JP5107046B2 - Hydrocarbon steam reforming catalyst - Google Patents

Hydrocarbon steam reforming catalyst Download PDF

Info

Publication number
JP5107046B2
JP5107046B2 JP2007538711A JP2007538711A JP5107046B2 JP 5107046 B2 JP5107046 B2 JP 5107046B2 JP 2007538711 A JP2007538711 A JP 2007538711A JP 2007538711 A JP2007538711 A JP 2007538711A JP 5107046 B2 JP5107046 B2 JP 5107046B2
Authority
JP
Japan
Prior art keywords
catalyst
rare earth
earth metal
ruthenium
steam reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007538711A
Other languages
Japanese (ja)
Other versions
JPWO2007040097A1 (en
Inventor
泰仁 小川
雄亮 村上
伸人 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Catalysts Japan KK
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Clariant Catalysts Japan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp, Clariant Catalysts Japan KK filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2007538711A priority Critical patent/JP5107046B2/en
Publication of JPWO2007040097A1 publication Critical patent/JPWO2007040097A1/en
Application granted granted Critical
Publication of JP5107046B2 publication Critical patent/JP5107046B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • B01J35/60
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • B01J35/613
    • B01J35/615
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、炭化水素から水素を製造するために使用する水蒸気改質触媒に関する。更に詳しくはLPガス、ナフサ、ガソリン、灯油など市場に広く多量に流通する廉価な石油系炭化水素を原料とし、これを水蒸気改質して水素を製造するために使用する水蒸気改質触媒に関する。   The present invention relates to a steam reforming catalyst used for producing hydrogen from hydrocarbons. More specifically, the present invention relates to a steam reforming catalyst that is used for producing hydrogen by steam reforming an inexpensive petroleum hydrocarbon such as LP gas, naphtha, gasoline, and kerosene that is widely distributed in the market.

近年、環境意識が高まる中で、環境負荷の少ない水素を利用したエネルギーに注目が集まっている。水素を利用したエネルギー技術のひとつとして、水素と酸素の反応からオゾン層破壊や地球温暖化の原因と言われる二酸化炭素の直接排出を伴うことなく電気エネルギーを取り出すことができる燃料電池が注目されている。燃料電池の水素源としては天然ガス、液体燃料、石油系炭化水素など様々な原料が研究されている。特にLPガス、ナフサ、ガソリン、灯油などに代表される石油系炭化水素は広域かつ多量に流通していることから、水素源としても有望視されている。   In recent years, with increasing environmental awareness, attention has been focused on energy using hydrogen, which has a low environmental impact. As one of the energy technologies using hydrogen, fuel cells that can extract electrical energy from the reaction of hydrogen and oxygen without the direct emission of carbon dioxide, which is said to cause ozone depletion and global warming, are attracting attention. Yes. Various raw materials such as natural gas, liquid fuel, and petroleum hydrocarbons have been studied as hydrogen sources for fuel cells. In particular, petroleum hydrocarbons typified by LP gas, naphtha, gasoline, kerosene and the like are promising as hydrogen sources because they are widely distributed in large quantities.

石油系炭化水素を原料として水素を製造する方法としては、部分酸化法または水蒸気改質法が知られているが、後者のほうがより経済的に水素製造が可能であるとされている。これらの水素製造には改質触媒が用いられる。炭化水素の水蒸気改質触媒としては、アルミナ等の担体にニッケルを担持したニッケル系触媒が知られているが、ニッケル系触媒は炭素析出による活性低下を引き起こしやすい欠点を有し、また炭素数の多い炭化水素を原料としたときは多量の水蒸気の共存が必要となって水蒸気原単位が運転コストを引き上げるため、石油系炭化水素には技術的にも経済的にも適用が難しいとされる。一方でルテニウム、ロジウムといった貴金属を用いた貴金属系触媒は、炭素析出抑制効果を持ち水蒸気の使用量を下げられることから、炭化水素用の改質触媒として近年注目されている。例としては、アルミナにルテニウムを担持させたもの(非特許文献1)、アルミナ又はシリカにルテニウムを担持させたもの(特許文献1)、アルカリ土類金属アルミネートを含むアルミナにジルコニアとルテニウム成分を担持したもの(特許文献2)などが挙げられる。しかしながら、ルテニウム系改質触媒は原料の炭化水素中に含まれる硫黄分によって触媒被毒を受けやすく(非特許文献2)、また硫黄被毒が炭素析出を誘発する(非特許文献3)ことから、その炭素析出抑制効果を有効に機能させることが困難である。したがって石油系炭化水素を原料する場合は、その改質を行うための触媒活性だけでなく炭素析出を抑制し硫黄被毒を抑制する機能が触媒に求められる。この問題を解決するものとして、従来法では担体の複合化や第三成分の添加が提案されている。例えばジルコニアゾルを前駆体とするジルコニアを担持させたアルミナ担体に酸化ランタン及びコバルトを助触媒として担持させ、ルテニウムを活性成分として含有させたもの(特許文献3)、IIa属、IIIa属及び/又はランタノイド金属の酸化物を含有する活性アルミナ複合体担体にルテニウムを担持させて還元処理したもの(特許文献4)、2属金属、3属金属およびランタノイド金属の酸化物よりなる群から選ばれる少なくとも1種を触媒基準で3〜30重量%含有するアルミナを800〜900℃で焼成して得られる担体にルテニウムを0.5〜5重量%担持し、600〜950℃で還元処理したもの(特許文献5)、アルミナ担体に少なくともルテニウム成分、ジルコニウム成分及びアルカリ金属成分を担持したもの(特許文献6)などの方法が提案されている。   As a method for producing hydrogen using petroleum hydrocarbons as a raw material, a partial oxidation method or a steam reforming method is known, but the latter is considered to be able to produce hydrogen more economically. A reforming catalyst is used for these hydrogen productions. As a steam reforming catalyst for hydrocarbons, a nickel-based catalyst in which nickel is supported on a carrier such as alumina is known. However, a nickel-based catalyst has a drawback that it tends to cause a decrease in activity due to carbon deposition. When many hydrocarbons are used as raw materials, coexistence of a large amount of steam is required, and the steam unit increases the operating cost. Therefore, it is considered difficult to apply to petroleum hydrocarbons both technically and economically. On the other hand, noble metal-based catalysts using noble metals such as ruthenium and rhodium have recently attracted attention as reforming catalysts for hydrocarbons because they have an effect of suppressing carbon deposition and can reduce the amount of water vapor used. Examples include those in which ruthenium is supported on alumina (Non-Patent Document 1), those in which ruthenium is supported on alumina or silica (Patent Document 1), and alumina containing alkaline earth metal aluminate containing zirconia and a ruthenium component. What was carried (Patent Document 2) and the like. However, ruthenium-based reforming catalysts are susceptible to catalyst poisoning due to sulfur contained in the raw material hydrocarbons (Non-patent Document 2), and sulfur poisoning induces carbon deposition (Non-Patent Document 3). Therefore, it is difficult to effectively function the carbon deposition inhibiting effect. Therefore, when a petroleum hydrocarbon is used as a raw material, the catalyst is required to have not only catalytic activity for reforming but also a function of suppressing carbon deposition and suppressing sulfur poisoning. In order to solve this problem, the conventional method has proposed the formation of a complex carrier and the addition of a third component. For example, an alumina carrier on which zirconia having a zirconia sol as a precursor is supported, lanthanum oxide and cobalt are supported as promoters, and ruthenium is contained as an active component (Patent Document 3), Group IIa, Group IIIa and / or An activated alumina composite carrier containing an oxide of a lanthanoid metal, which has been subjected to a reduction treatment by supporting ruthenium (Patent Document 4), at least one selected from the group consisting of oxides of Group 2, Metal 3, Metal and Lanthanoid Metal A support obtained by calcining alumina containing 3 to 30% by weight of a seed at 800 to 900 ° C. on a catalyst basis, carrying 0.5 to 5% by weight of ruthenium, and reduced at 600 to 950 ° C. (Patent Document) 5) An alumina carrier carrying at least a ruthenium component, a zirconium component and an alkali metal component (patented) Document 6) methods, such as has been proposed.

しかしながら助触媒、複合化されたアルミナ担体がルテニウムに対して効果的な形態と配置で機能するよう設計され、かつ熱的安定性に優れた触媒は今までのところ殆ど見当たらない。
特開昭57−4232号公報 特開平5−220397号公報 特開平7−88376号公報 特開平8−52355号公報 特開平9−10586号公報 特開2001−276624号公報 「燃料協会誌」59巻25頁(1980) 「触媒」35巻224頁(1993) 「燃料協会誌」68巻39頁(1989)
However, so far, few catalysts have been designed so that the co-catalyst, the composite alumina support is designed to function in an effective form and arrangement with respect to ruthenium, and has excellent thermal stability.
JP-A 57-4232 Japanese Patent Laid-Open No. 5-220397 JP-A-7-88376 JP-A-8-52355 Japanese Patent Laid-Open No. 9-10586 JP 2001-276624 A “Journal of the Fuel Society” Vol. 59, p. 25 (1980) “Catalyst” Vol. 35, p. 224 (1993) “Journal of Fuel Association”, Vol. 68, p. 39 (1989)

本発明は、触媒に導入された助触媒、複合化されたアルミナ担体がそれぞれ効果的に機能し、炭素析出を抑制し硫黄被毒を抑制することができ、加えて水素製造を長期に渡って継続するために高温の水蒸気が共存する使用条件下に長期間晒されても触媒機能を維持できる熱的安定性に優れた水蒸気改質触媒を提供することを目的とする。   In the present invention, the co-catalyst introduced into the catalyst and the composite alumina carrier function effectively, respectively, and can suppress carbon deposition and suppress sulfur poisoning. An object of the present invention is to provide a steam reforming catalyst having excellent thermal stability that can maintain the catalytic function even when exposed to long-term use conditions in which high temperature steam coexists.

前記課題を解決するために、本発明者らは鋭意研究を重ねた結果、希土類金属を含有するアルミナ担体に、ルテニウム化合物から選ばれる少なくとも1種の化合物およびコバルト化合物から選ばれる少なくとも1種の化合物を担持させてなる水蒸気改質触媒において、希土類金属がアルミナ担体に含浸法で特定の量含有され、ルテニウム化合物およびコバルト化合物を担持させる前に酸素雰囲気下600〜800℃で焼成することによって、添加した助触媒や複合化された担体がルテニウムに対して相乗的に機能することで触媒活性を高め、加えて炭素析出を抑制し硫黄被毒を抑制することができる従来の触媒にはない高機能な水蒸気改質触媒を見出し、本発明の完成に至った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, at least one compound selected from a ruthenium compound and at least one compound selected from a cobalt compound are used as an alumina support containing a rare earth metal. In a steam reforming catalyst in which an alumina is supported, a specific amount of rare earth metal is contained in an alumina support by an impregnation method, and is added by firing at 600 to 800 ° C. in an oxygen atmosphere before supporting a ruthenium compound and a cobalt compound. The co-catalyst and composite carrier function synergistically with ruthenium to increase catalytic activity, and in addition, high performance not found in conventional catalysts that can suppress carbon deposition and suppress sulfur poisoning A novel steam reforming catalyst was found and the present invention was completed.

すなわち、本発明は、以下のとおりである。
[1]比表面積60〜120m /gを有するアルミナ担体に希土類金属を含有させ、更にルテニウム化合物から選ばれる少なくとも1種の化合物およびコバルト化合物から選ばれる少なくとも1種の化合物を担持させてなる水蒸気改質触媒において、前記希土類金属がアルミナ担体に含浸法で導入され、その希土類金属の量がアルミナ担体の表面積に対して8.5μmol/m未満であり、前記ルテニウム化合物から選ばれる少なくとも1種の化合物およびコバルト化合物から選ばれる少なくとも1種の化合物の担持前に、前記希土類金属を含有させたアルミナ担体を酸素存在下600〜800℃で焼成し
かつ前記ルテニウム化合物および前記コバルト化合物を同時に担持することを特徴とする水蒸気改質触媒。
] 希土類金属がランタンまたはセリウムを含む[1]記載の水蒸気改質触媒。
比表面積60〜120m /gを有するアルミナ担体に、希土類金属をアルミナ担体の表面積に対して8.5μmol/m未満となるように含浸法で導入し、前記希土類金属を含有させたアルミナ担体を酸素存在下600〜800℃で焼成した後、ルテニウム化合物から選ばれる少なくとも1種の化合物およびコバルト化合物から選ばれる少なくとも1種の化合物を同時に担持させることを特徴とする水蒸気改質触媒の製造方法。
That is, the present invention is as follows.
[1] Water vapor obtained by containing a rare earth metal in an alumina support having a specific surface area of 60 to 120 m 2 / g and further supporting at least one compound selected from ruthenium compounds and at least one compound selected from cobalt compounds. In the reforming catalyst, the rare earth metal is introduced into the alumina support by an impregnation method, the amount of the rare earth metal is less than 8.5 μmol / m 2 with respect to the surface area of the alumina support, and at least one selected from the ruthenium compounds Before supporting at least one compound selected from the above compounds and cobalt compounds, the rare earth metal-containing alumina carrier is calcined at 600 to 800 ° C. in the presence of oxygen ,
And the steam reforming catalyst characterized by simultaneously carrying the ruthenium compound and the cobalt compound .
[ 2 ] The steam reforming catalyst according to [1], wherein the rare earth metal contains lanthanum or cerium.
[ 3 ] Rare earth metal is introduced into an alumina support having a specific surface area of 60 to 120 m 2 / g by an impregnation method so that the surface area of the alumina support is less than 8.5 μmol / m 2, and the rare earth metal is contained. A steam reforming catalyst characterized in that at least one compound selected from ruthenium compounds and at least one compound selected from cobalt compounds are simultaneously supported after calcining the alumina support in the presence of oxygen at 600 to 800 ° C. Manufacturing method.

本発明により、炭素析出を抑制し硫黄被毒を抑制するために助触媒、複合化されたアルミナ担体がルテニウムに対して効果的な形態かつ好適な配置で各々が相乗的に機能するよう設計され、かつ高温の水蒸気が共存する使用条件下に長期間晒されても触媒機能を維持できる熱的安定性に優れた水蒸気改質触媒を提供することができる。   According to the present invention, the co-catalyst and composite alumina carrier are designed to function synergistically in an effective form and suitable arrangement with respect to ruthenium in order to suppress carbon deposition and suppress sulfur poisoning. In addition, it is possible to provide a steam reforming catalyst excellent in thermal stability that can maintain the catalytic function even when exposed to long-term use conditions in which high-temperature steam coexists.

実施例1〜2、比較例1〜4で得られた触媒を用いて水蒸気改質を行った実験1の結果を示すグラフ。The graph which shows the result of the experiment 1 which performed steam reforming using the catalyst obtained in Examples 1-2 and Comparative Examples 1-4. 実験2に示す方法で水蒸気改質を行った結果を示すグラフ。The graph which shows the result of having performed steam reforming by the method shown in Experiment 2.

本発明の水蒸気改質触媒は、希土類金属を含有するアルミナ担体に、ルテニウム化合物およびコバルト化合物からそれぞれ選ばれる少なくとも1種の化合物を担持させたものであるが、アルミナ担体への希土類金属の含有を含浸法で行い、その希土類金属の量がアルミナ担体の表面積に対して8.5μmol/m未満であり、かつルテニウム化合物およびコバルト化合物を担持させる前に酸素雰囲気下600〜800℃で焼成することが重要である。The steam reforming catalyst of the present invention is a catalyst in which at least one compound selected from a ruthenium compound and a cobalt compound is supported on an alumina support containing a rare earth metal. It is carried out by an impregnation method, and the amount of the rare earth metal is less than 8.5 μmol / m 2 with respect to the surface area of the alumina support, and is fired at 600 to 800 ° C. in an oxygen atmosphere before loading the ruthenium compound and the cobalt compound. is important.

本発明の水蒸気改質触媒において、アルミナ担体としては特に組成や構造による制約を受けるものではないが、担持されるルテニウム及びコバルトが充分に分散できるように比表面積が60m/g以上、好ましくは80〜120m/gで、細孔容積は0.1〜0.5ml/g、好ましくは0.2〜0.5ml/gであるものが良い。例としてはアルミニウムイソプロポキシドなどを前駆体として用いて、細孔制御の有機材料を添加したものを700℃以上で焼成したものなどを用いることができる。比表面積や細孔容積がこれより小さいと担持させるルテニウムの分散性が悪化し所定の活性や触媒寿命が得られなくなり、また逆にこれより大きいと充分な担体強度が得られなくなるので好ましくない。In the steam reforming catalyst of the present invention, the alumina carrier is not particularly restricted by the composition or structure, but the specific surface area is 60 m 2 / g or more, preferably so that the supported ruthenium and cobalt can be sufficiently dispersed. The pore volume is 80 to 120 m 2 / g and the pore volume is 0.1 to 0.5 ml / g, preferably 0.2 to 0.5 ml / g. As an example, an aluminum isopropoxide or the like used as a precursor and a material added with a pore-controlling organic material and baked at 700 ° C. or higher can be used. If the specific surface area or the pore volume is smaller than this, the dispersibility of the supported ruthenium is deteriorated and a predetermined activity and catalyst life cannot be obtained. On the other hand, if the specific surface area and pore volume are larger, a sufficient carrier strength cannot be obtained.

アルミナ担体の形状は、例として球状、円柱状、角柱状、打錠状、針状、膜状、ハニカム構造状などが挙げられる。また担体の成型には、例として加圧成型、押出成型、転動造粒成型、プレス成型などの成型方法が利用できる。いずれも本発明を制約するために特に限定されるものではなく、公知の方法を用いることができる。   Examples of the shape of the alumina carrier include a spherical shape, a cylindrical shape, a prismatic shape, a tableting shape, a needle shape, a membrane shape, and a honeycomb structure shape. For molding the carrier, for example, molding methods such as pressure molding, extrusion molding, rolling granulation molding, and press molding can be used. Neither is particularly limited to limit the present invention, and a known method can be used.

希土類金属を用いることによって触媒活性が増加し、かつ触媒寿命が向上する。希土類金属にはランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、イッテルビウムなどが使用できるが、特にランタン、セリウムを用いるのが良い。これら希土類金属は、いずれか1種を単独で用いても、あるいは2種以上を組み合わせて用いてもよい。これらの希土類金属は酸化物の他に塩化物、硝酸塩、酢酸塩などの希土類金属化合物を前駆体として使用することができる。   By using a rare earth metal, the catalytic activity is increased and the catalyst life is improved. As the rare earth metal, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, ytterbium, and the like can be used. In particular, lanthanum and cerium are preferably used. These rare earth metals may be used alone or in combination of two or more. These rare earth metals can use rare earth metal compounds such as chlorides, nitrates and acetates as precursors in addition to oxides.

希土類金属を含有するアルミナ担体は、希土類金属をアルミナ担体に含浸法で導入することで担体の表面に選択的に分布させることができる。希土類金属をアルミナ表面に選択的に分布させることによって、少量の添加量で大きな効果が得られ、かつ希土類金属がアルミナ表面を被覆することで担体の機械的強度や耐熱性が向上する。物理混合法や練り込み法などではアルミナ担体内部にも希土類金属が分布し、その内部に分布する希土類金属が無駄になって有効な添加効果(以下、対添加量効果)が得られず、更にアルミナ量の相対的低下が大きくなるので原料コストが増加し、担体の機械的強度を低下させ、希土類金属がアルミナと複合酸化物を形成して担体の比表面積を大幅に損なうなどの負の効果が表れやすくなるため好ましくない。
希土類金属をアルミナ担体に含浸法で導入するには、上記希土類金属化合物を含む溶液にアルミナ担体を浸漬させればよい。このとき溶媒としては、水が好ましい。また、含浸させる際は、ポアフィリング法が好ましい。
The alumina support containing the rare earth metal can be selectively distributed on the surface of the support by introducing the rare earth metal into the alumina support by an impregnation method. By selectively distributing the rare earth metal on the alumina surface, a large effect can be obtained with a small amount of addition, and the mechanical strength and heat resistance of the carrier are improved by the rare earth metal covering the alumina surface. In the physical mixing method and the kneading method, rare earth metal is distributed inside the alumina support, and the rare earth metal distributed inside the alumina carrier is wasted, so that an effective additive effect (hereinafter referred to as an additive amount effect) cannot be obtained. Negative effects such as increase in raw material cost due to a large relative decrease in the amount of alumina, lowering the mechanical strength of the support, and the rare earth metal forming a complex oxide with alumina and greatly reducing the specific surface area of the support Is not preferred because it tends to appear.
In order to introduce the rare earth metal into the alumina support by the impregnation method, the alumina support may be immersed in a solution containing the rare earth metal compound. At this time, the solvent is preferably water. Moreover, when impregnating, the pore filling method is preferable.

また、希土類金属をアルミナ担体に含浸法で導入し、担体の表面に分布させる際に、活性金属がアルミナと直接接触できるように、希土類金属をアルミナ表面に被覆することが重要である。希土類金属がアルミナ担体の全表面積を単層で被覆した状態のとき、アルミナ担体に含まれる希土類金属の量は、その酸化物としてアルミナ担体の表面積に対して8.5μmol/mとなる。希土類金属の量が8.5μmol/mを越えるとアルミナ担体の表面に単層で分布しきれず超過分が多分子層を形成することになる。希土類金属がアルミナ担体の全表面積を単層で被覆する状態、更には多分子層を形成するような状態になると、アルミナ担体と活性金属が直接接触できなくなるため、担体と活性金属との相互作用が弱まることによって触媒表面での活性金属の安定性低下や活性低下を起こしやすくなり好ましくない。したがって、活性金属がアルミナと直接接触できるように、希土類金属の量をアルミナ担体の表面積に対して8.5μmol/m未満とする。また希土類金属の量が少ないとその添加効果が低くなるのでいずれも好ましくない。より好ましくは0.8μmol/m以上8.5μmol/m未満である。
アルミナ担体に含まれる希土類金属の量は、アルミナ担体に含浸する溶液中における希土類金属化合物の濃度を調整することにより上記範囲とすることができる。
It is also important to coat the rare earth metal on the alumina surface so that the active metal can come into direct contact with the alumina when the rare earth metal is introduced into the alumina carrier by the impregnation method and distributed on the surface of the carrier. When the rare earth metal covers the entire surface area of the alumina support with a single layer, the amount of the rare earth metal contained in the alumina support is 8.5 μmol / m 2 with respect to the surface area of the alumina support as its oxide. If the amount of the rare earth metal exceeds 8.5 μmol / m 2 , it cannot be distributed in a single layer on the surface of the alumina support, and the excess forms a multimolecular layer. If the rare earth metal covers the entire surface area of the alumina support with a single layer, or forms a multi-molecular layer, the alumina support and active metal cannot be in direct contact, so the interaction between the support and active metal. This is not preferable because the decrease in the stability of the active metal on the catalyst surface and the decrease in the activity are liable to occur. Therefore, the amount of rare earth metal is less than 8.5 μmol / m 2 with respect to the surface area of the alumina support so that the active metal can be in direct contact with the alumina. In addition, if the amount of rare earth metal is small, the effect of addition becomes low, which is not preferable. More preferably, it is 0.8 μmol / m 2 or more and less than 8.5 μmol / m 2 .
The amount of rare earth metal contained in the alumina support can be adjusted to the above range by adjusting the concentration of the rare earth metal compound in the solution impregnated in the alumina support.

アルミナ担体に含浸法で希土類金属を含有させた後は、ルテニウム化合物およびコバルト化合物を含有させる前に酸素存在下で600〜800℃、好ましくは650〜750℃、より好ましくは700〜750℃で焼成処理して希土類金属を酸化物としてアルミナ担体に固定化する。酸素存在下の焼成は、大気中での焼成でよい。このとき焼成温度が600℃よりも低いと導入した希土類金属が担体表面で安定化せず水蒸気反応の使用条件下でアルミナ担体が熱履歴による劣化を受けやすくなり、また800℃を超えると導入した希土類金属がアルミナ担体と反応して複合酸化物(アルミネート)を形成しやすく、担体の比表面積を大幅に損なうだけでなく希土類金属が担体骨格内に取り込まれて担体表面に分布する活性金属のルテニウムに大して効果的に機能しなくなってしまうため好ましくない。   After the rare earth metal is contained in the alumina support by the impregnation method, before firing the ruthenium compound and the cobalt compound, firing is performed at 600 to 800 ° C., preferably 650 to 750 ° C., more preferably 700 to 750 ° C. in the presence of oxygen. The rare earth metal is fixed to the alumina support as an oxide by treatment. Firing in the presence of oxygen may be performed in the air. At this time, when the firing temperature is lower than 600 ° C., the introduced rare earth metal is not stabilized on the surface of the support, and the alumina support becomes susceptible to deterioration due to thermal history under the conditions of use of the water vapor reaction. The rare earth metal reacts with the alumina support to form a complex oxide (aluminate), which not only significantly impairs the specific surface area of the support but also the active metal that is incorporated into the support skeleton and distributed on the support surface. Since ruthenium does not function effectively compared to ruthenium, it is not preferable.

上記の希土類金属を含有するアルミナ担体にルテニウム化合物およびコバルト化合物を担持させる方法は、公知の含浸法を用いることができる。ルテニウム化合物としては三塩化ルテニウム、硝酸ルテニウムなどの化合物を、ルテニウム活性成分の前駆体として用いることができる。特に好ましくは三塩化ルテニウム(無水物又は水和物)を用いる。ルテニウム化合物の担持量は担体の表面積にも依存するが、概して触媒重量に対して金属として0.3〜5.0重量%、好ましくは0.5〜3.0重量%である。これよりルテニウムの担持量が少ないと活性点として機能するルテニウムが減少して充分な触媒活性が得られなくなり、また担持量が多いとルテニウムの分散性が低下して効果的に機能しないので好ましくない。助触媒となるコバルト化合物は、希土類金属を酸化物としてアルミナ担体に固定化した後にルテニウム化合物の担持前、または後に、あるいはルテニウム化合物と同時に担体に担持することができる。特にコバルト化合物をルテニウム化合物と同時に担持することでルテニウムの分散性を高め、触媒活性が著しく向上するなどの効果を発揮する。またルテニウムに対する楔として働くことでルテニウムの結晶化を抑制し、改質反応中に進行するルテニウムの凝集を抑制することで触媒劣化を抑制すると考えられる。従ってコバルト化合物とルテニウム化合物を同時に担持するとこれらの効果がより強調されるので好ましい。コバルト化合物としては硝酸コバルト、炭酸コバルト、酢酸コバルト、水酸化コバルト、塩化コバルトなどの化合物を、コバルト助触媒成分の前駆体として一種または複数種用いられるが、特に好ましくは硝酸コバルトが用いられる。   As a method for supporting the ruthenium compound and the cobalt compound on the alumina carrier containing the rare earth metal, a known impregnation method can be used. As the ruthenium compound, a compound such as ruthenium trichloride or ruthenium nitrate can be used as a precursor of the ruthenium active component. Particularly preferably, ruthenium trichloride (anhydride or hydrate) is used. The supported amount of the ruthenium compound depends on the surface area of the support, but is generally 0.3 to 5.0% by weight, preferably 0.5 to 3.0% by weight as a metal with respect to the catalyst weight. If the supported amount of ruthenium is less than this, the ruthenium functioning as the active site is reduced and sufficient catalytic activity cannot be obtained, and if the supported amount is too large, the dispersibility of ruthenium is lowered and it does not function effectively. . The cobalt compound serving as a cocatalyst can be supported on the support before or after the ruthenium compound is supported after the rare earth metal is fixed on the alumina support as an oxide, or simultaneously with the ruthenium compound. In particular, by carrying the cobalt compound simultaneously with the ruthenium compound, the effect of improving the dispersibility of ruthenium and remarkably improving the catalytic activity is exhibited. Moreover, it is thought that it suppresses crystallization of ruthenium by acting as a wedge with respect to ruthenium, and suppresses catalyst deterioration by suppressing aggregation of ruthenium that proceeds during the reforming reaction. Therefore, it is preferable to simultaneously carry a cobalt compound and a ruthenium compound since these effects are more emphasized. As the cobalt compound, one or more compounds such as cobalt nitrate, cobalt carbonate, cobalt acetate, cobalt hydroxide, and cobalt chloride are used as a precursor of the cobalt promoter component, and cobalt nitrate is particularly preferably used.

コバルトの量は、ルテニウムに対する原子モル比(以下、Co/Ru比)で0.1〜3、好ましくは0.1〜1.0、更に好ましくは0.2〜0.5である。Co/Ru比が0.1未満であると助触媒効果が充分に現れず、また3以上であると余剰のコバルトが逆にルテニウムの触媒機能を損なうことになるので好ましくない。   The amount of cobalt is 0.1 to 3, preferably 0.1 to 1.0, and more preferably 0.2 to 0.5 in terms of an atomic molar ratio to ruthenium (hereinafter, Co / Ru ratio). When the Co / Ru ratio is less than 0.1, the cocatalyst effect does not sufficiently appear, and when it is 3 or more, the excess cobalt adversely impairs the catalytic function of ruthenium.

ルテニウム化合物およびコバルト化合物を担持した後の乾燥処理及び焼成処理は、その条件については特に規定されないが、例えば、空気中、100℃以上で行う。また改質反応の使用に際しての前処理還元、又は反応初期の発熱等の負荷を低減させる目的で、得られた触媒を液相で還元処理してもよい。還元処理の方法は、例えば、ギ酸、ギ酸のアルカリ金属塩、ホルマリン、ヒドラジン、水素化ホウ素ナトリウム等の還元剤を用いて1〜20%の水溶液を調製し、室温〜60℃の温度に加温した後に触媒を投入して行う。   The conditions for the drying treatment and the firing treatment after supporting the ruthenium compound and the cobalt compound are not particularly specified, but are, for example, in air at 100 ° C. or higher. In addition, the obtained catalyst may be reduced in a liquid phase for the purpose of reducing the load such as pretreatment reduction when using the reforming reaction or heat generation at the initial stage of the reaction. The reduction treatment method is, for example, preparing a 1-20% aqueous solution using a reducing agent such as formic acid, alkali metal salt of formic acid, formalin, hydrazine, sodium borohydride, etc., and heating to a temperature of room temperature to 60 ° C. After that, the catalyst is added.

上記の方法で得られた水蒸気改質触媒は、改質反応の事前に改めて還元処理を行うことが好ましいが、改質反応で生じる反応ガス中の水素との接触の結果として還元されるため必ずしも必要とはしない。還元温度を制御することによって触媒性能が向上する場合があり、還元処理を実施する場合は、水素ガス流通下で700℃以下、好ましくは600〜700℃で行う。700℃を越えると水蒸気改質反応の前にルテニウムの分散性が低下し、結果として触媒性能を損なうことになるため好ましくない。   The steam reforming catalyst obtained by the above method is preferably subjected to a reduction treatment in advance before the reforming reaction, but is not necessarily because it is reduced as a result of contact with hydrogen in the reaction gas generated in the reforming reaction. I don't need it. In some cases, the catalyst performance may be improved by controlling the reduction temperature. When the reduction treatment is carried out, it is carried out at 700 ° C. or less, preferably 600 to 700 ° C. under a hydrogen gas flow. When the temperature exceeds 700 ° C., the dispersibility of ruthenium is lowered before the steam reforming reaction, and as a result, the catalyst performance is impaired.

本発明の水蒸気改質触媒は、水蒸気の共存下で炭化水素から水素を製造するプロセスに用いることができる。水素製造プロセスへの適用に特に制限はなく、製油所などでの水素化精製用水素や定置型分散電源における燃料電池用水素の製造などに適用することができる。炭化水素としては特に制限はなく、例えばメタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタンなどに代表される炭素数1以上の飽和脂肪族炭化水素化合物、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサンなどに代表される炭素数3以上の飽和脂環式炭化水素化合物、ベンゼン、トルエン、キシレンなどに代表される芳香族炭化水素化合物などが挙げられる。これらのうち一種あるいは二種以上を含む混合物であってもよく、石油精製で得られるLPガス、ナフサ、ガソリン、灯油、軽油などに代表される石油留分やそれらの一部の留分であってもよい。炭化水素に含有される硫黄含有量は0.2重量ppm以下、好ましくは0.05重量ppm以下である。硫黄含有量が0.2重量ppmを越えると硫黄化合物による触媒被毒が著しくなり、触媒活性低下および触媒寿命が進みやすくなるので好ましくない。硫黄含有量が0.2重量ppmを越える炭化水素であっても、改質反応に供する前に水素化脱硫や吸着脱硫などの前処理を施して予めその硫黄含有量を0.2重量ppm以下に低減することで本発明の水蒸気改質触媒を用いることができる。この前処理で炭化水素の硫黄含有量が低ければ低くなるほど硫黄による触媒被毒を低減できるので好ましい。   The steam reforming catalyst of the present invention can be used in a process for producing hydrogen from hydrocarbons in the presence of steam. There are no particular restrictions on the application to the hydrogen production process, and it can be applied to the production of hydrogen for hydrorefining at refineries and the like, and the production of hydrogen for fuel cells in a stationary distributed power source. The hydrocarbon is not particularly limited, and examples thereof include saturated aliphatic hydrocarbon compounds having 1 or more carbon atoms, such as methane, ethane, propane, butane, pentane, hexane, heptane, and octane, cyclopropane, cyclobutane, cyclopentane, Examples thereof include saturated alicyclic hydrocarbon compounds having 3 or more carbon atoms typified by cyclohexane and the like, and aromatic hydrocarbon compounds typified by benzene, toluene, xylene and the like. It may be a mixture containing one or more of these, and may be a petroleum fraction typified by LP gas, naphtha, gasoline, kerosene, light oil, etc. obtained by petroleum refining or a part of them. May be. The sulfur content contained in the hydrocarbon is 0.2 ppm by weight or less, preferably 0.05 ppm by weight or less. If the sulfur content exceeds 0.2 ppm by weight, the catalyst poisoning due to the sulfur compound becomes significant, and the catalyst activity is lowered and the catalyst life is likely to advance. Even for hydrocarbons with a sulfur content of more than 0.2 ppm by weight, pretreatment such as hydrodesulfurization and adsorptive desulfurization is performed before the reforming reaction, and the sulfur content is 0.2 ppm by weight or less in advance. The steam reforming catalyst of the present invention can be used by reducing to a low level. In this pretreatment, the lower the sulfur content of the hydrocarbon, the more preferable it is because the catalyst poisoning by sulfur can be reduced.

本発明の水蒸気改質触媒を用いて行う炭化水素の改質反応は、スチーム/カーボン比(以下、S/C比)が1〜10、好ましくは2〜5とする。S/C比が1未満では触媒活性の低下が著しく加速され、10以上では供給する水蒸気原単位が過剰となりコスト増加をもたらすので好ましくない。反応温度は炭化水素の種類にも依存するが、通常は400〜800℃で、好ましくは500〜750℃である。反応温度が400℃未満でも水蒸気改質反応は進行するが熱力学上生成する水素比率が低下して水素収率が減少するので好ましくない。また800℃を越えると熱劣化が加速され触媒寿命が著しく減少するので好ましくない。   The hydrocarbon reforming reaction performed using the steam reforming catalyst of the present invention has a steam / carbon ratio (hereinafter referred to as S / C ratio) of 1 to 10, preferably 2 to 5. When the S / C ratio is less than 1, the decrease in the catalyst activity is remarkably accelerated. When the S / C ratio is 10 or more, the amount of water vapor supplied is excessive, resulting in an increase in cost. The reaction temperature depends on the type of hydrocarbon, but is usually 400 to 800 ° C, preferably 500 to 750 ° C. Even if the reaction temperature is less than 400 ° C., the steam reforming reaction proceeds, but the ratio of hydrogen generated thermodynamically decreases and the hydrogen yield decreases, which is not preferable. On the other hand, if it exceeds 800 ° C., the thermal deterioration is accelerated and the catalyst life is remarkably reduced.

本発明の水蒸気改質触媒を用いる反応方式としては、連続流通式、バッチ式など特に制約を受けるものではないが、前者が効率的に改質反応を行えるので好ましい。この場合の炭化水素の液空間速度(以下、LHSV)は炭化水素の種類にも依存するが、通常10hr−1以下、好ましくは5hr−1以下である。炭化水素の種類によってはLHSVが10hr−1を越えても改質反応は可能だが、多量の炭化水素や水蒸気を供給する設備能力が必要になるので経済的に好ましくない。反応圧力は炭化水素の種類にも依存するが、通常0〜5MPa、好ましくは0〜2MPaである。反応圧力が5MPaを越えると高価な耐圧材料を用いた設備が必要となるので経済的に好ましくない。The reaction method using the steam reforming catalyst of the present invention is not particularly limited, such as a continuous flow method or a batch method, but is preferable because the former can efficiently perform the reforming reaction. Liquid hourly space velocity of hydrocarbons in this case (hereinafter, LHSV) is dependent on the type of hydrocarbon, typically 10 hr -1 or less, preferably 5 hr -1 or less. Depending on the type of hydrocarbon, the reforming reaction is possible even if the LHSV exceeds 10 hr −1 , but it is not economically preferable because a facility for supplying a large amount of hydrocarbon or steam is required. The reaction pressure depends on the type of hydrocarbon, but is usually 0 to 5 MPa, preferably 0 to 2 MPa. If the reaction pressure exceeds 5 MPa, an equipment using an expensive pressure-resistant material is required, which is not economically preferable.

本発明の水蒸気改質触媒を用いる反応形式としては、固定床式、移動床式、流動床式など特に制約を受けるものではない。本発明の水蒸気改質触媒を用いる反応器としても特に制約を受けるものではない。また本発明の水蒸気改質触媒は、単独あるいは他の触媒と併用して使用することもできる。   The reaction mode using the steam reforming catalyst of the present invention is not particularly limited, such as a fixed bed type, a moving bed type, and a fluidized bed type. The reactor using the steam reforming catalyst of the present invention is not particularly limited. The steam reforming catalyst of the present invention can be used alone or in combination with other catalysts.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to this.

[触媒の調製]
実施例1(触媒A)
2mm径のアルミナ担体(比表面積120m/g、細孔容積0.36ml/g)415gに、硝酸ランタン六水和物87.7gが溶解した水溶液150mlをポアフィリング法により含浸した後、110℃で16時間乾燥、引き続き酸素存在下650℃で3時間焼成を実施した。得られたランタン含有担体に、三塩化ルテニウム23.3gと硝酸コバルト(II)六水和物10.2gが溶解した水溶液150mlをポアフィリング法で含浸した後、150℃で16時間乾燥した。得られた触媒にヒドラジン炭酸塩水溶液を用いて40℃で液相還元処理を行い、150℃で10時間乾燥し、触媒Aを得た。
[Preparation of catalyst]
Example 1 (Catalyst A)
After impregnating 415 g of a 2 mm diameter alumina carrier (specific surface area 120 m 2 / g, pore volume 0.36 ml / g) with 150 ml of an aqueous solution in which 87.7 g of lanthanum nitrate hexahydrate was dissolved by a pore filling method, 110 ° C. For 16 hours, followed by baking at 650 ° C. for 3 hours in the presence of oxygen. The obtained lanthanum-containing support was impregnated with 150 ml of an aqueous solution in which 23.3 g of ruthenium trichloride and 10.2 g of cobalt (II) nitrate hexahydrate were dissolved, and then dried at 150 ° C. for 16 hours. The obtained catalyst was subjected to liquid phase reduction treatment at 40 ° C. using an aqueous hydrazine carbonate solution and dried at 150 ° C. for 10 hours to obtain Catalyst A.

比較例1(触媒B)
実施例1の方法において、硝酸コバルトを使用しなかったこと以外は実施例1と同様の調製方法によって調製を行い、触媒Bを得た。
Comparative Example 1 (Catalyst B)
In the method of Example 1, the catalyst B was prepared by the same preparation method as in Example 1 except that cobalt nitrate was not used.

比較例2(触媒C)
実施例1の方法において、硝酸ランタンを使用しなかったこと以外は実施例1と同様の調製方法によって調製を行い、触媒Cを得た。
Comparative Example 2 (Catalyst C)
In the method of Example 1, the catalyst C was prepared by the same preparation method as in Example 1 except that lanthanum nitrate was not used.

比較例3(触媒D)
実施例1の方法において、硝酸ランタンを担持した後の焼成処理を酸素存在下850℃で3時間としたこと以外は実施例1と同様の調製方法によって調製を行い、触媒Dを得た。
Comparative Example 3 (Catalyst D)
In the method of Example 1, the catalyst D was prepared by the same preparation method as in Example 1 except that the calcination treatment after supporting lanthanum nitrate was performed at 850 ° C. for 3 hours in the presence of oxygen.

実施例2(触媒E)
実施例1の方法において、硝酸ランタン六水和物を35.3gとした以外は実施例1と同様の調製方法によって調製を行い、触媒Eを得た。
Example 2 (Catalyst E)
A catalyst E was obtained in the same manner as in Example 1 except that 35.3 g of lanthanum nitrate hexahydrate was used in the method of Example 1.

比較例4(触媒F)
実施例1の方法において、硝酸ランタン六水和物を147gとした以外は実施例1と同様の調製方法によって調製を行い、触媒Fを得た。
Comparative Example 4 (Catalyst F)
A catalyst F was obtained in the same manner as in Example 1 except that 147 g of lanthanum nitrate hexahydrate was used in the method of Example 1.

前述の調製で得られた触媒A〜Fについて、IPC質量分析法で測定した組成及び窒素吸着法による比表面積を表1に示す。   Table 1 shows the composition measured by IPC mass spectrometry and the specific surface area by the nitrogen adsorption method for the catalysts A to F obtained by the above preparation.

Figure 0005107046
Figure 0005107046

[実験1]
1−3mmφに整粒した各触媒15ccを2mmφの不活性アルミナ35ccで均一に希釈したものを内径30mmφのSUS製円柱反応管に充填し、ガス空間速度(以下GHSV)=2000hr−1の水素気流下で10℃/min.の速度で昇温を行い600℃で90分間還元処理を行った後、市販のJIS1号灯油を硫黄濃度50ppbまで脱硫した灯油(以下、脱硫灯油)を原料油としてLHSV=5.0hr−1、スチーム/カーボン比=3.0、反応圧力0.10MPa−G、600℃で水蒸気改質反応を行った。原料油として用いた脱硫灯油の性状を表2に示す。
[Experiment 1]
A SUS cylindrical reaction tube having an inner diameter of 30 mmφ filled with 15 cc of each catalyst adjusted to 1-3 mmφ and uniformly diluted with 35 cc of inert alumina having a diameter of 2 mmφ, and a hydrogen gas flow with a gas space velocity (hereinafter referred to as GHSV) = 2000 hr −1 . 10 ° C./min. After heating at 600 ° C. for 90 minutes at a rate of 600 ° C., LHSV = 5.0 hr −1 using kerosene (hereinafter referred to as desulfurized kerosene) obtained by desulfurizing commercially available JIS No. 1 kerosene to a sulfur concentration of 50 ppb, The steam reforming reaction was performed at a steam / carbon ratio of 3.0, a reaction pressure of 0.10 MPa-G, and 600 ° C. Table 2 shows the properties of the desulfurized kerosene used as the raw material oil.

Figure 0005107046
Figure 0005107046

上述の水蒸気改質反応で得られた生成物はガスの状態でサンプリングし、ガスクロマトグラフィーで生成物組成を分析した。上記の各例で得られる改質触媒の触媒活性は、下記の式で求められるC1転化率を指標に評価した。
C1転化率(%)=a÷b×100
a:反応器出口の生成物に含まれるC1化合物(メタン、一酸化炭素、二酸化炭素)
のモル数
b:原料炭化水素(脱硫灯油)に含まれる炭素の総モル数
実施例1〜2、比較例1〜4で得られた触媒を用いて上述の条件で水蒸気改質反応を行った結果を図1に示す。本発明に基づいて得られた触媒Aおよび触媒Eは、比較例1〜4の触媒を用いた場合よりもC1転化率が高く高活性を示し、かつ時間が経過しても高転化率を維持し劣化が少ない触媒であることがわかる。
The product obtained by the above steam reforming reaction was sampled in a gas state, and the product composition was analyzed by gas chromatography. The catalytic activity of the reforming catalyst obtained in each of the above examples was evaluated using the C1 conversion obtained by the following formula as an index.
C1 conversion (%) = a ÷ b × 100
a: C1 compound (methane, carbon monoxide, carbon dioxide) contained in the product at the outlet of the reactor
B: the total number of moles of carbon contained in the raw material hydrocarbon (desulfurized kerosene) The steam reforming reaction was carried out under the conditions described above using the catalysts obtained in Examples 1-2 and Comparative Examples 1-4. The results are shown in FIG. Catalyst A and Catalyst E obtained according to the present invention have a higher C1 conversion rate and higher activity than when the catalysts of Comparative Examples 1 to 4 are used, and maintain a high conversion rate even after a lapse of time. It can be seen that the catalyst is less deteriorated.

[実験2]
実施例1で得られた触媒Aを用いて、実験1と同様にしてGHSV=2000hr−1の水素気流下で10℃/min.の速度で昇温を行い600℃で90分間還元処理を行った後、実験1と同様の脱硫灯油を原料油としてLHSV=0.5hr−1、スチーム/カーボン比=3.0、反応圧力0.00MPa−G(大気圧)、600℃で水蒸気改質反応を行った結果を図2に示す。図2から本発明の触媒は灯油の水蒸気改質反応において4000時間以上経過した後もC1転化率は100%を維持しており、実用に応えうる高活性かつ長寿命な触媒性能を有することを示す。
[Experiment 2]
Using the catalyst A obtained in Example 1, in the same manner as in Experiment 1, under a hydrogen stream of GHSV = 2000 hr −1 at 10 ° C./min. The temperature was raised at a rate of 600 ° C. for 90 minutes, and the same desulfurized kerosene as in Experiment 1 was used as the raw material LHSV = 0.5 hr −1 , steam / carbon ratio = 3.0, reaction pressure 0 The results of the steam reforming reaction at 0.000 MPa-G (atmospheric pressure) and 600 ° C. are shown in FIG. FIG. 2 shows that the catalyst of the present invention maintains a C1 conversion rate of 100% even after 4000 hours or more in the steam reforming reaction of kerosene, and has a highly active and long-lived catalyst performance that can meet practical use. Show.

Claims (3)

比表面積60〜120m /gを有するアルミナ担体に希土類金属を含有させ、更にルテニウム化合物から選ばれる少なくとも1種の化合物およびコバルト化合物から選ばれる少なくとも1種の化合物を担持させてなる水蒸気改質触媒において、前記希土類金属がアルミナ担体に含浸法で導入され、その希土類金属の量がアルミナ担体の表面積に対して8.5μmol/m未満であり、前記ルテニウム化合物から選ばれる少なくとも1種の化合物及びコバルト化合物から選ばれる少なくとも1種の化合物の担持前に、前記希土類金属を含有させたアルミナ担体を酸素存在下600〜800℃で焼成し
かつ前記ルテニウム化合物および前記コバルト化合物を同時に担持することを特徴とする水蒸気改質触媒。
A steam reforming catalyst comprising a rare earth metal contained in an alumina support having a specific surface area of 60 to 120 m 2 / g , and further supporting at least one compound selected from ruthenium compounds and at least one compound selected from cobalt compounds. In the method, the rare earth metal is introduced into the alumina support by an impregnation method, the amount of the rare earth metal is less than 8.5 μmol / m 2 with respect to the surface area of the alumina support, and at least one compound selected from the ruthenium compound and Before supporting at least one compound selected from cobalt compounds, the alumina carrier containing the rare earth metal is fired at 600 to 800 ° C. in the presence of oxygen ,
And the steam reforming catalyst characterized by simultaneously carrying the ruthenium compound and the cobalt compound .
希土類金属がランタンまたはセリウムを含む請求の範囲第1項記載の水蒸気改質触媒。  The steam reforming catalyst according to claim 1, wherein the rare earth metal contains lanthanum or cerium. 比表面積60〜120m /gを有するアルミナ担体に、希土類金属をアルミナ担体の表面積に対して8.5μmol/m未満となるように含浸法で導入し、前記希土類金属を含有させたアルミナ担体を酸素存在下600〜800℃で焼成した後、ルテニウム化合物から選ばれる少なくとも1種の化合物およびコバルト化合物から選ばれる少なくとも1種の化合物を同時に担持させることを特徴とする水蒸気改質触媒の製造方法。 An alumina support having a specific surface area of 60 to 120 m 2 / g introduced into the alumina support by an impregnation method so that the rare earth metal is less than 8.5 μmol / m 2 with respect to the surface area of the alumina support. Is calcined at 600 to 800 ° C. in the presence of oxygen, and then simultaneously supports at least one compound selected from ruthenium compounds and at least one compound selected from cobalt compounds. .
JP2007538711A 2005-09-30 2006-09-26 Hydrocarbon steam reforming catalyst Expired - Fee Related JP5107046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007538711A JP5107046B2 (en) 2005-09-30 2006-09-26 Hydrocarbon steam reforming catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005287295 2005-09-30
JP2005287295 2005-09-30
JP2007538711A JP5107046B2 (en) 2005-09-30 2006-09-26 Hydrocarbon steam reforming catalyst
PCT/JP2006/319062 WO2007040097A1 (en) 2005-09-30 2006-09-26 Steam reforming catalyst for hydrocarbon

Publications (2)

Publication Number Publication Date
JPWO2007040097A1 JPWO2007040097A1 (en) 2009-04-16
JP5107046B2 true JP5107046B2 (en) 2012-12-26

Family

ID=37906140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007538711A Expired - Fee Related JP5107046B2 (en) 2005-09-30 2006-09-26 Hydrocarbon steam reforming catalyst

Country Status (2)

Country Link
JP (1) JP5107046B2 (en)
WO (1) WO2007040097A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254929A (en) * 2008-04-14 2009-11-05 Japan Energy Corp Reforming catalyst for manufacturing hydrogen suitable for hydrogen manufacture at low temperature, and hydrogen manufacturing method using the catalyst
JP5394280B2 (en) * 2010-02-16 2014-01-22 Jx日鉱日石エネルギー株式会社 Reforming catalyst for hydrogen production, method for producing the same, and method for producing hydrogen using the catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082033A (en) * 2002-08-28 2004-03-18 Nippon Oil Corp Steam reforming catalyst, steam reforming method and fuel battery system
JP2004230312A (en) * 2003-01-31 2004-08-19 Idemitsu Kosan Co Ltd Hydrocarbon reforming catalyst

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3365657B2 (en) * 1993-09-20 2003-01-14 出光興産株式会社 Catalyst for steam reforming of hydrocarbons
US6255358B1 (en) * 2000-03-17 2001-07-03 Energy International Corporation Highly active Fischer-Tropsch synthesis using doped, thermally stable catalyst support
KR100825157B1 (en) * 2000-11-08 2008-04-24 이데미쓰 고산 가부시키가이샤 Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082033A (en) * 2002-08-28 2004-03-18 Nippon Oil Corp Steam reforming catalyst, steam reforming method and fuel battery system
JP2004230312A (en) * 2003-01-31 2004-08-19 Idemitsu Kosan Co Ltd Hydrocarbon reforming catalyst

Also Published As

Publication number Publication date
WO2007040097A1 (en) 2007-04-12
JPWO2007040097A1 (en) 2009-04-16

Similar Documents

Publication Publication Date Title
KR100928608B1 (en) Reforming Catalyst of Hydrocarbon and Method of Making the same, and Reforming Method of Hydrocarbon Using the Catalyst
JP2009254929A (en) Reforming catalyst for manufacturing hydrogen suitable for hydrogen manufacture at low temperature, and hydrogen manufacturing method using the catalyst
JP2008207186A (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP2003320253A (en) Hydrocarbon partial oxidation catalyst and production of hydrogen-containing gas using the same
JP4652695B2 (en) Hydrogenated aromatic dehydrogenation catalyst and method for producing the same
CN110603096B (en) Preparation method of dehydrogenation catalyst of linear light hydrocarbon with high regeneration efficiency
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JP5378148B2 (en) Reforming catalyst, reformer, and hydrogen production device
JP2008155147A (en) Catalyst for methanating carbon monoxide and method for methanating carbon monoxide by using the same
JP5788348B2 (en) Reforming catalyst for hydrogen production, hydrogen production apparatus and fuel cell system using the catalyst
JP5107046B2 (en) Hydrocarbon steam reforming catalyst
JP4783240B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
JP2011083685A (en) Reforming catalyst for use in producing hydrogen, method of producing the same, and method of producing hydrogen using the same
DK202270397A1 (en) Method for preparing a steam reforming catalyst, catalyst and related use
JP5759922B2 (en) Method for producing hydrogen
JP4580070B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP5394280B2 (en) Reforming catalyst for hydrogen production, method for producing the same, and method for producing hydrogen using the catalyst
JP4860226B2 (en) Partial oxidation reforming catalyst and partial oxidation reforming method
JP5788352B2 (en) Reforming catalyst for hydrogen production, hydrogen production apparatus and fuel cell system using the catalyst
JP4875295B2 (en) Reforming catalyst for partial oxidation and reforming method
JP4580071B2 (en) Desulfurization agent for petroleum hydrocarbons and method for producing hydrogen for fuel cells
JP2010064037A (en) Method of producing reforming catalyst for hydrogen production suitable for producing hydrogen at low temperature
JP4182220B2 (en) Pre-reforming catalyst for hydrogen production and method for producing hydrogen using the same
JP5462685B2 (en) Steam reforming catalyst, hydrogen production apparatus and fuel cell system
JP2006286552A (en) Manufacturing method of fuel gas for solid oxide fuel cell operated in middle and low temperature ranges

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090518

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121003

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees