JPS63248444A - Steam reforming and/or partial oxidation catalyst for hydrocarbon - Google Patents

Steam reforming and/or partial oxidation catalyst for hydrocarbon

Info

Publication number
JPS63248444A
JPS63248444A JP62081033A JP8103387A JPS63248444A JP S63248444 A JPS63248444 A JP S63248444A JP 62081033 A JP62081033 A JP 62081033A JP 8103387 A JP8103387 A JP 8103387A JP S63248444 A JPS63248444 A JP S63248444A
Authority
JP
Japan
Prior art keywords
catalyst
nickel
cobalt
supported
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62081033A
Other languages
Japanese (ja)
Inventor
Hidekazu Kikuchi
英一 菊地
Hideo Futami
英雄 二見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP62081033A priority Critical patent/JPS63248444A/en
Publication of JPS63248444A publication Critical patent/JPS63248444A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To improve the activity and the stability of the activity of the title catalyst by depositing a Pt group metal on an inorganic carrier calcined after depositing Ni, Co, etc., forming thus a catalyst contg. metallic Ni or Co generated by the reduction of a part of the deposited Ni, Co during the use of the catalyst. CONSTITUTION:Ni and/or Co are(is) deposited on an inorganic carrier comprising alumina, magnesia, silica, or an inorg. material consisting primarily of each thereof, or a mixture thereof, and at least a major part of the deposited Ni and/or Co is calcined, providing thus a calcined product together with the inorganic carrier. Then, a Pt group metal is also deposited providing thus a steam reforming catalyst for hydrocarbon, wherein at least a part of the calcined product is reduced in the stage of usage to metallic Ni and/or Co. Preferred content of Ni or Co is 1-50wt.% per unit weight of the catalyst.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭化水素の水蒸気改質および/または部分酸
化用触媒に関し、さらに詳しくは炭化水素を水蒸気改質
および/または部分酸化して、都市ガスなどの各種燃料
ガス、燃料電池用ガス、メタノール合成、オキソ合成、
アンモニア合成などの各種合成用原料ガス、還元製鉄用
ガス、高純度水素製造用ガス、などとして有用である、
水素、メタン、−酸化炭素および/または二酸化炭素を
主成分とする混合ガスの製造に好適な触媒に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a catalyst for steam reforming and/or partial oxidation of hydrocarbons, and more specifically, a catalyst for steam reforming and/or partial oxidation of hydrocarbons. Various fuel gases such as city gas, gas for fuel cells, methanol synthesis, oxo synthesis,
It is useful as a raw material gas for various synthesis such as ammonia synthesis, gas for reduced iron production, gas for high purity hydrogen production, etc.
The present invention relates to a catalyst suitable for producing a mixed gas containing hydrogen, methane, carbon oxide and/or carbon dioxide as main components.

(従来の技術) 従来、天然ガスなどの低級炭化水素を主成分とするもの
からナフサなどの高級炭化水素を主成分とするものに及
ぶ炭化水素と水蒸気などとを反応させて、水素、メタン
、−酸化炭素および/または二酸化炭素を主成分とする
混合ガスを得るための触媒としては、活性成分としての
ニッケル、コバルト、ルテニウム、ロジウムなどの遷移
金属を、アルミナ、マグネシア、シリカ等の無機系酸化
物の担体に保持してなるものが提案され、実用化されて
いる。
(Prior art) Conventionally, hydrogen, methane, - As a catalyst for obtaining a mixed gas mainly composed of carbon oxide and/or carbon dioxide, transition metals such as nickel, cobalt, ruthenium, and rhodium as active components are used to oxidize inorganic materials such as alumina, magnesia, and silica. A product in which the material is held on a carrier has been proposed and put into practical use.

(発明が解決しようとする問題点) この種の触媒に対しては、従来(i)活性が高いこと、
(ii)活性が長期にわたって安定していること、すな
わち活性の持続性にすぐれていること、(iii )低
いスチーム/炭化水素比の条件下においても炭素の析出
を伴うことなく長期間反応を継続することができること
、すなわち耐炭素析出能力が大であること等が要求され
ているが、従来の触媒ではこのような諸要求を満足する
のに十分でないのが現状である。
(Problems to be solved by the invention) Conventionally, this type of catalyst has (i) high activity;
(ii) The activity is stable over a long period of time, that is, the activity is excellent in sustainability; (iii) The reaction continues for a long period of time without carbon precipitation even under conditions of low steam/hydrocarbon ratio. However, at present, conventional catalysts are not sufficient to satisfy these requirements.

しかして、この種の触媒の安定性、すなわち活性の持続
性を阻害する因子として、原料炭化水素中の硫黄化合物
による被毒、炭素の析出、活性成分としての金属のシン
タリング、およびニッケルまたはコバルトをアルミナ系
担体に担持してなる触媒を約700℃以上の高温で使用
した場合のニッケルスピネル ルCoA /l 20.の生成、同様にマグネシア系担
体に担持してなる触媒を使用した場合のニッケルまたは
コバルトとマグネシアとの固溶体の生成および同様にシ
リカ系担体に担持してなる触媒を使用した場合の珪酸ニ
ッケルまたは珪酸コバルトの生成等があげられる。上記
したスピネル、固溶体または珪酸塩の生成は、水素等に
よる還元を困難にし、触媒活性点の減少をもたらすこと
になる。なお、上記した触媒の安定性すなわち活性の持
続性の阻害因子としての炭素の析出は、スチーム/炭化
水素比の低い条件下に反応が行なわれる場合、触媒の耐
炭素析出能力が低い場合、原料炭化水素が重質化した場
合等に触媒表面上で発生するものであるが、これらのう
ち触媒の炭素析出能力を改善するために、従来カリウム
の添加、塩基性担体の使用等が行なわれているが、満足
すべき状態にない。
However, factors that inhibit the stability of this type of catalyst, that is, the sustainability of its activity, include poisoning by sulfur compounds in the raw hydrocarbon, precipitation of carbon, sintering of metals as active components, and nickel or cobalt. Nickel spinel CoA/l when using a catalyst formed by supporting on an alumina support at a high temperature of about 700°C or higher 20. Similarly, formation of a solid solution of nickel or cobalt and magnesia when a catalyst supported on a magnesia-based carrier is used, and similarly formation of nickel silicate or silicic acid when a catalyst supported on a silica-based support is used. Examples include the production of cobalt. The formation of spinel, solid solution, or silicate described above makes reduction by hydrogen or the like difficult, resulting in a decrease in the number of catalytic active sites. The above-mentioned carbon precipitation as a factor that inhibits the stability of the catalyst, that is, the sustainability of its activity, occurs when the reaction is carried out under conditions of a low steam/hydrocarbon ratio, when the catalyst has a low ability to resist carbon precipitation, and when the raw material This is generated on the catalyst surface when hydrocarbons become heavy, but in order to improve the carbon deposition ability of the catalyst, conventional methods such as adding potassium and using basic carriers have been carried out. However, it is not in a satisfactory condition.

(問題点を解決するための手段) 本発明者らは、炭化水素を水蒸気改質および/または部
分酸化して水素、メタン、−酸化炭素および/または二
酸化炭素を主成分とする混合ガスを得るための触媒につ
いて、活性が高く、活性の安定性、すなわち持続性がす
ぐれ、かつ耐炭素析出能力が大であって、低いスチーム
/炭化水素比の条件下においても炭素の析出を伴うこと
なく、長期間反応を継続することができる触媒を得るこ
とを目的として、鋭意研究の結果、ニッケルおよび/ま
たはコバルトを、アルミナ、マグネシア、シリカなどの
無機系゛担体に担持し、焼成して担持されたニッケルお
よび/またはコバルトを無機系担体と共に、従来、触媒
活性の安定性を阻害する因子とみなされている前記スピ
ネル、固溶体または珪酸塩からなる焼成生成物とし、次
いで白金族金属を担持してなるものは、従来の前記触媒
と異なり、水素含有ガス等により容易に金属ニッケルま
たはコバルトに還元されるため、そのものを水素含有ガ
ス等により還元して得られる触媒が、上記目的を達成し
うろことを見出し、本発明を完成するに至った。
(Means for Solving the Problems) The present inventors steam-reform and/or partially oxidize hydrocarbons to obtain a mixed gas containing hydrogen, methane, carbon oxide, and/or carbon dioxide as main components. The catalyst has high activity, excellent activity stability, that is, durability, and high carbon precipitation resistance, and does not cause carbon precipitation even under low steam/hydrocarbon ratio conditions. With the aim of obtaining a catalyst that can continue the reaction for a long period of time, as a result of intensive research, nickel and/or cobalt was supported on an inorganic support such as alumina, magnesia, or silica, and the support was carried out by firing. Nickel and/or cobalt together with an inorganic carrier are used as a calcined product consisting of spinel, solid solution or silicate, which are conventionally regarded as factors that inhibit the stability of catalyst activity, and then a platinum group metal is supported. Unlike the conventional catalysts mentioned above, it is easily reduced to metallic nickel or cobalt by hydrogen-containing gas, etc., so it is believed that the catalyst obtained by reducing it with hydrogen-containing gas, etc. will be able to achieve the above purpose. This discovery led to the completion of the present invention.

すなわち、本発明は、ニッケルおよび/またはコバルト
を、アルミナ、マグネシア、シリカ、またはそれぞれを
主成分とする無機物質、あるいはそれらの混合物よりな
る無機系担体に担持し、焼成して担持されたニッケルお
よび/またはコバルトの少くとも大部分を該無機系担体
と共に焼成生成物とし、次いで白金族金属を担持してな
り、使用に際して該焼成生成物の少くとも1部が還元さ
れて金属状態のニッケルおよび/またはコバルトとなる
ことを特徴とする炭化水素の水蒸気改質および/または
部分酸化用触媒を提供するものである。
That is, the present invention supports nickel and/or cobalt on an inorganic carrier made of alumina, magnesia, silica, or an inorganic substance containing each as a main component, or a mixture thereof, and then bakes the supported nickel and cobalt. At least a large part of the cobalt is formed into a calcined product together with the inorganic carrier, and then a platinum group metal is supported, and upon use, at least a part of the calcined product is reduced to form nickel and/or metal in the metallic state. The present invention provides a catalyst for steam reforming and/or partial oxidation of hydrocarbons, characterized in that the catalyst is cobalt or cobalt.

本発明の特徴は、ニッケルおよび/またはコバルトを、
アルミナ、マグネシア、シリカなどの無機系担体に担持
し、焼成して担持されたニッケルおよび/またはコバル
トの少くとも大部分を該無機系担体と共に焼成生成物、
すなわちアルミナ担体と共に形成されるニッケルスピネ
ルNiAβ204および/またはコバルトスピネルCo
Aj2.O,、マグネシア担体とニッケルおよび/また
はコバルトとの固溶体、またはシリカ担体と共に形成さ
れる珪酸ニッケルおよび/または珪酸コバルトとした後
、さらに白金族金属を担持したものを、水素含有ガス等
で還元して前記焼成生成物の少くとも1部を金属状態の
ニッケルおよび/またはコバルトとして用いられる触媒
を提供することにある。
The feature of the present invention is that nickel and/or cobalt is
A fired product, in which at least a large part of the nickel and/or cobalt supported on an inorganic carrier such as alumina, magnesia, or silica and fired together with the inorganic carrier;
That is, nickel spinel NiAβ204 and/or cobalt spinel Co formed with an alumina support
Aj2. O, After forming a solid solution of magnesia support and nickel and/or cobalt, or nickel silicate and/or cobalt silicate formed together with a silica support, the platinum group metal supported is further reduced with hydrogen-containing gas, etc. Another object of the present invention is to provide a catalyst in which at least a part of the calcined product is used as nickel and/or cobalt in a metallic state.

本発明の触媒の存在下、水蒸気改質および/または部分
酸化される炭化水素としては、天然ガスなどの低級炭化
水素を主成分とするものからナフサなどの高級炭化水素
を主成分とするものが包含される。
Hydrocarbons to be steam reformed and/or partially oxidized in the presence of the catalyst of the present invention include those mainly composed of lower hydrocarbons such as natural gas to those mainly composed of higher hydrocarbons such as naphtha. Included.

本発明における無機系担体として用いられるアルミナ、
マグネシアおよびシリカの形態としては、低温の履歴し
か受けていないものの方が、より低温で前記焼成生成物
を形成し、その後の還元も容易となると共に触媒性能も
より優れたものとなる傾向がある。例えばα−アルミナ
よりもγ−またはη−アルミナの方がすぐれた性能を有
する触媒が得られる。
Alumina used as an inorganic carrier in the present invention,
Forms of magnesia and silica that have only undergone a low-temperature history tend to form the calcined product at lower temperatures, facilitate subsequent reduction, and have better catalytic performance. . For example, γ- or η-alumina provides a catalyst with better performance than α-alumina.

本発明において用いられるアルミナを主成分とする無機
物質としては、ゼオライト、無定形シリカ・アルミナ、
活性白土などがあげられる。
Examples of inorganic substances containing alumina as a main component used in the present invention include zeolite, amorphous silica/alumina,
Examples include activated clay.

本発明において用いられるマグネシアを主成分とする無
機物質としては、マグネサイトやその焼成物、ドロマイ
トなどがあげられる。
Examples of the inorganic substance containing magnesia as a main component used in the present invention include magnesite, fired products thereof, and dolomite.

本発明において用いられるシリカを主成分とする無機物
質としてはカオリン、ケイソウ土、ゼオライト、無定形
シリカ・アルミナ、活性白土などがあげられる。
Examples of inorganic substances containing silica as a main component used in the present invention include kaolin, diatomaceous earth, zeolite, amorphous silica/alumina, and activated clay.

本発明において、ニッケルおよび/またはコバルトを、
無機系担体に担持する方法としては、均密に担持される
限り特に制限はなく、従来公知の方法、例えば含浸法、
沈殿法、混合法等を適用することができる。
In the present invention, nickel and/or cobalt,
The method of supporting the inorganic carrier is not particularly limited as long as it is supported uniformly, and conventionally known methods such as impregnation method,
A precipitation method, a mixing method, etc. can be applied.

本発明において、無機系担体に担持されるニッケルおよ
び/またはコバルトの量は、使用される触媒重量当り金
属として1〜50重量%、好ましくは5〜301i量%
である。上記含有量が1重量%未満では、触媒性能が低
下して好ましくなく、50重型筒を超えると経済性の点
から好ましくない。
In the present invention, the amount of nickel and/or cobalt supported on the inorganic carrier is 1 to 50% by weight, preferably 5 to 301% by weight of metal based on the weight of the catalyst used.
It is. If the content is less than 1% by weight, the catalyst performance will deteriorate, which is undesirable, and if it exceeds 50 heavy-duty cylinders, it is unfavorable from the economic point of view.

本発明において、焼成によって得られる焼成生成物は、
アルミナ系担体と共に形成されるニッケルスピネルNi
A 1.0.および/またはコバルトスピネルCoAf
204、マグネシア系担体とニッケルおよび/またはコ
バルトとの固溶体、またはシリカ系担体と共に形成され
る珪酸ニッケルおよび/または珪酸コバルトであり、7
00℃程度から生成が顕著になるが、その生成の難易は
、焼成温度、無機系担体の形態、活性成分としての金属
の担持状態等に依存する。焼成に際しては、担持された
ニッケルおよび/またはコバルトの大部分、通常50%
以上、好ましくは80%以上を前記焼成生成物とする必
要があり、それによって触媒性能、すなわち活性、活性
の持続性等が向上することになる。前記無機系担体に担
持されたニッケルおよび/またはコバルトは、例えば、
空気中700℃〜1500℃、好ましくは800℃〜1
200℃の温度で約1時間以上焼成される。上記焼成温
度が700℃未満のときは焼成生成物の生成が十分でな
く、1500℃を超えると表面積が減少し、かつ、ニッ
ケルおよび/またはコバルトへの還元が困難となり好ま
しくない。
In the present invention, the fired product obtained by firing is
Nickel spinel formed with alumina support
A 1.0. and/or cobalt spinel CoAf
204, a solid solution of magnesia-based carrier and nickel and/or cobalt, or nickel silicate and/or cobalt silicate formed together with a silica-based carrier, 7
Formation becomes noticeable from about 00°C, but the difficulty of its formation depends on the firing temperature, the form of the inorganic carrier, the state of supporting the metal as the active ingredient, etc. Upon calcination, the majority of the supported nickel and/or cobalt is removed, typically 50%.
As mentioned above, preferably 80% or more should be the calcined product, thereby improving the catalyst performance, that is, the activity, the sustainability of the activity, etc. The nickel and/or cobalt supported on the inorganic carrier is, for example,
700°C to 1500°C in air, preferably 800°C to 1
It is baked at a temperature of 200°C for about 1 hour or more. When the above-mentioned firing temperature is less than 700°C, the production of the fired product is not sufficient, and when it exceeds 1500°C, the surface area decreases and reduction to nickel and/or cobalt becomes difficult, which is not preferable.

次いで、焼成後、白金族金属、好ましくは白金、ルテニ
ウム、パラジウムまたはロジウムが浸漬法等の公知の方
法で担持される。担持される白金族金属の量は、使用さ
れる触媒重量当り、金属状態で0.01〜10重量%、
好ましくは0.02〜1重蓋%である。上記含有量が0
.01重量%未満では触媒性能が低下して好ましくなく
、10重量%を超えると経済性の点から好ましくない。
After firing, a platinum group metal, preferably platinum, ruthenium, palladium or rhodium, is then supported by a known method such as a dipping method. The amount of platinum group metal supported is from 0.01 to 10% by weight in metallic form, based on the weight of the catalyst used;
Preferably it is 0.02 to 1%. The above content is 0
.. If it is less than 0.01% by weight, the catalyst performance deteriorates, which is undesirable, and if it exceeds 10% by weight, it is not preferred from the economic point of view.

次いで、白金族金属が担持された後、水素含有ガス、原
料炭化水素ガスなどの雰囲気下、500℃以上、好まし
くは600℃〜800℃の温度で約1時間以上還元され
、前記焼成生成物の少くとも1部、好ましくは20−1
00%が金属状態のニッケルおよび/またはコバルトと
なった状態で触媒として使用される。アルミナ系担体お
よびシリカ系担体の場合はマグネシア系担体の場合に比
べて還元され易い。すなわち、アルミナ系担体およびシ
リカ系担体の場合には、金属状態のニッケルおよび/ま
たはコバルトへの還元率が100%に近いときに良好な
触媒性能が発現されるのに対し、マグネシア系担体の場
合には、上記還元率が低(50%以下であっても、極め
て高い活性と安定性を有する触媒が得られる。上記還元
温度が500℃未満の場合には、還元が実質上進行せず
、該還元温度が高すぎると、得られる触媒の活性が低下
し、かつ活性の経時低下が大となり、劣化が早まって好
ましくない。
Next, after the platinum group metal is supported, it is reduced in an atmosphere of hydrogen-containing gas, raw material hydrocarbon gas, etc. at a temperature of 500°C or more, preferably 600°C to 800°C for about 1 hour or more, and the fired product is reduced. at least 1 part, preferably 20-1
It is used as a catalyst in a state where 00% is nickel and/or cobalt in the metallic state. Alumina-based carriers and silica-based carriers are more easily reduced than magnesia-based carriers. That is, in the case of alumina-based carriers and silica-based carriers, good catalytic performance is achieved when the reduction rate to metallic nickel and/or cobalt is close to 100%, whereas in the case of magnesia-based carriers, Even if the reduction rate is low (50% or less, a catalyst with extremely high activity and stability can be obtained.If the reduction temperature is less than 500°C, the reduction does not substantially proceed, If the reduction temperature is too high, the activity of the resulting catalyst decreases, the activity decreases significantly over time, and deterioration accelerates, which is undesirable.

本発明の触媒の存在下に行なわれる炭化水素の水蒸気改
質および/または部分酸化反応は、触媒を充填した反応
器に、原料炭化水素と水蒸気、酸素、空気、二酸化炭素
等の1種以上とを導入して、公知の方法、例えば反応圧
力常圧〜数10kg/cffl・G、反応温度350〜
約1000℃の条件下で行なわれ、水素、メタン、−酸
化゛炭素および/または二酸化炭素を主成分とする混合
ガスが得られる。反応装置としては、断熱型または外熱
型、あるいは連続式またはサイクリック式のものを有利
に用いることが可能である。
In the steam reforming and/or partial oxidation reaction of hydrocarbons carried out in the presence of the catalyst of the present invention, a raw material hydrocarbon and one or more of steam, oxygen, air, carbon dioxide, etc. are mixed in a reactor filled with a catalyst. by introducing a known method, for example, reaction pressure from normal pressure to several 10 kg/cffl·G, reaction temperature from 350 to
The process is carried out at about 1000° C., and a mixed gas containing hydrogen, methane, carbon oxide and/or carbon dioxide as main components is obtained. As the reactor, an adiabatic or external heating type, a continuous type or a cyclic type can be advantageously used.

(発明の効果) 本発明によれば、前記白金族金属が担持されているため
に、前記焼成生成物の還元が容易になると共に、活性お
よび活性の安定性、すなわち持続性の著しく向上された
炭化水素の水蒸気改質および/または部分酸化用触媒が
提供される。
(Effects of the Invention) According to the present invention, since the platinum group metal is supported, the reduction of the fired product is facilitated, and the activity and stability of the activity, that is, the sustainability, are significantly improved. A catalyst for steam reforming and/or partial oxidation of hydrocarbons is provided.

本発明によれば、耐炭素析出能力が大きく、低いスチー
ム/炭化水素比の条件下においても炭素の析出を伴うこ
となく長期間反応を継続することができる炭化水素の水
蒸気改質および/または部分酸化用触媒が提供される。
According to the present invention, steam reforming of hydrocarbons and/or hydrocarbons having a high carbon precipitation resistance ability and capable of continuing the reaction for a long period of time without carbon precipitation even under low steam/hydrocarbon ratio conditions An oxidation catalyst is provided.

本発明によれば、したがって、炭素の析出が実質上なく
、長期にわたって反応をm続しうる最低のスチーム/炭
化水素比が大幅に低下され、運転費の低減が可能となる
と共に、触媒活性が高(、かつ活性の持続性がすぐれて
いるため、製造設備費が大幅に低減されることになる。
According to the present invention, therefore, there is substantially no carbon precipitation, and the minimum steam/hydrocarbon ratio that allows the reaction to continue for a long period of time is significantly lowered, making it possible to reduce operating costs and increasing catalyst activity. Due to its high activity and long-lasting activity, manufacturing equipment costs can be significantly reduced.

(実施例) 本発明を実施例および比較例により、具体的に説明する
(Example) The present invention will be specifically explained with reference to Examples and Comparative Examples.

実施例1 γ−アルミナ粉末を打錠機によりペレットに成型し60
0℃で3時間予備焼成し、次いで硝酸ニッケルの水溶液
に浸漬し、乾燥後、その1部をそれぞれ800℃、10
00℃および1200℃において、3時間空気中で焼成
した。焼成後のニッケルスピネルへの転化率は、それぞ
れ80%、100%および100%であった。次いで、
常温まで冷却した後、規定濃度の硝酸ルテニウムの水溶
液に浸漬し、120℃で乾燥し、それぞれ焼成温度の異
なる3種の触媒A、BおよびCを得た。
Example 1 γ-alumina powder was molded into pellets using a tablet machine and
Preliminary firing was performed at 0°C for 3 hours, then immersed in an aqueous solution of nickel nitrate, and after drying, a portion was heated at 800°C and 10°C, respectively.
It was fired in air at 00°C and 1200°C for 3 hours. The conversion rates to nickel spinel after firing were 80%, 100%, and 100%, respectively. Then,
After cooling to room temperature, it was immersed in an aqueous solution of ruthenium nitrate at a specified concentration and dried at 120° C. to obtain three types of catalysts A, B, and C, each having a different firing temperature.

かくして得られた3種の触媒中のルテニウム含有量は何
れも0.1重量%であり、ニッケル含有量は何れも20
重量%であった。前記触媒Bにおけるニッケルの代りに
コバルトを用いて同様に触媒りを調製し、同様にほぼ等
量の硝酸ニッケルと硝酸コバルトとの混合溶液を用いて
触媒Eを調製した。
The ruthenium content in the three types of catalysts thus obtained was all 0.1% by weight, and the nickel content was all 20% by weight.
% by weight. A catalyst was similarly prepared using cobalt in place of nickel in Catalyst B, and Catalyst E was similarly prepared using a mixed solution of approximately equal amounts of nickel nitrate and cobalt nitrate.

これら5種の触媒を10〜16メツシユに粉砕し、それ
ぞれ0.8gを、内径10flの反応管に、長さ20鶴
となるように石英ビーズで稀釈して充填した。これらの
反応管をそれぞれ電気炉に入れ、常圧、750℃の条件
下、水素を2時間流し、触媒の還元を行なった。次いで
、脱硫処理した液状ブタン100cc/hrと、それに
対してH,O/C= 2(モル1モル)となる純水とを
気化・混合して、常圧下、反応管に供給した。触媒層の
温度を600°Cになるよう電気炉の出力を調整しなが
ら反応を行ない、反応開始30分後における生成混合ガ
ス組成を測定し、その時のC8転化率を求め、さらに反
応開始24時間後における01転化率の反応開始後30
分のそれに対する低下量を求めた。得られた結果を第1
表に示す。ここに01転化率とは、メタン、−酸化炭素
および二酸化炭素のC8成分へのブタンの転化率を意味
し、下式によって表わされ、触媒活性の指標となるもの
である。
These five types of catalysts were pulverized into 10 to 16 meshes, and 0.8 g of each was diluted with quartz beads and filled into a reaction tube with an inner diameter of 10 fl to a length of 20 meshes. Each of these reaction tubes was placed in an electric furnace, and hydrogen was flowed for 2 hours under conditions of normal pressure and 750° C. to reduce the catalyst. Next, 100 cc/hr of desulfurized liquid butane and pure water such that H, O/C = 2 (1 mol) were vaporized and mixed and supplied to the reaction tube under normal pressure. The reaction was carried out while adjusting the output of the electric furnace so that the temperature of the catalyst layer was 600°C, and the composition of the produced mixed gas was measured 30 minutes after the start of the reaction, the C8 conversion rate at that time was determined, and then 24 hours after the start of the reaction. 01 after the start of the reaction with a conversion rate of 30
The amount of decrease relative to that in minutes was calculated. The obtained results are the first
Shown in the table. The 01 conversion rate here means the conversion rate of butane into C8 components of methane, carbon oxide, and carbon dioxide, and is expressed by the following formula, and serves as an index of catalyst activity.

焼成生成物の金属状態のニッケルおよび/またはコバル
トへの還元率は、触媒Cについて約30%であったが、
触媒A、B、Dおよび已については何れもほぼ100%
であった。
The reduction rate of the calcined product to metallic state nickel and/or cobalt was about 30% for catalyst C;
Almost 100% for all catalysts A, B, D, and
Met.

実施例2 触媒Aについて、水素による還元を行なわないで、ブタ
ンと純水を気化、混合後導入して実施例1と同様な試験
を行なったところ、C0転化率は、反応開始直後には1
0%と低いものの、その後除徐に上昇し、反応開始3時
間後には約70%の定常値に達した。
Example 2 A test similar to Example 1 was conducted on catalyst A by introducing butane and pure water after vaporization and mixing without reduction with hydrogen, and the C0 conversion rate was 1 immediately after the start of the reaction.
Although it was as low as 0%, it gradually increased thereafter and reached a steady value of about 70% 3 hours after the start of the reaction.

実施例3 市販のマグネシア、シリカゲルおよび市販のマグネシア
に10重量%のアルミナセメントを添加したものをそれ
ぞれ無機系担体として用い、実施例1と同様に予備焼成
後硝酸ニッケルの水溶液に浸漬し、それぞれ800℃、
1000℃および800℃で焼成した。焼成生成物への
転化率は、何れもほぼ100%であった。次いで実施例
1と同様にして触媒F、GおよびHを得た。得られた上
記触媒中のルテニウム含有量は何れも0.05重量%で
あり、ニッケルの含有量は何れも20重量%であった。
Example 3 Commercially available magnesia, silica gel, and commercially available magnesia to which 10% by weight of alumina cement was added were used as inorganic carriers, respectively, and pre-calcined in the same manner as in Example 1, immersed in an aqueous solution of nickel nitrate, and °C,
It was fired at 1000°C and 800°C. The conversion rate to the calcined product was approximately 100% in all cases. Catalysts F, G and H were then obtained in the same manner as in Example 1. The ruthenium content in each of the obtained catalysts was 0.05% by weight, and the nickel content was 20% by weight in each case.

次いで上記触媒を2時間還元後、実施例1と同様の触媒
性能試験を行なった。その結果を第1表に示す。第1表
に示される結果から明らかなように、特にマグネシア系
担体を用いた触媒がすぐれた性能を示し、反応開始30
分後の初期活性が高く、かつ活性の経時低下が少ない。
Next, the catalyst was reduced for 2 hours, and then the same catalyst performance test as in Example 1 was conducted. The results are shown in Table 1. As is clear from the results shown in Table 1, the catalyst using a magnesia-based carrier in particular showed excellent performance, and
The initial activity after 1 minute is high, and the activity decreases little over time.

一方、金属状態のニッケルへの還元率は、触媒Gについ
ては100%であり、触媒FおよびHについては、それ
ぞれ41%および49%であった。
On the other hand, the reduction rate to metallic nickel was 100% for catalyst G, and 41% and 49% for catalysts F and H, respectively.

実施例4 前記触媒Fにおけるルテニウムに代えて、白金、パラジ
ウムおよびロジウムをそれぞれ0.05重量%担持した
触媒1.JおよびKを調製し、実施例1と同様にして触
媒性能試験を行なった。得られた結果を第1表に示す。
Example 4 Catalyst 1 in which 0.05% by weight of each of platinum, palladium and rhodium was supported in place of ruthenium in catalyst F. J and K were prepared and catalytic performance tests were conducted in the same manner as in Example 1. The results obtained are shown in Table 1.

第1表に示される結果から明らかなように、触媒Jの反
応開始30分後における初期活性は、触媒IおよびKの
それに比べて多少劣るが、何れの触媒も活性の経時低下
が小さく、すぐれた活性の持続性を示している。
As is clear from the results shown in Table 1, the initial activity of Catalyst J 30 minutes after the start of the reaction is somewhat inferior to that of Catalysts I and K, but all catalysts show a small decrease in activity over time and are excellent. This shows the persistence of the activity.

比較例1 ニッケル浸漬後の焼成温度を500℃とした以外、実施
例1の触媒Aと同様にして触媒りを調製した。金属状態
のニッケルへの還元率は100%であった。実施例1と
同様に行なった触媒性能試験の結果を第1表に示す。
Comparative Example 1 A catalyst was prepared in the same manner as Catalyst A in Example 1, except that the firing temperature after immersion in nickel was 500°C. The reduction rate to metallic nickel was 100%. Table 1 shows the results of the catalyst performance test conducted in the same manner as in Example 1.

比較例2 1000℃で焼成後、ルテニウムを担持しない以外、実
施例1の触媒Aと同様にして、触媒Mを調製した。金属
状態のニッケルへの還元率は84%であった。実施例1
と同様に行なった触媒性能試験の結果を第1表に示す。
Comparative Example 2 Catalyst M was prepared in the same manner as Catalyst A in Example 1, except that ruthenium was not supported after calcination at 1000°C. The reduction rate to metallic nickel was 84%. Example 1
Table 1 shows the results of a catalyst performance test conducted in the same manner as above.

比較例3 実施例1において予備焼成したT−アルミナを、10〜
16メツシユに粉砕した後、硝酸ルテニウム水溶液に浸
漬し、ルテニウムとして0.3重世%担持してなる触媒
Nを調製した。金属状態のルテニウムへの還元は、50
0℃で行なった。実施例1と同様に行なった触媒性能試
験の結果を第1表に示す。
Comparative Example 3 The T-alumina pre-fired in Example 1 was
After pulverizing into 16 meshes, the catalyst was immersed in an aqueous ruthenium nitrate solution to prepare a catalyst N in which 0.3% of ruthenium was supported as ruthenium. Reduction to metallic state ruthenium is 50
It was carried out at 0°C. Table 1 shows the results of the catalyst performance test conducted in the same manner as in Example 1.

実施例5 前記触媒Bにおけるペレットに代って、外径16鶴、内
径611および高さ16mのラシヒリング状に成型した
後、触媒Bと同様に触媒Oを調製した。触媒0を、内径
751mの反応管に、高さが2.5mとなるように11
j2充填した。この反応管の周囲に電気炉を設置し、反
応中は反応管の外壁温度が850℃前後となるよう加熱
した。触媒0の還元は、水素および窒素の混合気流中、
触媒層温度690〜770℃で、常圧下3時間行なった
Example 5 Catalyst O was prepared in the same manner as Catalyst B, except that the pellets in Catalyst B were molded into a Raschig ring having an outer diameter of 16 mm, an inner diameter of 611 mm, and a height of 16 m. Catalyst 0 was placed in a reaction tube with an inner diameter of 751 m, and the height was 2.5 m.
j2 was filled. An electric furnace was installed around this reaction tube, and the reaction tube was heated so that the outer wall temperature of the reaction tube was around 850° C. during the reaction. The reduction of catalyst 0 is carried out in a mixed stream of hydrogen and nitrogen,
The test was carried out at a catalyst layer temperature of 690 to 770° C. under normal pressure for 3 hours.

還元終了後、脱硫処理した、最終沸点120℃の液状ナ
フサ131/Hrを加熱・気化しHzO/C=3 (モ
ル1モル)となる量の水蒸気と混合し、圧力3kg/c
d−Gで、反応管に導入した。反応温度については、触
媒層入口部で400℃となり、触媒層出口で710℃と
なった。
After completion of the reduction, desulfurized liquid naphtha 131/Hr with a final boiling point of 120°C is heated and vaporized and mixed with steam in an amount such that HzO/C = 3 (1 mol), and the pressure is 3 kg/c.
d-G into the reaction tube. The reaction temperature was 400° C. at the inlet of the catalyst layer and 710° C. at the outlet of the catalyst layer.

触媒性能試験として、反応剤がスチームの場合について
、反応開始100時間後、触媒層の温度分布を測定した
。その結果を第1図に示す。第1図の結果から明らかな
ように、触媒Oの場合は、触媒層の入口付近での温度上
昇がゆるやかで、吸熱反応が十分進行しており、触媒活
性が高いことを意味している。
As a catalyst performance test, when the reactant was steam, the temperature distribution of the catalyst layer was measured 100 hours after the start of the reaction. The results are shown in FIG. As is clear from the results in FIG. 1, in the case of catalyst O, the temperature rise near the entrance of the catalyst layer was gradual, meaning that the endothermic reaction was sufficiently progressing and the catalyst activity was high.

また、触媒層入口より100鶴の位置において、反応開
始3時間後における01転化率および触媒層出口部にお
けるアプローチ温度を測定した。得られた結果を第2表
に示す。反応開始3時間後の初期活性は高く、かつ活性
の経時低下、すなわち劣化も極めて小さかった。
In addition, the 01 conversion rate and the approach temperature at the outlet of the catalyst layer 3 hours after the start of the reaction were measured at a position 100 meters from the inlet of the catalyst layer. The results obtained are shown in Table 2. The initial activity 3 hours after the start of the reaction was high, and the decrease in activity over time, that is, the deterioration, was extremely small.

実施例6 液状ナフサの供給量を9°I!/Hrとし、水蒸気の供
給量をH2O,/C= 2 (モル1モル)となるよう
に減少せしめ、代りに炭酸ガス9 Nm3/Hrを供給
し、反応管の外壁温度の設定を変え、触媒層入口部の温
度を450℃とし、触媒層出口部の温度を約750℃と
した以外、実施例5と同様の触媒性能試験を行なった。
Example 6 The supply amount of liquid naphtha is 9°I! /Hr, the amount of water vapor supplied was reduced to H2O, /C = 2 (1 mol), carbon dioxide gas was supplied 9 Nm3/Hr instead, the temperature of the outer wall of the reaction tube was changed, and the catalyst A catalyst performance test was carried out in the same manner as in Example 5, except that the temperature at the inlet of the layer was 450°C and the temperature at the outlet of the catalyst layer was approximately 750°C.

得られた結果を第2表に示す。The results obtained are shown in Table 2.

第2表の結果から明らかなように、この場合も反応開始
3時間後の初期活性は高く、活性の経時低下、すなわち
劣化も極めて小さかった。
As is clear from the results in Table 2, the initial activity 3 hours after the start of the reaction was high in this case as well, and the decrease in activity over time, that is, deterioration, was extremely small.

実施例7 炭酸ガスの代りに空気を4.5Nm!/Hr供給した以
外、実施例6と同様にして触媒性能試験を行なった。得
られた結果を第2表に示す。第2表の結果から明らかな
ように、反応開始3時間後の初期活性は高く、活性の経
時低下も小さかった。
Example 7 4.5Nm of air instead of carbon dioxide! A catalyst performance test was conducted in the same manner as in Example 6, except that /Hr was supplied. The results obtained are shown in Table 2. As is clear from the results in Table 2, the initial activity 3 hours after the start of the reaction was high, and the decrease in activity over time was small.

実施例8 触媒Hのルテニウムに代えて白金を使用し、かつペレッ
トに代えて外径16鶴、内径6龍、高さ161鳳のラシ
ヒリング状に成形した後、触媒Hと同様にして触媒p−
t−調製した。この触媒Pの1.21を、内径100m
の円径反応器に充填した。そのときの触媒層の高さは約
150nであった。次いで700℃で5時間、水素の存
在下に還元を行なった後、この反応器に、常圧下、予熱
したブタン1.2 Nm” / i(rと空気14.4
 Nn+3/llrとを供給した。触媒層出口部の温度
を約700℃に調節しながら反応を行なった。   − ブタンの転化率は100%であった。反応開始3時間後
における生成混合ガスの組成は下記の通りであった。
Example 8 Platinum was used instead of ruthenium in Catalyst H, and instead of pellets, it was molded into a Raschig ring shape with an outer diameter of 16 mm, an inner diameter of 6 mm, and a height of 161 mm.
t-prepared. 1.21 of this catalyst P with an inner diameter of 100 m
of the diameter of the reactor. The height of the catalyst layer at that time was about 150 nm. After a subsequent reduction in the presence of hydrogen at 700°C for 5 hours, the reactor was charged with 1.2 Nm"/i(r) of preheated butane and 14.4 Nm"/i(r of air) under atmospheric pressure.
Nn+3/llr was supplied. The reaction was carried out while controlling the temperature at the outlet of the catalyst layer to about 700°C. - Butane conversion was 100%. The composition of the produced mixed gas 3 hours after the start of the reaction was as follows.

H2COCo□   CH4Nz 22.2 19.0  3.3  0.7 54.8 
(容量%)なお、触媒活性の経時低下も極めて小さかっ
た。
H2COCo□ CH4Nz 22.2 19.0 3.3 0.7 54.8
(Volume %) Furthermore, the decrease in catalyst activity over time was also extremely small.

比較例4 触媒りにおけるペレットに代えて実施例5と同様のラシ
ヒリング状に成形した後、触媒りと同様にして触媒Qを
調製し、実施例5と同一条件下に触媒性能試験を行なっ
た。得られた結果を第2表に示す。何れの場合も触媒活
性の経時低下が大きく、運転は短時間で停止せざるを得
す、触媒上への炭素の析出も増大した。実施例5と同様
にして触媒層の温度分布を測定した。得られた結果を第
1図に示す。第1図において、触媒層入口付近での温度
上昇が速いほど反応による吸熱が小さく、触媒活性が低
いことを意味するものであって、触媒Qの活性が触媒0
のそれに比べて著しく低いことがわかる。
Comparative Example 4 Catalyst Q was prepared in the same manner as in Example 5 after molding into the same Raschig ring shape as in Example 5 instead of pellets in the catalyst, and a catalyst performance test was conducted under the same conditions as in Example 5. The results obtained are shown in Table 2. In both cases, the catalyst activity decreased significantly over time, and the operation had to be stopped after a short period of time. Carbon deposition on the catalyst also increased. The temperature distribution of the catalyst layer was measured in the same manner as in Example 5. The results obtained are shown in FIG. In Figure 1, the faster the temperature rise near the inlet of the catalyst layer, the smaller the heat absorption due to the reaction and the lower the catalytic activity.
It can be seen that this is significantly lower than that of .

比較例5 触媒Qを用いた以外、実施例6と同様にして触媒性能試
験を行なった。得られた結果を第2表に示す。第2表の
結果から明らかなように、触媒Qは、その活性の経時低
下が著しく、劣化が大きいことがわかる。
Comparative Example 5 A catalyst performance test was conducted in the same manner as in Example 6 except that catalyst Q was used. The results obtained are shown in Table 2. As is clear from the results in Table 2, the activity of Catalyst Q significantly decreased over time, indicating that the deterioration was significant.

上記した実施例および比較例における記載から、本発明
の触媒は、炭化水素の水蒸気改質および/または部分酸
化反応に用いた場合、従来の触媒に比べて、活性が高く
、かつ活性の持続性、すなわち耐久性にすぐれているこ
とがわかる。
From the descriptions in the above Examples and Comparative Examples, it is clear that when the catalyst of the present invention is used for steam reforming and/or partial oxidation reactions of hydrocarbons, it has a higher activity and a longer duration of activity than conventional catalysts. In other words, it can be seen that it has excellent durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の触媒Oおよび比較のための触媒Qに
ついての反応開始100時間後における触媒層内の温度
分布を示すグラフである。
FIG. 1 is a graph showing the temperature distribution within the catalyst layer 100 hours after the start of the reaction for catalyst O of the present invention and catalyst Q for comparison.

Claims (1)

【特許請求の範囲】 1、ニッケルおよび/またはコバルトを、アルミナ、マ
グネシア、シリカ、またはそれぞれを主成分とする無機
物質、あるいはそれらの混合物よりなる無機系担体に担
持し、焼成して担持されたニッケルおよび/またはコバ
ルトの少くとも大部分を該無機系担体と共に焼成生成物
とし、次いで白金族金属を担持してなり、使用に際して
該焼成生成物の少くとも1部が還元されて金属状態のニ
ッケルおよび/またはコバルトとなることを特徴とする
炭化水素の水蒸気改質および/または部分酸化用触媒。 2、ニッケルおよび/またはコバルトが、使用される触
媒重量当り、金属として1〜50重量%となるように、
無機系担体に担持される特許請求の範囲第1項記載の触
媒。 3、該無機系担体に担持されたニッケルおよび/または
コバルトが700℃〜1500℃の温度で焼成される特
許請求の範囲第1項記載の触媒。 4、担持されたニッケルおよび/またはコバルトの50
%〜100%が無機系担体と共に焼成生成物を形成する
特許請求の範囲第1項記載の触媒。 5、担持されたニッケルおよび/またはコバルトの80
%〜100%が無機系担体と共に焼成生成物を形成する
特許請求の範囲第4項記載の触媒。 6、該焼成生成物が、アルミナと共に形成されるニッケ
ルスピネルNiAl_2O_4またはコバルトスピネル
CoAl_2O_4;マグネシアとニッケルまたはコバ
ルトとの固溶体;またはシリカと共に形成される珪酸ニ
ッケルまたは珪酸コバルトである特許請求の範囲第1項
記載の触媒。 7、該白金族金属が、白金、ルテニウム、パラジウムま
たはロジウムである特許請求の範囲第1項記載の触媒。 8、該白金族金属が、使用される触媒重量当り、金属と
して0.01〜10重量%となるように担持される特許
請求の範囲第1項記載の触媒。
[Claims] 1. Nickel and/or cobalt is supported on an inorganic carrier made of alumina, magnesia, silica, or an inorganic substance containing each as a main component, or a mixture thereof, and is supported by firing. At least a large part of nickel and/or cobalt is formed into a sintered product together with the inorganic carrier, and then a platinum group metal is supported, and when used, at least a part of the sintered product is reduced to form nickel in a metallic state. A catalyst for steam reforming and/or partial oxidation of hydrocarbons, characterized in that the catalyst contains cobalt and/or cobalt. 2. Nickel and/or cobalt in an amount of 1 to 50% by weight as metal based on the weight of the catalyst used,
The catalyst according to claim 1, which is supported on an inorganic carrier. 3. The catalyst according to claim 1, wherein the nickel and/or cobalt supported on the inorganic carrier is calcined at a temperature of 700°C to 1500°C. 4.50 of supported nickel and/or cobalt
% to 100% form a calcined product with an inorganic support. 5.80 of supported nickel and/or cobalt
5. The catalyst according to claim 4, wherein % to 100% of the calcined product is formed together with the inorganic carrier. 6. Claim 1, wherein the fired product is nickel spinel NiAl_2O_4 or cobalt spinel CoAl_2O_4 formed together with alumina; a solid solution of magnesia and nickel or cobalt; or nickel silicate or cobalt silicate formed together with silica. Catalysts as described. 7. The catalyst according to claim 1, wherein the platinum group metal is platinum, ruthenium, palladium or rhodium. 8. The catalyst according to claim 1, wherein the platinum group metal is supported in an amount of 0.01 to 10% by weight based on the weight of the catalyst used.
JP62081033A 1987-04-03 1987-04-03 Steam reforming and/or partial oxidation catalyst for hydrocarbon Pending JPS63248444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62081033A JPS63248444A (en) 1987-04-03 1987-04-03 Steam reforming and/or partial oxidation catalyst for hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62081033A JPS63248444A (en) 1987-04-03 1987-04-03 Steam reforming and/or partial oxidation catalyst for hydrocarbon

Publications (1)

Publication Number Publication Date
JPS63248444A true JPS63248444A (en) 1988-10-14

Family

ID=13735147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62081033A Pending JPS63248444A (en) 1987-04-03 1987-04-03 Steam reforming and/or partial oxidation catalyst for hydrocarbon

Country Status (1)

Country Link
JP (1) JPS63248444A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053379A (en) * 1989-03-20 1991-10-01 Ube Industries, Ltd. High-activity nickel catalyst and process for preparation thereof
JP2001080907A (en) * 1999-08-19 2001-03-27 Haldor Topsoe As Method for preliminarily reforming oxygen-containing gas
JP2003507291A (en) * 1999-08-17 2003-02-25 バッテル・メモリアル・インスティチュート Method and catalyst structure for steam reforming hydrocarbons
WO2007015620A1 (en) * 2005-08-04 2007-02-08 Sk Energy Co., Ltd. Steam reforming ni-based catalyst without pre-reduction treatment
JP2008189540A (en) * 2007-01-12 2008-08-21 Tdk Corp Oxygen permeable membrane and system for generating hydrogen
JP2011031162A (en) * 2009-07-31 2011-02-17 Tokyo Univ Of Agriculture & Technology Plate-shaped nickel catalyst object for steam reforming reaction of hydrocarbon
JP2011207697A (en) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp Hydrogen production method, hydrogen producing device, and fuel cell system
JP2013522005A (en) * 2010-03-08 2013-06-13 ナショナル ユニヴァーシティー オブ シンガポール Embedding Ni nanodomains in refractory metal oxide support by sol-gel encapsulation method-An effective solution for coke formation in partial oxidation of natural gas

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053379A (en) * 1989-03-20 1991-10-01 Ube Industries, Ltd. High-activity nickel catalyst and process for preparation thereof
JP2003507291A (en) * 1999-08-17 2003-02-25 バッテル・メモリアル・インスティチュート Method and catalyst structure for steam reforming hydrocarbons
JP4812993B2 (en) * 1999-08-17 2011-11-09 バッテル・メモリアル・インスティチュート Method and catalyst structure for steam reforming hydrocarbons
JP2011235286A (en) * 1999-08-17 2011-11-24 Battelle Memorial Inst Method and catalyst structure for steam reforming of hydrocarbon
JP2001080907A (en) * 1999-08-19 2001-03-27 Haldor Topsoe As Method for preliminarily reforming oxygen-containing gas
WO2007015620A1 (en) * 2005-08-04 2007-02-08 Sk Energy Co., Ltd. Steam reforming ni-based catalyst without pre-reduction treatment
JP2008189540A (en) * 2007-01-12 2008-08-21 Tdk Corp Oxygen permeable membrane and system for generating hydrogen
JP2011031162A (en) * 2009-07-31 2011-02-17 Tokyo Univ Of Agriculture & Technology Plate-shaped nickel catalyst object for steam reforming reaction of hydrocarbon
JP2013522005A (en) * 2010-03-08 2013-06-13 ナショナル ユニヴァーシティー オブ シンガポール Embedding Ni nanodomains in refractory metal oxide support by sol-gel encapsulation method-An effective solution for coke formation in partial oxidation of natural gas
JP2011207697A (en) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp Hydrogen production method, hydrogen producing device, and fuel cell system

Similar Documents

Publication Publication Date Title
US4089941A (en) Steam reformer process for the production of hydrogen
JP3345784B2 (en) Production method of synthesis gas by auto thermal reforming method
US20030180215A1 (en) Controlled-pore catalyst structures and process for producing synthesis gas
JP4648567B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JPS5815013B2 (en) Steam reforming catalyst and its manufacturing method
JPS592537B2 (en) Carbon monoxide conversion catalyst and method for producing the catalyst
JP4648566B2 (en) Autothermal reforming catalyst and method for producing fuel gas for fuel cell
CN116507418A (en) Method for reforming hydrocarbons using a catalytic system in a recycle stream reactor
TW201410320A (en) High temperature combustion catalyst
JPS63248444A (en) Steam reforming and/or partial oxidation catalyst for hydrocarbon
JP2002535119A (en) Catalyst carrier supporting nickel, ruthenium and lanthanum
JP4418063B2 (en) Method for producing hydrogen
AU2004298960B2 (en) Catalyst for manufacturing synthesis gas and method of manufacturing synthesis gas using the same
US11691128B2 (en) Thermally stable monolith catalysts for methane reforming and preparing method of the same
JP2635105B2 (en) Catalyst for partial oxidation of hydrocarbons
JPH03202151A (en) Catalyst for steam reforming of hydrocarbon
JP3276679B2 (en) Steam reforming catalyst and hydrogen production method
JPS6035176B2 (en) Steam reforming catalyst and its manufacturing method
CN110898826A (en) Pr-containing alumina carrier and preparation method thereof
JP4799312B2 (en) Synthesis gas production catalyst
JPH0510132B2 (en)
JPS6114861B2 (en)
WO2024077123A1 (en) Reverse flow reactor with mixer
JPS58207946A (en) Catalyst for partial oxidation of hydrocarbon and its manufacture
AU2002367767B2 (en) Controlled-pore catalyst structures and process for producing synthesis gas