JP2001262161A - Fuel oil for fuel cell - Google Patents
Fuel oil for fuel cellInfo
- Publication number
- JP2001262161A JP2001262161A JP2000071430A JP2000071430A JP2001262161A JP 2001262161 A JP2001262161 A JP 2001262161A JP 2000071430 A JP2000071430 A JP 2000071430A JP 2000071430 A JP2000071430 A JP 2000071430A JP 2001262161 A JP2001262161 A JP 2001262161A
- Authority
- JP
- Japan
- Prior art keywords
- fuel oil
- fuel
- light naphtha
- fuel cell
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Liquid Carbonaceous Fuels (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、燃料電池に使用す
る水素を製造するための燃料油に関し、詳しくは、ガソ
リン留分等の炭化水素からなる輸送用の燃料電池用燃料
油に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel oil for producing hydrogen used in a fuel cell, and more particularly to a fuel oil for transporting a fuel cell comprising a hydrocarbon such as a gasoline fraction.
【0002】[0002]
【従来の技術】一般に、燃料電池の燃料として水素が用
いられるが、このような水素としては、水素ガスをその
まま用いるもの、メタノールなどを改質あるいは分解し
て得られる水素を用いるもの、あるいは常温、常圧下で
ガス状であるメタンを主成分とする都市ガスやプロパン
を主成分とするLPGなどから得られる水素を用いるも
の等が提案されている。しかしながら、水素ガスをその
まま使用する場合はそれ自体気体であることからその取
り扱いが困難となり、また、メタノールの場合はエネル
ギー密度が低いこと、高価であること、インフラが整備
されていないなどの問題があり、更に都市ガスやLPG
はその利用が地域的に限定される点、また取り扱いが困
難であるなどの問題があり、特に、自動車用等輸送用の
燃料電池に用いる場合は実用上大きな課題がある。近
年、エネルギー効率が高く、環境負荷の小さい燃料電池
を動力源とした燃料電池車が注目されてきており、これ
に使用する燃料電池の開発が求められている。一方で、
自動車等の内燃機関用の燃料として従来使用されてきた
ガソリンあるいはこれを構成する炭化水素留分は、通常
液体でありかつエネルギー密度が高い等の利点を有して
おり、燃料電池に有効に利用しうると考えられている。
また、このようなガソリン留分に関してはインフラも十
分に整備されている。2. Description of the Related Art In general, hydrogen is used as fuel for fuel cells. Examples of such hydrogen include those using hydrogen gas as it is, those using hydrogen obtained by reforming or decomposing methanol or the like, and those using room temperature. There have been proposed, for example, those using hydrogen obtained from city gas containing methane as a main component and LPG containing propane as a main component, which is gaseous at normal pressure. However, if hydrogen gas is used as it is, it is difficult to handle it because it is a gas itself, and methanol has problems such as low energy density, high cost, and lack of infrastructure. Yes, plus city gas and LPG
However, there is a problem in that its use is limited in a region, and it is difficult to handle. Especially, when it is used for a fuel cell for transportation such as an automobile, there is a serious problem in practice. 2. Description of the Related Art In recent years, fuel cell vehicles powered by fuel cells having high energy efficiency and low environmental load have attracted attention, and the development of fuel cells used for these vehicles has been demanded. On the other hand,
Gasoline or a hydrocarbon fraction constituting it, which has been conventionally used as a fuel for internal combustion engines of automobiles and the like, is usually liquid and has advantages such as high energy density, and is effectively used for fuel cells. It is considered possible.
In addition, the infrastructure for such gasoline fractions is well developed.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記ガ
ソリン留分はメタノール等に比較して、触媒のコーク劣
化あるいは触媒被毒などによりその改質が容易でなく、
また改質触媒の寿命も比較的短いという問題がある。本
発明は上記課題を解決するためになされたものである。
すなわち、本発明は、水素を効率よく製造することがで
き、改質触媒、燃料電池電極に対して悪影響を及ぼすこ
となく改質触媒等の劣化が少ない、自動車等輸送用に適
した燃料電池用燃料油を提供することを目的とする。However, the gasoline fraction is not easily reformed compared to methanol or the like due to catalyst coke deterioration or catalyst poisoning.
There is also a problem that the life of the reforming catalyst is relatively short. The present invention has been made to solve the above problems.
In other words, the present invention is directed to a fuel cell suitable for transportation of automobiles and the like, which can efficiently produce hydrogen and has little deterioration of the reforming catalyst without adversely affecting the reforming catalyst and the fuel cell electrode. It aims to provide fuel oil.
【0004】[0004]
【課題を解決するための手段】本発明者らは上記課題に
鑑みて鋭意研究の結果、特定の組成・性状のガソリン留
分を上記燃料電池用燃料油として用いることにより本発
明の上記目的を達成しうることを見出した。本発明はか
かる知見に基づいて完成されたものである。すなわち、
本発明は、(1)深度脱硫軽質ナフサを含有する燃料電
池用燃料油、(2)上記(1)記載の燃料電池用燃料油
から、脱硫処理を行うことなく水素を製造する水素の製
造方法、及び(3)上記(1)記載の燃料電池用燃料油
を用いる、脱硫器を有しない水素製造用改質装置、に係
るものである。Means for Solving the Problems The inventors of the present invention have conducted intensive studies in view of the above problems, and as a result, have found that the above object of the present invention is achieved by using a gasoline fraction having a specific composition and properties as the fuel oil for the fuel cell. It has been found that it can be achieved. The present invention has been completed based on such findings. That is,
The present invention provides a method for producing hydrogen from (1) a fuel oil for fuel cells containing deep desulfurized light naphtha, and (2) hydrogen from the fuel oil for fuel cells described in (1) above without performing desulfurization treatment. And (3) a reformer for hydrogen production without using a desulfurizer, which uses the fuel oil for a fuel cell according to the above (1).
【0005】[0005]
【発明の実施の形態】以下に、本発明を更に詳細に説明
する。本発明は、深度脱硫軽質ナフサを含有する燃料電
池用燃料油に係るものである。ここで「脱硫軽質ナフ
サ」とは、C4 〜C7 のノルマルパラフィン、イソパラ
フィン、ナフテン等から構成され、通常、原油を常圧蒸
留装置でライトナフサとして分留し、ナフサ脱硫装置で
脱硫するか、あるいは原油を常圧蒸留装置でフルレンジ
ナフサとして分留し、ナフサ脱硫装置で脱硫した後、ラ
イトナフサを分留することにより得られるものである。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The present invention relates to a fuel oil for a fuel cell, which contains lightly-desulfurized light naphtha. Here, the "desulfurized light naphtha" is either normal paraffins C 4 -C 7, isoparaffins, is composed of naphthene, usually fractionated as light naphtha crude oil in atmospheric distillation unit, desulfurization in naphtha desulfurization apparatus Alternatively, the crude oil is obtained by fractionating crude oil as full-range naphtha with a normal-pressure distillation apparatus, desulfurizing the crude oil with a naphtha desulfurization apparatus, and then fractionating light naphtha.
【0006】本発明において「深度脱硫軽質ナフサ」と
は、上記脱硫軽質ナフサを、その硫黄含有量が0.5重量
ppm以下、好ましくは0.1重量ppm以下、更に好ま
しくは0.05重量ppm以下、特に好ましくは0.02重
量ppm以下となるようにさらに処理したもの、または
ナフサの脱硫を通常の脱硫処理よりも厳しい条件下で脱
硫したナフサをいう。硫黄含有量が上記値より多い場合
は改質触媒の硫黄被毒が起こり、改質触媒、部分酸化触
媒の劣化などの問題が生じ好ましくない。上記深度脱硫
軽質ナフサは、例えば、Co・Mo/アルミナ、Ni・
W/アルミナ等のナフサ脱硫装置で通常使用される触媒
の存在下、1.0〜2.5MPaの圧力下、温度250〜3
50℃、液空間速度(LHSV)3〜10hr-1、水素
/原料油50〜150m3 /klの条件で原料油と水素
を反応させることにより得ることができる。In the present invention, "depth-desulfurized light naphtha" refers to the above desulfurized light naphtha having a sulfur content of 0.5 ppm by weight or less, preferably 0.1 ppm by weight or less, more preferably 0.05 ppm by weight. In the following, it refers to a naphtha that has been further treated so as to have a concentration of preferably 0.02 ppm by weight or less, or a desulfurized naphtha which is desulfurized under more severe conditions than a normal desulfurization treatment. If the sulfur content is larger than the above value, the reforming catalyst is poisoned with sulfur, which causes problems such as deterioration of the reforming catalyst and the partial oxidation catalyst, which is not preferable. The deep desulfurized light naphtha is, for example, Co.Mo/alumina, Ni.
W / Alumina, etc., in the presence of a catalyst commonly used in naphtha desulfurization equipment, under a pressure of 1.0 to 2.5 MPa, at a temperature of 250 to 3
It can be obtained by reacting a raw oil with hydrogen under the conditions of 50 ° C., a liquid hourly space velocity (LHSV) of 3 to 10 hr −1 , and hydrogen / raw oil of 50 to 150 m 3 / kl.
【0007】本発明における深度脱硫軽質ナフサは、例
えば、上記方法により得られた脱硫軽質ナフサを、上記
脱硫方法の範囲内においてこれを再度あるいは複数回繰
り返し行うことにより調製することができる。更に、本
発明の深度脱硫軽質ナフサは、上記1回ないし複数回の
脱硫処理により得られた脱硫軽質ナフサに更に下記特定
の触媒を用いた吸着脱硫を行うことにより得ることがで
きる。すなわち、この吸着脱硫に用いることができる触
媒としては、例えば、活性炭、活性炭繊維、シリカゲ
ル、疎水性シリカ、ゼオライト、金属交換ゼオライト、
アルカリ/アルカリ土類金属の酸化物、水酸化物、亜硫
酸塩水和物などの化合物塩、または、Pb,Sn,F
e,Ni,Co,Mn,Cr,Cu,Zn等の金属、そ
の酸化物、これらの混合物、複合酸化物あるいはこれら
をシリカ、アルミナ、シリカ−アルミナ、チタニア、ジ
ルコニア、酸化亜鉛、白土、珪藻土、粘土などの担体に
担持したもの、更に、これらにアルカリ/アルカリ土類
金属、Ce,La,Yなどの希土類金属などを担持した
ものを挙げることができる。また、Pt,Pd,Rh,
Ru等の貴金属を上記担体に担持したものも使用するこ
とができる。[0007] The deep desulfurized light naphtha in the present invention can be prepared, for example, by repeating the desulfurized light naphtha obtained by the above method again or a plurality of times within the range of the above desulfurization method. Further, the deep desulfurized light naphtha of the present invention can be obtained by further subjecting the desulfurized light naphtha obtained by the above one or more desulfurization treatments to adsorption desulfurization using the following specific catalyst. That is, examples of the catalyst that can be used for the adsorptive desulfurization include activated carbon, activated carbon fiber, silica gel, hydrophobic silica, zeolite, metal-exchanged zeolite,
Compound salts such as alkali / alkaline earth metal oxides, hydroxides and sulfite hydrates, or Pb, Sn, F
e, metals such as Ni, Co, Mn, Cr, Cu, Zn, oxides thereof, mixtures thereof, composite oxides or these are silica, alumina, silica-alumina, titania, zirconia, zinc oxide, clay, diatomaceous earth; Examples thereof include those supported on a carrier such as clay, and those further supported thereon, such as alkali / alkaline earth metals and rare earth metals such as Ce, La, and Y. Also, Pt, Pd, Rh,
What carried noble metal, such as Ru, on the said support can also be used.
【0008】ここで、上記Pb,Sn,Fe,Ni,C
o,Cu等の金属あるいはPt,Pd,Rh,Ru等の
貴金属としては、予め還元処理したものを使用すること
が好ましい。また、上記吸着脱硫に用いることのできる
触媒としては、Pb,Sn,Fe,Ni,Co,Mn,
Cr,Cu,Znを単独あるいは組み合わせて担体に担
持したものが好ましく挙げられる。また、これらにアル
カリ/アルカリ土類金属、Ce,La,Yなどの希土類
金属を添加したものも好ましく使用することができる。
これらの金属としては、予め還元処理したものを用いる
ことが好ましく、また、炭酸ガス等で処理し安定化させ
たものを使用することもできる。本発明においては、深
度脱硫軽質ナフサに到達しない脱硫軽質ナフサ(例え
ば、硫黄含有量が0.5重量ppmを超えるもの)に、上
記種々の触媒による吸着脱硫を行って、深度脱硫軽質ナ
フサを得ることも一つの好ましい態様である。Here, the above Pb, Sn, Fe, Ni, C
As a metal such as o and Cu or a noble metal such as Pt, Pd, Rh, and Ru, it is preferable to use a metal that has been subjected to a reduction treatment in advance. Examples of the catalyst that can be used for the above-mentioned adsorptive desulfurization include Pb, Sn, Fe, Ni, Co, Mn,
Preferably, Cr, Cu, Zn are used alone or in combination on a carrier. Further, those obtained by adding a rare earth metal such as an alkali / alkaline earth metal and Ce, La, Y to these can also be preferably used.
As these metals, those which have been previously subjected to a reduction treatment are preferably used, and those which have been treated and stabilized with carbon dioxide gas or the like can also be used. In the present invention, deep desulfurized light naphtha is obtained by subjecting desulfurized light naphtha which does not reach deep desulfurized light naphtha (for example, having a sulfur content exceeding 0.5 ppm by weight) to adsorption desulfurization with the above various catalysts. This is also one preferred embodiment.
【0009】本発明の燃料電池用燃料油は、上記深度脱
硫軽質ナフサを含有するものであるが、好ましくは、こ
れを少なくとも10容量%、更に少なくとも50容量%
含有することが好ましい。深度脱硫軽質ナフサの含有量
が上記範囲より少ない場合は改質触媒を劣化させる恐れ
があり好ましくない場合がある。本発明の燃料油として
は、種々の硫黄含有量の深度脱硫軽質ナフサを上記含有
量で目的に応じて適宜含有し、また必要に応じて他の基
材と混合したものを用いることができる。なお、本発明
の燃料電池用燃料油においては、上記深度脱硫軽質ナフ
サと混合可能な基材を組み合わせて使用することができ
るが、このような混合可能な基材としては、アルキレー
ト(ALK)、メチルターシャリーブチルエーテル(M
TBE)、イソペンタン、脱硫軽質ナフサ(本発明の深
度脱硫軽質ナフサを除く)、脱硫重質ナフサ等を挙げる
ことができる。[0009] The fuel oil for a fuel cell of the present invention contains the above-mentioned deep desulfurized light naphtha, but preferably contains at least 10% by volume, more preferably at least 50% by volume.
It is preferred to contain. If the content of deep desulfurized light naphtha is less than the above range, the reforming catalyst may be deteriorated, which is not preferable. As the fuel oil of the present invention, it is possible to use a fuel oil which contains depth-desulfurized light naphtha having various sulfur contents as appropriate according to the purpose at the above-mentioned content and, if necessary, is mixed with another base material. In the fuel oil for a fuel cell according to the present invention, a base material that can be mixed with the above-mentioned deep desulfurized light naphtha can be used in combination. As such a mixable base material, alkylate (ALK) is used. , Methyl tertiary butyl ether (M
TBE), isopentane, desulfurized light naphtha (excluding the deep desulfurized light naphtha of the present invention), and desulfurized heavy naphtha.
【0010】上記のようにして得られた本発明の燃料電
池用燃料油は、前記深度脱硫軽質ナフサの硫黄含有量と
同様の理由から、その硫黄含有量が1重量ppm以下、
更に0.5重量ppm以下、特に0.1重量ppm以下、特
には0.05重量ppm以下であることが好ましい。ま
た、本発明の燃料電池用燃料油は、その芳香族分が1重
量%以下であることが好ましい。芳香族分が上記量を超
える場合は水素の生成効率に劣る場合がある。更に、本
発明の燃料電池用燃料油は、その蒸気圧が0.098MP
a以下であることが好ましい。蒸気圧が0.098MPa
を超える場合はタンク強度の増強が必要であったり、炭
化水素の大気への放出が問題となり好ましくない場合が
ある。従って、本発明においては、該蒸気圧は0〜0.0
98MPaの範囲内にあることが更に好ましい。The fuel oil for a fuel cell of the present invention obtained as described above has a sulfur content of 1 wt ppm or less for the same reason as the sulfur content of the deep desulfurized light naphtha.
Further, it is preferably 0.5 ppm by weight or less, particularly preferably 0.1% by weight or less, particularly preferably 0.05% by weight or less. The fuel oil for a fuel cell of the present invention preferably has an aromatic content of 1% by weight or less. If the aromatic content exceeds the above amount, the efficiency of hydrogen generation may be poor. Further, the fuel oil for a fuel cell of the present invention has a vapor pressure of 0.098MPa.
It is preferable that it is not more than a. Vapor pressure is 0.098MPa
When the pressure exceeds, the tank strength needs to be increased, or the release of hydrocarbons into the atmosphere becomes a problem, which may be undesirable. Therefore, in the present invention, the vapor pressure is 0 to 0.0.
More preferably, it is in the range of 98 MPa.
【0011】本発明の燃料電池用燃料油は、これにより
製造される水素の純度が高く、水素分圧の低下が小さい
などの特徴を有するため、燃料電池用の水素の製造に好
適である。特に、液体である点等から自動車等輸送用の
燃料電池に適している。燃料電池用燃料油から水素を生
成するには、通常先ず該燃料油を必要に応じて脱硫す
る。脱硫法としては、通常、水素化脱硫法が用いられ、
その方法はCo−Mo/アルミナあるいはNi−Mo/
アルミナなどの水素化脱硫触媒とZnOなどの硫化水素
吸着剤を用い、常圧〜5MPaの圧力下,温度200〜
400℃の条件で行う。本発明においては、上記のよう
な深度脱硫軽質ナフサを使用する点から、このような深
度脱硫軽質ナフサの使用量によっては上記脱硫工程を除
くことも可能である。The fuel oil for a fuel cell of the present invention has characteristics such as high purity of hydrogen produced by the method and a small decrease in hydrogen partial pressure, and is suitable for producing hydrogen for a fuel cell. In particular, it is suitable as a fuel cell for transporting automobiles and the like because it is liquid. In order to generate hydrogen from fuel oil for a fuel cell, the fuel oil is usually first desulfurized as required. As the desulfurization method, usually, hydrodesulfurization method is used,
The method is Co-Mo / alumina or Ni-Mo /
Using a hydrodesulfurization catalyst such as alumina and a hydrogen sulfide adsorbent such as ZnO, at a pressure of normal pressure to 5 MPa and a temperature of 200 to
This is performed at 400 ° C. In the present invention, since the above-mentioned deep desulfurized light naphtha is used, it is also possible to omit the above desulfurization step depending on the amount of such deep desulfurized light naphtha used.
【0012】次いで、前記必要に応じて脱硫した燃料油
に水蒸気改質及び/又は部分酸化を行う。本発明によれ
ば、水蒸気改質触媒等への炭素析出がなく効率的に水素
を製造できる燃料油を得ることができる。水蒸気改質の
方法には特に制限はないが、通常以下のような方法で行
われる。この水素製造方法に用いる水蒸気改質触媒とし
ては、特に制限はないが、次のものが好適に用いられ
る。まず、担持金属としては、Ni、ジルコニウムある
いはルテニウム(Ru),ロジウム(Rh),白金(P
t)などの貴金属が挙げられる。これらは単独でもよい
し、2種以上を組合わせて用いてもよい。これらの中で
も、Ruを担持する触媒が特に望ましく、水蒸気改質反
応中の炭素析出を抑制する効果が大きい。このRuの担
持量については、担体基準で0.05〜20重量%、さ
らには、0.05〜15重量%が好ましい。担持量が
0.05重量%未満では、水蒸気改質反応の活性が極度
に低下する場合があり好ましくなく、20重量%を越え
ても活性の顕著な増加は得られ難い。Next, the fuel oil desulfurized as required is subjected to steam reforming and / or partial oxidation. ADVANTAGE OF THE INVENTION According to this invention, the fuel oil which can produce hydrogen efficiently without carbon deposition on a steam reforming catalyst etc. can be obtained. The method of steam reforming is not particularly limited, but is usually performed by the following method. The steam reforming catalyst used in this hydrogen production method is not particularly limited, but the following is preferably used. First, Ni, zirconium or ruthenium (Ru), rhodium (Rh), platinum (P
Noble metals such as t). These may be used alone or in combination of two or more. Among these, a catalyst supporting Ru is particularly desirable, and has a large effect of suppressing carbon deposition during the steam reforming reaction. The supported amount of Ru is preferably 0.05 to 20% by weight, more preferably 0.05 to 15% by weight based on the carrier. If the supported amount is less than 0.05% by weight, the activity of the steam reforming reaction may extremely decrease, which is not preferable. If it exceeds 20% by weight, a remarkable increase in the activity is hardly obtained.
【0013】また、担持金属の組合わせの具体例として
は、Ruとジルコニウムとを担持したものが挙げられ
る。Ruとジルコニウムは同時に担持してもよく、別々
に担持してもよい。ジルコニウムの含量は、ZrO2 に
換算して、担体基準で0.5〜20重量%,さらには、
0.5〜15重量%が好ましい。この種の担持金属の場
合、さらにコバルトおよび/またはマグネシウムを添加
したものが好適なものとして挙げられる。ここでコバル
トの含有量は、コバルト/ルテニウムの原子比で、0.
01〜30,さらには、0.1〜30が好ましく、マグ
ネシウムの含有量は、マグネシア(MgO)換算で0.
5〜20重量%,さらには0.5〜15重量%が好適で
ある。一方、水蒸気改質に使用する触媒の担体として
は、無機酸化物が用いられ、具体的には、アルミナ、シ
リカ、ジルコニア、マグネシア及びそれらの混合物が挙
げられる。これらの中でもアルミナとジルコニアが特に
好ましい。Further, as a specific example of the combination of the supported metals, a combination of supporting Ru and zirconium may be mentioned. Ru and zirconium may be supported simultaneously or separately. The content of zirconium is 0.5 to 20% by weight, based on the carrier, in terms of ZrO 2 ,
0.5 to 15% by weight is preferred. In the case of this type of supported metal, a metal further added with cobalt and / or magnesium is mentioned as a preferable one. Here, the content of cobalt is expressed as an atomic ratio of cobalt / ruthenium of 0.1.
The content of magnesium is preferably from 0.1 to 30, more preferably from 0.1 to 30, and the content of magnesium is 0.1 in terms of magnesia (MgO).
The content is preferably 5 to 20% by weight, more preferably 0.5 to 15% by weight. On the other hand, as a carrier of the catalyst used for steam reforming, an inorganic oxide is used, and specific examples thereof include alumina, silica, zirconia, magnesia, and a mixture thereof. Of these, alumina and zirconia are particularly preferred.
【0014】水蒸気改質用触媒の好ましい態様の一つと
して、Ruをジルコニアに担持した触媒がある。このジ
ルコニアは、単体のジルコニア(ZrO2 )でも良い
し、マグネシアのような安定化成分を含む安定化ジルコ
ニアでも良い。安定化ジルコニアとしては、マグネシ
ア、イットリア、セリア等を含むものが好適である。水
蒸気改質用触媒の好ましい態様の一つとしては、Ruと
ジルコニウム、又はRuとジルコニウムの他にさらにコ
バルトおよび/またはマグネシウムとをアルミナ担体に
担持した触媒を挙げることができる。アルミナとしては
特に耐熱性と機械的強度に優れるα−アルミナが好まし
い。次に、水素の製造においては、水蒸気(S)と燃料
油に由来する炭素(C)との比S/C(モル比)が2〜
5、さらには2〜4の状態で水蒸気改質を行う方法が好
ましい。S/C(モル比)が5以上の高い状態で水蒸気
改質を行うと過剰の水蒸気を作る必要があり、熱ロスが
大きく、水素製造の効率が低下する。また、S/Cが2
を下回ると水素の発生量が低下してしまうため好ましく
ない。One of the preferred embodiments of the steam reforming catalyst is a catalyst in which Ru is supported on zirconia. This zirconia may be simple zirconia (ZrO 2 ) or stabilized zirconia containing a stabilizing component such as magnesia. As the stabilized zirconia, those containing magnesia, yttria, ceria, and the like are preferable. As a preferred embodiment of the steam reforming catalyst, a catalyst in which Ru and zirconium, or in addition to Ru and zirconium, cobalt and / or magnesium is further supported on an alumina carrier can be mentioned. As alumina, α-alumina which is particularly excellent in heat resistance and mechanical strength is preferable. Next, in the production of hydrogen, the ratio S / C (molar ratio) between steam (S) and carbon (C) derived from fuel oil is 2 to 2.
5, and more preferably a method of performing steam reforming in the state of 2-4. If steam reforming is performed in a high S / C (molar ratio) of 5 or more, excess steam must be produced, resulting in a large heat loss and reduced hydrogen production efficiency. Also, S / C is 2
If it is less than, the amount of generated hydrogen is undesirably reduced.
【0015】さらに水素の製造においては、水蒸気改質
触媒層の入口温度を630℃以下に保って水蒸気改質を
行う方法が好ましい。水蒸気改質触媒層入口温度は、酸
素添加により上昇する傾向にあるので、これをコントロ
ールする必要がある。入口温度が630℃を超えると、
原料炭化水素の熱分解が促進され、生成したラジカル経
由で触媒あるいは反応管壁に炭素が析出し運転が困難に
なる場合があるためである。なお、触媒層出口温度は、
特に制限はないが、好ましくは650〜800℃で行
う。触媒層出口温度が650℃未満では水素の生成量が
充分でなく、800℃を越える温度で反応するにはリア
クターを特に耐熱性材料にする必要がある場合があり、
経済性の点で好ましくないからである。Further, in the production of hydrogen, it is preferable to carry out steam reforming while maintaining the inlet temperature of the steam reforming catalyst layer at 630 ° C. or lower. Since the inlet temperature of the steam reforming catalyst layer tends to increase due to the addition of oxygen, it is necessary to control the temperature. If the inlet temperature exceeds 630 ° C,
This is because thermal decomposition of the raw material hydrocarbon is promoted, and carbon is deposited on the catalyst or the reaction tube wall via generated radicals, which may make operation difficult. The catalyst layer outlet temperature is
Although not particularly limited, the reaction is preferably performed at 650 to 800 ° C. If the outlet temperature of the catalyst layer is lower than 650 ° C., the amount of generated hydrogen is not sufficient, and in order to react at a temperature exceeding 800 ° C., the reactor may need to be made of a heat-resistant material in particular.
This is because it is not economically preferable.
【0016】水素の製造においては、反応圧力は常圧〜
3MPa,さらには常圧〜1MPaであることが好まし
い。また、燃料油の流量については、LHSVで0.1
〜100h-1である。なお、水素の製造においては、上
記燃料油は上記水蒸気改質と部分酸化を組み合わせて水
素を製造する場合に使用しても効率的に水素を製造でき
る。部分酸化反応は、好ましくはルテニウムなどの貴金
属やニッケルなどを耐熱性酸化物に担持した触媒下、反
応圧力が常圧〜5MPa,反応温度400〜1,100
℃、酸素/炭素比0.2〜0.8,LHSV0.1〜1
00h-1で行われる。また、水蒸気添加する場合は、S
/C比0.4〜4で行う。上記水素の製造方法において
は、上記水蒸気改質により得られるCOが水素生成に悪
影響を及ぼすため、これを反応によりCO2 としてCO
を除くことが好ましい。In the production of hydrogen, the reaction pressure is from normal pressure to normal pressure.
The pressure is preferably 3 MPa, more preferably normal pressure to 1 MPa. Also, the flow rate of the fuel oil is 0.1 LHSV.
100100 h −1 . In the production of hydrogen, even when the fuel oil is used in producing hydrogen by combining the steam reforming and partial oxidation, hydrogen can be produced efficiently. The partial oxidation reaction is preferably performed under a catalyst in which a noble metal such as ruthenium or nickel is supported on a heat-resistant oxide, at a reaction pressure of normal pressure to 5 MPa, a reaction temperature of 400 to 1,100.
° C, oxygen / carbon ratio 0.2-0.8, LHSV 0.1-1
00h -1 . When steam is added, S
Performed at a / C ratio of 0.4 to 4. In the production method of the hydrogen, since the CO obtained by the steam reforming adversely affect the hydrogen production, CO this as CO 2 by reaction
Is preferably removed.
【0017】上記水素の製造方法においては、その燃料
油として深度脱硫軽質ナフサを含有する本発明の燃料電
池用燃料油を用いる。この際、前述のように、深度脱硫
軽質ナフサの含有量によっては、前記の脱硫工程におけ
る脱硫処理を除くことが可能である。従って、このよう
な水素の製造に用いる水素製造用改質装置としては、場
合により脱硫器を設けないものを使用することも可能で
ある。すなわち、水素製造用改質装置は、一般に燃料油
に上述の脱硫工程を行う脱硫器、これに続き、脱硫され
た燃料油に上述の水蒸気改質及び/又は部分酸化工程を
行い水素を得るための改質器、及び、改質ガスから上記
COを除く工程を行う変成器から主としてなる。本発明
においては、燃料油として深度脱硫軽質ナフサを使用す
ることにより、上記の脱硫器を設けることなく直接改質
器に燃料油を導入することができる水素製造用改質装置
を提供することができる。In the above-described method for producing hydrogen, the fuel oil for a fuel cell of the present invention containing deep desulfurized light naphtha is used as the fuel oil. At this time, as described above, it is possible to omit the desulfurization treatment in the desulfurization step depending on the content of the deep desulfurized light naphtha. Therefore, as a reformer for hydrogen production used for producing hydrogen as described above, a reformer without a desulfurizer may be used in some cases. That is, a reformer for hydrogen production is generally a desulfurizer that performs the above-described desulfurization step on fuel oil, and then performs a steam reforming and / or partial oxidation step on the desulfurized fuel oil to obtain hydrogen. And a reformer for performing the step of removing the CO from the reformed gas. In the present invention, it is possible to provide a reformer for hydrogen production that can introduce fuel oil directly into a reformer without providing the above desulfurizer by using deep desulfurized light naphtha as fuel oil. it can.
【0018】[0018]
【実施例】次に、本発明を実施例によりさらに具体的に
説明するが、本発明はこれらの例によってなんら限定さ
れるものではない。 実施例1〜4及び比較例1〜2 下記に示す方法で深度脱硫軽質ナフサA〜C及び脱硫軽
質ナフサD(これらを総称して「DLN」という)を調
製し、これらを用いて第1表に記載の組成を有する燃料
油を調製した。これらの燃料油を用いて以下に示すよう
に水素製造実験を行い反応後の触媒についてコーキング
試験を行った。なお、本実施例においては、硫黄含有量
はJIS−K2541に記載された方法に準じて測定し
た。EXAMPLES Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. Examples 1-4 and Comparative Examples 1-2 Deep desulfurized light naphtha A-C and desulfurized light naphtha D (collectively referred to as "DLN") were prepared by the following method, and Table 1 was prepared using these. A fuel oil having the composition described in Example 1 was prepared. Using these fuel oils, a hydrogen production experiment was performed as shown below, and a coking test was performed on the catalyst after the reaction. In addition, in this Example, the sulfur content was measured according to the method described in JIS-K2541.
【0019】(1)深度脱硫軽質ナフサA(硫黄含有量
0.5重量ppm) 触媒:Co・Mo/アルミナ 反応塔運転条件:圧力1.5MPa、温度300℃、LH
SV6.3hr-1、水素/原料油比90m3 /kl 分留条件:棚段数23、塔頂圧力0.10MPa、塔頂温
度73℃、リフラックス比0.26 (2)深度脱硫軽質ナフサB(硫黄含有量0.1重量pp
m) 触媒:Co・Mo/アルミナ 反応塔運転条件:圧力1.5MPa、温度320℃、LH
SV6.3hr-1、水素/原料油比90m3 /kl 分留条件:棚段数23、塔頂圧力0.10MPa、塔頂温
度73℃、リフラックス比0.26 (3)深度脱硫軽質ナフサC(硫黄含有量0.008重量
ppm) 上記脱硫軽質ナフサBを、吸着触媒としてNi/珪藻土
(Ni含有量50重量%)を充填した20cc反応器で
常圧、温度140℃、LHSV0.2hr-1の条件で吸着
脱硫した。 (4)脱硫軽質ナフサD(硫黄含有量4.8重量ppm) 触媒:Co・Mo/アルミナ 反応塔運転条件:圧力1.5MPa、温度270℃、LH
SV6.3hr-1、水素/原料油比90m3 /kl 分留条件:棚段数23、塔頂圧力0.10MPa、塔頂温
度73℃、リフラックス比0.26(1) Deep desulfurized light naphtha A (sulfur content
0.5 ppm by weight) Catalyst: Co.Mo/alumina Reaction tower operating conditions: pressure 1.5 MPa, temperature 300 ° C., LH
SV 6.3 hr -1 , hydrogen / feed oil ratio 90 m 3 / kl Fractionation conditions: 23 trays, overhead pressure 0.10 MPa, overhead temperature 73 ° C., reflux ratio 0.26 (2) deep desulfurized light naphtha B (Sulfur content 0.1 weight pp
m) Catalyst: Co · Mo / alumina Reaction column operating conditions: pressure 1.5 MPa, temperature 320 ° C., LH
SV 6.3 hr -1 , hydrogen / feed oil ratio 90 m 3 / kl Fractionation conditions: 23 trays, overhead pressure 0.10 MPa, overhead temperature 73 ° C., reflux ratio 0.26 (3) Depth desulfurization light naphtha C (Sulfur content 0.008 wt ppm) The above desulfurized light naphtha B was charged in a 20 cc reactor filled with Ni / diatomaceous earth (Ni content 50% by weight) as an adsorption catalyst, at normal pressure, at a temperature of 140 ° C, and at an LHSV of 0.2 hr -1 Adsorption desulfurization was performed under the following conditions. (4) Desulfurized light naphtha D (sulfur content: 4.8 weight ppm) Catalyst: Co.Mo/alumina Reaction tower operating conditions: pressure 1.5 MPa, temperature 270 ° C., LH
SV 6.3 hr -1 , hydrogen / feed oil ratio 90 m 3 / kl Fractional distillation conditions: 23 plates, tower pressure 0.10 MPa, tower temperature 73 ° C., reflux ratio 0.26
【0020】水素製造実験 固定床流通式反応器を用い水蒸気改質を行った。 触媒:α−アルミナ粉末に水20重量%を加え、ニーダ
ーで混合・圧縮成形し直径5mm、長さ5mmの円柱状
成形体とした。200℃で3時間乾燥後、1280℃で
26時間焼成しアルミナ担体を得た。一方、ジルコニウ
ムオキシ塩化物(ZrO(OH)Cl)の水溶液(Zr
O2 換算で2.5g)に、3塩化ルテニウム(RuCl
3 /nH2 O)(Ru38%含有)0.66g、硝酸コ
バルト(Co(NO3 )・36H2 O)2.47g及び
硝酸マグネシウ(Mg(NO3 )・26H2 O)6.3
6gを加え、溶解するまで攪拌した。溶液の総量は10
ccであった。この溶液を上記アルミナ担体50gに含
浸(ポアフィリング法)した後、120℃で5時間乾燥
し、500℃で2時間焼成し、更に16〜32メッシュ
に粒径調整した。この触媒は、担体基準でRuを0.5
重量%,Zrをジルコニア換算で5重量%,Coを1.
0重量%,Mgをマグネシア換算で2重量%有する。 条件:水蒸気/炭素比2.5、原料油のLHSV=5
h-1、常圧、触媒層入口温度500℃、触媒層出口温度
750℃ 反応管に改質触媒を充填し、上記の条件で触媒寿命(ス
チームリフォーミング)を転化率が100%を下回った
時間で評価した。結果を第1表に示す。 Hydrogen production experiment Steam reforming was performed using a fixed bed flow reactor. Catalyst: 20% by weight of water was added to α-alumina powder, mixed and kneaded in a kneader to form a cylindrical molded body having a diameter of 5 mm and a length of 5 mm. After drying at 200 ° C. for 3 hours, it was calcined at 1280 ° C. for 26 hours to obtain an alumina carrier. On the other hand, an aqueous solution of zirconium oxychloride (ZrO (OH) Cl) (ZrO
To 2.5g) in O 2 terms, 3 ruthenium chloride (RuCl
3 / nH 2 O) (Ru38 % containing) 0.66 g, cobalt nitrate (Co (NO 3) · 36H 2 O) 2.47g and nitric acid magnesium (Mg (NO 3) · 26H 2 O) 6.3
6 g was added and stirred until dissolved. The total volume of the solution is 10
cc. This solution was impregnated with 50 g of the above alumina carrier (pore filling method), dried at 120 ° C. for 5 hours, calcined at 500 ° C. for 2 hours, and further adjusted to a particle size of 16 to 32 mesh. This catalyst has a Ru of 0.5 on a carrier basis.
% By weight, Zr is 5% by weight in terms of zirconia, and Co is 1.
0% by weight and 2% by weight of Mg in terms of magnesia. Conditions: steam / carbon ratio 2.5, LHSV of feed oil = 5
h −1 , normal pressure, catalyst layer inlet temperature 500 ° C., catalyst layer outlet temperature 750 ° C. A reaction tube was filled with a reforming catalyst, and under the above conditions, the conversion of the catalyst life (steam reforming) was less than 100%. Evaluated by time. The results are shown in Table 1.
【0021】[0021]
【表1】 [Table 1]
【0022】[0022]
【発明の効果】以上詳細に説明したように、本発明は、
深度脱硫軽質ナフサを含有する燃料電池用燃料油を用い
ることにより、燃料電池に用いる水素を効率よく製造す
ることができ、改質触媒、燃料電池電極に対して悪影響
を及ぼすことなく改質触媒等の劣化が少ない、自動車等
の輸送用に適した燃料電池用燃料油を提供することがで
きる。As described in detail above, the present invention provides
By using fuel oil for fuel cells containing deep desulfurized light naphtha, it is possible to efficiently produce hydrogen used for fuel cells, and to use reforming catalysts without adversely affecting reforming catalysts and fuel cell electrodes. It is possible to provide a fuel oil for a fuel cell which has little deterioration and is suitable for transportation of automobiles and the like.
Claims (9)
徴とする燃料電池用燃料油。1. A fuel oil for a fuel cell, comprising lightly-desulfurized light naphtha.
下の硫黄を含有することを特徴とする請求項1記載の燃
料電池用燃料油。2. The fuel oil for a fuel cell according to claim 1, wherein the deep-desulfurized light naphtha contains 0.5 ppm by weight or less of sulfur.
下の硫黄を含有することを特徴とする請求項1又は2に
記載の燃料電池用燃料油。3. The fuel oil for a fuel cell according to claim 1, wherein the deep desulfurized light naphtha contains 0.1 ppm by weight or less of sulfur.
以下の硫黄を含有することを特徴とする請求項1〜3の
いずれかに記載の燃料電池用燃料油。4. Depth desulfurized light naphtha is 0.05 wt ppm
The fuel oil for a fuel cell according to any one of claims 1 to 3, comprising the following sulfur:
量%含有し、かつ1重量ppm以下の硫黄を含有するこ
とを特徴とする請求項1〜4のいずれかに記載の燃料電
池用燃料油。5. The fuel oil for a fuel cell according to claim 1, wherein the fuel oil contains at least 10% by volume of deep desulfurized light naphtha and 1 ppm by weight or less of sulfur.
量%含有し、かつ1重量ppm以下の硫黄を含有するこ
とを特徴とする請求項1〜4のいずれかに記載の燃料電
池用燃料油。6. The fuel oil according to claim 1, wherein the fuel oil contains at least 50% by volume of deep desulfurized light naphtha and 1 ppm by weight or less of sulfur.
量%含有し、かつ0.1重量ppm以下の硫黄を含有する
ことを特徴とする請求項1〜4のいずれかに記載の燃料
電池用燃料油。7. The fuel oil according to claim 1, wherein the fuel oil contains at least 50% by volume of deep desulfurized light naphtha and 0.1 wt ppm or less of sulfur. .
池用燃料油から、脱硫処理を行うことなく水素を製造す
る水素の製造方法。8. A method for producing hydrogen from the fuel oil for a fuel cell according to claim 1 without performing desulfurization treatment.
池用燃料油を用いる、脱硫器を有しない水素製造用改質
装置。9. A reformer for hydrogen production using the fuel oil for a fuel cell according to claim 1 and having no desulfurizer.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000071430A JP2001262161A (en) | 2000-03-15 | 2000-03-15 | Fuel oil for fuel cell |
US10/168,086 US20030023120A1 (en) | 1999-12-17 | 2000-12-18 | Fuel oil for fuel cell, fuel oil composition, and automobile driving system |
PCT/JP2000/008946 WO2001044412A1 (en) | 1999-12-17 | 2000-12-18 | Fuel oil for fuel cell, fuel oil composition and automobile driving system |
EP00981792A EP1243636A1 (en) | 1999-12-17 | 2000-12-18 | Fuel oil for fuel cell, fuel oil composition and automobile driving system |
AU18931/01A AU1893101A (en) | 1999-12-17 | 2000-12-18 | Fuel oil for fuel cell, fuel oil composition and automobile driving system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000071430A JP2001262161A (en) | 2000-03-15 | 2000-03-15 | Fuel oil for fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001262161A true JP2001262161A (en) | 2001-09-26 |
Family
ID=18590019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000071430A Pending JP2001262161A (en) | 1999-12-17 | 2000-03-15 | Fuel oil for fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001262161A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006068069A1 (en) * | 2004-12-20 | 2006-06-29 | Idemitsu Kosan Co., Ltd. | Liquid fuel for fuel cell and method of desulfurization |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6340702A (en) * | 1986-08-01 | 1988-02-22 | Nippon Oil Co Ltd | Production of hydrogen for fuel cell |
JPH01259088A (en) * | 1987-12-17 | 1989-10-16 | Osaka Gas Co Ltd | Steam reforming of hydrocarbon |
JPH0680972A (en) * | 1992-07-17 | 1994-03-22 | Sekiyu Sangyo Kasseika Center | Depth desulfurization of light-to-middle oil |
JPH10500713A (en) * | 1994-05-17 | 1998-01-20 | エクソン リサーチ アンド エンジニアリング カンパニー | Stacked bed catalyst system for advanced hydrodesulfurization |
JP2001172651A (en) * | 1999-12-17 | 2001-06-26 | Idemitsu Kosan Co Ltd | Fuel oil for fuel cell |
-
2000
- 2000-03-15 JP JP2000071430A patent/JP2001262161A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6340702A (en) * | 1986-08-01 | 1988-02-22 | Nippon Oil Co Ltd | Production of hydrogen for fuel cell |
JPH01259088A (en) * | 1987-12-17 | 1989-10-16 | Osaka Gas Co Ltd | Steam reforming of hydrocarbon |
JPH0680972A (en) * | 1992-07-17 | 1994-03-22 | Sekiyu Sangyo Kasseika Center | Depth desulfurization of light-to-middle oil |
JPH10500713A (en) * | 1994-05-17 | 1998-01-20 | エクソン リサーチ アンド エンジニアリング カンパニー | Stacked bed catalyst system for advanced hydrodesulfurization |
JP2001172651A (en) * | 1999-12-17 | 2001-06-26 | Idemitsu Kosan Co Ltd | Fuel oil for fuel cell |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006068069A1 (en) * | 2004-12-20 | 2006-06-29 | Idemitsu Kosan Co., Ltd. | Liquid fuel for fuel cell and method of desulfurization |
JP2006173045A (en) * | 2004-12-20 | 2006-06-29 | Idemitsu Kosan Co Ltd | Liquid fuel for fuel cell, and desulfurizating method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20070115991A (en) | Desulfurizing agent and method of desulfurization with the same | |
WO2001070914A1 (en) | Fuel oil for use both in internal combustion in engine and fuel cell | |
WO2001044412A1 (en) | Fuel oil for fuel cell, fuel oil composition and automobile driving system | |
JP2001279274A (en) | Fuel oil for fuel cell, desulfurization method and method for producing hydrogen | |
JP5027971B2 (en) | Fuel oil composition | |
JP4521172B2 (en) | Desulfurization agent and desulfurization method using the same | |
JP4749589B2 (en) | Organic sulfur compound-containing fuel desulfurization agent and fuel cell hydrogen production method | |
JP2008291146A (en) | Porous desulfurizing agent and method for desulfurizing hydrocarbon oil using the same | |
JP6317909B2 (en) | Metal-supported zeolite molded body, metal-supported zeolite molded body manufacturing method, sulfur compound removing adsorbent, hydrogen manufacturing method, and fuel cell system | |
JP5759922B2 (en) | Method for producing hydrogen | |
JP4490533B2 (en) | Fuel oil for fuel cells | |
JP4388665B2 (en) | Ni-Cu desulfurizing agent and method for producing hydrogen for fuel cell | |
JP4426039B2 (en) | Fuel oil for fuel cell and method for producing the same | |
JP4580070B2 (en) | Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells | |
JP4531939B2 (en) | Method for producing nickel-copper desulfurization agent | |
JP2001262161A (en) | Fuel oil for fuel cell | |
JP4418063B2 (en) | Method for producing hydrogen | |
JP2004075778A (en) | Desulfurizing agent for hydrocarbon and method for producing hydrogen for fuel cell | |
JP2001262164A (en) | Fuel oil for fuel cell | |
JP2001279259A (en) | Desulfurizing agent for petroleum-based hydrocarbon and method for producing hydrogen for fuel battery | |
JP2004305869A (en) | Adsorbent for removing sulfur compound, and method for producing hydrogen for fuel cell | |
JP5107046B2 (en) | Hydrocarbon steam reforming catalyst | |
JP2009046626A (en) | Desulfurization agent for liquid fuel and desulfurization method of liquid fuel | |
JP2006167501A (en) | Reforming catalyst, hydrogen generation apparatus, and fuel cell system | |
JP4580071B2 (en) | Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100506 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100907 |