cobalt / ruthenium of 0.1.
The content of magnesium is preferably from 0.1 to 30, more preferably from 0.1 to 30, and the content of magnesium is 0.1 in terms of magnesia (MgO).
The content is preferably 5 to 20% by weight, more preferably 0.5 to 15% by weight. On the other hand, as a carrier of the catalyst used for steam reforming, an inorganic oxide is used, and specific examples thereof include alumina, silica, zirconia, magnesia, and a mixture thereof. Of these, alumina and zirconia are particularly preferred.

【0014】水蒸気改質用触媒の好ましい態様の一つと
して、Ruをジルコニアに担持した触媒がある。このジ
ルコニアは、単体のジルコニア(ZrO2 )でも良い
し、マグネシアのような安定化成分を含む安定化ジルコ
ニアでも良い。安定化ジルコニアとしては、マグネシ
ア、イットリア、セリア等を含むものが好適である。水
蒸気改質用触媒の別の好ましい態様の一つとしては、R
uとジルコニウム、又はRuとジルコニウムの他にさら
にコバルトおよび/またはマグネシウムとをアルミナ担
体に担持した触媒を挙げることができる。アルミナとし
ては特に耐熱性と機械的強度に優れるα−アルミナが好
ましい。次に、水素の製造においては、水蒸気(S)と
DHNに由来する炭素(C)との比S/C(モル比)が
2〜5、さらには2〜4の状態で水蒸気改質を行う方法
が好ましい。S/C(モル比)が5以上の高い状態で水
蒸気改質を行うと過剰の水蒸気を作る必要があり、熱ロ
スが大きく、水素製造の効率が低下する場合がある。ま
た、S/Cが2を下回ると水素の発生量が低下してしま
うことがある。
One of the preferred embodiments of the steam reforming catalyst is a catalyst in which Ru is supported on zirconia. This zirconia may be simple zirconia (ZrO 2 ) or stabilized zirconia containing a stabilizing component such as magnesia. As the stabilized zirconia, those containing magnesia, yttria, ceria, and the like are preferable. As another preferable embodiment of the steam reforming catalyst, R
Examples of the catalyst include, in addition to u and zirconium, or Ru and zirconium, a catalyst in which cobalt and / or magnesium are further supported on an alumina carrier. As alumina, α-alumina which is particularly excellent in heat resistance and mechanical strength is preferable. Next, in the production of hydrogen, steam reforming is performed in a state where the ratio S / C (molar ratio) between steam (S) and carbon (C) derived from DHN is 2 to 5, and further 2 to 4. The method is preferred. If steam reforming is performed in a high S / C (molar ratio) of 5 or more, excess steam needs to be produced, resulting in large heat loss and reduced hydrogen production efficiency. Further, if the S / C is less than 2, the amount of generated hydrogen may decrease.

【0015】さらに水素の製造においては、水蒸気改質
触媒層の入口温度を630℃以下に保って水蒸気改質を
行う方法が好ましい。水蒸気改質触媒層入口温度は、酸
素添加により上昇する傾向にあるので、これをコントロ
ールする必要がある。入口温度が630℃を超えると、
原料炭化水素の熱分解が促進され、生成したラジカル経
由で触媒あるいは反応管壁に炭素が析出し運転が困難に
なる場合があるためである。なお、触媒層出口温度は、
特に制限はないが、好ましくは650〜800℃で行
う。触媒層出口温度が650℃未満では水素の生成量が
充分でなく、800℃を越える温度で反応するにはリア
クターを特に耐熱性材料にする必要がある場合があり、
経済性の点で好ましくないからである。
Further, in the production of hydrogen, it is preferable to carry out steam reforming while maintaining the inlet temperature of the steam reforming catalyst layer at 630 ° C. or lower. Since the inlet temperature of the steam reforming catalyst layer tends to increase due to the addition of oxygen, it is necessary to control the temperature. If the inlet temperature exceeds 630 ° C,
This is because thermal decomposition of the raw material hydrocarbon is promoted, and carbon is deposited on the catalyst or the reaction tube wall via generated radicals, which may make operation difficult. The catalyst layer outlet temperature is
Although not particularly limited, the reaction is preferably performed at 650 to 800 ° C. If the outlet temperature of the catalyst layer is lower than 650 ° C., the amount of generated hydrogen is not sufficient, and in order to react at a temperature exceeding 800 ° C., the reactor may need to be made of a heat-resistant material in particular.
This is because it is not economically preferable.

【0016】水素の製造においては、反応圧力は常圧〜
3MPa,さらには常圧〜1MPaであることが好まし
い。また、DHNの流量については、LHSVで0.1
〜100h-1である。なお、水素の製造においては、上
記DHNは上記水蒸気改質と部分酸化を組み合わせて水
素を製造する場合に使用しても効率的に水素を製造でき
る。部分酸化反応は、好ましくはルテニウムなどの貴金
属やニッケルなどを耐熱性酸化物に担持した触媒下、反
応圧力が常圧〜5MPa,反応温度400〜1,100
℃、酸素/炭素比0.2〜0.8,LHSV0.1〜1
00h-1で行われる。また、水蒸気添加する場合は、S
/C比0.4〜4で行う。上記水素の製造方法において
は、上記水蒸気改質により得られるCOが水素生成に悪
影響を及ぼすため、これを反応によりCO2 としてCO
を除くことが好ましい。
In the production of hydrogen, the reaction pressure is from normal pressure to normal pressure.
The pressure is preferably 3 MPa, more preferably normal pressure to 1 MPa. The flow rate of DHN was 0.1 LHSV.
100100 h −1 . In the production of hydrogen, DHN can efficiently produce hydrogen even when used in producing hydrogen by combining the steam reforming and partial oxidation. The partial oxidation reaction is preferably performed under a catalyst in which a noble metal such as ruthenium or nickel is supported on a heat-resistant oxide, at a reaction pressure of normal pressure to 5 MPa, a reaction temperature of 400 to 1,100.
° C, oxygen / carbon ratio 0.2-0.8, LHSV 0.1-1
00h -1 . When steam is added, S
Performed at a / C ratio of 0.4 to 4. In the production method of the hydrogen, since the CO obtained by the steam reforming adversely affect the hydrogen production, CO this as CO 2 by reaction
Is preferably removed.

【0017】[0017]

【実施例】次に、本発明を実施例によりさらに具体的に
説明するが、本発明はこれらの例によってなんら限定さ
れるものではない。 実施例1 高ナフテン系原油を、理論段15段のバッチ式蒸留器で
蒸留処理することにより得られたDHN(組成を第1表
に示す)を用いて以下に示すように水素製造実験を行
い、反応後の触媒についてコーキング試験を行った。結
果を第1表に示す。
EXAMPLES Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. Example 1 A hydrogen production experiment was carried out as follows using DHN (composition shown in Table 1) obtained by subjecting high naphthenic crude oil to distillation processing using a batch type still having 15 theoretical stages. A coking test was performed on the catalyst after the reaction. The results are shown in Table 1.

【0018】水素製造実験 2基の固定床流通式反応器を連結し、下記条件にて1段
目で脱硫を行い、2段目で水蒸気改質を行った。 (1段目) 脱硫 触媒:Co−Mo(前段)/ZnO(後段) 条件:常圧、温度330℃、LHSV=1.3h-1 (2段目) 改質 触媒:α−アルミナ粉末に水20重量%を加え、ニーダーで混合・圧縮 成形し直径5mm、長さ5mmの円柱状成形体とした。200℃ で3時間乾燥後、1280℃で26時間焼成しアルミナ担体を得 た。一方、ジルコニウムオキシ塩化物(ZrO(OH)Cl)の 水溶液(ZrO2 換算で2.5g)に、3塩化ルテニウム(Ru Cl3 /nH2 O)(Ru38%含有)0.66g、硝酸コバル ト(Co(NO3 )・36H2 O)2.47g及び硝酸マグネシ ウ(Mg(NO3 )・26H2 O)6.36gを加え、溶解する まで攪拌した。溶液の総量は10ccであった。この溶液を上記 アルミナ担体50gに含浸(ポアフィリング法)した後、120 ℃で5時間乾燥し、500℃で2時間焼成し、更に16〜32メ ッシュに粒径調整した。この触媒は、担体基準でRuを0.5重 量%,Zrをジルコニア換算で5重量%,Coを1.0重量%, Mgをマグネシア換算で2重量%有する。 条件:水蒸気/炭素比1.5、原料油のLHSV=2.5h-1、常圧、 触媒層入口温度500℃、触媒層出口温度700℃ 上記反応を100時間連続して行った後に二段目の触媒
を抜き出し、触媒上の炭素析出率を下記のようにして測
定・算出した。 炭素析出率(%)=炭素析出した部分の長さ/全触媒の
長さ
Hydrogen Production Experiment Two fixed bed flow reactors were connected, desulfurization was performed in the first stage under the following conditions, and steam reforming was performed in the second stage. (First stage) Desulfurization Catalyst: Co-Mo (first stage) / ZnO (second stage) Conditions: normal pressure, temperature 330 ° C., LHSV = 1.3 h −1 (second stage) Reforming catalyst: α-alumina powder with water 20% by weight was added, and the mixture was mixed and compression-molded with a kneader to obtain a cylindrical molded body having a diameter of 5 mm and a length of 5 mm. After drying at 200 ° C. for 3 hours, it was calcined at 1280 ° C. for 26 hours to obtain an alumina carrier. On the other hand, in an aqueous solution of zirconium oxychloride (ZrO (OH) Cl) (2.5 g in terms of ZrO 2 ), 0.66 g of ruthenium trichloride (RuCl 3 / nH 2 O) (containing 38% of Ru), cobalt nitrate 2.47 g of (Co (NO 3 ) · 36H 2 O) and 6.36 g of magnesium nitrate (Mg (NO 3 ) · 26H 2 O) were added and stirred until dissolved. The total amount of the solution was 10 cc. This solution was impregnated with 50 g of the above alumina carrier (pore filling method), dried at 120 ° C. for 5 hours, calcined at 500 ° C. for 2 hours, and further adjusted to a particle size of 16 to 32 mesh. This catalyst has 0.5% by weight of Ru, 5% by weight of Zr in terms of zirconia, 1.0% by weight of Co, and 2% by weight of Mg in terms of magnesia on a carrier basis. Conditions: steam / carbon ratio 1.5, LHSV of feed oil = 2.5 h -1 , normal pressure, catalyst layer inlet temperature 500 ° C., catalyst layer outlet temperature 700 ° C. The eye catalyst was extracted and the carbon deposition rate on the catalyst was measured and calculated as follows. Carbon deposition rate (%) = length of carbon deposited portion / length of total catalyst

【0019】比較例1 低ナフテン系原油を、理論段15段のバッチ式蒸留器で
蒸留処理することにより得られたDHN(組成を第1表
に示す)について実施例1と同様にして水素製造実験及
びコーキング試験を行った。結果を第1表に示す。
Comparative Example 1 Hydrogen production of DHN (composition shown in Table 1) obtained by distilling a low naphthenic crude oil with a batch type still having 15 theoretical stages in the same manner as in Example 1 Experiments and coking tests were performed. The results are shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】以上詳細に説明したように、本発明は、
ナフテン分を20容量%以上含有する燃料油、特に、ナ
フテン分が20容量%以上である脱硫重質ナフサからな
る燃料油を用いることにより、燃料電池に用いる水素を
効率よく製造することができ、改質触媒、燃料電池電極
に対して悪影響を及ぼすことなく改質触媒等の劣化が少
ない、自動車用等の輸送用などに適した燃料電池用燃料
油を提供することができる。
As described in detail above, the present invention provides
By using a fuel oil containing a naphthene content of 20% by volume or more, particularly a fuel oil composed of desulfurized heavy naphtha having a naphthene content of 20% by volume or more, hydrogen used for a fuel cell can be efficiently produced, It is possible to provide a fuel oil for a fuel cell suitable for transportation of automobiles and the like, which causes little deterioration of the reforming catalyst without adversely affecting the reforming catalyst and the fuel cell electrode.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ナフテン分を20容量%以上含有する燃
料電池用燃料油。
1. A fuel oil for a fuel cell containing a naphthene content of 20% by volume or more.
【請求項2】 ナフテン分を30容量%以上含有する燃
料電池用燃料油。
2. A fuel cell fuel oil containing a naphthene content of 30% by volume or more.
【請求項3】 ナフテン分を20容量%以上含有する脱
硫重質ナフサを主成分とする燃料電池用燃料油。
3. A fuel oil for a fuel cell mainly comprising desulfurized heavy naphtha containing a naphthene content of 20% by volume or more.
【請求項4】 ナフテン分を30容量%以上含有する請
求項3記載の燃料電池用燃料油。
4. The fuel oil for a fuel cell according to claim 3, which contains a naphthene component in an amount of 30% by volume or more.
【請求項5】 硫黄分を0.5重量ppm以下含有する請
求項1〜4のいずれかに記載の燃料電池用燃料油。
5. The fuel oil for a fuel cell according to claim 1, which contains a sulfur content of 0.5 ppm by weight or less.
【請求項6】 硫黄分を0.1重量ppm以下含有する請
求項1〜5のいずれかに記載の燃料電池用燃料油。
6. The fuel oil for a fuel cell according to claim 1, which contains a sulfur content of 0.1 ppm by weight or less.
JP2000077948A 2000-01-31 2000-03-21 Fuel oil for fuel cell Pending JP2001262164A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000077948A JP2001262164A (en) 2000-03-21 2000-03-21 Fuel oil for fuel cell
PCT/JP2001/000605 WO2001057162A1 (en) 2000-01-31 2001-01-30 Fuel oil
AU2001228855A AU2001228855A1 (en) 2000-01-31 2001-01-30 Fuel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000077948A JP2001262164A (en) 2000-03-21 2000-03-21 Fuel oil for fuel cell

Publications (1)

Publication Number Publication Date
JP2001262164A true JP2001262164A (en) 2001-09-26

Family

ID=18595426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000077948A Pending JP2001262164A (en) 2000-01-31 2000-03-21 Fuel oil for fuel cell

Country Status (1)

Country Link
JP (1) JP2001262164A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160904A (en) * 2000-09-13 2002-06-04 Toyota Motor Corp Fuel reforming system
JP2003103176A (en) * 2001-09-28 2003-04-08 Nippon Oil Corp Desulfurization catalyst for hydrocarbon, desulfurization method and fuel cell system
JP2004319401A (en) * 2003-04-18 2004-11-11 Nippon Oil Corp Fuel for fuel cell system, its manufacturing method, and fuel cell system
JP2004319402A (en) * 2003-04-18 2004-11-11 Nippon Oil Corp Fuel for fuel cell system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60501862A (en) * 1983-07-15 1985-10-31 ザ ブロ−クン ヒル プロプライエタリイ カンパニ− リミテツド Process for producing fuels, especially jet and diesel fuels, and their compositions
JPS6340702A (en) * 1986-08-01 1988-02-22 Nippon Oil Co Ltd Production of hydrogen for fuel cell
JPH02113092A (en) * 1988-10-20 1990-04-25 Nippon Oil Co Ltd High-performance kerosine
JPH0680972A (en) * 1992-07-17 1994-03-22 Sekiyu Sangyo Kasseika Center Depth desulfurization of light-to-middle oil
JPH0860166A (en) * 1994-07-26 1996-03-05 Elf Antar Fr Fuel composition containing at least one fulvene derivative and its use
JPH08196907A (en) * 1995-01-27 1996-08-06 Idemitsu Kosan Co Ltd Production of ruthenium catalyst and steam reforming method for hydrocarbon employing the catalyst
JPH1121568A (en) * 1997-06-30 1999-01-26 Idemitsu Kosan Co Ltd Diesel fuel oil composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60501862A (en) * 1983-07-15 1985-10-31 ザ ブロ−クン ヒル プロプライエタリイ カンパニ− リミテツド Process for producing fuels, especially jet and diesel fuels, and their compositions
JPS6340702A (en) * 1986-08-01 1988-02-22 Nippon Oil Co Ltd Production of hydrogen for fuel cell
JPH02113092A (en) * 1988-10-20 1990-04-25 Nippon Oil Co Ltd High-performance kerosine
JPH0680972A (en) * 1992-07-17 1994-03-22 Sekiyu Sangyo Kasseika Center Depth desulfurization of light-to-middle oil
JPH0860166A (en) * 1994-07-26 1996-03-05 Elf Antar Fr Fuel composition containing at least one fulvene derivative and its use
JPH08196907A (en) * 1995-01-27 1996-08-06 Idemitsu Kosan Co Ltd Production of ruthenium catalyst and steam reforming method for hydrocarbon employing the catalyst
JPH1121568A (en) * 1997-06-30 1999-01-26 Idemitsu Kosan Co Ltd Diesel fuel oil composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6010023480, ペトロテック, 1990, Vol.13,No.12, p.969−973 *
JPN6010023481, 石油学会誌, 1987, Vol.30,No.6, p.397−403 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160904A (en) * 2000-09-13 2002-06-04 Toyota Motor Corp Fuel reforming system
JP2003103176A (en) * 2001-09-28 2003-04-08 Nippon Oil Corp Desulfurization catalyst for hydrocarbon, desulfurization method and fuel cell system
JP4559676B2 (en) * 2001-09-28 2010-10-13 Jx日鉱日石エネルギー株式会社 Hydrocarbon desulfurization catalyst, desulfurization method, and fuel cell system
JP2004319401A (en) * 2003-04-18 2004-11-11 Nippon Oil Corp Fuel for fuel cell system, its manufacturing method, and fuel cell system
JP2004319402A (en) * 2003-04-18 2004-11-11 Nippon Oil Corp Fuel for fuel cell system
JP4548765B2 (en) * 2003-04-18 2010-09-22 Jx日鉱日石エネルギー株式会社 Fuel for fuel cell system
JP4684539B2 (en) * 2003-04-18 2011-05-18 Jx日鉱日石エネルギー株式会社 Fuel for fuel cell system, method for producing the same, and fuel cell system

Similar Documents

Publication Publication Date Title
CA2601124C (en) Desulfurizing agent and method of desulfurization with the same
EP1270069B1 (en) Use of a desulfurizing agent
US20030023120A1 (en) Fuel oil for fuel cell, fuel oil composition, and automobile driving system
WO2001070914A1 (en) Fuel oil for use both in internal combustion in engine and fuel cell
JP2001279274A (en) Fuel oil for fuel cell, desulfurization method and method for producing hydrogen
JP5027971B2 (en) Fuel oil composition
JP2008291146A (en) Porous desulfurizing agent and method for desulfurizing hydrocarbon oil using the same
JP4749589B2 (en) Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method
JP2001279257A (en) Desulfurizing agent, method for desulfurization and method for producing hydrogen for fuel battery
JP2001262164A (en) Fuel oil for fuel cell
JP4490533B2 (en) Fuel oil for fuel cells
JP4388665B2 (en) Ni-Cu desulfurizing agent and method for producing hydrogen for fuel cell
JP4521172B2 (en) Desulfurization agent and desulfurization method using the same
JP4580070B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP2004075778A (en) Desulfurizing agent for hydrocarbon and method for producing hydrogen for fuel cell
JP4531939B2 (en) Method for producing nickel-copper desulfurization agent
JP4426039B2 (en) Fuel oil for fuel cell and method for producing the same
JP4418063B2 (en) Method for producing hydrogen
JP2001279259A (en) Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery
WO2010035710A1 (en) Desulfurizing agent, method for producing same, and method for desulfurizing hydrocarbon oil
JP5372338B2 (en) Porous desulfurization agent and hydrocarbon oil desulfurization method using the same
JP2001278602A (en) Desulfurization agent, method of desulfurization and method of manufacturing hydrogen for fuel cell
JP4580071B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP2001262161A (en) Fuel oil for fuel cell
JP2010001480A (en) Desulfurizing agent and desulfurization method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005