JP2011255375A - Method for producing gasification catalyst, and gasification treatment system - Google Patents

Method for producing gasification catalyst, and gasification treatment system Download PDF

Info

Publication number
JP2011255375A
JP2011255375A JP2011160158A JP2011160158A JP2011255375A JP 2011255375 A JP2011255375 A JP 2011255375A JP 2011160158 A JP2011160158 A JP 2011160158A JP 2011160158 A JP2011160158 A JP 2011160158A JP 2011255375 A JP2011255375 A JP 2011255375A
Authority
JP
Japan
Prior art keywords
catalyst
gasification
nickel
producing
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011160158A
Other languages
Japanese (ja)
Other versions
JP5971836B2 (en
Inventor
Kazuhiro Sato
和宏 佐藤
Takaaki Shinoda
高明 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2011160158A priority Critical patent/JP5971836B2/en
Publication of JP2011255375A publication Critical patent/JP2011255375A/en
Application granted granted Critical
Publication of JP5971836B2 publication Critical patent/JP5971836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a gasification catalyst, capable of showing sulfur resistance and coking resistance, and further showing high activity though Ni hardly solid-dissolves, even when operating at a low furnace temperature of 1,000°C or below without using an expensive noble metal-based catalyst.SOLUTION: In this method for producing a gasification catalyst, one kind or two or more kinds of tungsten salts, cobalt salts and molybdenum salts are mixed with nickel sulfate and magnesium oxide, to generate a complex reaction, and a complex is dehydrated, cleaned, mixed with a calcium raw material, then dried and calcined.

Description

本発明はガス化触媒の製造方法およびガス化処理システムに関し、詳しくは、有機系被ガス化物をガス化して利用するに際して、1000℃以下でガス化処理してもタール分を効果的に抑制可能なガス化触媒の製造方法およびガス化処理システムに関する。   The present invention relates to a method for producing a gasification catalyst and a gasification treatment system, and more particularly, when gasifying and utilizing an organic gasification product, the tar content can be effectively suppressed even if gasification treatment is performed at 1000 ° C. or lower. The present invention relates to a method for producing a gasification catalyst and a gasification treatment system.

近年、バイオマス(量的生物資源)や下水汚泥など有機系被ガス化物を燃料として利用する技術が盛んであり、ガス化して処理する方法が進展している。バイオマスや下水汚泥をガス化するプロセスでは、通常、ガス化炉の炉内温度を1000℃以上にしているが、それはこの温度未満にすると、燃料の一部がタールやチャーに変換されて、ガス変換効率が低下すると共に、これらタールやチャーが炉内に蓄積されて操業に支障をきたすからである。   In recent years, techniques for using organic gasification products such as biomass (quantitative biological resources) and sewage sludge as fuel are prosperous, and methods for gasifying and treating them are advancing. In the process of gasifying biomass and sewage sludge, the furnace temperature of the gasifier is usually set to 1000 ° C or higher, but if it is lower than this temperature, part of the fuel is converted into tar and char, and the gas This is because the conversion efficiency is lowered and these tars and chars are accumulated in the furnace, which hinders operation.

そこで、炉内を1000℃以上の高温に保つため、燃料を多量に燃焼させたり、PSA(酸素製造装置)を用いてガス化剤である酸素濃度を高めたりする等、エネルギー消費を多くせざるを得ず、しかも高温に保持するために炉材も耐熱性に優れた高価なものを使用せざるを得ないのが現状であり、これが操業コストを高いものとしていた。   Therefore, in order to keep the inside of the furnace at a high temperature of 1000 ° C. or higher, it is necessary to increase energy consumption by burning a large amount of fuel or increasing the oxygen concentration as a gasifying agent using a PSA (oxygen production apparatus). In addition, in order to maintain the temperature at a high temperature, it is necessary to use an expensive furnace material having excellent heat resistance, which increases the operating cost.

そこで、炉内温度を800℃程度にしてガス化する方法が提案されている。例えば、流動床式ガス化炉の場合は、流動媒体に水蒸気改質触媒などのNi系触媒を用いて、タール分の発生を抑制したり、あるいは後段のタール分解設備に触媒を用いて発生したタール分を改質したりする等が試みられている。しかし、触媒中のNiが硫黄被毒して不活性となり易いという問題、あるいは炭素析出(コーキング)の問題があり、実操業上十分ではなく、特にナフタレン等の多環芳香族系のタール分に対しては効果的でない。   Therefore, a gasification method has been proposed in which the furnace temperature is about 800 ° C. For example, in the case of a fluidized bed gasifier, the generation of tar is suppressed by using a Ni-based catalyst such as a steam reforming catalyst as the fluid medium, or the catalyst is generated by using a catalyst in the subsequent tar decomposition facility. Attempts have been made to modify the tar content. However, there is a problem that Ni in the catalyst is easily poisoned by sulfur poisoning, or there is a problem of carbon deposition (coking), which is not sufficient in actual operation, especially for polycyclic aromatic tars such as naphthalene. It is not effective for this.

以前から知られている触媒として、Ni/Al23もしくはNi/Al23・CaOなどのようなAl23 をベースとするものは、コーキングの発生が問題となる。MgOをベースとする触媒は、コーキングの発生は抑制されるが、活性成分のNiとMgOが固溶化し易く、固溶化したNiは還元が困難となり、不活性となるという問題がある。 As a catalyst that has been known for a long time, a catalyst based on Al 2 O 3 such as Ni / Al 2 O 3 or Ni / Al 2 O 3 .CaO has a problem of coking. Although the catalyst based on MgO suppresses the occurrence of coking, there is a problem that Ni and MgO as active components are easily dissolved, and the solidified Ni becomes difficult to reduce and becomes inactive.

そこで、より活性なRhやRu系の触媒を用いて低温域でのタールやチャーを効果的に生じ難くする方法が提案されている(例えば、特許文献1、2)。   In view of this, a method has been proposed in which tar and char in a low temperature range are effectively prevented from being generated using a more active Rh or Ru-based catalyst (for example, Patent Documents 1 and 2).

特開2003−246990号公報JP 2003-246990 A 特開平10−526号39公報JP-A-10-52639

しかしながら、上記従来技術は、貴金属系の触媒を使用するため高価であり、工業生産規模として使用するにはランニングコストの高騰は避けられず、採用することはできない。   However, the above prior art is expensive because it uses a noble metal catalyst, and the running cost is inevitably increased when used as an industrial production scale and cannot be adopted.

そこで、本発明の目的は、上記従来技術の有する問題点に鑑みて、高価な貴金属系の触媒を使用することなく、炉内を1000℃以下の低温で操業しても、耐硫黄性、耐コーキング性を発揮し、Niが固溶し難く、それでいて高活性を発揮するガス化触媒の製造方法およびガス化処理システムを提供することにある。   Therefore, in view of the above-described problems of the prior art, the object of the present invention is to have sulfur resistance and resistance even if the furnace is operated at a low temperature of 1000 ° C. or lower without using an expensive noble metal catalyst. An object of the present invention is to provide a method for producing a gasification catalyst and a gasification treatment system that exhibit coking properties, hardly dissolve Ni in solid solution, and yet exhibit high activity.

上記課題は、各請求項記載の発明により達成される。すなわち、本発明に係るガス化触媒の特徴構成は、硫酸ニッケル、酢酸ニッケル、炭酸ニッケルから選ばれた1種又は2種以上と、マグネシウム原料およびカルシウム原料との複合体を有するガス化触媒であって、前記複合体が、タングステン塩、コバルト塩、モリブデン塩の1種又は2種以上を含むと共にニッケル5〜30wt%を含み、前記複合体表面に、タングステン、コバルト、モリブデン成分の内1種また2種以上とニッケル成分とが高分散されていることにある。   The above-mentioned subject is achieved by the invention described in each claim. That is, the gasification catalyst according to the present invention is characterized by a gasification catalyst having a composite of one or more selected from nickel sulfate, nickel acetate, and nickel carbonate, and a magnesium raw material and a calcium raw material. The composite includes one or more of tungsten salt, cobalt salt, and molybdenum salt, and includes 5 to 30 wt% of nickel. The composite surface has one or more of tungsten, cobalt, and molybdenum components. Two or more types and the nickel component are highly dispersed.

この構成によれば、タングステン、コバルト、モリブデン成分の内1種また2種以上とニッケル成分とを前記複合体の内部だけではなく、表面に高濃度に分散して存在させることができるので、有機系被ガス化物のガス化にあたり、炉内温度を500〜900℃程度としてもチャーやタール分の生成を効果的に抑えることができ、生成したとしても効果的に分解できる。特に、タングステン、コバルト、モリブデン成分は、ニッケルに吸着し易い硫黄分を取り込み、本発明に係る触媒をガス化炉に投入した際、ガス中に離脱する作用をするので、ニッケルの触媒活性が高く維持され、触媒の硫黄被毒を確実かつ効果的に抑制する。しかも、従来技術では、タール分の生成を抑えることが困難とされていた、難分解性のナフタレンやフェナントレン等の多環芳香族系のタール分に対しても、効果的に分解を促進することができる。また、硫酸ニッケル、酢酸ニッケル、炭酸ニッケルでは、硝酸ニッケルに比べて酸化マグネシウムのシンタリング(結晶化)による、焼成時の比表面積の低下を効果的に抑制できて触媒活性を高めることができる。   According to this configuration, one or more of the tungsten, cobalt, and molybdenum components and the nickel component and the nickel component can be dispersed in a high concentration on the surface as well as the inside of the composite. In the gasification of the system gasified product, even if the furnace temperature is about 500 to 900 ° C., the generation of char and tar can be effectively suppressed, and even if it is generated, it can be effectively decomposed. In particular, the tungsten, cobalt, and molybdenum components take in a sulfur component that is easily adsorbed by nickel, and when the catalyst according to the present invention is put into a gasification furnace, it acts to desorb into the gas, so the nickel catalytic activity is high. Maintained, and reliably and effectively suppresses sulfur poisoning of the catalyst. In addition, it is possible to effectively promote decomposition even for polycyclic aromatic tars such as naphthalene and phenanthrene, which have been difficult to suppress in the conventional technology. Can do. In addition, nickel sulfate, nickel acetate, and nickel carbonate can effectively suppress a decrease in specific surface area during firing due to sintering (crystallization) of magnesium oxide as compared with nickel nitrate, thereby enhancing catalytic activity.

このように、バイオマス等の有機系被ガス化物をガス化してもチャーやタール分の生成が抑制されるので、炭素変換効率が高くなり、生成したガスを発電設備に利用する場合には発電効率が高まり、生成したガスをメタノールやジメチルエーテルに利用する場合には、燃料変換効率が高まることになる。のみならず、H2 O/C比が1〜3のような低い場合でもガス化が促進されるので、ガス化炉を操業する際に、水蒸気量を低減できると共に、水蒸気投入による顕熱分の熱的ロスを低減できることになる。また、含有するニッケルが5wt%未満では、触媒効果を十分に発揮することが難しく、逆に30wt%を越えて加えても、量の割に効果の増加が少なく好ましくない。なお、カルシウム原料としては、ドロマイト、軽焼ドロマイト(ドロマイトを約950℃以上で焼成したもの)、および重焼ドロマイト(ドロマイトを約1300℃以上で焼成したもの)、消石灰などを挙げることができる。なお、本明細書において、高分散とは、複合体表面の全部または大部分を微粒のニッケル成分やタングステン、コバルト、モリブデン成分が覆う状態をいう。これらニッケル成分などが大きく粗に分散していると、その近傍に炭素が析出し、タール分解反応を阻害すると共に、析出した炭素がニッケル成分などを触媒表面から剥離させ、触媒性能を劣化させる要因となる。 In this way, even when gasifying organic gasified products such as biomass, the generation of char and tar is suppressed, so the carbon conversion efficiency increases, and when the generated gas is used for power generation facilities, the power generation efficiency When the generated gas is used for methanol or dimethyl ether, fuel conversion efficiency is increased. In addition, since gasification is promoted even when the H 2 O / C ratio is as low as 1 to 3, when operating the gasification furnace, the amount of water vapor can be reduced and the sensible heat component by the introduction of water vapor can be reduced. It is possible to reduce the thermal loss. If the nickel content is less than 5 wt%, it is difficult to sufficiently exert the catalytic effect. Conversely, even if it is added in excess of 30 wt%, the increase in the effect is small for the amount, which is not preferable. Examples of the calcium raw material include dolomite, light-burned dolomite (dolomite baked at about 950 ° C. or higher), heavy-burned dolomite (dolomite baked at about 1300 ° C. or higher), slaked lime, and the like. In this specification, high dispersion means a state in which the entire surface of the composite is covered with a fine nickel component, tungsten, cobalt, or molybdenum component. When these nickel components are dispersed largely and roughly, carbon is deposited in the vicinity of the nickel components, hindering the tar decomposition reaction, and the deposited carbon causes the nickel components and the like to be separated from the catalyst surface, thereby deteriorating the catalyst performance. It becomes.

その結果、高価な貴金属系の触媒を使用することなく、炉内を1000℃以下の低温で操業しても、耐硫黄性、耐コーキング性を発揮し、Niが固溶し難く、それでいて高活性を発揮するガス化触媒を提供することができた。   As a result, even if the furnace is operated at a low temperature of 1000 ° C. or less without using an expensive precious metal catalyst, it exhibits sulfur resistance and coking resistance, Ni is hardly dissolved, and yet has high activity. The gasification catalyst which exhibits can be provided.

前記タングステン塩がタングステン酸アンモニウムであり、コバルト塩が硝酸コバルト又は硫酸コバルト又は酢酸コバルトであり、モリブデン塩がモリブデン酸アンモニウムであることが好ましい。   It is preferable that the tungsten salt is ammonium tungstate, the cobalt salt is cobalt nitrate, cobalt sulfate, or cobalt acetate, and the molybdenum salt is ammonium molybdate.

この構成によれば、一層耐硫黄性が高くて活性度の高い触媒作用を維持できる。タングステン酸アンモニウム、硝酸コバルト又は硫酸コバルト又は酢酸コバルト、モリブデン酸アンモニウムは、触媒製品に対し各金属成分(タングステン、コバルト、モリブデン)として5〜30wt%含むことが好ましく、5〜15wt%含むことがより好ましく、10〜15wt%含むことが一層好ましい。5wt%未満であると、耐硫黄効果が十分でなく、30wt%を超えて添加しても、添加量の割に効果の増加は少ない。   According to this configuration, it is possible to maintain a catalytic action with higher sulfur resistance and higher activity. Ammonium tungstate, cobalt nitrate or cobalt sulfate or cobalt acetate, and ammonium molybdate are preferably included in the catalyst product in an amount of 5 to 30 wt%, more preferably 5 to 15 wt% as each metal component (tungsten, cobalt, and molybdenum). Preferably, it contains 10 to 15 wt%. If it is less than 5 wt%, the sulfur resistance effect is not sufficient, and even if added in excess of 30 wt%, the increase in the effect is small for the amount added.

更に、酸化アルミニウムを含んでいてもよい。この構成によれば、コーキング性を損なうことなく、触媒の熱安定性を高めることができる。酸化アルミニウムの添加量は、アルミニウム5〜15wt%になるようにする。アルミニウム5wt%未満では効果に乏しく、15wt%を超えて添加しても効果の増加が少ない。   Furthermore, aluminum oxide may be included. According to this configuration, the thermal stability of the catalyst can be improved without impairing the coking property. The amount of aluminum oxide added is 5-15 wt% aluminum. If the aluminum content is less than 5 wt%, the effect is poor.

また、本発明に係るガス化触媒の製造方法の特徴構成は、タングステン塩、コバルト塩、モリブデン塩の1種又は2種以上と硫酸ニッケルと酸化マグネシウムを混合して複合化反応を生起し、この複合化物を脱水して洗浄し、これにカルシウム原料を混合して、その後乾燥し、焼成することにある。   In addition, the characteristic configuration of the method for producing a gasification catalyst according to the present invention is that one or more of tungsten salt, cobalt salt, molybdenum salt, nickel sulfate, and magnesium oxide are mixed to cause a composite reaction. The composite material is dehydrated and washed, mixed with calcium raw material, then dried and fired.

この構成によれば、高価な貴金属系の触媒を使用することなく、炉内を1000℃以下の低温で操業しても、耐硫黄性、耐コーキング性を発揮し、Niが固溶し難く、それでいて高活性を発揮するガス化触媒の製造方法を提供することができる。しかも、硫酸ニッケル以外のニッケル原料(硝酸塩、酢酸塩、炭酸塩など)を用いる場合に比べて、洗浄時に発生する廃液処理コストが少なくて済む。   According to this configuration, even if the furnace is operated at a low temperature of 1000 ° C. or less without using an expensive noble metal-based catalyst, it exhibits sulfur resistance and coking resistance, and Ni is not easily dissolved. Nevertheless, a method for producing a gasification catalyst exhibiting high activity can be provided. In addition, compared with the case where nickel raw materials other than nickel sulfate (nitrate, acetate, carbonate, etc.) are used, the waste liquid treatment cost generated during cleaning can be reduced.

更に、本発明に係るガス化触媒の製造方法の特徴構成として、タングステン塩、コバルト塩、モリブデン塩の1種又は2種以上と酢酸ニッケル又は炭酸ニッケルと酸化マグネシウムを混合して複合化反応を生起し、これにカルシウム原料を混合して、その後乾燥し、焼成する構成としてもよい。   Furthermore, as a characteristic constitution of the method for producing a gasification catalyst according to the present invention, one or more of tungsten salt, cobalt salt, molybdenum salt, nickel acetate, nickel carbonate and magnesium oxide are mixed to cause a composite reaction. And it is good also as a structure which mixes a calcium raw material with this, and is dried after that and baking.

この構成によっても、高価な貴金属系の触媒を使用することなく、炉内を1000℃以下の低温で操業しても、耐硫黄性、耐コーキング性を発揮し、Niが固溶し難く、それでいて高活性を発揮するガス化触媒の製造方法を提供することができる。しかも、酢酸ニッケル又は炭酸ニッケルを用いているので、硫酸ニッケルを用いた場合のように、カルシウム原料を添加する前に脱水処理する必要はなく、工程を簡略化できる。   Even with this configuration, even if the inside of the furnace is operated at a low temperature of 1000 ° C. or less without using an expensive noble metal-based catalyst, it exhibits sulfur resistance and coking resistance, and Ni is hardly dissolved, and yet A method for producing a gasification catalyst exhibiting high activity can be provided. In addition, since nickel acetate or nickel carbonate is used, it is not necessary to dehydrate before adding the calcium raw material as in the case of using nickel sulfate, and the process can be simplified.

前記タングステン塩がタングステン酸アンモニウムであり、コバルト塩が硝酸コバルト又は硫酸コバルト又は酢酸コバルトであり、モリブデン塩がモリブデン酸アンモニウムであることが好ましい。   It is preferable that the tungsten salt is ammonium tungstate, the cobalt salt is cobalt nitrate, cobalt sulfate, or cobalt acetate, and the molybdenum salt is ammonium molybdate.

この構成によれば、一層耐硫黄性が高くて活性度の高い触媒作用を維持できる。   According to this configuration, it is possible to maintain a catalytic action with higher sulfur resistance and higher activity.

前記複合化反応を45〜90℃で行うと共に、前記焼成を500〜900℃に加熱して行うことが好ましい。   It is preferable that the complexing reaction is performed at 45 to 90 ° C. and the baking is performed by heating to 500 to 900 ° C.

この構成によれば、複合化反応を効率よく生起させることができる。複合化反応が45℃未満では、複合化反応の進行が遅く、90℃を超えると、均一な複合化反応が生起し難くなり易い。   According to this configuration, the complexing reaction can be efficiently generated. If the complexing reaction is less than 45 ° C., the progress of the complexing reaction is slow, and if it exceeds 90 ° C., a uniform complexing reaction is unlikely to occur.

更に又、本発明に係るガス化処理システムの特徴構成は、有機系被ガス化物を加熱・燃焼してガス化するガス化炉に、上記の製造方法で得られたガス化触媒が導入されるようになっていることにある。   Furthermore, the gasification treatment system according to the present invention is characterized in that the gasification catalyst obtained by the above-described production method is introduced into a gasification furnace that heats and burns an organic gasification product. It is in that.

この構成によれば、高価な貴金属系の触媒を使用することなく、炉内を1000℃以下の低温で操業しても、耐硫黄性、耐コーキング性を発揮し、Niが固溶し難く、それでいて高活性を発揮するガス化触媒を有するガス化処理システムを提供することができる。しかも、炉内温度を低くできるので、炉構成材料として高価な材料を用いる必要がなく、システム全体の製造コストを低減できる。   According to this configuration, even if the furnace is operated at a low temperature of 1000 ° C. or less without using an expensive noble metal-based catalyst, it exhibits sulfur resistance and coking resistance, and Ni is not easily dissolved. In addition, a gasification processing system having a gasification catalyst exhibiting high activity can be provided. In addition, since the furnace temperature can be lowered, it is not necessary to use an expensive material as the furnace constituent material, and the manufacturing cost of the entire system can be reduced.

前記ガス化炉の下流側に、導入された前記触媒を回収する触媒回収装置を有すると共に、更に下流側に前記触媒を充填するタール分解設備を有することが好ましい。   It is preferable that a downstream side of the gasification furnace has a catalyst recovery device for recovering the introduced catalyst, and further has a tar decomposition facility for charging the catalyst downstream.

この構成によれば、タール分解設備により、ガス化後に残存する可能性のある少量のタール分を確実に分解することができる。   According to this configuration, a small amount of tar that may remain after gasification can be reliably decomposed by the tar decomposition facility.

本発明の一実施形態に係るガス化処理システムの概略構成図The schematic block diagram of the gasification processing system which concerns on one Embodiment of this invention. 本発明に係る第1実施形態の触媒の製造方法を示すフロー図The flowchart which shows the manufacturing method of the catalyst of 1st Embodiment which concerns on this invention. 第2実施形態の触媒の製造方法を示す図2と同様なフロー図The same flow chart as FIG. 2 showing the manufacturing method of the catalyst of the second embodiment 各実施例、比較例のタール代替物質分解率と反応温度の関係を示す図The figure which shows the relationship between the tar alternative substance decomposition rate of each Example and a comparative example, and reaction temperature 各実施例、比較例のタール代替物質分解率とH2 S濃度との関係を示す図Each example shows the relationship between tar substitute material decomposition rate and the concentration of H 2 S in the comparative example 各実施例、比較例の代替物質分解率とH2 S濃度との関係を示す図Each example shows the relationship between alternative material decomposition rate and the concentration of H 2 S in the comparative example

本発明の実施形態を、図面を参照して詳細に説明する。図1は、本実施形態に係るガス化処理システムの概略構成を示す。   Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic configuration of a gasification processing system according to the present embodiment.

このガス化処理システムは、バイオマス等の有機系被ガス化物からなる燃料および空気、必要に応じて酸素、水蒸気が送給されるガス化炉1と、このガス化炉1内に、後述するタール成分の生成を抑制する触媒を投入する手段と、投入された触媒を回収する回収装置2と、必要に応じて発生したガス中の塵芥を除去する集塵機3と、タール分解設備4などとから構成されている。タール分解設備4から排出されるガスは、さらに下流側のガスタービンやガスエンジン等からなる発電設備や各種燃料変換設備(図示略)などに送給され、燃料として利用される。   This gasification processing system includes a gasification furnace 1 to which fuel and air made of an organic material to be gasified such as biomass and oxygen and water vapor are supplied as needed, and a tar to be described later in the gasification furnace 1. Consists of a means for introducing a catalyst for suppressing the generation of components, a recovery device 2 for recovering the input catalyst, a dust collector 3 for removing dust in the generated gas as required, and a tar decomposition facility 4 Has been. The gas discharged from the tar decomposition facility 4 is further supplied to a power generation facility or various fuel conversion facilities (not shown) such as a downstream gas turbine or a gas engine, and is used as fuel.

ガス化炉1には、上記したように、バイオマスと燃焼用空気の他、炉内を1000℃以下の低温で操業してもタール成分の生成を効果的に抑制可能な触媒が供給されるようになっていると共に、ガス化炉1の下流側には、触媒回収装置であるサイクロン2が接続されている。もっとも、触媒回収装置としては、サイクロンに限定されるものではなく、セラミックフィルタ等を用いてもよい。   As described above, the gasification furnace 1 is supplied with a catalyst capable of effectively suppressing the generation of tar components even if the inside of the furnace is operated at a low temperature of 1000 ° C. or lower, in addition to biomass and combustion air. In addition, a cyclone 2 that is a catalyst recovery device is connected to the downstream side of the gasification furnace 1. However, the catalyst recovery device is not limited to a cyclone, and a ceramic filter or the like may be used.

ガス化炉1として、流動床タイプの炉を用いる場合には、触媒を流動媒体に混入させることができ、その他の固定床タイプのガス化炉を用いる場合には、触媒を炉内に噴霧して用いることができる。このようにすると、ガス化が著しく促進されるため、1000℃以下の炉内温度で操業しても、タール分の生成を大幅に抑えることができる。実際に操業される炉内温度は、500〜900℃程度でよく、より好ましくは700〜850℃で操業することである。ガス化炉1に供給される触媒の製造方法については、後述する。   When a fluidized bed type furnace is used as the gasification furnace 1, the catalyst can be mixed into the fluidized medium. When other fixed bed type gasification furnaces are used, the catalyst is sprayed into the furnace. Can be used. In this way, since gasification is remarkably promoted, the generation of the tar content can be greatly suppressed even if the operation is performed at a furnace temperature of 1000 ° C. or lower. The temperature in the furnace that is actually operated may be about 500 to 900 ° C, and more preferably 700 to 850 ° C. A method for producing the catalyst supplied to the gasification furnace 1 will be described later.

また、タール分解設備4は、ガス化後に残存する可能性のある少量のタール分を分解するためのもので、ガス化炉1の後段側で、集塵処理した後に設けられることが好ましく、ここでも上記触媒を投入してタール分の分解を確実にする。タール分解設備4の触媒部4aは、固定床タイプでも流動床タイプでもよく、500〜900℃、より好ましくは750〜850℃に加熱して触媒を充填あるいは噴霧あるいは流動媒体として投入してタール分を分解する。   The tar decomposition facility 4 is for decomposing a small amount of tar that may remain after gasification, and is preferably provided after dust collection treatment on the rear stage side of the gasification furnace 1. However, the above catalyst is added to ensure the decomposition of tar content. The catalyst unit 4a of the tar decomposition facility 4 may be a fixed bed type or a fluidized bed type, and is heated to 500 to 900 ° C., more preferably 750 to 850 ° C. Disassemble.

つぎに、ガス化炉1に使用する触媒の製造方法について、図2、3を参照して説明する。   Next, a method for producing a catalyst used in the gasification furnace 1 will be described with reference to FIGS.

<第1実施形態>
図2に示すように、まず、ニッケル塩の1種である硫酸ニッケルの水溶液を所定量作成し、これとタングステン、コバルト、モリブデンの酸化物から選ばれた1種又は2種以上の水溶液もしくは懸濁液もしくは粉末を十分に混合した(#1)後、更に酸化マグネシウム粉末もしくは懸濁液を添加して十分に混合し、複合化反応を生起させる(#2)。この場合、混合溶液を45〜90℃、好ましくは60〜90℃にして複合化反応させる。45℃未満では、複合化反応の進行が遅く、90℃を超えると、均一な複合化反応が生起せず、好ましくない。硫酸ニッケルは、触媒中のニッケル5〜30wt%となるように配合する。ニッケルが5wt%未満では、触媒効果を十分に発揮することが難しく、逆に30wt%を越えて加えても、表面に積層され、量の割に分散効果の増加が少ないため好ましくない。好ましくは、触媒中のニッケルは15〜25wt%である。
<First Embodiment>
As shown in FIG. 2, first, a predetermined amount of an aqueous solution of nickel sulfate, which is one of nickel salts, is prepared, and one or two or more aqueous solutions or suspensions selected from oxides of tungsten, cobalt, and molybdenum. After sufficiently mixing the turbid liquid or powder (# 1), a magnesium oxide powder or suspension is further added and mixed well to cause a composite reaction (# 2). In this case, the mixed solution is brought to 45 to 90 ° C., preferably 60 to 90 ° C., and subjected to a complexing reaction. If the temperature is lower than 45 ° C, the progress of the complexing reaction is slow. Nickel sulfate is blended so as to be 5 to 30 wt% of nickel in the catalyst. If nickel is less than 5 wt%, it is difficult to sufficiently exhibit the catalytic effect. Conversely, even if it is added in excess of 30 wt%, it is not preferable because it is laminated on the surface and the increase in the dispersion effect is small for the amount. Preferably, the nickel in the catalyst is 15-25 wt%.

この複合化スラリーをろ過して脱水・洗浄し、生成した硫酸イオンを除去する(#3)。硫酸成分を除去することにより、次工程でカルシウム原料を添加した際、触媒活性を阻害する硫酸カルシウムの生成を阻止できる。   The composite slurry is filtered, dehydrated and washed to remove the generated sulfate ions (# 3). By removing the sulfuric acid component, it is possible to prevent the formation of calcium sulfate that inhibits the catalytic activity when the calcium raw material is added in the next step.

脱水・洗浄した後、これに水を加えて加水すると共に、カルシウム原料である軽焼ドロマイト等のドロマイト類あるいは消石灰などを添加して十分に混合し、複合化反応を生起させる(#4)。カルシウム原料が酸化マグネシウム中に分散することにより、ニッケルと酸化マグネシウムの固溶化を阻止する。カルシウム原料は、酸化カルシウムとして5〜20wt%程度添加することが好ましく、7〜12wt%前後がより好ましい。カルシウム原料が20wt%を超えると、ニッケルの均一分散性が低くなる。この場合も、混合溶液を45〜90℃、好ましくは60〜90℃にて複合化反応させる。   After dehydration and washing, water is added to the mixture to add water, and dolomite such as light calcined dolomite, which is a calcium raw material, or slaked lime is added and mixed well to cause a complexing reaction (# 4). Dispersion of nickel and magnesium oxide is prevented by dispersing the calcium raw material in magnesium oxide. The calcium raw material is preferably added as calcium oxide in an amount of about 5 to 20 wt%, and more preferably about 7 to 12 wt%. When the calcium raw material exceeds 20 wt%, the uniform dispersibility of nickel becomes low. Also in this case, the mixed solution is subjected to a complexing reaction at 45 to 90 ° C., preferably 60 to 90 ° C.

その後、乾燥炉などを用いて水分を蒸発すべく乾燥し焼成させる(#5)。乾燥温度は、80〜120℃程度で行うことが好ましい。もっとも、スプレードライ方法などにより加熱雰囲気中に噴霧して急速乾燥させるようにしてもよく、特に乾燥方法に限定されるものではない。かかる処理により、高活性触媒が生成できることになる(#6)。焼成は、500〜900℃、好ましくは約700℃程度で加熱する。このようにして製造した触媒は、最終的に、ガス化炉に投入し易いような適度な大きさに粉砕され、粒度調整される。もしくは成形(押出、転動、だ錠など)され、充填できる形状(ペレット、リング、ハニカム、ボール等)にする。ニッケルと酸化マグネシウムと酸化カルシウム原料との複合体を焼成したとき、ニッケルが酸化マグネシウムの内部に過剰に固溶することを防止して、酸化マグネシウムの表面にニッケルを高分散させることができ、触媒活性を高めることができる。   Then, it is dried and baked to evaporate water using a drying furnace or the like (# 5). The drying temperature is preferably about 80 to 120 ° C. However, it may be sprayed into a heated atmosphere by a spray drying method or the like and rapidly dried, and is not particularly limited to the drying method. By this treatment, a highly active catalyst can be generated (# 6). Firing is performed at 500 to 900 ° C., preferably about 700 ° C. The catalyst thus produced is finally pulverized to an appropriate size so as to be easily put into the gasification furnace, and the particle size is adjusted. Alternatively, it is molded (extruded, rolled, padlock, etc.) and formed into a shape that can be filled (pellets, rings, honeycombs, balls, etc.). When a composite of nickel, magnesium oxide and calcium oxide raw material is fired, the nickel can be prevented from excessively dissolving in the magnesium oxide, and the nickel can be highly dispersed on the surface of the magnesium oxide. The activity can be increased.

加水処理後、カルシウム原料を添加する際、アルミニウム5〜15wt%になるように酸化アルミニウムを添加してもよい。このようにすると、耐コーキング性を損なうことなく、更に熱安定性を高めることができる。   When the calcium raw material is added after the hydration treatment, aluminum oxide may be added so that the aluminum content is 5 to 15 wt%. If it does in this way, thermal stability can be improved further, without impairing coking resistance.

<第2実施形態>
第1実施形態で用いた硫酸ニッケルに代えて、酢酸ニッケル又は炭酸ニッケルを用いる。すなわち、図3に示すように、ニッケル塩の1種である酢酸ニッケル又は炭酸ニッケルの水溶液を所定量作成し、これとタングステン、コバルト、モリブデンの酸化物から選ばれた1種又は2種以上の水溶液もしくは懸濁液もしくは粉末を十分に混合した(#1)後、更に酸化マグネシウム粉末もしくは懸濁液を添加して十分に混合し、複合化反応を生起させる(#2)。この場合も、酢酸ニッケル又は炭酸ニッケルは、触媒中のニッケル5〜30wt%となるように配合する。
Second Embodiment
Instead of nickel sulfate used in the first embodiment, nickel acetate or nickel carbonate is used. That is, as shown in FIG. 3, a predetermined amount of an aqueous solution of nickel acetate or nickel carbonate which is one kind of nickel salt is prepared, and one or more kinds selected from oxides of tungsten, cobalt and molybdenum. After the aqueous solution, suspension or powder is sufficiently mixed (# 1), further magnesium oxide powder or suspension is added and mixed well to cause a complexing reaction (# 2). Also in this case, nickel acetate or nickel carbonate is blended so as to be 5 to 30 wt% of nickel in the catalyst.

そして、脱水・洗浄することなく、カルシウム原料である軽焼ドロマイト等のドロマイト類あるいは消石灰などを添加して十分に混合し、複合化反応を生起させる(#3)。この場合も、混合溶液を45〜90℃、好ましくは60〜90℃にして複合化反応させる。カルシウム原料がニッケル・マグネシア等の化合物中に分散し、カルシウム原料は、酸化カルシウムとして5〜20wt%程度添加することが好ましい点は、第1実施形態と同様である。   Then, without dehydration and washing, dolomite such as light calcined dolomite, which is a calcium raw material, or slaked lime is added and mixed thoroughly to cause a complexing reaction (# 3). Also in this case, the mixed solution is brought to 45 to 90 ° C., preferably 60 to 90 ° C., to carry out a complexing reaction. The calcium raw material is dispersed in a compound such as nickel / magnesia, and the calcium raw material is preferably added in an amount of about 5 to 20 wt% as calcium oxide, as in the first embodiment.

次いで、ろ過して脱水・洗浄し(#4)、その後、乾燥炉などを用いて水分を蒸発すべく乾燥し焼成させ(#5)、その場合の乾燥温度は、80〜120℃程度で行うことが好ましい点は、第1実施形態と同様である。もっとも、カルシウム原料を添加後、脱水・洗浄することなく、乾燥・焼成工程で酢酸塩を酸化除去してもよい。このようにすると、酢酸イオンを含む廃液処理を行う必要がなく、全体の設備コスト、設備スペースを効果的に低減できる。   Next, it is filtered, dehydrated and washed (# 4), and then dried and baked to evaporate moisture using a drying furnace or the like (# 5). In that case, the drying temperature is about 80 to 120 ° C. This is the same as in the first embodiment. However, after adding the calcium raw material, the acetate may be removed by oxidation in the drying / firing step without dehydrating and washing. In this way, it is not necessary to perform waste liquid treatment including acetate ions, and the entire equipment cost and equipment space can be effectively reduced.

かかる処理により、高活性触媒が生成できることになる(#6)。焼成は、500〜900℃、好ましくは約700℃程度で加熱する点についても第1実施形態と同様である。又、カルシウム原料を添加する際、アルミニウム成分が5〜15wt%となるように酸化アルミニウムを添加してもよい。上記したと同様な効果を発揮し得る。   By this treatment, a highly active catalyst can be generated (# 6). Firing is the same as in the first embodiment in that heating is performed at 500 to 900 ° C., preferably about 700 ° C. Moreover, when adding a calcium raw material, you may add an aluminum oxide so that an aluminum component may be 5-15 wt%. The same effect as described above can be exhibited.

以下に、図2,3に示す製造工程により製造した実施例触媒につき、比較例触媒と共に性能試験を行った結果を説明する。   Hereinafter, the results of performance tests performed on the example catalyst manufactured by the manufacturing process shown in FIGS. 2 and 3 together with the comparative example catalyst will be described.

まず、図2に示す製造工程により製造された触媒(実施例1)と市販の触媒(比較例1〜6)とを、下記性能評価方法により比較試験を行った。   First, the catalyst (Example 1) manufactured by the manufacturing process shown in FIG. 2 and a commercially available catalyst (Comparative Examples 1 to 6) were subjected to a comparative test by the following performance evaluation method.

[性能評価方法]
得られた触媒の性能評価方法は、タールの代替物質として、ナフタレンのトルエン溶液を表1の条件に従い、表1に示す組成のガス成分とし、ボンベガスにて調整したものを用い、これを触媒10gに曝すことにより分解率を測定して行った。その際、H2 S濃度0〜500vol−ppmについて、反応温度800℃でのタール代替物質分解率を測定した。上記各例についての測定結果を図4、5に示す。
[Performance evaluation method]
The performance evaluation method of the obtained catalyst was used as a substitute for tar using a toluene solution of naphthalene as a gas component having the composition shown in Table 1 according to the conditions shown in Table 1 and adjusting with a cylinder gas. The decomposition rate was measured by exposing to water. At that time, the tar substitute substance decomposition rate at a reaction temperature of 800 ° C. was measured for an H 2 S concentration of 0 to 500 vol-ppm. The measurement results for the above examples are shown in FIGS.

Figure 2011255375
Figure 2011255375

(実施例1(A))
図2に示す工程に従い、硫酸ニッケル(ニッケル20wt%)と、タングステン塩(1例として、タングステン酸アンモニウムを使用。金属成分として10wt%)と、酸化マグネシウム懸濁液とを添加して混合し複合化反応を生起させ、脱水・洗浄して後、軽焼ドロマイトとの重量比7:3の割合としたものとを混合し、水溶液温度を約60℃として複合化反応を起こさせた。この混合液を120℃で乾燥し、乾燥したものを約500℃で焼成した。
(Example 1 (A))
According to the process shown in FIG. 2, nickel sulfate (nickel 20 wt%), a tungsten salt (using ammonium tungstate as an example. 10 wt% as a metal component), and a magnesium oxide suspension are added and mixed to form a composite. Then, after dehydrating and washing, the mixture was mixed with a light dolomite having a weight ratio of 7: 3, and the aqueous solution temperature was about 60 ° C. to cause a complexing reaction. This mixture was dried at 120 ° C., and the dried one was fired at about 500 ° C.

(比較例1〜6)
市販の水蒸気改質触媒である、酸化アルミニウムにニッケルを担持したNi/Al23系(製造社:日揮化学社。商品名:N139。比較例1(a))、酸化アルミニウムにニッケルを担持したNi/Al23系(製造社:ズードケミー触媒社。商品名:FCR−4。比較例2(b))、酸化アルミニウム・酸化マグネシウムにニッケルを担持したNi/Al23・MgO・CaO系(製造社:九州耐火煉瓦社。商品名:DAN−N。比較例3(c))、酸化珪素にニッケルを担持したNi/SiO2系(製造社:日揮化学社。商品名:N112。比較例4(d))、酸化アルミニウムにルテニウムを担持したRu/Al23系(製造社:日揮化学社。商品名:E9R。比較例5(e))、酸化アルミニウムにルテニウムを担持したRu/Al23系(製造社:ズードケミー触媒社。商品名:RUA。比較例6(f))を用いた。
(Comparative Examples 1-6)
A commercially available steam reforming catalyst, Ni / Al 2 O 3 system with nickel supported on aluminum oxide (manufacturer: JGC Chemicals, trade name: N139, Comparative Example 1 (a)), nickel supported on aluminum oxide the Ni / Al 2 O 3 system (manufacturer: Süd-Chemie catalyst trade name:.. FCR-4 Comparative example 2 (b)), Ni / Al 2 O 3 · MgO · carrying nickel oxide aluminum oxide magnesium CaO system (manufacturer: Kyushu Fire Brick Company, trade name: DAN-N, Comparative Example 3 (c)), Ni / SiO 2 system with nickel supported on silicon oxide (manufacturer: JGC Chemicals, trade name: N112) Comparative Example 4 (d)), Ru / Al 2 O 3 system with ruthenium supported on aluminum oxide (manufacturer: JGC Chemical Co., Ltd., trade name: E9R, Comparative Example 5 (e)), ruthenium supported on aluminum oxide Ru / Al 2 O 3 system (manufacturer: Sud Chemie Catalysts Inc., trade name: RUA, Comparative Example 6 (f)) was used.

図4、5に示す結果より、実施例1の触媒は、各比較例の触媒に比べて、低温活性に優れ、H2 Sの存在下でも高い活性を維持しており、耐コーキング性に優れることが判る。なお、図4中Cはコーキングが見られた点を表す。 From the results shown in FIGS. 4 and 5, the catalyst of Example 1 is excellent in low temperature activity, maintains high activity even in the presence of H 2 S, and is excellent in coking resistance as compared with the catalysts of Comparative Examples. I understand that. In addition, C in FIG. 4 represents the point where coking was seen.

更に、実施例1と比較例5の各触媒について、触媒として使用(触媒温度:800℃×10時間)後の炭素分と硫黄分を測定した結果を表2に示す。炭素分の測定は、JIS M8819に準じて分析し、硫黄分の測定は、触媒を硝酸中で煮沸し、硫黄分を溶出させた後、ろ液をJIS K0102III (硫酸バリウムによる比濁法)にて分析した。   Table 2 shows the results of measuring the carbon content and sulfur content of each catalyst of Example 1 and Comparative Example 5 after use as a catalyst (catalyst temperature: 800 ° C. × 10 hours). The carbon content is analyzed according to JIS M8819. The sulfur content is measured by boiling the catalyst in nitric acid and eluting the sulfur content, and then the filtrate is converted to JIS K0102III (turbidimetric method using barium sulfate). And analyzed.

Figure 2011255375
Figure 2011255375

表2の結果より、実施例1の触媒は、比較例に比べて炭素分、硫黄分共に少なく、耐コーキング性、耐硫黄性を示すことが判る。   From the results in Table 2, it can be seen that the catalyst of Example 1 has less carbon and sulfur than the comparative example, and exhibits coking resistance and sulfur resistance.

次に、図2、3に示す製造工程により製造された触媒(実施例1〜3)と他のニッケル塩を用いた触媒(比較例7、8)とを、触媒温度800℃におけるH2S中での活性度を比較すべく、タール代替物質分解率を図6に示すと共に、下記物性評価方法により物性評価を行った。 Next, the catalyst (Examples 1 to 3) manufactured by the manufacturing process shown in FIGS. 2 and 3 and the catalyst using other nickel salts (Comparative Examples 7 and 8) were combined with H 2 S at a catalyst temperature of 800 ° C. In order to compare the activity in the tar, the tar substitute substance decomposition rate is shown in FIG. 6 and the physical properties were evaluated by the following physical property evaluation methods.

[物性評価方法]
得られた触媒の物性評価方法として、BET比表面積および金属(ニッケル)比表面積を比較した。BET比表面積は、窒素ガスの吸着等温線より算出し、金属比表面積は、比表面積測定装置(日本ベル社製BELSORP−minII)を用いて、900℃の水素ガスにて還元処理後、298Kにおける水素ガス吸着等温線を測定し、ニッケルの分散度、比表面積を算出した。
[Physical property evaluation method]
As a physical property evaluation method of the obtained catalyst, the BET specific surface area and the metal (nickel) specific surface area were compared. The BET specific surface area is calculated from the adsorption isotherm of nitrogen gas, and the metal specific surface area is reduced at 298 K with hydrogen gas at 900 ° C. using a specific surface area measuring device (BELSORP-min II manufactured by Nippon Bell Co., Ltd.). The hydrogen gas adsorption isotherm was measured, and the degree of dispersion and specific surface area of nickel were calculated.

(実施例2(B))
硫酸ニッケルに代えて、酢酸ニッケル(ニッケル20wt%)を用いた点、図3に示す工程により行った点を除き、実施例1と同様にして触媒を製造した。
(Example 2 (B))
A catalyst was produced in the same manner as in Example 1 except that nickel acetate (nickel 20 wt%) was used in place of nickel sulfate, and that the steps shown in FIG.

(実施例3(C))
実施例2において、複合化反応後、脱水・洗浄することなく、乾燥・焼成した点を除き、実施例2と同様にして触媒を製造した。
(Example 3 (C))
In Example 2, a catalyst was produced in the same manner as in Example 2 except that after the complexing reaction, drying and firing were performed without dehydration and washing.

(実施例4(D))
酢酸ニッケルに代えて、炭酸ニッケル(ニッケル20wt%)を用いると共に、ニッケル溶解用に炭酸アンモニウムを添加した点を除き、実施例3と同様にして触媒を製造した。
(Example 4 (D))
A catalyst was produced in the same manner as in Example 3 except that nickel carbonate (nickel 20 wt%) was used instead of nickel acetate and ammonium carbonate was added for dissolving nickel.

(比較例7(h))
酢酸ニッケルに代えて、硝酸ニッケル(ニッケル20wt%)を用いた点を除き、実施例3と同様にして触媒を製造した。
(Comparative Example 7 (h))
A catalyst was produced in the same manner as in Example 3 except that nickel nitrate (nickel 20 wt%) was used instead of nickel acetate.

以上の各例についての性能評価試験結果を図6に、物性評価試験結果を表3に示す。   FIG. 6 shows the performance evaluation test results for each of the above examples, and Table 3 shows the physical property evaluation test results.

図6より、触媒温度800℃において、比較例7の触媒に比べて、実施例1〜4はいずれも高濃度のH2 Sの存在によっても、活性を維持しており、良好なタール分解率を示すことが分かる。 As shown in FIG. 6, at a catalyst temperature of 800 ° C., Examples 1-4 maintained the activity even in the presence of a high concentration of H 2 S as compared with the catalyst of Comparative Example 7, and had a good tar decomposition rate. It can be seen that

表3の結果からも、実施例1〜4の触媒は、比較例7の触媒に比べて、大きい比表面積を示しており、ニッケル成分が高い分散性を示していることがわかる。   From the results in Table 3, it can be seen that the catalysts of Examples 1 to 4 have a larger specific surface area than the catalyst of Comparative Example 7, and the nickel component exhibits high dispersibility.

Figure 2011255375
Figure 2011255375

以上の結果、燃料中に硫黄分を含む場合、触媒被毒が生じて触媒機能の低下をもたらし易いところ、タングステン塩などを含有させることにより、これらがニッケルに吸着した硫黄分を取り込み、ガス中に脱離させる作用を発揮して、ニッケル触媒の活性を維持し、触媒被毒を効果的に抑制するものとなる。従って、本実施例の触媒によれば、750〜850℃といった低温域でタール分などを効果的に分解除去することができる。その結果、炭素変換率が向上し、発電効率(ガス化ガスを発電に用いる場合の効率)や燃料変換効率(ガス化ガスをメタノールやジメチルエーテルの燃料に変換する場合の効率)が向上する。   As a result of the above, when sulfur content is included in the fuel, catalyst poisoning is likely to occur and the catalytic function is likely to deteriorate. The activity of desorbing is maintained, the activity of the nickel catalyst is maintained, and the catalyst poisoning is effectively suppressed. Therefore, according to the catalyst of this embodiment, tar content and the like can be effectively decomposed and removed at a low temperature range of 750 to 850 ° C. As a result, the carbon conversion rate is improved, and power generation efficiency (efficiency when gasified gas is used for power generation) and fuel conversion efficiency (efficiency when gasified gas is converted into methanol or dimethyl ether fuel) are improved.

〔別実施の形態〕
(1)ガス化炉としては、流動床式、固定床式、キルン炉、回転炉など種々のタイプの炉を使用することができ、特に限定されるものではない。
[Another embodiment]
(1) As the gasification furnace, various types of furnaces such as a fluidized bed type, a fixed bed type, a kiln furnace, and a rotary furnace can be used and are not particularly limited.

1 ガス化炉
2 触媒回収装置
4 タール分解設備
1 Gasification furnace 2 Catalyst recovery device 4 Tar decomposition facility

Claims (6)

タングステン塩、コバルト塩、モリブデン塩の1種又は2種以上と硫酸ニッケルと酸化マグネシウムを混合して複合化反応を生起し、この複合化物を脱水して洗浄し、これにカルシウム原料を混合して、その後乾燥し、焼成するガス化触媒の製造方法。   Mixing one or more of tungsten salt, cobalt salt and molybdenum salt with nickel sulfate and magnesium oxide to cause a composite reaction, dehydrating and washing this composite, and mixing this with calcium raw material A method for producing a gasification catalyst which is then dried and calcined. タングステン塩、コバルト塩、モリブデン塩の1種又は2種以上と酢酸ニッケル又は炭酸ニッケルと酸化マグネシウムを混合して複合化反応を生起し、これにカルシウム原料を混合して、その後乾燥し、焼成するガス化触媒の製造方法。   One or more of tungsten salt, cobalt salt, molybdenum salt and nickel acetate or nickel carbonate and magnesium oxide are mixed to cause a composite reaction, and then calcium raw material is mixed with this, followed by drying and firing. A method for producing a gasification catalyst. 前記タングステン塩がタングステン酸アンモニウムであり、コバルト塩が硝酸コバルト又は硫酸コバルト又は酢酸コバルトであり、モリブデン塩がモリブデン酸アンモニウムである請求項1又は2のガス化触媒の製造方法。   The method for producing a gasification catalyst according to claim 1 or 2, wherein the tungsten salt is ammonium tungstate, the cobalt salt is cobalt nitrate, cobalt sulfate, or cobalt acetate, and the molybdenum salt is ammonium molybdate. 前記複合化反応を45〜90℃で行うと共に、前記焼成を500〜900℃に加熱して行う請求項3のガス化触媒の製造方法。   The method for producing a gasification catalyst according to claim 3, wherein the complexing reaction is performed at 45 to 90 ° C., and the calcination is performed by heating to 500 to 900 ° C. 有機系被ガス化物を加熱・燃焼してガス化するガス化炉に、請求項1〜4のいずれか1項に記載のガス化触媒の製造方法で得られたガス化触媒が導入されるようになっているガス化処理システム。   The gasification catalyst obtained by the method for producing a gasification catalyst according to any one of claims 1 to 4 is introduced into a gasification furnace that heats and burns an organic gasification product to gasify it. Gasification processing system that has become. 前記ガス化炉の下流側に、導入された前記触媒を回収する触媒回収装置を有すると共に、更に下流側に請求項1〜4のいずれか1項に記載のガス化触媒の製造方法で得られたガス化触媒を充填したタール分解設備を有する請求項5のガス化処理システム。   It has the catalyst collection | recovery apparatus which collect | recovers the said introduced catalyst in the downstream of the said gasification furnace, and it is obtained with the manufacturing method of the gasification catalyst of any one of Claims 1-4 further downstream. The gasification processing system according to claim 5, further comprising a tar decomposition facility filled with a gasification catalyst.
JP2011160158A 2011-07-21 2011-07-21 Method for producing gasification catalyst and gasification treatment system Active JP5971836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011160158A JP5971836B2 (en) 2011-07-21 2011-07-21 Method for producing gasification catalyst and gasification treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011160158A JP5971836B2 (en) 2011-07-21 2011-07-21 Method for producing gasification catalyst and gasification treatment system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006113407A Division JP2007283209A (en) 2006-04-17 2006-04-17 Gasification catalyst, its manufacturing method and gasification system

Publications (2)

Publication Number Publication Date
JP2011255375A true JP2011255375A (en) 2011-12-22
JP5971836B2 JP5971836B2 (en) 2016-08-17

Family

ID=45472147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011160158A Active JP5971836B2 (en) 2011-07-21 2011-07-21 Method for producing gasification catalyst and gasification treatment system

Country Status (1)

Country Link
JP (1) JP5971836B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433139A (en) * 2020-10-30 2022-05-06 中国石油化工股份有限公司 Biological coke gasification catalyst and biological coke catalytic raw material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150640A (en) * 1984-08-16 1986-03-12 Mitsubishi Heavy Ind Ltd Catalyst for preparing methane-containing gas
JPH05163492A (en) * 1991-05-23 1993-06-29 Asahi Chem Ind Co Ltd New thermal decomposition of carbonaceous substance
JPH05245379A (en) * 1992-03-03 1993-09-24 Tokyo Gas Co Ltd Cyclic gasification catalyst and production thereof
JPH07185345A (en) * 1993-12-27 1995-07-25 Mitsubishi Petrochem Eng Co Ltd Catalyst for producing methane containing gas
JP2006068723A (en) * 2004-08-06 2006-03-16 Takuma Co Ltd Gasification catalyst, producing method therefor and gasification system
WO2006031011A1 (en) * 2004-08-05 2006-03-23 Korea Institute Of Energy Research Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150640A (en) * 1984-08-16 1986-03-12 Mitsubishi Heavy Ind Ltd Catalyst for preparing methane-containing gas
JPH05163492A (en) * 1991-05-23 1993-06-29 Asahi Chem Ind Co Ltd New thermal decomposition of carbonaceous substance
JPH05245379A (en) * 1992-03-03 1993-09-24 Tokyo Gas Co Ltd Cyclic gasification catalyst and production thereof
JPH07185345A (en) * 1993-12-27 1995-07-25 Mitsubishi Petrochem Eng Co Ltd Catalyst for producing methane containing gas
WO2006031011A1 (en) * 2004-08-05 2006-03-23 Korea Institute Of Energy Research Apparatus of catalytic gasification for refined biomass fuel at low temperature and the method thereof
JP2007506856A (en) * 2004-08-05 2007-03-22 コリア インスティテュート オブ エナジー リサーチ Low-temperature catalytic gasification apparatus and method for biomass refined fuel
JP2006068723A (en) * 2004-08-06 2006-03-16 Takuma Co Ltd Gasification catalyst, producing method therefor and gasification system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013028976; 石灰石 [検索日],[online], 20130607, 日本石灰協会・日本石灰工業組合 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114433139A (en) * 2020-10-30 2022-05-06 中国石油化工股份有限公司 Biological coke gasification catalyst and biological coke catalytic raw material

Also Published As

Publication number Publication date
JP5971836B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
Nor et al. Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review
JP4436424B2 (en) Method for reforming tar-containing gas
JP5494135B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
US9393551B2 (en) Catalyst for reforming tar-containing gas, method for preparing catalyst for reforming tar-containing gas, method for reforming tar-containing gas using catalyst for reforming tar containing gas, and method for regenerating catalyst for reforming tar-containing gas
Wang et al. Catalytic activity evaluation and deactivation progress of red mud/carbonaceous catalyst for efficient biomass gasification tar cracking
CN111363570B (en) Method for preparing methane-rich gas by using waste
JP2011212598A (en) Reforming catalyst for tar-containing gas, method for manufacturing the reforming catalyst and method for reforming tar-containing gas
JP2013237049A (en) Modifying catalyst for tar-containing gas, method for manufacturing the same, and modifying method for tar-containing gas
JP2006068723A (en) Gasification catalyst, producing method therefor and gasification system
Bendoni et al. Geopolymer composites for the catalytic cleaning of tar in biomass-derived gas
Chen et al. Coke powder improving the performance of desulfurized activated carbon from the cyclic thermal regeneration
JP2007283209A (en) Gasification catalyst, its manufacturing method and gasification system
Sahraei et al. Application of industrial solid wastes in catalyst and chemical sorbent development for hydrogen/syngas production by conventional and intensified steam reforming
Li et al. Development of a supported tri-metallic catalyst and evaluation of the catalytic activity in biomass steam gasification
JP5659534B2 (en) Catalyst for reforming tar-containing gas, method for producing the same, and method for reforming tar-containing gas
CN111760573B (en) Biomass coke-based bimetallic catalyst and preparation method and application thereof
Guo et al. Reactivity of iron-based oxygen carriers with coal ash in pressurized chemical looping gasification
Ma et al. Enhanced cyclic redox reactivity of Fe2O3/Al2O3 by Sr doping for Chemical-Looping combustion of solid fuels
Hu et al. Li4SiO4 pellets templated by rice husk for cyclic CO2 capture: Insight into the modification mechanism
JP5971836B2 (en) Method for producing gasification catalyst and gasification treatment system
CN114570397A (en) Recyclable reconstructed spinel type Ni-based composite oxide catalyst and preparation method thereof
JP5008601B2 (en) Gasification catalyst, production method thereof, and gasification treatment system
CN109954494B (en) Porous material, preparation method thereof and catalyst composition containing same
Lu et al. Study of the activity and backscattered electron image of Pt/CNTs prepared by the polyol process for flue gas purification
JP2011212535A (en) Reforming catalyst for tar-containing gas, manufacturing method therefor, and method for reforming tar-containing gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150323

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150331

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5971836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250