JP2011031162A - Plate-shaped nickel catalyst object for steam reforming reaction of hydrocarbon - Google Patents

Plate-shaped nickel catalyst object for steam reforming reaction of hydrocarbon Download PDF

Info

Publication number
JP2011031162A
JP2011031162A JP2009179337A JP2009179337A JP2011031162A JP 2011031162 A JP2011031162 A JP 2011031162A JP 2009179337 A JP2009179337 A JP 2009179337A JP 2009179337 A JP2009179337 A JP 2009179337A JP 2011031162 A JP2011031162 A JP 2011031162A
Authority
JP
Japan
Prior art keywords
nickel
plate
layer
steam reforming
reforming reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009179337A
Other languages
Japanese (ja)
Inventor
Hideo Kameyama
秀雄 亀山
Yu Kaku
ユ 郭
Ro Shu
呂 周
Hiroshi Fujiki
広志 藤木
Masaki Hondo
正樹 本道
Masahiro Shiraki
正浩 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Tokyo Gas Co Ltd
Tokyo University of Agriculture
Original Assignee
Tokyo University of Agriculture and Technology NUC
Tokyo Gas Co Ltd
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC, Tokyo Gas Co Ltd, Tokyo University of Agriculture filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2009179337A priority Critical patent/JP2011031162A/en
Publication of JP2011031162A publication Critical patent/JP2011031162A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plate-shaped nickel catalyst object excellent not only in the steam reforming capacity of a hydrocarbon but also in durability, and a method for manufacturing the same. <P>SOLUTION: The plate-shaped nickel catalyst object for the steam reforming reaction of a hydrocarbon is characterized by providing a nickel catalyst layer containing a noble metal element as a dopant on the alumina layer of a plate-shaped substrate having the alumina layer on its surface through an intermediate layer. The method of manufacturing the plate-shaped nickel catalyst object for the steam reforming reaction of a hydrocarbon is characterized by adhering nickel on the alumina layer of the plate-shaped substrate having the alumina layer on its surface, subsequently baking the nickel adhered alumina layer of the plate-shaped substrate to 500°C or above to form a nickel spinel intermediate layer, next baking the intermediate layer after nickel is adhered to provide the nickel catalyst layer and finally adhering a noble metal to the nickel catalyst layer before baking the nickel catalyst layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は炭化水素水蒸気改質反応用プレート状触媒体に関し、特に、アルミナ表面を有するプレート状アルミナ担体上に、ニッケルスピネル中間層を介して、ドーパントとして貴金属元素を含有する触媒ニッケル層を設けてなる炭化水素水蒸気改質反応用プレート状ニッケル触媒体に関する。   The present invention relates to a plate catalyst body for hydrocarbon steam reforming reaction, and in particular, a catalyst nickel layer containing a noble metal element as a dopant is provided on a plate alumina support having an alumina surface through a nickel spinel intermediate layer. The present invention relates to a plate-like nickel catalyst body for hydrocarbon steam reforming reaction.

メタンの水蒸気改質反応は、燃料電池の燃料である水素の製造方法として期待されている(非特許文献1)だけでなく、従来、例えば天然ガスを燃料とするガスタービンにおいて、天然ガス中に含まれるメタンを水素ガスと炭酸ガスに分解するために利用されており(特許文献1)、何れの場合にもニッケル触媒が良好であることが知られている。   The steam reforming reaction of methane is expected not only as a method for producing hydrogen as a fuel for a fuel cell (Non-Patent Document 1), but also conventionally, for example, in a gas turbine using natural gas as a fuel, It is used for decomposing methane contained into hydrogen gas and carbon dioxide gas (Patent Document 1), and it is known that the nickel catalyst is good in any case.

一方、加熱の容易性や均一性の観点から、近年発熱体に触媒を担持させたプレート状触媒の開発も進められており、それを用いた燃料改質装置も提案されている(特許文献2)。このようなプレート状触媒体、又は、例えばハニカム状等に更に加工した触媒体の場合には、加工性に優れたプレート状アルマイトを触媒担体とすることが好都合である。しかしながら、アルミナを担体とする従来のプレート状ニッケル触媒は、水蒸気改質反応に対する触媒能が十分でないだけでなく、耐久性も十分ではないという欠点があった。   On the other hand, from the viewpoint of ease of heating and uniformity, in recent years, development of a plate-shaped catalyst in which a catalyst is supported on a heating element has been promoted, and a fuel reformer using the same has also been proposed (Patent Document 2). ). In the case of such a plate-shaped catalyst body or a catalyst body further processed into a honeycomb shape, for example, it is advantageous to use a plate-shaped alumite having excellent processability as a catalyst carrier. However, the conventional plate-like nickel catalyst using alumina as a carrier has a drawback that not only the catalytic ability for the steam reforming reaction is not sufficient, but also the durability is not sufficient.

上記の欠点は、アルミナ担体のγアルミナ層表面と触媒ニッケル層の間に、NiAl2O4で表されるニッケルスピネル中間層を介在させることによって著しく改善された(例えば非特許文献2,3)が、触媒として使用する直前に水素還元処理を必要とするために煩雑である上、その耐久性にも尚改善の余地があった。 The above disadvantages are remarkably improved by interposing a nickel spinel intermediate layer represented by NiAl 2 O 4 between the surface of the γ-alumina layer of the alumina support and the catalyst nickel layer (for example, Non-Patent Documents 2 and 3). However, it is complicated because it requires a hydrogen reduction treatment immediately before use as a catalyst, and there is still room for improvement in durability.

そこで本発明者等は、耐久性に優れると共に使用前の水素還元処理を必要としないプレート状ニッケル触媒について更に研究した結果、ニッケルスピネル中間層を形成させる際のニッケルの含浸に使用するニッケル水溶液のpHを調整することによって耐久性を改善することができること、及び、触媒ニッケル層に、微量の貴金属元素をドーパントとして添加することによって、更に耐久性が改善される上、自己活性が可能となって、使用前の水素還元処理も不要となることを見出し本発明に到達した。   Therefore, as a result of further research on a plate-like nickel catalyst that is excellent in durability and does not require a hydrogen reduction treatment before use, the present inventors have found that an aqueous nickel solution used for impregnation of nickel when forming a nickel spinel intermediate layer. The durability can be improved by adjusting the pH, and by adding a trace amount of a noble metal element as a dopant to the catalyst nickel layer, the durability is further improved and self-activation is possible. The present inventors have found that the hydrogen reduction treatment before use is not necessary, and have reached the present invention.

特開2005−002928号公報JP 2005-002928 A 特開2007−099596号公報JP 2007-099596 A

「固相晶析法により調製した担持Ni触媒によるメタンの改質反応」第90回触媒討論会、討論会A予稿集p12"Reforming reaction of methane with supported Ni catalyst prepared by solid-phase crystallization method" The 90th Catalysis Conference, Discussion Session A Proceedings p12 H. Kameyama et.al. J. Chem. Eng. Japan 40(2007)1221-1228H. Kameyama et.al. J. Chem. Eng. Japan 40 (2007) 1221-1228 Lif, M. Skoglundh et.al. Appl.Cat A. 274(2004)61-69Lif, M. Skoglundh et.al. Appl. Cat A. 274 (2004) 61-69

したがって本発明の第1の目的は、炭化水素の水蒸気改質性能に優れると共に、耐久性にも優れたプレート状ニッケル触媒体を提供することにある。
本発明の第2の目的は、使用前の水素還元処理を必要としない、炭化水素の水蒸気改質反応用プレート状ニッケル触媒体を提供することにある。
更に本発明の第3の目的は、炭化水素の水蒸気改質性能に優れると共に、耐久性にも優れたプレート状ニッケル触媒体を製造する方法を提供することにある。
Accordingly, a first object of the present invention is to provide a plate-like nickel catalyst body which is excellent in steam reforming performance of hydrocarbons and also excellent in durability.
A second object of the present invention is to provide a plate-like nickel catalyst for a hydrocarbon steam reforming reaction that does not require a hydrogen reduction treatment before use.
A third object of the present invention is to provide a method for producing a plate-like nickel catalyst body that is excellent in the steam reforming performance of hydrocarbons and also excellent in durability.

本発明の上記の諸目的は、表面にアルミナ層を有するプレート状基板の前記アルミナ層の上に、中間層を介してニッケル触媒層を設けてなる触媒体であって、前記ニッケル触媒層がドーパントとして貴金属元素を含有することを特徴とする、炭化水素水蒸気改質反応用プレート状ニッケル触媒体、及びその製造方法によって達成された。
本発明においては、前記中間層が、NiAl2O4で表されるニッケルスピネル中間層であることが好ましく、前記プレート状基板は陽極酸化可能な金属基板であることが好ましい。
また、前記アルミナ層は陽極酸化によって形成された層であることが好ましく、このアルミナ層は、陽極酸化後更に水和処理されることが好ましい。
更に、前記ニッケルスピネル中間層を設けるに際しては500〜750℃で焼成することが必要であり、特に約700℃前後で焼成することが好ましい。
また、少なくともニッケルスピネル中間層を設ける際のニッケルの付加は、ニッケル水溶液を用いた含浸法で行う事が好ましく、該ニッケル水溶液のpHは3.7〜6.7であることが好ましい。
The above objects of the present invention are a catalyst body in which a nickel catalyst layer is provided via an intermediate layer on the alumina layer of a plate-like substrate having an alumina layer on the surface, wherein the nickel catalyst layer is a dopant. The present invention has been achieved by a plate-like nickel catalyst body for hydrocarbon steam reforming reaction, characterized by containing a noble metal element, and a method for producing the same.
In the present invention, the intermediate layer is preferably a nickel spinel intermediate layer represented by NiAl 2 O 4 , and the plate-shaped substrate is preferably an anodizable metal substrate.
The alumina layer is preferably a layer formed by anodization, and the alumina layer is preferably further hydrated after anodization.
Further, when the nickel spinel intermediate layer is provided, it is necessary to fire at 500 to 750 ° C., and it is particularly preferable to fire at around 700 ° C.
Moreover, it is preferable to add nickel at the time of providing a nickel spinel intermediate | middle layer at least by the impregnation method using nickel aqueous solution, It is preferable that pH of this nickel aqueous solution is 3.7-6.7.

本発明のプレート状ニッケル触媒体は、触媒ニッケルとアルミナ担体が直接接触していないだけでなく貴金属が触媒層にドーパントとして含有されているので、炭化水素の水蒸気改質性能に優れるだけでなく水蒸気によるニッケルの再酸化やコーキングが防止される結果、耐久性にも優れ、また、使用前の水素還元処理も不要となるという特徴がある。   The plate-like nickel catalyst body of the present invention is not only in direct contact between the catalyst nickel and the alumina support, but also contains a noble metal as a dopant in the catalyst layer. As a result of preventing nickel re-oxidation and coking due to the above, it has excellent durability and does not require a hydrogen reduction treatment before use.

図1は、従来のプレート状ニッケル触媒体の寿命が短く、ニッケルスピネル中間層を有するプレート状ニッケル触媒体の寿命が長い理由を説明する概念図である。FIG. 1 is a conceptual diagram for explaining the reason why a plate-like nickel catalyst body having a short life and a plate-like nickel catalyst body having a nickel spinel intermediate layer has a long life. 図2は、本発明のプレート状ニッケル触媒体の製造工程を説明する概念図である。FIG. 2 is a conceptual diagram illustrating the production process of the plate-like nickel catalyst body of the present invention. 図3は、ニッケルスピネル中間層を有するプレート状ニッケル触媒体が耐コーキング性に優れていることを示すグラフである。FIG. 3 is a graph showing that a plate-like nickel catalyst body having a nickel spinel intermediate layer is excellent in coking resistance. 図4は、ニッケルスピネル中間層を有するプレート状ニッケル触媒体が、13A都市ガスを用いたメタン水蒸気改質反応に対して十分な耐久性を有することを証明するグラフである。FIG. 4 is a graph demonstrating that a plate-like nickel catalyst body having a nickel spinel intermediate layer has sufficient durability for a methane steam reforming reaction using 13A city gas. 図5は、ニッケルスピネル中間層を形成させるための焼成を、500℃以上で行うべき事を示すグラフである。FIG. 5 is a graph showing that the firing for forming the nickel spinel intermediate layer should be performed at 500 ° C. or higher. 図6は、メタン水蒸気改質反応に対する、ニッケルスピネル中間層を形成させる際に担持させるNiを含浸法で付着させるときの、溶液のpH依存性を示すグラフである。FIG. 6 is a graph showing the pH dependency of a solution when Ni supported on forming a nickel spinel intermediate layer is deposited by an impregnation method with respect to a methane steam reforming reaction. 図7は、貴金属としてRuを微量ドープした本発明の触媒体が、水素還元を必要とすることなく自己活性化することを実証するグラフである。FIG. 7 is a graph demonstrating that the catalyst body of the present invention doped with a small amount of Ru as a noble metal self-activates without requiring hydrogen reduction. 図8は、貴金属としてRuを微量ドープしたときの、本発明の触媒体の自己活性メカニズムを説明する図である。FIG. 8 is a diagram for explaining the self-activation mechanism of the catalyst body of the present invention when a small amount of Ru is doped as a noble metal. 図9は、貴金属としてRu又はPtを微量ドープした、本発明の触媒体の耐久性が改善されることを実証するグラフである。FIG. 9 is a graph demonstrating that the durability of the catalyst body of the present invention, which is slightly doped with Ru or Pt as a noble metal, is improved. 図10は、Ptを微量ドープした本発明の触媒体が、高温で水蒸気パージを繰返しても殆ど影響されず、耐久性に極めて優れていることを実証するグラフである。FIG. 10 is a graph demonstrating that the catalyst body of the present invention doped with a small amount of Pt is hardly affected by repeated steam purges at high temperatures and is extremely excellent in durability. 図11は、Ruを微量ドープした本発明の触媒体が、優れた耐コーキング性を有することを実証するグラフである。FIG. 11 is a graph demonstrating that the catalyst body of the present invention doped with a small amount of Ru has excellent coking resistance. 図12は、本発明の触媒体が、13A都市ガスを用いたDSS運転に対しても優れた耐久性を有することを実証するグラフである。FIG. 12 is a graph demonstrating that the catalyst body of the present invention has excellent durability even for DSS operation using 13A city gas.

本発明の触媒体に使用する基板は、酸化アルミナ表面を形成した基板であれば良いが、特に、陽極酸化アルミナ被膜を表面に有する、アルミニウム、アルミニウム合金、又はアルミニウムと、鉄、ステンレス、銅などとのクラッド材等を使用することが好ましい。また、本発明においては、該陽極酸化皮膜表面の比表面積を大きくするために、公知の様に、室温〜80℃で5分〜24時間、水蒸気や温水等で処理する水和処理をすることが好ましい。これによって、本発明の触媒体の表面積を大きく増大させることができる。   The substrate used in the catalyst body of the present invention may be any substrate on which an alumina oxide surface is formed. In particular, aluminum, an aluminum alloy, or aluminum having an anodized alumina film on the surface, iron, stainless steel, copper, etc. It is preferable to use a clad material. In addition, in the present invention, in order to increase the specific surface area of the anodized film surface, as is well known, a hydration treatment is performed by treatment with water vapor or warm water at room temperature to 80 ° C. for 5 minutes to 24 hours. Is preferred. Thereby, the surface area of the catalyst body of the present invention can be greatly increased.

本発明においては、Ni触媒のシンタリングを防止するために、前記酸化アルミナ表面に中間層を形成させる。好ましい中間層はニッケルスピネルであり、これは、酸化アルミナ表面に適度のニッケル層を設け、加熱焼成することによって形成される。この中間層の作用効果の概念図は図1に示した通りであり、該中間層の上に担持されたNiが酸化アルミナ中にシンタリングしたり、水蒸気によって再酸化されたりすることを防止するための層である。   In the present invention, an intermediate layer is formed on the alumina oxide surface in order to prevent sintering of the Ni catalyst. A preferred intermediate layer is nickel spinel, which is formed by providing a moderate nickel layer on the alumina oxide surface and heating and firing. A conceptual diagram of the action and effect of this intermediate layer is as shown in FIG. 1, and Ni supported on the intermediate layer is prevented from being sintered in alumina oxide or reoxidized by water vapor. It is a layer for.

即ち、ニッケルスピネル中間層は基板のアルミナ表面及び触媒ニッケルと強く結合するため、高温雰囲気下における触媒成分であるニッケルの脱着を抑制し、ニッケルのシンタリングを防止する。これによって、触媒成分であるニッケルとアルミナとの接触が防止されるため、水蒸気によるニッケルの再酸化も抑えられる。また、上記したように、ニッケルスピネル中間層は触媒成分であるニッケル粒子の成長(所謂、シンタリング)を抑制するので、ニッケル粒子の粒子径は小さいままである。このことから、改質性能を高いままに維持することができ、結果としてコーキングも抑制される。   That is, since the nickel spinel intermediate layer is strongly bonded to the alumina surface of the substrate and the catalyst nickel, desorption of nickel as a catalyst component in a high temperature atmosphere is suppressed, and nickel sintering is prevented. As a result, contact between nickel as a catalyst component and alumina is prevented, so that reoxidation of nickel by water vapor is also suppressed. Further, as described above, the nickel spinel intermediate layer suppresses the growth (so-called sintering) of the nickel particles as the catalyst component, so the particle diameter of the nickel particles remains small. For this reason, the reforming performance can be kept high, and as a result, coking is also suppressed.

このように、前記したニッケルスピネル中間層がなければ、500〜750℃で行われるメタンの水蒸気改質反応時に、下記の式(1)及び(2)に従って触媒ニッケルが徐々にシンタリングするので、触媒体としての寿命が短くなる。
Ni + HO → NiO (1)
NiO + Al → NiAl (2)
Thus, if there is no nickel spinel intermediate layer, the catalyst nickel gradually sinters according to the following formulas (1) and (2) during the steam reforming reaction of methane performed at 500 to 750 ° C. The life as a catalyst body is shortened.
Ni + H 2 O → NiO (1)
NiO + Al 2 O 3 → NiAl 2 O 4 (2)

図2は、本発明の触媒体の好ましい製造方法の概略を示す工程図である。このブロック図中に示された数字は好ましい条件を示している。以下に、本発明を、メタン水蒸気改質反応の実施例に基づいて詳述する。   FIG. 2 is a process diagram showing an outline of a preferred method for producing the catalyst body of the present invention. The numbers shown in this block diagram indicate preferred conditions. Below, this invention is explained in full detail based on the Example of methane steam reforming reaction.

メタン水蒸気改質反応に対する、ニッケルスピネル中間層を有するプレート状ニッケル触媒体の耐久性は、従来型Niアルマイト触媒の耐久性よりも極めて優れている。このことは、図3及び図4によって実証されている。   The durability of the plate-like nickel catalyst body having a nickel spinel intermediate layer with respect to the methane steam reforming reaction is extremely superior to the durability of the conventional Ni alumite catalyst. This is demonstrated by FIG. 3 and FIG.

即ち、使用直前に、純水素を500℃で1時間、更に800℃で2時間、100mL/分の流量で流す水素還元処理した触媒体について、700℃で、下記の流量比でメタン水蒸気改質反応を行ったところ、ニッケルスピネル中間層を有する場合にのみ、100時間後のメタンの転化率が100%と不変であった。
CH:HO:N=50mL/分:150mL/分:100mL/分;
GHSV[mL/(h・g)](CHとHOの混合ガスの空間速度)=157000
That is, methane steam reforming is performed at 700 ° C. at the following flow rate ratio on a catalyst body subjected to hydrogen reduction treatment in which pure hydrogen is flowed at a flow rate of 100 mL / min at 500 ° C. for 1 hour and further at 800 ° C. for 2 hours. As a result of the reaction, the methane conversion after 100 hours was 100% unchanged only when the nickel spinel intermediate layer was provided.
CH 4: H 2 O: N 2 = 50mL / min: 150 mL / min: 100 mL / min;
GHSV [mL / (h · g)] (space velocity of mixed gas of CH 4 and H 2 O) = 157000

また、中間層の無いズードケミー社製のNi系改質触媒FCR−4(Ni担持量は12質量%)及びニッケルスピネル中間層を有する触媒体について、下記のようにコーキング性を比較したところ、ニッケルスピネル中間層を有する触媒体の方が著しく耐コーキング性に優れていることが確認された(図3)。
実験条件:
純水素の流量を100mL/分とし、500℃で1時間、次いで800℃で2時間水素還元処理をした後、窒素ガスを充填して、室温で10時間冷却した。メタンを、室温で60mL/分の流量で1時間流し、その間に10℃/分の昇温速度で200℃まで加熱した。次いで10℃/分の昇温速度で700℃まで加熱し、そのまま10時間維持した。
コーキング性は、触媒体の重量増加を、熱重量天秤を用いて測定し評価した。
Further, regarding a catalyst body having a Ni-based reforming catalyst FCR-4 (Ni supported amount: 12% by mass) and a nickel spinel intermediate layer manufactured by Sued Chemie without an intermediate layer, the caulking properties were compared as follows. It was confirmed that the catalyst body having the spinel intermediate layer was remarkably superior in coking resistance (FIG. 3).
Experimental conditions:
The flow rate of pure hydrogen was 100 mL / min, hydrogen reduction treatment was performed at 500 ° C. for 1 hour, and then at 800 ° C. for 2 hours, and then charged with nitrogen gas and cooled at room temperature for 10 hours. Methane was flowed at room temperature at a flow rate of 60 mL / min for 1 hour, during which time it was heated to 200 ° C. at a heating rate of 10 ° C./min. Subsequently, it heated to 700 degreeC with the temperature increase rate of 10 degree-C / min, and maintained as it was for 10 hours.
The caulking property was evaluated by measuring the weight increase of the catalyst body using a thermogravimetric balance.

更に、ニッケルスピネル中間層を有するプレート状ニッケル触媒体が、13A都市ガスを用いて、DSS運転モード(daily start up and shut down)で行った水蒸気改質反応テストに対して、十分な耐久性を有することも確認された(図4)。尚、13A都市ガス中に含有されるプロパン等の炭化水素は、メタンと比べてコーキングを起こしやすいことが知られている。
実験条件:
純水素の流量を100mL/分とし、800℃で0.5時間水素還元処理をした後、窒素ガスは使用せず、GHSV[mL/(h・g)]=34000、水蒸気/メタン=3の条件で、メタン水蒸気改質反応を実施した。
Further, the plate-like nickel catalyst body having a nickel spinel intermediate layer has sufficient durability for a steam reforming reaction test conducted in a DSS operation mode (daily start up and shut down) using 13A city gas. It was also confirmed that it has (FIG. 4). It is known that hydrocarbons such as propane contained in 13A city gas are more susceptible to coking than methane.
Experimental conditions:
After hydrogen reduction treatment at 800 ° C. for 0.5 hours with a pure hydrogen flow rate of 100 mL / min, nitrogen gas was not used, GHSV [mL / (h · g)] = 34000, water vapor / methane = 3 Under the conditions, a methane steam reforming reaction was performed.

本発明において、前記酸化アルミナ表面にニッケル層を設ける方法は公知の方法の中から適宜選択することができるが、本発明においては、装置が簡単であるだけでなく量産性に優れるという観点から、ニッケル含有水溶液中に酸化アルミナ表面を有する基板を浸漬し、引き上げて乾燥する、所謂含浸法を採用することが好ましい。乾燥後、焼成することによってニッケルスピネル中間層を形成させることができ、この中間層上に再度ニッケル層を設けて焼成すれば触媒層となり、更にドーパントとなる貴金属を付着させ、焼成することによって本発明の触媒体が製造される。   In the present invention, the method of providing a nickel layer on the alumina oxide surface can be appropriately selected from known methods, but in the present invention, not only the apparatus is simple, but also from the viewpoint of excellent mass productivity, It is preferable to employ a so-called impregnation method in which a substrate having an alumina oxide surface is immersed in a nickel-containing aqueous solution, and then pulled up and dried. After drying, a nickel spinel intermediate layer can be formed by firing, and if a nickel layer is again provided on this intermediate layer and fired, it becomes a catalyst layer, and further, a noble metal as a dopant is attached and fired. The catalyst body of the invention is produced.

即ち、一回目に担持させたニッケルは、高温焼成によりニッケルスピネル(NiAl2O4)に転化される。本発明においてはその後、このニッケルスピネル中間層の上に二度目のニッケルを担持する。この二度目に担持したニッケルは触媒として機能する。従来のようにニッケルスピネル中間層がなければ、高温(650〜750℃)でのメタン水蒸気改質反応下で、担持したNiは徐々にシンタリングすると同時に、担体であるアルミナと反応してニッケルスピネルになるので、触媒活性が消失する。これに対し、本発明の触媒体の場合には中間層としてニッケルスピネル(NiAl2O4)を有するので、前記したように触媒体としての寿命が長くなるのである。 That is, the nickel supported for the first time is converted into nickel spinel (NiAl 2 O 4 ) by high-temperature firing. In the present invention, nickel is supported on the nickel spinel intermediate layer for the second time. This second supported nickel functions as a catalyst. If there is no nickel spinel intermediate layer as in the past, the supported Ni gradually sinters under the methane steam reforming reaction at a high temperature (650 to 750 ° C) and at the same time reacts with the alumina as the carrier to react with the nickel spinel. As a result, the catalytic activity is lost. On the other hand, the catalyst body of the present invention has nickel spinel (NiAl 2 O 4 ) as an intermediate layer, so that the life as a catalyst body is prolonged as described above.

上記中間層形成時の焼成温度は、本発明の触媒体の耐久性に大きく影響するので、本発明の製造方法における重要な因子である。本発明においては、焼成温度を500℃以上とすることが好ましい。上限は、基板の加熱耐久性以下であればよいが、アルマイト基板である場合には750℃程度に抑えることが無難である。尚、図5は、本発明の触媒体の耐久性に対する、前記中間層形成時の焼成温度依存性を示すグラフである。この結果から前記中間層形成時の焼成温度が500℃以上であるべき事が確認される。   The firing temperature at the time of forming the intermediate layer greatly affects the durability of the catalyst body of the present invention, and is therefore an important factor in the production method of the present invention. In the present invention, the firing temperature is preferably 500 ° C. or higher. Although an upper limit should just be below the heat durability of a board | substrate, when it is an alumite board | substrate, it is safe to restrain to about 750 degreeC. In addition, FIG. 5 is a graph which shows the calcination temperature dependence at the time of the said intermediate | middle layer formation with respect to durability of the catalyst body of this invention. From this result, it is confirmed that the firing temperature when forming the intermediate layer should be 500 ° C. or higher.

また、含浸法によって前記中間層を形成する際に使用するニッケル含有水溶液のpHも本発明の触媒体の耐久性に影響する(図6)。図6から明らかなように、ニッケル含有水溶液のpHは3.7以上であることが好ましく、特に4.6以上であることが好ましいが、ニッケル塩の溶解濃度を確保する観点から、pHの上限は約6.7である。尚、耐久性試験の条件は下記の通りである。
実験条件
純水素の流量を100mL/分とし、500℃で1時間、次いで800℃で2時間水素還元処理をした。メタン改質反応時のガスの流量比率は、CH:HO:N=50mL/分:150mL/分:100mL/分であり、GHSV[mL/(h・g)](CHとHOの混合ガスの空間速度)は157000であった。
Further, the pH of the nickel-containing aqueous solution used when the intermediate layer is formed by the impregnation method also affects the durability of the catalyst body of the present invention (FIG. 6). As is clear from FIG. 6, the pH of the nickel-containing aqueous solution is preferably 3.7 or more, and particularly preferably 4.6 or more. From the viewpoint of ensuring the dissolution concentration of the nickel salt, the upper limit of the pH Is about 6.7. The conditions for the durability test are as follows.
Experimental conditions The flow rate of pure hydrogen was 100 mL / min, and hydrogen reduction treatment was performed at 500 ° C. for 1 hour and then at 800 ° C. for 2 hours. The flow rate ratio of the gas during the methane reforming reaction is CH 4 : H 2 O: N 2 = 50 mL / min: 150 mL / min: 100 mL / min, and GHSV [mL / (h · g)] (CH 4 and The space velocity of the mixed gas of H 2 O was 157000.

更に、ニッケルスピネル中間層中のニッケル含有量も、本発明の触媒体の耐久性に影響する。中間層がある場合とない場合では耐久性が異なることは当然であるが、触媒ニッケルの量が同じ(17.9 wt%)であっても、中間層中のニッケル量が少なくなると耐久性が悪くなる。中間層を形成させるためのニッケル付着量は5 wt%以上であることが必要であり、9 wt%以上であることがより好ましい。
尚、中間層及び触媒層に付着させるニッケルは、それぞれ必ずしも一度で付着させる必要はなく、複数回に分けて付着させても良い。
Furthermore, the nickel content in the nickel spinel intermediate layer also affects the durability of the catalyst body of the present invention. Naturally, the durability is different depending on whether the intermediate layer is present or not. However, even if the amount of catalyst nickel is the same (17.9 wt%), the durability is improved if the amount of nickel in the intermediate layer is reduced. Deteriorate. The nickel adhesion amount for forming the intermediate layer needs to be 5 wt% or more, and more preferably 9 wt% or more.
The nickel deposited on the intermediate layer and the catalyst layer does not necessarily have to be deposited at once, and may be deposited in multiple steps.

以上の結果を整理すると、本発明の触媒体の製造条件と最も好ましい製造条件は、下記表1のようにまとめられる。


Figure 2011031162
To summarize the above results, the production conditions and most preferred production conditions of the catalyst body of the present invention are summarized as shown in Table 1 below.


Figure 2011031162

Ru、Pt、Rh、Ir、Coなどの貴金属元素をドーパントとしてニッケル触媒層に微量添加する本発明の触媒体においては、自己活性能が生じるために通常必要とされる使用直前の水素還元処理が不要となるだけでなく、耐久性を一層改善することができる(図7)。上記貴金属元素の触媒層中における含有量は0.01〜0.5質量%であることが好ましく、特に、0.05〜0.1質量%であることが好ましい。   In the catalyst body of the present invention in which a trace amount of a noble metal element such as Ru, Pt, Rh, Ir, Co or the like is added to the nickel catalyst layer as a dopant, the hydrogen reduction treatment immediately before use, which is usually required for the generation of self-activity, is performed. Not only is it unnecessary, but the durability can be further improved (FIG. 7). The content of the noble metal element in the catalyst layer is preferably 0.01 to 0.5% by mass, and particularly preferably 0.05 to 0.1% by mass.

貴金属元素をドーパントとしてニッケル触媒層に微量添加することによって自己活性能が生じる反応機構は、図8に示したように、水素の発生量が増大することによって説明される。即ち、微量のRuやPt等の貴金属を上記のNi/NiAl2O4/Al2O3/Alloyにドープした場合には、貴金属サイトにおける水素のスピル・オーバー(Spill over)効果により、反応直前のニッケル触媒の水素還元処理を省略できるものと推定される。 The reaction mechanism in which the self-activity occurs when a trace amount of a noble metal element is added as a dopant to the nickel catalyst layer is explained by an increase in the amount of hydrogen generated, as shown in FIG. That is, when the above-mentioned Ni / NiAl 2 O 4 / Al 2 O 3 / Alloy is doped with a trace amount of noble metals such as Ru and Pt, the hydrogen spillover effect at the noble metal site immediately before the reaction. It is estimated that the hydrogen reduction treatment of the nickel catalyst can be omitted.

更に詳述すると、以下のように推定される。高温でメタンと水蒸気を流すと、メタンがRuOx上で分解反応(CH4→CHx + H2)を開始して水素を生成する。このメタン分解反応の際にRuOx上で吸着されたCHxがRuOx自身の遊離態酸素Oと反応し、RuOxがRuに還元されると同時にCOを生成する(RuOx + CHx → Ru + CO + H2)。ここで生成したH2及びCOが触媒上で、先ず酸化ニッケルの還元を引き起こす。また、前記還元されたRu上でメタンの改質反応及びCOと水蒸気のシフト反応が進行することにより、大量の水素が発生する。発生した水素により、酸化ニッケル及びRu-Ni-Oxのクラストが更に還元される。このようにして、酸化ニッケルがRuの水素スピル・オーバー効果により自己還元されると共に、Ni金属の表面にRu-Ni合金が生成される。このように、貴金属をドープした触媒における自己活性化、自己復活化の発現には、貴金属-Ni合金が極めて重要な役割を果たしていると推定される。 More specifically, it is estimated as follows. When methane and water vapor are flowed at high temperature, methane starts a decomposition reaction (CH 4 → CHx + H 2 ) on RuOx to generate hydrogen. During this methane decomposition reaction, CHx adsorbed on RuOx reacts with free oxygen O of RuOx itself, and RuOx is reduced to Ru and simultaneously produces CO (RuOx + CHx → Ru + CO + H 2 ) . The H 2 and CO produced here first cause reduction of nickel oxide on the catalyst. In addition, a large amount of hydrogen is generated by the progress of the reforming reaction of methane and the shift reaction of CO and water vapor on the reduced Ru. The generated hydrogen further reduces the crusts of nickel oxide and Ru—Ni—Ox. In this way, nickel oxide is self-reduced by the hydrogen spillover effect of Ru, and a Ru—Ni alloy is formed on the surface of the Ni metal. Thus, it is presumed that the noble metal-Ni alloy plays an extremely important role in the manifestation of self-activation and self-revitalization in the catalyst doped with the noble metal.

図9は、貴金属としてRu又はPtを微量ドープした場合に、本発明の触媒体の耐久性が改善されることを実証するグラフである。この実施例の場合には、貴金属をドープしない触媒体の場合にのみ、純水素の流量を100mL/分とし、500℃で1時間、次いで800℃で2時間水素還元処理をした。また、メタン水蒸気改質反応時のガスの流量比率は、CH:HO:N=50mL/分:150mL/分:100mL/分、GHSV[mL/(h・g)](CHとHOの混合ガスの空間速度)は157000又は471000であり、反応温度を700℃とした。 FIG. 9 is a graph demonstrating that the durability of the catalyst body of the present invention is improved when a small amount of Ru or Pt is doped as a noble metal. In the case of this example, only in the case of a catalyst body not doped with a noble metal, the flow rate of pure hydrogen was set to 100 mL / min, and hydrogen reduction treatment was performed at 500 ° C. for 1 hour and then at 800 ° C. for 2 hours. The flow rate ratio of the gas during the methane steam reforming reaction is as follows: CH 4 : H 2 O: N 2 = 50 mL / min: 150 mL / min: 100 mL / min, GHSV [mL / (h · g)] (CH 4 And the space velocity of the mixed gas of H 2 O was 157000 or 471000, and the reaction temperature was 700 ° C.

貴金属ドープの効果は、貴金属としてPtを使用した場合に特に顕著であった(図10)。この実施例では水素還元処理を行わず、メタン水蒸気改質反応時におけるガスの流量比率を、CH:HO:N=50mL/分:150mL/分:100mL/分とし、GHSV[mL/(h・g)](CHとHOの混合ガスの空間速度)を157000とすると共に、反応温度を700℃とした。 The effect of the noble metal doping was particularly remarkable when Pt was used as the noble metal (FIG. 10). In this example, hydrogen reduction treatment is not performed, and the flow rate ratio of the gas during the methane steam reforming reaction is CH 4 : H 2 O: N 2 = 50 mL / min: 150 mL / min: 100 mL / min, and GHSV [mL / (H · g)] (space velocity of the mixed gas of CH 4 and H 2 O) was 157000, and the reaction temperature was 700 ° C.

ところで、通常、改質器を運転する際に、水蒸気パージや燃料パージを行うことは少ない。ここで水蒸気パージとは、燃料ガスを止めて水蒸気のみを流すことであり、燃料パージとは水蒸気を止めて燃料ガスのみを流すことである。実際には、誤操作や事故等の場合にそのような可能性が生じる。そして、これらの水蒸気パージや燃料パージは、触媒の劣化に繋がると言われている。即ち、水蒸気パージによって生じるNiの再酸化、又は、燃料パージによって引き起こされるコーキングによる劣化は、事故を解決した後に、燃料と水蒸気を再び一緒に導入しても、初期活性レベルの触媒性能が得られない。したがって、実用化に際しては、これらの悪影響を最小限にしなければならない。即ち、高ロバスト性が必要である。また、省エネの観点からは水蒸気量を減少する事が好ましいが、一般には、水蒸気/燃料(S/C)の比が小さくなると、コーキングが生じる傾向となる。   By the way, normally, when operating the reformer, it is rare to perform steam purge or fuel purge. Here, the water vapor purge is to stop the fuel gas and flow only water vapor, and the fuel purge is to stop the water vapor and flow only fuel gas. Actually, such a possibility arises in the case of an erroneous operation or an accident. These steam purge and fuel purge are said to lead to catalyst deterioration. In other words, Ni re-oxidation caused by steam purge or deterioration due to coking caused by fuel purge can provide catalyst performance at the initial activity level even if fuel and steam are reintroduced together after solving the accident. Absent. Therefore, these adverse effects must be minimized in practical use. That is, high robustness is required. Further, from the viewpoint of energy saving, it is preferable to reduce the amount of water vapor, but generally, when the ratio of water vapor / fuel (S / C) becomes small, coking tends to occur.

そこで、貴金属をドープした本発明のアルマイト触媒体を用いて、様々な厳しい条件下で触媒の性能を評価したところ、この触媒体は、水蒸気パージのみならずメタンパージに対しても丈夫であって、低S/C条件での運転も可能であり、高ロバスト性を有することが確認された(図10、図11)。   Therefore, when the performance of the catalyst was evaluated under various severe conditions using the alumite catalyst body of the present invention doped with a noble metal, this catalyst body is strong not only for steam purge but also for methane purge, Operation under low S / C conditions is also possible, and it was confirmed to have high robustness (FIGS. 10 and 11).

更に、定置式燃料電池はDSS(Daily startup and shutdown)モードで運転するため、本発明のニッケルアルマイト触媒体について、13A都市ガスを使用してDSS運転モードのテストを行った結果は図12に示した通りであり、特に微量の貴金属をドープさせた場合には、数百回DSS運転をしても、触媒の性能をほぼ初期活性レベルに維持することのできることが確認された。   Furthermore, since the stationary fuel cell is operated in the DSS (Daily startup and shutdown) mode, the results of the test of the DSS operation mode using 13A city gas for the nickel alumite catalyst body of the present invention are shown in FIG. In particular, when a small amount of noble metal was doped, it was confirmed that the performance of the catalyst could be maintained at almost the initial activity level even after several hundred DSS operations.

本発明の触媒体は、起動性を向上させるために、スタート段階において通電加熱すると、数秒で触媒を800℃迄加熱することができるので、特に起動性が重視される燃料電池用の触媒として有用である。尚、通電加熱を利用する場合には、触媒の直前と直後を外部から保温し、水蒸気を発生させることが好ましい。触媒自体は、外部保温をしなくても通電加熱だけで700℃を維持させることができる。このようにした場合にも、16時間経過しても触媒の劣化が見られず、極めて安定に反応を継続させられることが確認された。   The catalyst body of the present invention is useful as a catalyst for a fuel cell in which startability is particularly important because the catalyst can be heated up to 800 ° C. in a few seconds when energized and heated in the start stage in order to improve startability. It is. In the case of using current heating, it is preferable to generate water vapor by keeping the temperature just before and after the catalyst from the outside. The catalyst itself can be maintained at 700 ° C. only by energization heating without external heat retention. Even in this case, it was confirmed that the catalyst was not deteriorated even after 16 hours and the reaction could be continued extremely stably.

本発明の触媒体は、使用前の水素還元処理を必要としないにもかかわらず、メタンの水蒸気改質性能に優れると共に、耐久性にも優れているので、特に燃料電池用改質器の触媒体として有用である。   The catalyst body of the present invention has excellent methane steam reforming performance and durability even though it does not require a hydrogen reduction treatment before use. Useful as a medium.

Claims (11)

表面にアルミナ層を有するプレート状基板の前記アルミナ層の上に、中間層を介してニッケル触媒層を設けてなる触媒体であって、前記ニッケル触媒層がドーパントとして貴金属元素を含有することを特徴とする、炭化水素水蒸気改質反応用プレート状ニッケル触媒体。   A catalyst body in which a nickel catalyst layer is provided on the alumina layer of a plate-like substrate having an alumina layer on the surface via an intermediate layer, wherein the nickel catalyst layer contains a noble metal element as a dopant. A plate-like nickel catalyst body for hydrocarbon steam reforming reaction. 前記中間層が、NiAl2O4で表されるニッケルスピネル中間層である請求項1に記載された炭化水素水蒸気改質反応用プレート状ニッケル触媒体。 The plate-like nickel catalyst body for hydrocarbon steam reforming reaction according to claim 1, wherein the intermediate layer is a nickel spinel intermediate layer represented by NiAl 2 O 4 . 前記プレート状基板が陽極酸化可能な金属基板である、請求項1又は2に記載された炭化水素水蒸気改質反応用プレート状ニッケル触媒体。   The plate-like nickel catalyst body for hydrocarbon steam reforming reaction according to claim 1 or 2, wherein the plate-like substrate is a metal substrate that can be anodized. 前記アルミナ層が陽極酸化によって形成された層である、請求項3に記載された炭化水素水蒸気改質反応用プレート状ニッケル触媒体。   The plate-like nickel catalyst body for hydrocarbon steam reforming reaction according to claim 3, wherein the alumina layer is a layer formed by anodic oxidation. 前記アルミナ層が陽極酸化後、更に水和処理されてなるアルミナ層である、請求項4に記載された炭化水素水蒸気改質反応用プレート状ニッケル触媒体。   The plate-like nickel catalyst body for hydrocarbon steam reforming reaction according to claim 4, wherein the alumina layer is an alumina layer obtained by further hydrating after anodizing. 表面にアルミナ層を有するプレート状基板の前記アルミナ層の上にニッケルを付着させた後500℃以上で焼成してニッケルスピネル中間層を形成させ、次いで該中間層の上に触媒ニッケルを付着させて焼成し、触媒層を形成させた後、更に微量の貴金属元素を付着させて焼成し、ドーパントとして貴金属元素を含有するニッケル触媒層を設けることを特徴とする炭化水素水蒸気改質反応用プレート状ニッケル触媒体の製造方法。   Nickel is deposited on the alumina layer of the plate-like substrate having an alumina layer on the surface, and then calcined at 500 ° C. or more to form a nickel spinel intermediate layer, and then catalytic nickel is deposited on the intermediate layer. After calcining and forming a catalyst layer, a trace amount of noble metal element is further deposited and calcined, and a nickel catalyst layer containing a noble metal element as a dopant is provided. Plate-like nickel for hydrocarbon steam reforming reaction A method for producing a catalyst body. 前記ニッケルスピネル中間層を形成させる焼成を、約700℃で行う、請求項6に記載された炭化水素水蒸気改質反応用プレート状ニッケル触媒体の製造方法。   The method for producing a plate-like nickel catalyst body for a hydrocarbon steam reforming reaction according to claim 6, wherein the firing for forming the nickel spinel intermediate layer is performed at about 700 ° C. 前記中間層及び/又は触媒層を形成させるためのニッケルの付着を、含浸法によって行う、請求項6又は7に記載された炭化水素水蒸気改質反応用プレート状ニッケル触媒体の製造方法。   The method for producing a plate-like nickel catalyst body for a hydrocarbon steam reforming reaction according to claim 6 or 7, wherein nickel for forming the intermediate layer and / or the catalyst layer is attached by an impregnation method. 前記中間層のニッケルの付着を、pHが3.7〜6.7のニッケル水溶液を用いた含浸法によって行う、請求項8に記載された炭化水素水蒸気改質反応用プレート状ニッケル触媒体の製造方法。   The production of a plate-like nickel catalyst body for a hydrocarbon steam reforming reaction according to claim 8, wherein the adhesion of nickel in the intermediate layer is performed by an impregnation method using a nickel aqueous solution having a pH of 3.7 to 6.7. Method. 前記触媒層の焼成を、500℃以上で行う、請求項6〜9の何れかに記載された炭化水素水蒸気改質反応用プレート状ニッケル触媒体の製造方法。   The method for producing a plate-like nickel catalyst body for hydrocarbon steam reforming reaction according to any one of claims 6 to 9, wherein the catalyst layer is calcined at 500 ° C or higher. 前記貴金属ドーピング時の焼成を、500℃以上で行う、請求項6〜10の何れかに記載された炭化水素水蒸気改質反応用プレート状ニッケル触媒体の製造方法。
The method for producing a plate-like nickel catalyst body for a hydrocarbon steam reforming reaction according to any one of claims 6 to 10, wherein the firing during the noble metal doping is performed at 500 ° C or higher.
JP2009179337A 2009-07-31 2009-07-31 Plate-shaped nickel catalyst object for steam reforming reaction of hydrocarbon Pending JP2011031162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009179337A JP2011031162A (en) 2009-07-31 2009-07-31 Plate-shaped nickel catalyst object for steam reforming reaction of hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009179337A JP2011031162A (en) 2009-07-31 2009-07-31 Plate-shaped nickel catalyst object for steam reforming reaction of hydrocarbon

Publications (1)

Publication Number Publication Date
JP2011031162A true JP2011031162A (en) 2011-02-17

Family

ID=43760766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009179337A Pending JP2011031162A (en) 2009-07-31 2009-07-31 Plate-shaped nickel catalyst object for steam reforming reaction of hydrocarbon

Country Status (1)

Country Link
JP (1) JP2011031162A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014510620A (en) * 2011-07-29 2014-05-01 コリア・インスティテュート・オヴ・エナジー・リサーチ Metal structure catalyst and method for producing the same
WO2018150823A1 (en) * 2017-02-17 2018-08-23 住友精化株式会社 Method for producing structured catalyst and method for producing hydrogen using structured catalyst
JP2019034259A (en) * 2017-08-10 2019-03-07 国立研究開発法人物質・材料研究機構 Catalyst for hydrogen production and method for producing the same, and hydrogen production device
CN113039016A (en) * 2019-10-23 2021-06-25 株式会社伊原工业 Catalyst for hydrocarbon cracking

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248444A (en) * 1987-04-03 1988-10-14 Tokyo Gas Co Ltd Steam reforming and/or partial oxidation catalyst for hydrocarbon
JPH0631165A (en) * 1992-07-15 1994-02-08 Sekiyu Sangyo Kasseika Center Thin film-like catalyst for steam reforming
JP2003119002A (en) * 2001-10-12 2003-04-23 Rikogaku Shinkokai Fuel reformer
JP2004099363A (en) * 2002-09-09 2004-04-02 Japan National Oil Corp Direct heat supply type reforming method for natural gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248444A (en) * 1987-04-03 1988-10-14 Tokyo Gas Co Ltd Steam reforming and/or partial oxidation catalyst for hydrocarbon
JPH0631165A (en) * 1992-07-15 1994-02-08 Sekiyu Sangyo Kasseika Center Thin film-like catalyst for steam reforming
JP2003119002A (en) * 2001-10-12 2003-04-23 Rikogaku Shinkokai Fuel reformer
JP2004099363A (en) * 2002-09-09 2004-04-02 Japan National Oil Corp Direct heat supply type reforming method for natural gas

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6013025546; L. ZHOU et al.: 'Self-activation and self-regenerative activity of trace Ru-doped plate-type anodic alumina supported' Catalysis Communications , Vol. 10, Pages 325-329 (2008) *
JPN6013025548; L. ZHOU et al.: 'Study of porous anodic alumina supported plate-type catalysts during daily start-up and shut-down op' Applied Catalysis A: General , Vol. 364, Pages 101-107 (2009) *
JPN6013025550; L. ZHOU et al.: 'A novel catalyst with plate-type anodic alumina supports, Ni/NiAl2O4/gamma-Al2O3/alloy, for steam refor' Applied Catalysis A: General , Vol. 347, Pages 200-207 (2008) *
JPN6013025552; L. ZHOU et al.: 'A Plate-Type Anodic Alumina Supported Nickel Catalyst for Methane Steam Reforming' Journal of Chemical Engineering of Japan , Vol. 41, Pages 90-99 (2008) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014510620A (en) * 2011-07-29 2014-05-01 コリア・インスティテュート・オヴ・エナジー・リサーチ Metal structure catalyst and method for producing the same
US9409155B2 (en) 2011-07-29 2016-08-09 Korea Institute Of Energy Research Metal structure catalyst and preparation method thereof
WO2018150823A1 (en) * 2017-02-17 2018-08-23 住友精化株式会社 Method for producing structured catalyst and method for producing hydrogen using structured catalyst
JPWO2018150823A1 (en) * 2017-02-17 2019-12-12 住友精化株式会社 Method for producing structure catalyst, and method for producing hydrogen using structure catalyst
JP2019034259A (en) * 2017-08-10 2019-03-07 国立研究開発法人物質・材料研究機構 Catalyst for hydrogen production and method for producing the same, and hydrogen production device
CN113039016A (en) * 2019-10-23 2021-06-25 株式会社伊原工业 Catalyst for hydrocarbon cracking

Similar Documents

Publication Publication Date Title
JP5879029B2 (en) Ammonia oxidation / decomposition catalyst
JPWO2018047961A1 (en) Method of manufacturing anode for alkaline water electrolysis and anode for alkaline water electrolysis
JP4185952B2 (en) Carbon monoxide removal catalyst, production method thereof, and carbon monoxide removal apparatus
JP2014111517A (en) Oxidative decomposition catalyst of ammonia, hydrogen production method, and hydrogen production apparatus
US11795055B1 (en) Systems and methods for processing ammonia
JP2011031162A (en) Plate-shaped nickel catalyst object for steam reforming reaction of hydrocarbon
JP2019155227A (en) Co2 methanation catalyst and carbon dioxide reduction method using the same
US11866328B1 (en) Systems and methods for processing ammonia
WO2022080465A1 (en) Anode for alkaline water electrolysis and method for producing same
Lortie Reverse water gas shift reaction over supported Cu-Ni nanoparticle catalysts
JP2007075799A (en) Catalyst for hydrogen production, and its production method
JPWO2019181681A1 (en) A method for producing a structure catalyst and a method for producing hydrogen using a structure catalyst.
CN113231090B (en) Cu-Mo 2 C catalyst and preparation method and application thereof
CN113019394B (en) Ammonia decomposition hydrogen production Ni-Pt/CeO2Catalyst, preparation method and application thereof
JPH1085586A (en) Functional material, oxidizing catalyst, combustion catalyst, methanol modified catalyst and electrode catalyst
JP4465478B2 (en) Catalyst for hydrogen production
JP2008272614A (en) Co removing catalyst, fuel reforming apparatus, fuel cell system and co removing method
JP2012213682A (en) Ammonia decomposition catalyst and ammonia decomposition method using the catalyst
JP5478450B2 (en) Fuel cell system
JP2016055289A (en) Method for starting catalytic reactor
JP4608659B2 (en) Method for producing direct heat supply type hydrocarbon reforming catalyst
JP2006252929A (en) Co modification catalyst for dss operating fuel cell, its manufacturing method, and fuel cell system
JP2012071291A (en) Hydrogen production catalyst, method for manufacturing the same, and method for producing hydrogen using the same
US20240228272A9 (en) Systems and methods for processing ammonia
US20240132346A1 (en) Systems and methods for processing ammonia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001