JP2003119002A - Fuel reformer - Google Patents

Fuel reformer

Info

Publication number
JP2003119002A
JP2003119002A JP2001315659A JP2001315659A JP2003119002A JP 2003119002 A JP2003119002 A JP 2003119002A JP 2001315659 A JP2001315659 A JP 2001315659A JP 2001315659 A JP2001315659 A JP 2001315659A JP 2003119002 A JP2003119002 A JP 2003119002A
Authority
JP
Japan
Prior art keywords
fuel
hydrogen
reforming
reaction
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001315659A
Other languages
Japanese (ja)
Other versions
JP3680936B2 (en
Inventor
Yukitaka Kato
之貴 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rikogaku Shinkokai
Original Assignee
Rikogaku Shinkokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rikogaku Shinkokai filed Critical Rikogaku Shinkokai
Priority to JP2001315659A priority Critical patent/JP3680936B2/en
Publication of JP2003119002A publication Critical patent/JP2003119002A/en
Application granted granted Critical
Publication of JP3680936B2 publication Critical patent/JP3680936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel reformer having a simple structure, reducible in size and weight and easy to mass-produce. SOLUTION: The fuel reformer for producing hydrogen from fuel and steam has a structure obtained by stacking in multi-stages a repeating unit comprising flat plate-shaped fuel reforming catalyst bed in which hydrogen is produced by steam reforming of fuel, a flat plate-shaped hydrogen permeable membrane which selectively passes hydrogen in a hydrogen-base gas generated by the steam reforming, a flat plate-shaped carbon monoxide conversion catalyst bed in which when carbon monoxide is contained in hydrogen passed through the permeable membrane, the carbon monoxide is converted to methane, and a flat plate-shaped hydrogen permeable membrane which selectively passes hydrogen in a hydrogen-base gas generated by steam reforming in the next stage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は燃料改質器に関し、
特に燃料電池用改質器に関する。
TECHNICAL FIELD The present invention relates to a fuel reformer,
In particular, it relates to a reformer for a fuel cell.

【0002】[0002]

【従来の技術】メタンやメタノール等の燃料と水(水蒸
気)から水素および二酸化炭素を生成する燃料改質装置
は、燃料電池に燃料ガスを供給するための装置として知
られている。燃料電池は、水素を含有する燃料ガスを陰
極側に供給され、酸素を含有する酸化ガスを陽極側に供
給されて、両極で生じる電気化学反応により起電力が得
られる。
2. Description of the Related Art A fuel reformer for producing hydrogen and carbon dioxide from a fuel such as methane or methanol and water (steam) is known as a device for supplying a fuel gas to a fuel cell. In the fuel cell, a fuel gas containing hydrogen is supplied to the cathode side, an oxidizing gas containing oxygen is supplied to the anode side, and an electromotive force is obtained by an electrochemical reaction occurring at both electrodes.

【0003】これらの燃料電池用の燃料改質器は従来、
改質反応用充填層型反応器、反応加熱用燃焼装置、一酸
化炭素転換器の構成を取るのが通常であり、燃料電池本
体に比して大きく、大重量である。このような燃料電池
の開発は近年、急進展しているが、移動体用のみならず
改質器にはもっと小型、軽量で、量産化が容易な簡易な
構造が必要とされている。
Fuel reformers for these fuel cells have hitherto been known.
A packed bed reactor for reforming reaction, a combustion device for reaction heating, and a carbon monoxide converter are usually adopted, and they are larger and heavier than the fuel cell body. Although the development of such a fuel cell has made rapid progress in recent years, a simpler structure that is smaller and lighter and is easy to be mass-produced is required not only for mobile bodies but also for reformers.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明者は従
来よりも小型軽量化が可能で、量産化が容易な簡易な構
造の改質器を得るために種々の検討を行ない本発明に到
達した。
Therefore, the present inventor has made various studies in order to obtain a reformer having a simple structure that can be made smaller and lighter than conventional ones and can be easily mass-produced, and arrived at the present invention. did.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明の要旨
は、燃料と水蒸気から水素を製造する燃料改質器であっ
て、燃料を水蒸気改質して水素を製造する平板形燃料改
質触媒層、該水蒸気改質により生成する水素を主成分と
するガスから水素を選択的に透過する平板形水素透過
膜、該透過膜を透過した水素中に一酸化炭素が含まれる
場合にはその一酸化炭素をメタンに転換する平板形一酸
化炭素転換触媒層、ならびに次の段の水蒸気改質により
生成する水素を主成分とするガスから水素を選択的に透
過する平板形水素透過膜を繰返し単位として多段に積層
された構造を有してなることを特徴とする燃料改質器に
ある。
That is, the gist of the present invention is a fuel reformer for producing hydrogen from a fuel and steam, which is a flat-plate fuel reforming catalyst for producing hydrogen by steam reforming a fuel. A layer, a flat plate-type hydrogen permeable membrane that selectively permeates hydrogen from a gas containing hydrogen as a main component produced by the steam reforming, and one of the cases where carbon monoxide is contained in hydrogen that permeates the permeable membrane. A repeating unit consisting of a flat-plate carbon monoxide conversion catalyst layer that converts carbon oxide into methane, and a flat-plate hydrogen permeable membrane that selectively permeates hydrogen from a gas containing hydrogen as a main component produced by steam reforming in the next stage. The fuel reformer is characterized by having a multi-layered structure.

【0006】[0006]

【発明の実施の形態】本発明において、改質される燃料
は、メタン、天然ガス等のメタン含有ガス、ガソリン、
ナフサ、軽油およびLPガス等の炭化水素類ならびにメ
タノールが一般的であるが、以下の説明ではメタノール
水蒸気改質器を例に説明する。メタノール水蒸気改質は
以下の吸熱反応で進む。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the fuel to be reformed is methane, a methane-containing gas such as natural gas, gasoline,
Although naphtha, light oil, hydrocarbons such as LP gas, and methanol are common, the following description will be given by taking a methanol steam reformer as an example. Methanol steam reforming proceeds by the following endothermic reaction.

【0007】 CH3OH+H2O→3H2+CO2 ΔH=+49.9kJ/mol (1) 実際には下記の逐次反応を経由して進行する。そして、
COが中間体として発生する。
CH 3 OH + H 2 O → 3H 2 + CO 2 ΔH = + 49.9 kJ / mol (1) Actually, it proceeds via the following sequential reactions. And
CO is generated as an intermediate.

【0008】 CH3OH→2H2+CO (2) CO+H2O→H2+CO2 (3) 以下、図面とともに本発明を詳細に説明する。CH 3 OH → 2H 2 + CO (2) CO + H 2 O → H 2 + CO 2 (3) Hereinafter, the present invention will be described in detail with reference to the drawings.

【0009】図1は本発明改質器構成の概略図を示す。
本改質器は,平板形燃料改質触媒層1、平板形水素透過
膜2、平板形一酸化炭素転換触媒層3、ならびに平板形
水素透過膜2を繰返し単位として多段に積層された構造
を有してなり、プレート形熱交換器と同様な流路構造を
持つ。2つの触媒層は表面積を増加させるためにいずれ
も起伏化処理されているのが好適である。起伏化加工と
しては、たとえば網目、すのこ、櫛もしくは多孔状が挙
げられる。燃料改質触媒層および/または一酸化炭素転
換触媒層の平板形は、平板形の基材に触媒が担持されて
いるのが好適である。平板(プレート)は円筒形(全周
でなくてもよい)に積層されていてもよい。改質触媒と
しては特に制限されず、通常、常法により基材を表面処
理し、ついでパラジウム、ニッケル等の金属触媒が担持
される。一酸化炭素転換触媒層としては前記の改質触媒
と同一のものであってもよい。基材としてはアルミニウ
ム、ステンレス鋼もしくは銅等の金属基材であるのが好
適である。これにより、熱伝導度を高くしうるので、触
媒面の温度が均一に保持され、ホットスポットが発生し
にくく、均一で安定した反応性能が得られる。たとえ
ば、アルミニウムを用いる場合には、触媒担持部分が陽
極酸化され、かつその周囲部分は積層時の接着部位とな
り、かつガス流を確保するスぺーサとなる一体型構造を
構成するのが特に好ましい。一方、水素透過膜は金属も
しくはセラミックから構成されるのが好適である。金属
としては、パラジウム合金等を基材としたものが振動耐
久性、触媒の金属基材との接合性、および加工性の点か
ら好適であるが、外周部を別の金属、たとえばアルミニ
ウムとし、透過膜部との間を溶接等により接合すること
もできる。一方、セラミックとしてはたとえばアルミナ
およびチタニア等の酸化物、ならびに多孔質シリカガラ
スたとえばコーニング社製「バイコール」(商標)ガラ
ス等が挙げられる。
FIG. 1 shows a schematic diagram of the reformer configuration of the present invention.
This reformer has a structure in which the flat sheet fuel reforming catalyst layer 1, the flat sheet hydrogen permeable membrane 2, the flat sheet carbon monoxide conversion catalyst layer 3, and the flat sheet hydrogen permeable membrane 2 are laminated in multiple steps. It has a flow path structure similar to that of a plate heat exchanger. Both of the two catalyst layers are preferably subjected to undulating treatment to increase the surface area. As the undulating process, for example, a mesh, a saw, a comb, or a porous shape can be used. In the flat plate type of the fuel reforming catalyst layer and / or the carbon monoxide conversion catalyst layer, it is preferable that the catalyst is supported on a flat plate type base material. The flat plates (plates) may be laminated in a cylindrical shape (not necessarily the entire circumference). The reforming catalyst is not particularly limited, and the substrate is usually surface-treated by a conventional method, and then a metal catalyst such as palladium or nickel is supported. The carbon monoxide conversion catalyst layer may be the same as the above-mentioned reforming catalyst. The base material is preferably a metal base material such as aluminum, stainless steel or copper. As a result, the thermal conductivity can be increased, so that the temperature of the catalyst surface can be kept uniform, hot spots hardly occur, and uniform and stable reaction performance can be obtained. For example, when aluminum is used, it is particularly preferable to form an integral structure in which the catalyst-supporting portion is anodized, the peripheral portion thereof serves as an adhesion site during lamination, and serves as a spacer that secures a gas flow. . On the other hand, the hydrogen permeable membrane is preferably made of metal or ceramic. As the metal, those based on a palladium alloy or the like are preferable in terms of vibration durability, bondability with the metal substrate of the catalyst, and workability, but the outer peripheral portion is another metal, for example, aluminum, It is also possible to join the permeable membrane portion by welding or the like. On the other hand, examples of the ceramic include oxides such as alumina and titania, and porous silica glass such as "Vycor" (trademark) glass manufactured by Corning.

【0010】上記の繰返し単位の積層に際しては、所要
水素製造量に応じて適宜、層の多段化、広面積化するこ
とができる。
When stacking the repeating units described above, the number of layers can be increased and the area can be increased according to the required hydrogen production amount.

【0011】本改質器をプレート式熱交換器と比較する
と、透過膜が熱交換板に対応し、原料気体流路が熱交換
板片面の流路、回収水素流路が他方の流路となる。原料
気体流路側にスペーサ一体型起伏化プレート触媒(すな
わち、平板形燃料改質触媒層)を設置する。ここでスペ
ーサとはプレート式熱交換器において熱交換板の両面の
流路を確保するためのフランジ状のガスケットを指す。
原料ガスは触媒面で反応を行なう。回収水素側にもスペ
ーサ一体型起伏化プレート触媒(すなわち、平板形一酸
化炭素転換触媒層)を設置する。原料側に対し、回収側
は負圧になるので、回収側触媒層は分離膜の保持と流路
確保の役も同時に果たす。図1中、装置左側面より原料
を供給すると、原料側触媒面で改質反応が進行し、透過
膜を通して生成した水素は回収側に分離、移動する。そ
の際の反応熱は下記の部分酸化発熱反応により自力的に
供給されうる(すなわち、外部加熱機構を省略しうる)。
Comparing this reformer with a plate heat exchanger, the permeable membrane corresponds to the heat exchange plate, the source gas flow passage is the flow passage on one side of the heat exchange plate, and the recovered hydrogen flow passage is the other flow passage. Become. An undulating plate catalyst with integrated spacers (that is, a flat fuel reforming catalyst layer) is installed on the side of the raw material gas flow path. Here, the spacer refers to a flange-shaped gasket for securing flow passages on both sides of the heat exchange plate in the plate heat exchanger.
The raw material gas reacts on the catalyst side. An undulating plate catalyst with integrated spacers (that is, a flat-plate carbon monoxide conversion catalyst layer) is also installed on the recovered hydrogen side. Since the recovery side has a negative pressure with respect to the raw material side, the recovery side catalyst layer also serves to hold the separation membrane and secure the flow path. In FIG. 1, when the raw material is supplied from the left side surface of the apparatus, the reforming reaction proceeds on the raw material side catalyst surface, and the hydrogen produced through the permeable membrane is separated and moved to the recovery side. The heat of reaction at that time can be supplied by itself by the following partial oxidation exothermic reaction (that is, the external heating mechanism can be omitted).

【0012】 CH3OH+1/2O2→2H2+CO2 ΔH=−193kJ/mol(4) すなわち、原料メタノールの幾分かを酸化反応させその
反応熱を吸熱反応(1)に供給する。酸素供給量により
酸化反応度を操作することで反応層の起動、温度維持が
される。
CH 3 OH + 1 / 2O 2 → 2H 2 + CO 2 ΔH = −193 kJ / mol (4) That is, some of the raw material methanol is oxidized and the reaction heat is supplied to the endothermic reaction (1). The reaction layer is started and the temperature is maintained by controlling the degree of oxidation reaction according to the amount of oxygen supplied.

【0013】部分酸化反応を含む改質反応は、 CH3OH+1/2xO2+(1−x)H2O→(3−x)H2+CO2 (5) で示される。ここで係数xは部分酸化反応に用いられる
メタノールの割合を示す。
The reforming reaction including the partial oxidation reaction is represented by CH 3 OH + 1 / 2xO 2 + (1-x) H 2 O → (3-x) H 2 + CO 2 (5). Here, the coefficient x indicates the proportion of methanol used in the partial oxidation reaction.

【0014】水素回収側では回収された水素に少量の一
酸化炭素が含有される可能性がある。このCOは下流で
の燃料電池触媒に毒となる。そこで回収側触媒では以下
のメタン化反応で、COをメタンにし無毒化する。
On the hydrogen recovery side, the recovered hydrogen may contain a small amount of carbon monoxide. This CO poisons the fuel cell catalyst downstream. Therefore, in the recovery side catalyst, CO is converted to methane and detoxified by the following methanation reaction.

【0015】CO+3H2→CH4+H2O (6) 層各段で同様の機構が進み、最終的に左側面から精製水
素とCO2を主成分とするオフガスが別個に流出する。
CO + 3H 2 → CH 4 + H 2 O (6) A similar mechanism progresses in each stage, and finally purified hydrogen and off-gas containing CO 2 as main components flow out separately from the left side surface.

【0016】図2に改質器内の詳細と流路構成の例を示
す((a)〜(e))。この図は図1中の区間Aの構造
に相当する。起伏化プレート改質触媒(a)上部から原
料であるメタノール、水、酸素が供給され、このプレー
ト触媒を通過し、その際改質反応が進行する。また、部
分酸化反応を併行して進行させ、その反応熱を改質反応
に活用できる。発生した水素は逐次水素透過膜(b)を
経て回収側流路に移動する。回収水素中の一酸化炭素は
回収側の起伏化プレート一酸化炭素転換触媒(c)の触
媒面9にてメタン化し、無害化する。水素に同伴される
一酸化炭素が十分に低濃度の場合にこの転換触媒機能は
結果的に不要であるが、この場合、この触媒層は改質側
に対して負圧である回収側の流路確保のための補強材の
役割を果たすことになる。精製された水素は上下流路か
ら出口へ移動する。水素透過膜(d)においては、次段
のプレート改質触媒(e)の触媒面9で生成する、水素
を主成分とするガスが図示の方向で通過する。また原料
流路下流ではCO2のみが残り、オフガスとして出口か
ら排出される。
FIG. 2 shows details of the reformer and an example of the flow passage structure ((a) to (e)). This figure corresponds to the structure of the section A in FIG. Raw materials such as methanol, water, and oxygen are supplied from the upper portion of the undulating plate reforming catalyst (a) and pass through the plate catalyst, at which time the reforming reaction proceeds. In addition, the partial oxidation reaction can proceed in parallel and the heat of reaction can be utilized for the reforming reaction. The generated hydrogen sequentially moves to the recovery side flow path through the hydrogen permeable membrane (b). The carbon monoxide in the recovered hydrogen is detoxified by being methanated on the catalyst surface 9 of the undulating plate carbon monoxide conversion catalyst (c) on the recovery side. If the carbon monoxide entrained in the hydrogen is at a sufficiently low concentration, this conversion catalytic function is eventually unnecessary, but in this case, the catalyst layer will have a negative pressure with respect to the reforming side. It will play the role of a reinforcing material for securing roads. The purified hydrogen moves from the upper and lower channels to the outlet. In the hydrogen permeable membrane (d), a gas containing hydrogen as a main component, which is generated on the catalyst surface 9 of the plate reforming catalyst (e) at the next stage, passes in the direction shown in the figure. Further, only CO 2 remains in the downstream of the raw material flow path and is discharged from the outlet as off gas.

【0017】図3((a)〜(c))は各層の構成を示
し、4は外周部、5は空間、6は原料ガス流路、7は回
収水素流路、8はオフガス流路、9は触媒面および10
は水素透過面である。原料気体側膜には例えばアルミニ
ウムを基材に用いれば、気体接触面をアルミニウム陽極
酸化した後に触媒を担持し、積層時接着に必要な外周部
分4(スぺーサ、ガスケット部)は初期アルミニウム状態
に保つことで、スペーサと触媒が一体となった構成とさ
れている。基材は任意に加工できるので、流量、触媒活
性に応じた形状、例えば上記の網目状、すのこ状、櫛
状、もしくは多孔状等の起伏化加工した形としうる。た
とえばアルミニウム等の金属基材に触媒を担持すること
により以下の利点を得る。すなわち、(1)基材の高い
熱伝導性により触媒面の温度が均一になり、充填層触媒
で見られるホットスポット現象が回避でき、反応が均質
的に安定に進行する。(2)触媒面9を起伏形状に加工
することで、触媒面近傍での反応ガスの流れが乱流とな
り、ガス−触媒面の物質・熱伝達が促進されるため見か
け反応活性が向上する。(3)水素透過膜により水素を
逐次分離することで、触媒面での反応非平衡状態が下流
まで維持されるため、改質反応がより進行し水素収率が
向上する。そして(4)反応が向上するために、反応温
度、反応圧力をより環境条件に近い穏やかな条件で進め
ることができ(したがって、従来高温を必要としている
大きい分子量の有機化合物、たとえば灯油、ガソリン
等、の改質反応の促進および低温化が期待できる。)、
(5)装置の熱、機械的負担が軽減され、装置が簡単に
なり、低コストが期待できる。
3 (a) to (c) show the structure of each layer, 4 is an outer peripheral portion, 5 is a space, 6 is a raw material gas passage, 7 is a recovered hydrogen passage, 8 is an off-gas passage, 9 is a catalytic surface and 10
Is a hydrogen permeable surface. If, for example, aluminum is used as the base material for the raw material gas side film, the gas contact surface is anodized with aluminum and then carries the catalyst, and the outer peripheral portion 4 (spacer, gasket portion) necessary for adhesion during lamination is in the initial aluminum state. By keeping the above, the spacer and the catalyst are integrated. Since the base material can be processed arbitrarily, it may have a shape depending on the flow rate and the catalytic activity, for example, a undulating shape such as the above-mentioned mesh shape, sawtooth shape, comb shape, or porous shape. For example, by supporting a catalyst on a metal base material such as aluminum, the following advantages are obtained. That is, (1) the temperature of the catalyst surface becomes uniform due to the high thermal conductivity of the base material, the hot spot phenomenon seen in the packed bed catalyst can be avoided, and the reaction proceeds uniformly and stably. (2) By processing the catalyst surface 9 into an undulating shape, the flow of the reaction gas in the vicinity of the catalyst surface becomes a turbulent flow, and the substance / heat transfer on the gas-catalyst surface is promoted, so that the apparent reaction activity is improved. (3) By sequentially separating hydrogen by the hydrogen permeable membrane, the reaction nonequilibrium state on the catalyst surface is maintained to the downstream side, so that the reforming reaction proceeds further and the hydrogen yield is improved. And (4) since the reaction is improved, the reaction temperature and the reaction pressure can be advanced under mild conditions closer to the environmental conditions (therefore, high molecular weight organic compounds which conventionally require high temperatures, such as kerosene and gasoline) It can be expected to accelerate the reforming reaction of, and lower the temperature.),
(5) The heat and mechanical load of the device can be reduced, the device can be simplified, and low cost can be expected.

【0018】上記のように、回収側も原料側と同様な構
成を持つスペーサ一体型触媒を配置し、この触媒面にて
COをメタン化し無毒化する。図3は各気体の流れを示
す。各ガスの各触媒層、透過膜との接触時間が重要な設
計要件となる。ここで必要な接触時間を確保するため、
各膜の位置関係をa,b,c,d[m]で示した。この
距離は反応条件、触媒、膜性能に依存する。距離aは初
期原料が水素化するのに必要な距離、距離bは改質反応
で生成した水素が膜分離されるのに必要な距離、cおよ
びdは回収水素ガス中の微量COをメタン化し無毒化す
るのに必要な距離である。これらの距離関係はあくまで
も例示であり、流路を蛇行させるなどで、接触時間を変
化させることで、この距離関係は変化する。
As described above, a spacer-integrated catalyst having the same structure as the raw material side is arranged on the recovery side, and CO is methane-detoxified on the catalyst surface. FIG. 3 shows the flow of each gas. The contact time of each gas with each catalyst layer and permeable membrane is an important design requirement. To ensure the required contact time here,
The positional relationship of each film is shown by a, b, c, d [m]. This distance depends on reaction conditions, catalyst and membrane performance. The distance a is a distance required for hydrogenation of the initial raw material, the distance b is a distance required for hydrogen separation produced by the reforming reaction to be membrane-separated, and c and d are methanized trace amounts of CO in the recovered hydrogen gas. It is the distance required to detoxify. These distance relationships are merely examples, and the distance relationships are changed by changing the contact time by, for example, meandering the flow path.

【0019】図4〜7に往復流路式プレート型非平衡改
質器を示す。これは図1〜3での改質器(基本型)の応
用型である。目的は同じ原料を用いた同じ改質反応であ
る。上記の基本型においては反応ガスが一方向に一度反
応面を通過するのに対し、この応用型では反応ガスが触
媒反応面の表裏両面を往復し通過することが要点であ
る。この結果、部分酸化反応熱をプレート表裏両面に伝
達でき、プレート触媒面全域でその熱を用いて改質反応
を効率よく進行できる。図4にその概略を示す。積層は
上記の基本型と同じくプレート積層型であり、(1)原
料気体流路側スペーサ一体型触媒プレート、(2)水素
透過膜、(3)回収水素流路側スペーサ一体型触媒プレ
ートが、(1)−(2)−(3)−(2)の繰返し単位
で、順に積層されている。マニフォールド(流路)は原
料、回収水素、オフガス(排気ガス)の3系からなる。
改質器に用いるプレートは両面を触媒化したスペーサ一
体型のものを用いる。プレート構造を図5の(a)に示
す。両面を触媒化してあり、プロセスガスは上部の3つ
のマニフォールドのうち一流路を開放することで、その
ガスのみが触媒面を流通する。ガスは上部から流入し、
触媒面に接触しながら流下する。下部に「戻り流路」を
設けてあり、流下したガスはここで触媒面の裏面に移
り、反転して上昇する。この間、裏面の触媒面と接触し
反応が進行する。塔頂に至ったガスは開放されているい
ずれかのマニフォールドを経て外部に放出される。
4 to 7 show a reciprocating flow channel plate type non-equilibrium reformer. This is an applied type of reformer (basic type) in FIGS. The purpose is the same reforming reaction using the same raw material. In the above basic type, the reaction gas once passes through the reaction surface in one direction, whereas in this applied type, the reaction gas passes back and forth between the front and back surfaces of the catalytic reaction surface. As a result, the heat of partial oxidation reaction can be transferred to both the front and back surfaces of the plate, and the heat of the partial oxidation reaction can be used to efficiently proceed the reforming reaction. The outline is shown in FIG. The stacking is a plate stacking type similar to the above basic type, and (1) raw material gas flow path side spacer integrated catalyst plate, (2) hydrogen permeable membrane, (3) recovered hydrogen flow path side spacer integrated catalyst plate )-(2)-(3)-(2) repeating units, which are sequentially stacked. The manifold (flow path) consists of three systems: raw material, recovered hydrogen, and off gas (exhaust gas).
The plate used for the reformer is a spacer integrated type whose both surfaces are catalyzed. The plate structure is shown in FIG. Both sides are catalyzed, and the process gas is allowed to flow through the catalyst surface by opening one passage of the upper three manifolds. Gas flows in from above,
It flows down while contacting the catalyst surface. A "return channel" is provided in the lower portion, and the gas that has flowed down moves to the back surface of the catalyst surface, reverses, and rises. During this time, the catalyst contacts the back surface and the reaction proceeds. The gas reaching the top of the tower is discharged to the outside through one of the open manifolds.

【0020】図5の(b)および図6はこれらの流路構
成の詳細を示す。 原料側プレート:原料側プレートA1で説明すると、反
応原料用マニフォールドのみがこのプレート表面に開放
されている。反応原料はマニフォールドからこの開放部
を通り、触媒面正面を上から下へ進む。まず、部分酸化
反応が主に進み、触媒プレートおよび気体自身が加熱さ
れる。さらに下流(下方向)で改質反応が進行する。部
分酸化で生成した反応熱はプレート触媒基材部を熱伝達
し、または反応気体の顕熱として輸送され、プレート全
域で部分酸化反応に用いられる。この間生成した水素ガ
スは水素透過膜M1を通過して分離される。下端に達し
たガスは戻り流路口を通過し裏面を上昇する。上昇時
に、主に改質反応がさらに進行する。正面で発生した部
分酸化熱がプレート基材部を伝熱し裏面に伝達され、裏
面側での改質反応に利用される。生成水素は水素透過膜
M2を透過する。原料プレート触媒の裏面にはオフガス
用マニフォールドのみが開放されている。水素分離後の
二酸化炭素を主成分とするオフガスはオフガスマニフォ
ールドへ進む。 回収側プレート:回収側プレートB1について説明す
る。正面ではマニフォールド開放部は無い。裏面では回
収水素マニフォールドが開放されている。回収水素は差
圧で系外に移動する(差圧での移動が困難であれば、第
4マニフォールドを設置し循環水素流入用流路とする。
回収側プレート正面は循環水素マニフォールドのみを開
放する。循環水素の流通によって、水素が出口に運搬さ
れる。循環水素は燃料電池で消費しきれなかった残余分
とすることができ、コンプレッサー等で輸送されう
る。)。正面では原料側プレートA1裏面で生成した水
素が水素透過膜M2を通過して流入する。正面では分離
ガスは上部より下部へと移動する。膜を通して一酸化炭
素(CO)が同伴される可能性があるので正面の触媒に
てCO転換反応を進める。下端に達したガス流は戻り流
通口を通過し裏面を上昇する。水素透過膜M3を透過し
て原料側プレートA2の正面で生成した水素ガスが流入
する。同伴されたCOは回収側プレート裏面の触媒面で
メタンへの転換反応が行なわれ、水素精製が進行する。
精製された水素は回収水素マニフォールドを経由して系
外に回収水素として流出する。 触媒位置:図5の(b)に各プレートにおける触媒化位
置が四角点線で示される(9)。原料側プレートにおい
ては原料入口である正面上部には触媒部を持たせない。
反応側裏面は全面を触媒化する。この原料プレートの触
媒部の拡大図を図7に示す。部分酸化反応は改質反応よ
り早く進行すると予想され、原料入口部の触媒面で主に
進行する。このため、触媒面に温度分布が発生し触媒外
周部を経て熱損失となりやすい。そこで、原料入口側で
はプレート面中央付近から下流方向に触媒部を置く。そ
して、この中央部にて部分酸化反応を先行して進行させ
る。発生した熱はプレート基材部を伝熱しプレート全体
に伝熱することを意図している。その結果、熱は触媒部
両面全域で改質反応に利用される(白地矢印)。また、
ガス入口部へ伝熱した分は原料ガス加熱に用いられる
(斜線付矢印)。これにより酸化熱を有効に利用でき
る。
FIG. 5B and FIG. 6 show details of these flow path configurations. Raw material side plate: Explaining with the raw material side plate A1, only the manifold for the reaction raw material is opened to the surface of this plate. The reaction raw material passes through this opening from the manifold, and proceeds from the top to the bottom in front of the catalyst surface. First, the partial oxidation reaction mainly proceeds, and the catalyst plate and the gas itself are heated. The reforming reaction proceeds further downstream (downward). The reaction heat generated by the partial oxidation is transferred to the plate catalyst substrate portion or is transferred as the sensible heat of the reaction gas, and is used for the partial oxidation reaction in the entire plate. The hydrogen gas generated during this time passes through the hydrogen permeable membrane M1 and is separated. The gas reaching the lower end passes through the return flow passage port and rises on the back surface. When the temperature rises, the reforming reaction mainly proceeds further. The partial oxidation heat generated on the front surface is transferred to the plate base material portion and transferred to the back surface, and is used for the reforming reaction on the back surface side. The produced hydrogen permeates the hydrogen permeable membrane M2. Only the off gas manifold is opened on the back surface of the raw material plate catalyst. The offgas containing carbon dioxide as the main component after hydrogen separation proceeds to the offgas manifold. Recovery side plate: The recovery side plate B1 will be described. There is no manifold opening at the front. The recovered hydrogen manifold is open on the back side. The recovered hydrogen moves to the outside of the system by a differential pressure (if it is difficult to move by the differential pressure, a fourth manifold is installed and used as a circulating hydrogen inflow channel.
Only the circulating hydrogen manifold is opened in front of the recovery side plate. The circulation of the circulating hydrogen causes the hydrogen to be transported to the outlet. The circulating hydrogen can be a residue that has not been consumed by the fuel cell and can be transported by a compressor or the like. ). On the front surface, the hydrogen generated on the back surface of the raw material side plate A1 flows through the hydrogen permeable membrane M2. In the front, the separated gas moves from the upper part to the lower part. Since carbon monoxide (CO) may be entrained through the membrane, the CO conversion reaction is promoted by the catalyst in front. The gas flow reaching the lower end passes through the return flow port and rises on the back surface. Hydrogen gas that has permeated the hydrogen permeable film M3 and is generated in front of the raw material side plate A2 flows in. The entrained CO undergoes a conversion reaction to methane on the catalyst surface on the back surface of the recovery side plate, and hydrogen purification proceeds.
The purified hydrogen flows out of the system as recovered hydrogen via the recovered hydrogen manifold. Catalytic position: The catalyzed position on each plate is shown by a dotted square line in FIG. 5 (b) (9). In the raw material side plate, no catalyst portion is provided on the upper front side which is the raw material inlet.
The reaction side back surface catalyzes the entire surface. An enlarged view of the catalyst portion of this raw material plate is shown in FIG. The partial oxidation reaction is expected to proceed faster than the reforming reaction, and mainly proceeds on the catalyst surface at the raw material inlet. Therefore, a temperature distribution is generated on the catalyst surface, and heat loss is likely to occur through the outer peripheral portion of the catalyst. Therefore, on the raw material inlet side, the catalyst portion is placed downstream from the vicinity of the center of the plate surface. Then, the partial oxidation reaction is allowed to proceed in advance in this central portion. The generated heat is intended to be transferred to the plate base material and to the entire plate. As a result, the heat is used for the reforming reaction on both sides of the catalyst section (white arrow). Also,
The amount of heat transferred to the gas inlet is used for heating the raw material gas (arrows with diagonal lines). This makes it possible to effectively utilize the heat of oxidation.

【0021】一方相対する回収プレートは両面全体を触
媒化する。CO転換反応を極力進めるためである。
On the other hand, the opposing recovery plates catalyze both sides. This is to promote the CO conversion reaction as much as possible.

【0022】この態様は、触媒両面を反応ガスが往復す
ることが特徴である。この結果、図7の伝熱、反応状態
が形成される。したがって以下の効果が期待できる。 (a)反応原料入口付近で先行して進行する部分酸化反
応を、触媒分布を変更することによりプレート中心部で
進行できる。 (b)部分酸化反応で発生した反応熱はプレート中心か
ら触媒面全体へ均一に熱伝達される。この部分酸化熱に
より表面・裏面全域において改質反応が進行する。 (c)部分酸化熱の一部はガスの加熱に利用できる。 (d)部分酸化熱が改質反応に無駄なく利用でき、改質
効率の向上を実現する。
This aspect is characterized in that the reaction gas reciprocates on both sides of the catalyst. As a result, the heat transfer and reaction states of FIG. 7 are formed. Therefore, the following effects can be expected. (A) The partial oxidation reaction that first proceeds near the inlet of the reaction raw material can proceed at the center of the plate by changing the catalyst distribution. (B) Reaction heat generated by the partial oxidation reaction is uniformly transferred from the plate center to the entire catalyst surface. This partial oxidation heat causes the reforming reaction to proceed on the entire front and back surfaces. (C) Part of the partial oxidation heat can be used for heating the gas. (D) The partial oxidation heat can be utilized for the reforming reaction without waste, and the reforming efficiency can be improved.

【0023】[0023]

【実施例】以下、実施例により、本発明をさらに詳細に
説明する。 実施例1 (1)図3に示される使用される各層の構成は次のとお
りである。原料気体側層はパンチ加工して表面を起伏化
したアルミニウムを基材として、気体接触面をアルミニ
ウム陽極酸化して、ついで触媒化し、外周部は初期アル
ミニウム状態に保つことで、スペーサと触媒が一体とな
った構成とした。陽極酸化は、4wt%シュウ酸液を用
いて15〜25℃で、電流密度15〜50A/m2、1
6時間の条件で行なった。触媒の担持は、外周部分をマ
スキングした後、2×106モル/cm3の酢酸パラジウ
ム/アセトン溶液に24時間浸漬した後に、400℃で
3時間焼成することにより行なった。水素透過膜は外周
部分と同一材料のPd合金からなる一体型とした。さら
に、回収側も原料側の上記触媒と同様な構成を持つスペ
ーサ一体型触媒とした。 (2)水素分離非平衡反応の効果 表1に水素分離非平衡反応の効果を化学平衡論的に試算
した結果を示す。ここで用いたフローでは本改質器を平
衡反応器と分離器を結合して模擬している(流路1→第
1平衡反応器→流路2→分離器。ここで下部流路3およ
び上部流路4に分かれ、流路4→第2平衡反応器→流路
5)。第1平衡反応器、が原料側改質触媒の平衡反応量
を計算する。分離器が水素分離膜を模擬する。第2平衡
反応器は水素分離されて非平衡状態の反応の次の平衡量
を示す。初期条件として、部分酸化を考慮し、式(5)
においてx=0.5として、 CH3OH+1/402+1/2H2O→5/2H2+CO2 (7) を想定し、原料メタノール、酸素、水量をそれぞれ10
0,25,50kmol/sと設定した。また、反応温
度を280℃、圧力を10.0barとした、これは実
用改質器の値を参考にした。
EXAMPLES The present invention will be described in more detail below with reference to examples. Example 1 (1) The structure of each layer used shown in FIG. 3 is as follows. The raw material gas side layer is made by punching and undulating the surface of the aluminum as a base material, the gas contact surface is anodized with aluminum and then catalyzed, and the outer peripheral part is kept in the initial aluminum state, so that the spacer and the catalyst are integrated. It became the composition which became. The anodization was carried out using a 4 wt% oxalic acid solution at 15 to 25 ° C. and a current density of 15 to 50 A / m 2 , 1
It was carried out under the condition of 6 hours. The catalyst was supported by masking the outer peripheral portion, immersing the catalyst in a 2 × 10 6 mol / cm 3 palladium acetate / acetone solution for 24 hours, and then firing at 400 ° C. for 3 hours. The hydrogen permeable membrane was an integral type made of Pd alloy of the same material as the outer peripheral portion. Further, a spacer-integrated catalyst having the same structure as the above-mentioned catalyst on the raw material side was also used on the recovery side. (2) Effect of non-equilibrium hydrogen separation reaction Table 1 shows the results of chemical equilibrium theoretical calculation of the effect of non-equilibrium hydrogen separation reaction. In the flow used here, this reformer is simulated by connecting an equilibrium reactor and a separator (flow path 1 →
1 Equilibrium reactor → Flow path 2 → Separator. Here, it is divided into a lower flow path 3 and an upper flow path 4, and the flow path 4 → the second equilibrium reactor → the flow path 5). The first equilibrium reactor calculates the equilibrium reaction amount of the raw material side reforming catalyst. The separator simulates a hydrogen separation membrane. The second equilibrium reactor shows the next equilibrium amount of the reaction in the non-equilibrium state after hydrogen separation. Considering partial oxidation as the initial condition, equation (5)
In the case of x = 0.5, CH 3 OH + 1/40 2 + 1 / 2H 2 O → 5 / 2H 2 + CO 2 (7) is assumed, and the amounts of the raw material methanol, oxygen and water are 10 respectively.
It was set to 0, 25, 50 kmol / s. Further, the reaction temperature was 280 ° C. and the pressure was 10.0 bar, which was based on the value of the practical reformer.

【0024】計算収支結果を表1に示す。流路2の値が
水素分離の無い場合の改質反応の平衡量である。水素が
230.3kmol/s生成している。競合成分である
COは18.3kmol/s生成し、一方酸素は酸化で
全量が消費されている。結果として発熱反応である(Q
<0)ため、外部加熱は不要である。ついで水素分離膜
は水素の80%を分離すると仮定した。水素分離後、流
路4では再び非平衡濃度になり、第2反応器で再び流路
5の平衡反応量に到達する。再度水素が製造され、CO
は9.6kmol/sまでほぼ半分に減少している。
Table 1 shows the calculation balance result. The value of the flow path 2 is the equilibrium amount of the reforming reaction when there is no hydrogen separation. Hydrogen is produced at 230.3 kmol / s. CO, which is a competing component, is produced at 18.3 kmol / s, while oxygen is completely consumed by oxidation. The result is an exothermic reaction (Q
Since <0), external heating is unnecessary. The hydrogen separation membrane was then assumed to separate 80% of the hydrogen. After hydrogen separation, the non-equilibrium concentration again occurs in the channel 4, and the equilibrium reaction amount in the channel 5 is reached again in the second reactor. Hydrogen is produced again and CO
Is almost halved to 9.6 kmol / s.

【0025】このように膜分離により非平衡を保つこと
で、COの生成量を減少させ、水素生成量を増大でき
る。実際には連続的に非平衡状態で改質反応が進むので
よりCOの減少が促進されうる。
By maintaining the non-equilibrium by the membrane separation in this way, the amount of CO produced can be reduced and the amount of hydrogen produced can be increased. Actually, since the reforming reaction proceeds continuously in a non-equilibrium state, the reduction of CO can be further promoted.

【0026】[0026]

【表1】 [Table 1]

【0027】(3)COのメタン化反応の効果 水素分離膜を仮に水素と共にCOが混入した場合の反応
進行方向を反応平衡計算から検討した(流路1→第3平
衡反応器→流路2)。結果を表2に示す。初期条件とし
て水素100kmol/sに対し、COが10kmol
/s混入するとし、反応温度280℃、圧力5.0ba
rとした。第3平衡反応器にて平衡量を求めた。なお、
圧力は膜間の差圧を考慮し決めた。平衡計算の収支結果
よりほぼCO全量が水素と反応しメタン化することが示
された。
(3) Effect of CO methanation reaction The reaction progress direction when hydrogen and CO are mixed together with hydrogen in the hydrogen separation membrane was examined from reaction equilibrium calculation (flow path 1 → third equilibrium reactor → flow path 2). ). The results are shown in Table 2. As initial conditions, CO is 10 kmol for 100 kmol / s of hydrogen.
/ S mixing, reaction temperature 280 ° C, pressure 5.0 ba
r. The equilibrium amount was determined in the third equilibrium reactor. In addition,
The pressure was determined in consideration of the pressure difference between the membranes. The balance results of the equilibrium calculations show that almost all CO reacts with hydrogen to methanate.

【0028】[0028]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の改質器の概略を示す。FIG. 1 shows an outline of a reformer of the present invention.

【図2】図1の区間Aに対応する部分の改質器内の層構
成と流路を示す((a)〜(e))。
FIG. 2 shows a layer structure and a flow path in the reformer of a portion corresponding to the section A in FIG. 1 ((a) to (e)).

【図3】本発明改質器の各層の構成の一例を示す
((a)〜(c))。
FIG. 3 shows an example of the structure of each layer of the reformer of the present invention ((a) to (c)).

【図4】本発明の往復流路式プレート型非平衡改質器の
概略を示す。
FIG. 4 shows an outline of a reciprocating flow channel plate type non-equilibrium reformer of the present invention.

【図5】(a)は本発明の往復流路式プレート型非平衡
改質器のプレート構造の一例、(b)はプレート構成と
物質の流れを示す。
5A shows an example of a plate structure of a reciprocating flow channel type plate non-equilibrium reformer of the present invention, and FIG. 5B shows a plate configuration and a substance flow.

【図6】本発明の往復流路式プレート型非平衡改質器の
流路構成の一例を示す。
FIG. 6 shows an example of the flow path configuration of the reciprocating flow path plate type non-equilibrium reformer of the present invention.

【図7】本発明の往復流路式プレート型非平衡改質器に
おける部分酸化熱の熱伝導状態を示す。
FIG. 7 shows a heat conduction state of partial oxidation heat in the reciprocating flow channel plate type non-equilibrium reformer of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // H01M 8/06 H01M 8/06 G Fターム(参考) 4D006 GA41 HA43 JA02A JA02C JA04A JA04C JA30A KA31 KA53 KD30 MA03 MB04 MC02 MC02X MC03 PA05 PB18 PB66 PC80 4G040 EA02 EA03 EA06 EA07 EB23 EB32 EB42 EB44 EB46 EC08 4G069 AA03 AA08 BA01A BA01B BC72B CC17 DA06 EA12 FA01 FA04 FA06 FB14 FB42 FB76 5H027 AA02 BA01 BA17 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // H01M 8/06 H01M 8/06 GF term (reference) 4D006 GA41 HA43 JA02A JA02C JA04A JA04C JA30A KA31 KA53 KD30 MA03 MB04 MC02 MC02X MC03 PA05 PB18 PB66 PC80 4G040 EA02 EA03 EA06 EA07 EB23 EB32 EB42 EB44 EB46 EC08 4G069 AA03 AA08 BA01A BA01B BC72B CC17 DA06 EA12 FA01 FA04 FA06 FB14 FB42 AFB02 5A02

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 燃料と水蒸気から水素を製造する燃料改
質器であって、燃料を水蒸気改質して水素を製造する平
板形燃料改質触媒層、該水蒸気改質により生成する水素
を主成分とするガスから水素を選択的に透過する平板形
水素透過膜、該透過膜を透過した水素中に一酸化炭素が
含まれる場合にはその一酸化炭素をメタンに転換する平
板形一酸化炭素転換触媒層、ならびに次の段の水蒸気改
質により生成する水素を主成分とするガスから水素を選
択的に透過する平板形水素透過膜を繰返し単位として多
段に積層された構造を有してなることを特徴とする燃料
改質器。
1. A fuel reformer for producing hydrogen from a fuel and steam, wherein a flat fuel reforming catalyst layer for producing hydrogen by steam reforming a fuel, wherein hydrogen produced by the steam reforming is mainly used. A flat plate hydrogen permeable membrane that selectively permeates hydrogen from a gas as a component, and a flat plate carbon monoxide that converts carbon monoxide to methane when the hydrogen that has permeated the membrane contains carbon monoxide. It has a structure in which a conversion catalyst layer and a flat-plate hydrogen permeable membrane that selectively permeates hydrogen from a gas containing hydrogen as a main component generated by steam reforming in the next stage are laminated in multiple stages as a repeating unit. A fuel reformer characterized by the above.
【請求項2】 燃料改質触媒層および/または一酸化炭
素転換触媒層の平板形は、平板形の基材に触媒が担持さ
れている請求項1記載の燃料改質器。
2. The fuel reformer according to claim 1, wherein the flat plate type of the fuel reforming catalyst layer and / or the carbon monoxide conversion catalyst layer has a catalyst supported on a flat plate type base material.
【請求項3】 基材表面が起伏化加工されている請求項
2記載の燃料改質器。
3. The fuel reformer according to claim 2, wherein the surface of the base material is undulating.
【請求項4】 起伏化加工が網目、すのこ、櫛もしくは
多孔状である請求項3記載の燃料改質器。
4. The fuel reformer according to claim 3, wherein the undulating process is a mesh, a drain, a comb or a porous shape.
【請求項5】 基材が金属基材である請求項2記載の燃
料改質器。
5. The fuel reformer according to claim 2, wherein the base material is a metal base material.
【請求項6】 金属基材がアルミニウム、ステンレス鋼
もしくは銅である請求5記載の燃料改質器。
6. The fuel reformer according to claim 5, wherein the metal substrate is aluminum, stainless steel or copper.
【請求項7】 アルミニウムが陽極酸化されている請求
項6記載の燃料改質器。
7. The fuel reformer according to claim 6, wherein aluminum is anodized.
【請求項8】 アルミニウムは触媒担持部分が陽極酸化
され、かつその周囲部分は積層時の接着部位となり、か
つガス流を確保するスぺーサとなる一体型構造を構成す
る請求項7記載の燃料改質器。
8. The fuel according to claim 7, wherein the catalyst-supporting portion of aluminum is anodized, and the peripheral portion thereof serves as an adhesion site during lamination, and forms a spacer that secures a gas flow. Reformer.
【請求項9】 水素透過膜が金属もしくはセラミックか
ら構成される請求項1記載の燃料改質器。
9. The fuel reformer according to claim 1, wherein the hydrogen permeable membrane is made of metal or ceramic.
【請求項10】 燃料と水蒸気から水素を製造する燃料
改質方法において、請求項1記載の燃料改質器を用いる
ことを特徴とする燃料改質方法。
10. A fuel reforming method for producing hydrogen from fuel and steam, wherein the fuel reformer according to claim 1 is used.
【請求項11】 燃料改質触媒層および/または一酸化
炭素転換触媒層の平板形は、平板形の基材に触媒が担持
されている請求項10記載の燃料改質方法。
11. The fuel reforming method according to claim 10, wherein the flat plate-shaped fuel reforming catalyst layer and / or the carbon monoxide conversion catalyst layer has a catalyst supported on a flat plate-shaped substrate.
【請求項12】 基材表面が起伏化加工されている請求
項11記載の燃料改質方法。
12. The fuel reforming method according to claim 11, wherein the surface of the base material is undulating.
【請求項13】 起伏化加工が網目、すのこ、櫛もしく
は多孔状である請求項12記載の燃料改質方法。
13. The fuel reforming method according to claim 12, wherein the undulating process is a mesh, a drain, a comb or a porous shape.
【請求項14】 基材が金属基材である請求項11記載
の燃料改質方法。
14. The fuel reforming method according to claim 11, wherein the base material is a metal base material.
【請求項15】 金属基材がアルミニウム、ステンレス
鋼もしくは銅である請求14記載の燃料改質方法。
15. The fuel reforming method according to claim 14, wherein the metal base material is aluminum, stainless steel or copper.
【請求項16】 アルミニウムが陽極酸化されている請
求項15記載の燃料改質方法。
16. The fuel reforming method according to claim 15, wherein aluminum is anodized.
【請求項17】 アルミニウムは触媒担持部分が陽極酸
化され、かつその周囲部分は積層時の接着部位となり、
かつガス流を確保するスぺーサとなる一体型構造を構成
する請求項16記載の燃料改質方法。
17. Aluminum has an anodized catalyst-supporting portion, and its peripheral portion serves as an adhesion site during lamination,
17. The fuel reforming method according to claim 16, wherein the fuel reforming method forms an integral structure that serves as a spacer for securing a gas flow.
【請求項18】 水素透過膜が金属もしくはセラミック
から構成される請求項10記載の燃料改質方法。
18. The fuel reforming method according to claim 10, wherein the hydrogen permeable membrane is made of metal or ceramic.
【請求項19】 請求項10記載の燃料と水蒸気から水
素を製造する燃料改質方法において、該改質用燃料ガス
にさらに酸素もしくは酸素含有ガスを含有させて、改質
反応とともに部分酸化反応を併行して生じさせ、その反
応熱を該改質反応に供することを特徴とする燃料改質方
法。
19. The fuel reforming method for producing hydrogen from the fuel and steam according to claim 10, wherein the reforming fuel gas further contains oxygen or an oxygen-containing gas to carry out a partial oxidation reaction together with a reforming reaction. A method for reforming fuel, characterized in that the heat of reaction is generated in parallel and the reaction heat is used for the reforming reaction.
JP2001315659A 2001-10-12 2001-10-12 Fuel reformer Expired - Fee Related JP3680936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001315659A JP3680936B2 (en) 2001-10-12 2001-10-12 Fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001315659A JP3680936B2 (en) 2001-10-12 2001-10-12 Fuel reformer

Publications (2)

Publication Number Publication Date
JP2003119002A true JP2003119002A (en) 2003-04-23
JP3680936B2 JP3680936B2 (en) 2005-08-10

Family

ID=19133787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001315659A Expired - Fee Related JP3680936B2 (en) 2001-10-12 2001-10-12 Fuel reformer

Country Status (1)

Country Link
JP (1) JP3680936B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011262A1 (en) 2002-07-25 2004-02-05 Seiko Epson Corporation Liquid-discharging device and printing system
JP2006082039A (en) * 2004-09-17 2006-03-30 Noritake Co Ltd Oxygen separation membrane element, its manufacturing method, oxygen manufacturing method, and reactor
JP2006265007A (en) * 2005-03-22 2006-10-05 Toyota Motor Corp Fuel reformer
JP2011031162A (en) * 2009-07-31 2011-02-17 Tokyo Univ Of Agriculture & Technology Plate-shaped nickel catalyst object for steam reforming reaction of hydrocarbon
JP2011116577A (en) * 2009-12-01 2011-06-16 Ngk Spark Plug Co Ltd Hydrogen producing apparatus
US9187321B2 (en) 2011-10-31 2015-11-17 Denso Corporation Reactor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080099861A (en) 2006-03-14 2008-11-13 미츠비시 가스 가가쿠 가부시키가이샤 Hydrogen generator and process for producing hydrogen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011262A1 (en) 2002-07-25 2004-02-05 Seiko Epson Corporation Liquid-discharging device and printing system
JP2006082039A (en) * 2004-09-17 2006-03-30 Noritake Co Ltd Oxygen separation membrane element, its manufacturing method, oxygen manufacturing method, and reactor
JP2006265007A (en) * 2005-03-22 2006-10-05 Toyota Motor Corp Fuel reformer
JP2011031162A (en) * 2009-07-31 2011-02-17 Tokyo Univ Of Agriculture & Technology Plate-shaped nickel catalyst object for steam reforming reaction of hydrocarbon
JP2011116577A (en) * 2009-12-01 2011-06-16 Ngk Spark Plug Co Ltd Hydrogen producing apparatus
US9187321B2 (en) 2011-10-31 2015-11-17 Denso Corporation Reactor

Also Published As

Publication number Publication date
JP3680936B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
EP1853515B1 (en) Method using proton conducting solid oxide fuel cell systems having temperature swing reforming
CA2473449C (en) Solid oxide fuel cell system
AU2002338422B2 (en) Integrated fuel processor, fuel cell stack and tail gas oxidizer with carbon dioxide removal
EP1636132B1 (en) Method for producing electricity using temperature swing reforming and solid oxide fuel cell
JP2008521184A (en) Equipment for carrying out chemical reactions
US20050172555A1 (en) Methods, apparatus, and systems for producing hydrogen from a fuel
GB2373791A (en) Fuel processing system comprising steam reformer
JP2000178003A (en) Liquid treating device
JP3406021B2 (en) Hydrogen production equipment
KR100627334B1 (en) Reformer for fuel cell system and fuel cell system comprising the same
JP2003148881A (en) Three-fluid heat exchanger
US7470294B2 (en) Fuel processor design and method of manufacture
JP2003119002A (en) Fuel reformer
Kamarudin et al. The conceptual design of a PEMFC system via simulation
KR100646985B1 (en) Plate type fuel reforming system and fuel cell system having the same
JPH09266005A (en) Solid high polymer fuel cell system
JP2005336003A (en) High purity hydrogen producing device
WO2021251471A1 (en) Co2 methanation reaction apparatus provided with selective oxidation catalyst for co, and metod for removing co from gas
CN110165260B (en) Efficient silent power generation device based on fuel catalytic reforming
AU2003221755A8 (en) Reactor for preferential oxidation and method of use
JP4107407B2 (en) Air mixing method in CO selective oxidation reaction of oxidation reactor and hydrogen production apparatus
US7678346B2 (en) Dual function CO clean-up/sorber unit
JP2672923B2 (en) Stacked methanol reformer
US7156887B1 (en) Methods, apparatus, and systems for producing hydrogen from a fuel
JP2002282690A (en) Catalyst for removing carbon monoxide, method for removing carbon monoxide, and reactor for removing carbon monoxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040317

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040317

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees