JPWO2018150823A1 - Method for producing structure catalyst, and method for producing hydrogen using structure catalyst - Google Patents

Method for producing structure catalyst, and method for producing hydrogen using structure catalyst Download PDF

Info

Publication number
JPWO2018150823A1
JPWO2018150823A1 JP2018568064A JP2018568064A JPWO2018150823A1 JP WO2018150823 A1 JPWO2018150823 A1 JP WO2018150823A1 JP 2018568064 A JP2018568064 A JP 2018568064A JP 2018568064 A JP2018568064 A JP 2018568064A JP WO2018150823 A1 JPWO2018150823 A1 JP WO2018150823A1
Authority
JP
Japan
Prior art keywords
treatment
catalyst
producing
clad substrate
structure catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018568064A
Other languages
Japanese (ja)
Inventor
誠 桜井
誠 桜井
高田 吉則
吉則 高田
弘樹 本田
弘樹 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Sumitomo Seika Chemicals Co Ltd
Original Assignee
NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY, Sumitomo Seika Chemicals Co Ltd filed Critical NATIONAL UNIVERSITY CORPORATION TOKYO UNIVERSITY OF AGRICULUTURE & TECHNOLOGY
Publication of JPWO2018150823A1 publication Critical patent/JPWO2018150823A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

金属支持体の表面にアルミニウム層が形成されたクラッド材を用いて構造体触媒を製造する方法は、前記アルミニウム層の表面をアルミナ層に変換するための陽極酸化工程(S1)を行い、前記陽極酸化処理を終えた前記クラッド基材に対して、触媒成分を含有する水溶液中に浸漬する第1浸漬処理(S4)を行い、前記第1浸漬処理を終えた前記クラッド基材に対して、酸化雰囲気下において120〜500℃の温度範囲で焼成する第1焼成処理(S5)を行い、前記第1焼成処理を終えた前記クラッド基材に対して、前記触媒成分を含有する水溶液中に浸漬する第2浸漬処理(S6)を行い、前記第2浸漬処理を終えた前記クラッド基材に対して、酸化雰囲気下において500〜700℃の温度範囲で焼成する第2焼成処理(S7)を行う。A method for producing a structural catalyst using a clad material having an aluminum layer formed on the surface of a metal support includes performing an anodic oxidation step (S1) for converting the surface of the aluminum layer into an alumina layer, The first immersion treatment (S4) of immersing the clad substrate after the oxidation treatment in an aqueous solution containing a catalyst component is performed, and the clad substrate after the first immersion treatment is oxidized. A first baking process (S5) of baking in a temperature range of 120 to 500 ° C. is performed in an atmosphere, and the clad substrate after the first baking process is immersed in an aqueous solution containing the catalyst component. The second immersion treatment (S6) is performed, and the second immersion treatment (S7) is performed on the clad base material that has been subjected to the second immersion treatment, in an oxidizing atmosphere, in a temperature range of 500 to 700 ° C. .

Description

本発明は、炭化水素と水とを含む原料ガスから触媒反応により水素を発生させるための構造体触媒の製造方法、および当該製造方法により得られた構造体触媒を用いて行う水素の製造方法に関する。   The present invention relates to a method for producing a structure catalyst for generating hydrogen by a catalytic reaction from a raw material gas containing hydrocarbon and water, and a method for producing hydrogen using a structure catalyst obtained by the production method. .

水素はクリーンなエネルギーであり、工業的には還元剤として用いられるなど広い用途を有しており、近年では特に水素自動車や燃料電池の燃料として期待されている。水素ガスの生成方法の一つとして、都市ガスや天然ガスなどに代表される炭化水素と水とを原料とし、触媒を用いた水蒸気改質反応や一酸化炭素シフト反応によって水素を含む混合ガスを得る方法が良く知られている。一般的に、水蒸気改質反応や一酸化炭素シフト反応に用いられる触媒の形状としては、粒状の担体の表面に活性成分である金属や金属化合物を担持させた粒状触媒が用いられている。   Hydrogen is a clean energy and has a wide range of uses such as industrial use as a reducing agent, and in recent years, it is particularly expected as a fuel for hydrogen automobiles and fuel cells. As one of the methods for producing hydrogen gas, a mixed gas containing hydrogen by a steam reforming reaction or carbon monoxide shift reaction using a catalyst and a hydrocarbon and water represented by city gas and natural gas as raw materials is used. The method of obtaining is well known. In general, as a catalyst used for a steam reforming reaction or a carbon monoxide shift reaction, a granular catalyst in which a metal or a metal compound as an active component is supported on the surface of a granular carrier is used.

しかしながら、粒状触媒では原料である反応ガスと活性成分である触媒成分との接触効率が悪いため、反応率を上げるには、改質反応器内における粒状触媒の充填量を増やし、接触面積を増やすか、あるいは粒状触媒のサイズを出来るだけ小さくし、接触効率を高める方法が採られることがある。しかしながら、粒状触媒の充填量を増やすと、ガス流れの抵抗が増し、圧力損失が高まる。また、粒状触媒のサイズを小さくすると接触効率は高まるものの、空隙部の割合が減少するので逆に圧力損失は高まり、ガスを供給する動力が増し、エネルギー的には効率は下がるという問題があった。   However, since the contact efficiency between the reaction gas, which is a raw material, and the catalyst component, which is an active component, is poor in a granular catalyst, to increase the reaction rate, the amount of contact of the granular catalyst in the reforming reactor is increased and the contact area is increased. Alternatively, a method of increasing the contact efficiency by reducing the size of the granular catalyst as much as possible may be employed. However, increasing the filling amount of the granular catalyst increases the gas flow resistance and increases the pressure loss. In addition, when the size of the granular catalyst is reduced, the contact efficiency increases, but since the ratio of the voids decreases, the pressure loss increases, the power for supplying the gas increases, and the efficiency decreases in terms of energy. .

このような粒状触媒に関する不都合の解決策の一つとして、近年、粒状触媒に代えて構造体触媒を用いることが提案されている(例えば、特許文献1を参照)。しかしながら、一般的に、構造体触媒は、粒状触媒と比較すると、初期活性は高いものの、時間経過に伴い急激に活性が低下するという性質があり、長時間にわたり使用することはできないという不都合があった(例えば、非特許文献1を参照)。   In recent years, as one of the solutions for the inconvenience related to such a granular catalyst, it has been proposed to use a structure catalyst instead of the granular catalyst (see, for example, Patent Document 1). However, in general, the structure catalyst has a property that the initial activity is higher than that of the granular catalyst, but the activity rapidly decreases with the lapse of time, so that it cannot be used for a long time. (For example, see Non-Patent Document 1).

特開2005−211836号公報JP-A-2005-211836

Journal of Chemical Engineering of Japan, Vol. 47, No. 7, pp. 536-541, 2014Journal of Chemical Engineering of Japan, Vol. 47, No. 7, pp. 536-541, 2014

本発明は、このような事情の下で考え出されたものであって、炭化水素と水とを含む原料ガスから触媒反応により水素を含む混合ガスを発生させる方法において使用する構造体触媒に関して、触媒活性低下を抑制するのに適した構造体触媒の製造方法を提供することを主たる課題とする。   The present invention has been conceived under such circumstances, and relates to a structural catalyst used in a method of generating a mixed gas containing hydrogen by catalytic reaction from a raw material gas containing hydrocarbon and water. The main object is to provide a method for producing a structural catalyst suitable for suppressing a decrease in catalytic activity.

本発明者らは、炭化水素と水とを含む原料ガスから触媒反応により水素を含む混合ガスを発生させる方法において使用する構造体触媒の製造方法に関して、鋭意検討を行った。その結果、陽極酸化処理後の担体に触媒成分を含浸担持させる際、触媒成分含有水溶液中への浸漬処理および酸化雰囲気下での焼成処理を2回に分けると共に、2回の焼成処理それぞれについて、得られる構造体触媒の触媒活性が高く、かつ触媒活性低下をより抑制するのに適した焼成温度範囲を見出し、本発明を完成させるに至った。   The present inventors diligently studied a method for producing a structure catalyst used in a method of generating a mixed gas containing hydrogen from a raw material gas containing hydrocarbon and water by a catalytic reaction. As a result, when impregnating and supporting the catalyst component on the support after the anodic oxidation treatment, the immersion treatment in the catalyst component-containing aqueous solution and the firing treatment in an oxidizing atmosphere are divided into two times, and for each of the two firing treatments, The present invention has been completed by finding a calcining temperature range in which the resulting structure catalyst has a high catalytic activity and is suitable for further suppressing a decrease in catalytic activity.

本発明の第1の側面によれば、金属支持体の表面にアルミニウム層が形成されたクラッド材を用いる構造体触媒の製造方法が提供される。当該方法は、前記アルミニウム層の表面をアルミナ層に変換するための陽極酸化処理を行い、前記陽極酸化処理を終えた前記クラッド基材に対して、触媒成分を含有する水溶液中に浸漬する第1浸漬処理を行い、前記第1浸漬処理を終えた前記クラッド基材に対して、酸化雰囲気下において120〜500℃の温度範囲で焼成する第1焼成処理を行い、前記第1焼成処理を終えた前記クラッド基材に対して、前記触媒成分を含有する水溶液中に浸漬する第2浸漬処理を行い、前記第2浸漬処理を終えた前記クラッド基材に対して、酸化雰囲気下において500〜700℃の温度範囲で焼成する第2焼成処理を行うものである。   According to the first aspect of the present invention, there is provided a method for producing a structural catalyst using a clad material in which an aluminum layer is formed on the surface of a metal support. According to the method, a first anodizing process is performed for converting the surface of the aluminum layer into an alumina layer, and the clad base material that has been subjected to the anodizing process is immersed in an aqueous solution containing a catalyst component. Immersion treatment was performed, and the first firing treatment was performed on the clad substrate that had been subjected to the first immersion treatment in a temperature range of 120 to 500 ° C. in an oxidizing atmosphere, and the first firing treatment was completed. The clad substrate is subjected to a second dipping treatment in which it is immersed in an aqueous solution containing the catalyst component, and the clad substrate that has been subjected to the second dipping treatment is 500 to 700 ° C. in an oxidizing atmosphere. A second baking process is performed in which the baking is performed in the temperature range.

好ましくは、前記触媒成分は、ニッケルを含む金属であり、前記金属支持体は、ニッケルクロム合金からなる。   Preferably, the catalyst component is a metal containing nickel, and the metal support is made of a nickel chromium alloy.

好ましくは、前記陽極酸化処理は、前記アルミニウム層が全てアルミナ層に変化するまで行う。   Preferably, the anodizing treatment is performed until all of the aluminum layer is changed to an alumina layer.

好ましくは、前記陽極酸化処理の後で、前記第1浸漬処理の前に、前記クラッド基材を酸性溶液中にて処理して、前記陽極酸化処理により前記アルミナ層に形成された細孔を拡大する細孔拡大処理をさらに行う。   Preferably, after the anodizing treatment and before the first immersion treatment, the clad substrate is treated in an acidic solution to enlarge pores formed in the alumina layer by the anodizing treatment. The pore enlargement process is further performed.

好ましくは、前記細孔拡大処理の後で、前記第1浸漬処理の前に、前記クラッド基材を水蒸気または液相の水にて処理して、前記アルミナを水和させる水和処理をさらに行う。   Preferably, after the pore enlargement treatment and before the first immersion treatment, the clad substrate is treated with water vapor or liquid phase water to further hydrate the alumina. .

好ましくは、前記第2焼成処理の後に、前記クラッド基材を酸性溶液中にて処理して、前記陽極酸化処理により前記アルミナ層に形成された細孔を拡大する細孔拡大処理をさらに行う。   Preferably, after the second baking treatment, a pore enlargement treatment is further performed in which the clad substrate is treated in an acidic solution to enlarge pores formed in the alumina layer by the anodizing treatment.

本発明の第2の側面によれば、本発明の第1の側面に係る構造体触媒の製造方法により得られた構造体触媒を用いて行う水素の製造方法が提供される。当該方法は、前記構造体触媒を改質反応器の内部に配置し、改質反応器を加熱しつつ、炭化水素と水とを含む原料ガスを前記改質反応器内で改質反応させるものである。経済性の観点から、前記金属支持体をニッケルクロム合金にて構成し、前記改質反応器の加熱に際して、前記金属支持体に電流を流すことによって前記構造体触媒を発熱させるのが好ましい。   According to the 2nd side surface of this invention, the manufacturing method of hydrogen performed using the structure catalyst obtained by the manufacturing method of the structure body catalyst which concerns on the 1st side surface of this invention is provided. In the method, the structural catalyst is disposed inside a reforming reactor, and a reforming reaction is performed in the reforming reactor with a raw material gas containing hydrocarbon and water while heating the reforming reactor. It is. From the viewpoint of economy, it is preferable that the metal support is made of a nickel chromium alloy, and the structure catalyst is heated by passing an electric current through the metal support when the reforming reactor is heated.

本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。   Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings.

本発明に係る構造体触媒の製造方法の一例を示す処理フロー図である。It is a processing flow figure showing an example of a manufacturing method of a structure catalyst concerning the present invention. 本発明に係る水素の製造方法を実行するのに使用可能なガス発生装置の概略構成を表す。The schematic structure of the gas generator which can be used for performing the manufacturing method of hydrogen which concerns on this invention is represented.

以下、本発明の好ましい実施形態について、図面を参照して具体的に説明する。   Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.

図1は、本発明に実施形態に係る構造体触媒の製造方法の一例を示す処理フロー図である。同図に示すように、構造体触媒の製造においては、クラッド基材に対して、陽極酸化処理S1、細孔拡大処理S2、水和処理S3、第1浸漬処理S4、第1焼成処理S5、第2浸漬処理S6、および第2焼成処理S7を順次行う。   FIG. 1 is a process flow diagram showing an example of a method for producing a structural catalyst according to an embodiment of the present invention. As shown in the figure, in the production of the structure catalyst, the clad substrate is subjected to an anodizing treatment S1, a pore enlargement treatment S2, a hydration treatment S3, a first immersion treatment S4, a first firing treatment S5, The second immersion process S6 and the second baking process S7 are sequentially performed.

クラッド基材は、金属支持体の表面にアルミニウム層を形成してなる担体である。クラッド基材の形状は、例えば、板状、棒状、筒状、リボン状、ハニカム状等の何れの形状であっても良く、定形状であれば特に限定されるものではない。   The clad substrate is a carrier formed by forming an aluminum layer on the surface of a metal support. The shape of the clad substrate may be any shape such as a plate shape, a rod shape, a cylindrical shape, a ribbon shape, and a honeycomb shape, and is not particularly limited as long as it has a constant shape.

上記した、表面にアルミニウム層を設けることが可能な金属支持体は、例えば、Mg(マグネシウム)、Cr(クロム)、Mo(モリブデン)、W(タングステン)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Ti(チタン)、Zr(ジルコニウム)、V(バナジウム)、Cu(銅)、Ag(銀)、Zn(亜鉛)、Bi(ビスマス)、Sn(スズ)、Pb(鉛)、Sb(アンチモン)からなる群より選択される単体金属または合金、もしくはこれらの金属を積層させた複合金属である。前記金属支持体としては、耐熱性の観点から、ステンレス鋼またはニッケルクロム合金であることが好ましい。   The above-mentioned metal support capable of providing an aluminum layer on the surface is, for example, Mg (magnesium), Cr (chromium), Mo (molybdenum), W (tungsten), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Ti (titanium), Zr (zirconium), V (vanadium), Cu (copper), Ag (silver), Zn (zinc), Bi (bismuth), Sn (tin), A single metal or alloy selected from the group consisting of Pb (lead) and Sb (antimony), or a composite metal obtained by laminating these metals. The metal support is preferably stainless steel or nickel chrome alloy from the viewpoint of heat resistance.

前記金属支持体の表面にアルミニウム層を形成させる方法としては、例えば、非水メッキ、圧着、蒸着、どぶ付け、溶射、圧延(クラッド法)等の公知の方法のいずれであっても良い。これらのうち、厚みの均一性および製造容易性の観点から、圧延法を用い、金属支持体表面にアルミニウム板またはアルミニウム箔を貼り合わせることが好ましい。アルミニウム層の厚みについては、5μm以上であれば良いが、10〜300μmであることが好ましく、30〜200μmであることがより好ましい。但し、本明細書で言うアルミニウムには、陽極酸化が可能なアルミニウム合金を含むものとする。筒状、ハニカム状等の形状を有するクラッド基材は、板状クラッド基材をそのような形状に加工することによって得られる。   As a method for forming the aluminum layer on the surface of the metal support, any of known methods such as non-water plating, pressure bonding, vapor deposition, dripping, thermal spraying, rolling (clad method) may be used. Among these, from the viewpoint of thickness uniformity and manufacturability, it is preferable to use a rolling method and attach an aluminum plate or aluminum foil to the surface of the metal support. The thickness of the aluminum layer may be 5 μm or more, but is preferably 10 to 300 μm, and more preferably 30 to 200 μm. However, the aluminum referred to in this specification includes an aluminum alloy that can be anodized. A clad substrate having a cylindrical shape, a honeycomb shape or the like can be obtained by processing a plate-like clad substrate into such a shape.

前記クラッド材におけるアルミニウム層表面の陽極酸化(図1の陽極酸化処理S1、陽極酸化工程)は、公知の陽極酸化技術を用いて容易に行うことができる。アルミニウム層表面の陽極酸化に際しては、処理液(電解液)として、例えばシュウ酸、クロム酸、硫酸等の酸化性の強い酸を使用することが好ましい。これによって、アルミニウム層をすべてアルミナ層に変えると共に、必要に応じて設けられた拡散層内部にまで陽極酸化を進行させ、拡散層内部にまで酸素原子を拡散させることが容易となる。処理液の酸濃度は適宜決定すれば良く、例えばシュウ酸を用いた場合には2〜6wt%の水溶液とすることが好ましい。   Anodization of the surface of the aluminum layer in the clad material (anodization treatment S1 in FIG. 1, anodization step) can be easily performed using a known anodization technique. When anodizing the surface of the aluminum layer, it is preferable to use a highly oxidizing acid such as oxalic acid, chromic acid, sulfuric acid, etc. as the treatment liquid (electrolytic solution). This makes it easy to change all the aluminum layers to alumina layers and to advance anodic oxidation to the inside of the diffusion layer provided as necessary, thereby diffusing oxygen atoms to the inside of the diffusion layer. What is necessary is just to determine the acid concentration of a process liquid suitably, for example, when using oxalic acid, it is preferable to set it as 2-6 wt% aqueous solution.

陽極酸化の条件は、アルミナ層のBET比表面積が大きくなるように適宜設定すれば良いが、陽極酸化の処理液温度は0〜50℃、特に常温〜40℃とすることが好ましい。陽極酸化の処理液温度が0℃未満ではBET比表面積があまり大きくならず、50℃を越えるとアルミニウムの電解液への溶解が激しくなって、効率的に酸化膜を形成させることが困難となる。この陽極酸化の処理時間はその他の処理条件によって異なる。例えば4.0wt%のシュウ酸水溶液を電解液とし、電解液温度を30℃、電流密度を65.0A/m2とした場合には2時間以上、特に4時間以上とすることが好ましい。The conditions for anodization may be set as appropriate so that the BET specific surface area of the alumina layer is increased, but the treatment liquid temperature for anodization is preferably 0 to 50 ° C., particularly preferably room temperature to 40 ° C. When the temperature of the anodizing treatment solution is less than 0 ° C., the BET specific surface area is not so large, and when it exceeds 50 ° C., the dissolution of aluminum into the electrolytic solution becomes intense, making it difficult to efficiently form an oxide film. . The treatment time for this anodization varies depending on other treatment conditions. For example, when a 4.0 wt% oxalic acid aqueous solution is used as the electrolyte, the electrolyte temperature is 30 ° C., and the current density is 65.0 A / m 2 , it is preferably 2 hours or more, particularly 4 hours or more.

陽極酸化処理の後、必要に応じて350℃以上で1時間以上、好ましくは、450℃〜550℃で更に後焼成を行うことが好ましい。これにより陽極酸化皮膜をγ−アルミナ層とし、触媒担体表面として好ましいものとすると共に、前記拡散層中の酸素原子の濃度変化を小さなものとすることができる。   After the anodizing treatment, post-baking is preferably further performed at 350 ° C. or higher for 1 hour or longer, preferably 450 ° C. to 550 ° C., if necessary. This makes the anodic oxide film a γ-alumina layer, which is preferable as the surface of the catalyst carrier, and can reduce the change in the concentration of oxygen atoms in the diffusion layer.

また、陽極酸化処理の後、陽極酸化皮膜表面のBET比表面積を増大させると共に耐熱性を改善するために、細孔拡大処理(図1の細孔拡大処理S2)を行ってもよい。細孔拡大処理は、酸性水溶液を用いて陽極酸化皮膜中の細孔を拡大させる処理である。ここで使用する酸性水溶液としては、前記陽極酸化時に使用する処理液と同じものを使用することができる。したがって、陽極酸化の後、同じ処理液中で引き続き細孔拡大処理を行うこともできる。この細孔拡大処理の処理条件(温度と時間)は、処理液として使用する酸の種類や濃度に応じて適宜設定すれば良い。処理液の濃度については、好ましくは処理液のpHが3〜6となるように設定される。例えば4.0wt%のシュウ酸を20℃で用いる場合には、処理時間として約90〜120分とするのが適切である。   Further, after the anodizing treatment, in order to increase the BET specific surface area of the anodized film surface and improve the heat resistance, a pore enlarging treatment (pore enlarging treatment S2 in FIG. 1) may be performed. The pore enlargement treatment is a treatment for expanding pores in the anodized film using an acidic aqueous solution. As the acidic aqueous solution used here, the same treatment solution as used in the anodic oxidation can be used. Therefore, after the anodization, the pore enlargement process can be continued in the same processing solution. The treatment conditions (temperature and time) for this pore enlargement treatment may be appropriately set according to the type and concentration of the acid used as the treatment liquid. The concentration of the treatment liquid is preferably set so that the pH of the treatment liquid is 3-6. For example, when 4.0 wt% oxalic acid is used at 20 ° C., it is appropriate that the treatment time is about 90 to 120 minutes.

さらに、細孔拡大処理の後に水和処理(図1の水和処理S3)を行ってもよい。前記水和処理は、水蒸気または液相の水を用いて行い、当該水の温度は、例えば5〜100℃とされ、好ましくは40〜100℃とされる。水和処理の処理時間は、水の温度に応じて適宜設定されるが、例えば1〜2時間程度に設定するのが好ましい。水和処理に用いる水としては、蒸留水またはイオン交換水であることが好ましい。   Furthermore, you may perform a hydration process (hydration process S3 of FIG. 1) after a pore expansion process. The hydration treatment is performed using water vapor or liquid phase water, and the temperature of the water is, for example, 5 to 100 ° C., preferably 40 to 100 ° C. The treatment time of the hydration treatment is appropriately set according to the temperature of water, but is preferably set to about 1 to 2 hours, for example. The water used for the hydration treatment is preferably distilled water or ion exchange water.

このようにして得られたアルミナ担体の表面に、金属触媒を担持させることにより、触媒体を得ることができる。担持させる触媒成分は、ニッケル、ランタン、銅およびセリウムならびに、これらの合金および化合物からなる群より選択される少なくとも一種、または、当該一種以上を含む混合物である。これらの中でも、経済性および触媒活性の観点から、ニッケルが好ましい。   A catalyst body can be obtained by supporting a metal catalyst on the surface of the alumina support thus obtained. The catalyst component to be supported is at least one selected from the group consisting of nickel, lanthanum, copper and cerium, and alloys and compounds thereof, or a mixture containing one or more of them. Among these, nickel is preferable from the viewpoint of economy and catalytic activity.

アルミナ担体の表面に金属触媒を担持させる方法は、浸漬および焼成を含む。本実施形態において、浸漬および焼成を2回ずつ繰り返し行う。浸漬処理について、例えば触媒成分がニッケルの場合では、処理液として硝酸ニッケル水溶液あるいは酢酸ニッケル水溶液などのニッケル含有水溶液を用いる。第1浸漬処理(図1の浸漬処理S4)の処理条件としては、例えばニッケル含有水溶液のニッケル含有濃度は1〜10mol/L、pHは5.0〜6.0、浸漬温度は20〜40℃、浸漬時間は1〜10時間とされる。触媒としての高い活性を得る観点から、ニッケル含有濃度は2〜4mol/L、pHは5.0〜5.5、浸漬温度は25〜30℃、浸漬時間は2〜5時間とするのが好ましい。   The method for supporting the metal catalyst on the surface of the alumina support includes dipping and firing. In this embodiment, immersion and baking are repeated twice. For the immersion treatment, for example, when the catalyst component is nickel, a nickel-containing aqueous solution such as a nickel nitrate aqueous solution or a nickel acetate aqueous solution is used as the treatment liquid. As processing conditions of the first immersion treatment (immersion treatment S4 in FIG. 1), for example, the nickel-containing concentration of the nickel-containing aqueous solution is 1 to 10 mol / L, the pH is 5.0 to 6.0, and the immersion temperature is 20 to 40 ° C. The immersion time is 1 to 10 hours. From the viewpoint of obtaining high activity as a catalyst, it is preferable that the nickel-containing concentration is 2 to 4 mol / L, the pH is 5.0 to 5.5, the immersion temperature is 25 to 30 ° C., and the immersion time is 2 to 5 hours. .

第1浸漬処理後の水分を除去する乾燥については、自然乾燥あるいは100℃までの加熱乾燥を10〜24時間実施する。ここで、短時間での急速な乾燥は担持したニッケル成分の剥離の恐れがあるため、50℃以下で時間をかけた乾燥が好ましい。   About the drying which removes the water | moisture content after a 1st immersion process, natural drying or heat drying to 100 degreeC is implemented for 10 to 24 hours. Here, since rapid drying in a short time may cause peeling of the supported nickel component, drying over 50 ° C. or less is preferable.

乾燥後はニッケル成分をアルミナと反応させてニッケルアルミネート(NiAl24)に変化させるための第1焼成処理(図1の焼成処理S5)を行う。当該焼成処理は空気中で行い、焼成温度は例えば120〜500℃であり、処理後に効果的にニッケルアルミネートを生成させる観点から400〜500℃とするのが好ましい。焼成時間は例えば1〜10時間で選択できるが、十分な反応進行と経済性の観点から3〜5時間とすることが好ましい。After drying, a first firing process (firing process S5 in FIG. 1) is performed for reacting the nickel component with alumina to change it into nickel aluminate (NiAl 2 0 4 ). The said baking process is performed in the air, and a baking temperature is 120-500 degreeC, for example, and it is preferable to set it as 400-500 degreeC from a viewpoint of producing | generating nickel aluminate effectively after a process. The firing time can be selected, for example, from 1 to 10 hours, but is preferably 3 to 5 hours from the viewpoint of sufficient reaction progress and economy.

第1焼成処理の後、第2浸漬処理、乾燥、および第2焼成処理を行う。第2浸漬処理(図1の浸漬処理S6)の処理条件は、例えば第1浸漬処理と同じ条件とされる。第2焼成処理(図1の焼成処理S7)においては、焼成温度は例えば500〜700℃であり、十分にニッケル酸化物(NiOx)を生成させる観点から600〜700℃とするのが好ましい。焼成時間は例えば1〜10時間であるが、十分な反応進行および経済性な観点から3〜5時間とするのが好ましい。なお、第2焼成処理後において、温度600〜900℃にて水素ガス気流を用いて0.5時間〜2時間水素還元処理を行うことにより、ニッケル酸化物をニッケルまで還元することにより、触媒活性の高められた構造体触媒が得られる。After the first baking process, a second dipping process, drying, and a second baking process are performed. The process conditions of the second immersion process (immersion process S6 in FIG. 1) are, for example, the same conditions as the first immersion process. In the second firing treatment (firing treatment S7 in FIG. 1), the firing temperature is, for example, 500 to 700 ° C., and preferably 600 to 700 ° C. from the viewpoint of sufficiently generating nickel oxide (NiO x ). The firing time is, for example, 1 to 10 hours, but is preferably 3 to 5 hours from the viewpoint of sufficient reaction progress and economy. In addition, after 2nd baking process, by reducing hydrogen oxide to nickel by performing hydrogen reduction process for 0.5 hours-2 hours using a hydrogen gas stream at the temperature of 600-900 degreeC, catalytic activity is carried out. An enhanced structure catalyst is obtained.

本実施形態によれば、炭化水素と水とを含む原料ガスから触媒反応により水素を含む混合ガスを発生させる方法において使用する構造体触媒の製造に関して、陽極酸化処理後の担体に触媒成分を含浸担持させる際、触媒成分含有水溶液中への浸漬処理および酸化雰囲気下での焼成処理を2回に分けると共に所定の焼成温度で焼成することにより、触媒活性が高く、触媒活性低下がより少なくなる構造体触媒を得ることができる。   According to this embodiment, regarding the production of a structural catalyst used in a method for generating a mixed gas containing hydrogen from a raw material gas containing hydrocarbon and water by a catalytic reaction, the support after anodization is impregnated with a catalyst component. A structure in which the catalytic activity is high and the decrease in catalytic activity is reduced by carrying out the immersion treatment in the catalyst component-containing aqueous solution and the firing treatment in the oxidizing atmosphere in two times and carrying out the firing at a predetermined firing temperature. A body catalyst can be obtained.

次に、本発明の有用性を実施例および比較例により説明する。   Next, the usefulness of the present invention will be described with reference to examples and comparative examples.

〔実施例1〕
<構造体触媒の作製>
実施例1では、コア(金属支持体)としてニッケルクロム合金(Ni含有比率≧77wt%、Cr含有比率19〜21wt%、厚さ50μm)を用い、コアの両面に厚さ50μmのアルミニウム箔を張り合わせ、圧延機を使用してニッケルクロム合金コア/アルミニウムクラッド基材を得た。このクラッド基材を、平面サイズが3.5cm×12.5cmであるクラッド基板に切り出した。切り出したクラッド基板を、4.0wt%のシュウ酸水溶液を用いて、液温30℃、電流密度65.0A/m2で6.5時間、陽極酸化処理を行なった。その後、4.0wt%のシュウ酸水溶液を用い、液温30℃で2時間、細孔拡大処理を行い、次いで空気中で350℃、1時間焼成後、80℃のイオン交換水中に1時間浸漬することにより水和処理を行った。更に、空気中で500℃、3時間焼成して、ニッケルクロム合金をコアとしたプレート状アルミナ担体を得た。
[Example 1]
<Production of structure catalyst>
In Example 1, a nickel chromium alloy (Ni content ratio ≧ 77 wt%, Cr content ratio 19 to 21 wt%, thickness 50 μm) was used as a core (metal support), and aluminum foil having a thickness of 50 μm was laminated on both surfaces of the core. A nickel chrome alloy core / aluminum clad substrate was obtained using a rolling mill. This clad substrate was cut out into a clad substrate having a planar size of 3.5 cm × 12.5 cm. The cut out clad substrate was anodized using a 4.0 wt% oxalic acid aqueous solution at a liquid temperature of 30 ° C. and a current density of 65.0 A / m 2 for 6.5 hours. Thereafter, using a 4.0 wt% oxalic acid aqueous solution, a pore enlargement treatment was performed at a liquid temperature of 30 ° C. for 2 hours, followed by baking in air at 350 ° C. for 1 hour, and then immersed in ion exchange water at 80 ° C. for 1 hour. The hydration process was performed by doing. Further, it was fired in air at 500 ° C. for 3 hours to obtain a plate-like alumina carrier having a nickel chromium alloy as a core.

このプレート状担体を、第1浸漬処理として硝酸ニッケル水溶液(3mol/L、pH=5.1)中に3時間浸漬した。次いで、自然乾燥後、第1焼成処理として空気中で500℃、3時間焼成処理し、ニッケル成分を含浸担持した。更に、第1焼成処理を終えたプレート状担体を、第2浸漬処理として硝酸ニッケル水溶液(3mol/L、pH=5.1)中に3時間浸漬した。次いで、自然乾燥後、第2焼成処理として空気中で700℃、3時間焼成処理し、ニッケル成分を含浸担持した。得られた構造体触媒において、触媒成分であるニッケルの担持量をICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法、ICP−OES/CP−AES)によって測定したところ、プレートの面積当たり、15.0g/m2の担持量で、構造体触媒の担体成分であるアルミナに対しては18.0 wt%の担持量であった。This plate-like carrier was immersed in an aqueous nickel nitrate solution (3 mol / L, pH = 5.1) for 3 hours as a first immersion treatment. Next, after natural drying, a first baking treatment was carried out in air at 500 ° C. for 3 hours to impregnate and carry a nickel component. Further, the plate-like carrier after the first baking treatment was immersed in an aqueous nickel nitrate solution (3 mol / L, pH = 5.1) for 3 hours as a second immersion treatment. Next, after natural drying, a second baking treatment was performed in air at 700 ° C. for 3 hours to impregnate and support the nickel component. In the obtained structure catalyst, the amount of nickel supported as a catalyst component was measured by ICP emission spectroscopy (high frequency inductively coupled plasma emission spectroscopy, ICP-OES / CP-AES). The supported amount was 15.0 g / m 2, and the supported amount was 18.0 wt% with respect to alumina as the carrier component of the structural catalyst.

次に、炭化水素の水蒸気改質反応を行うにあたっての前処理として、前記構造体触媒に対して水素ガス気流下で800℃で1時間加熱することによって水素還元処理を行い、酸化ニッケルを触媒活性成分となる金属ニッケルに変換させて、最終的な構造体触媒とした。   Next, as a pretreatment for carrying out the steam reforming reaction of hydrocarbon, the structure catalyst is subjected to hydrogen reduction treatment by heating at 800 ° C. for 1 hour under a hydrogen gas stream, and nickel oxide is catalytically activated. It was converted into metallic nickel as a component to obtain a final structure catalyst.

<水素の製造>
水蒸気改質反応試験では、炭化水素としてメタンガスを用い、これと水(水蒸気)との原料ガスを改質反応器に導入した。メタンガスと水との導入ガス容積比率は1:3とし、反応温度は750℃とした。圧力は大気圧下で実施した。
<Production of hydrogen>
In the steam reforming reaction test, methane gas was used as the hydrocarbon, and a raw material gas of this and water (steam) was introduced into the reforming reactor. The volume ratio of introduced gas between methane gas and water was 1: 3, and the reaction temperature was 750 ° C. The pressure was performed under atmospheric pressure.

試験開始1時間後、反応で得られた水素含有混合ガスを水冷式のガス冷却器で冷却し、過剰の水蒸気は凝縮水として除去し、ガス分析装置で組成分析をした。水を除いたドライ状態に換算したガス組成は、水素が76.0%、二酸化炭素が7.0%、一酸化炭素が17.0%、メタンは検出下限以下で検出されなかった。   One hour after the start of the test, the hydrogen-containing mixed gas obtained by the reaction was cooled with a water-cooled gas cooler, excess water vapor was removed as condensed water, and the composition was analyzed with a gas analyzer. The gas composition converted to the dry state excluding water was 76.0% for hydrogen, 7.0% for carbon dioxide, 17.0% for carbon monoxide, and methane was not detected below the detection limit.

試験開始24時間後、水を除いたドライ状態に換算したガス組成は、水素が76.0%、二酸化炭素が7.0%、一酸化炭素が17.0%、メタンは検出下限以下で検出されず、触媒活性の低下は認められなかった。   24 hours after the start of the test, the gas composition converted to a dry state excluding water was 76.0% for hydrogen, 7.0% for carbon dioxide, 17.0% for carbon monoxide, and methane detected below the detection limit. No decrease in catalytic activity was observed.

〔比較例1〕
比較例1では、実施例1と同じプレート状アルミナ担体を用いた。プレート状担体に触媒成分を担持させる処理(浸漬処理および焼成処理)について、実施例1では2回に分けて行っていたが、比較例1では以下に述べるように1回とした。
[Comparative Example 1]
In Comparative Example 1, the same plate-like alumina carrier as in Example 1 was used. The treatment (immersion treatment and firing treatment) for supporting the catalyst component on the plate-like carrier was performed twice in Example 1, but was performed once in Comparative Example 1 as described below.

比較例1では、プレート状担体を、浸漬処理として硝酸ニッケル水溶液(3mol/L、pH=5.1)中に6時間浸漬をした。次いで、自然乾燥後、焼成処理として空気中で500℃、3時間焼成処理し、ニッケル成分を含浸担持した。このようにして、水蒸気改質反応による水素の製造に用いるための構造体触媒を作製した。得られた構造体触媒において、触媒成分であるニッケルの担持量は実施例1と同量であった。以降の水素還元処理および水蒸気改質反応試験の条件は実施例1と同じとした。   In Comparative Example 1, the plate-like carrier was immersed in an aqueous nickel nitrate solution (3 mol / L, pH = 5.1) for 6 hours as an immersion treatment. Next, after natural drying, a calcination treatment was performed in air at 500 ° C. for 3 hours to impregnate and carry a nickel component. In this way, a structure catalyst for use in the production of hydrogen by a steam reforming reaction was produced. In the obtained structure catalyst, the supported amount of nickel as the catalyst component was the same as in Example 1. The subsequent hydrogen reduction treatment and steam reforming reaction test conditions were the same as in Example 1.

試験開始1時間後、反応で得られた水素含有混合ガスを水冷式のガス冷却器で冷却し、過剰の水蒸気は凝縮水として除去し、ガス分析装置で組成分析をした。水を除いたドライ状態に換算したガス組成は、水素が76.0%、二酸化炭素が7.0%、一酸化炭素が17.0%、メタンは検出下限以下で検出されなかった。これは実施例1と同じであった。   One hour after the start of the test, the hydrogen-containing mixed gas obtained by the reaction was cooled with a water-cooled gas cooler, excess water vapor was removed as condensed water, and the composition was analyzed with a gas analyzer. The gas composition converted to the dry state excluding water was 76.0% for hydrogen, 7.0% for carbon dioxide, 17.0% for carbon monoxide, and methane was not detected below the detection limit. This was the same as Example 1.

しかしながら、試験開始24時間後において、水を除いたドライ状態に換算したガス組成は、水素が72.0%、二酸化炭素が10.0%、一酸化炭素が10.0%、メタンが8.0%であり、未反応のメタンが検出された。このことから、比較例1では、明らかに触媒活性の低下が認められた。   However, after 24 hours from the start of the test, the gas composition converted to a dry state excluding water is 72.0% for hydrogen, 10.0% for carbon dioxide, 10.0% for carbon monoxide, and 8.8% for methane. 0% and unreacted methane was detected. From this, in the comparative example 1, the fall of catalyst activity was recognized clearly.

〔比較例2〕
比較例2では、実施例1と同じプレート状アルミナ担体を用いた。プレート状担体に触媒成分を担持させる処理(浸漬処理および焼成処理)について、2回に分けて行う点は実施例1と同じであったが、以下に述べるように、焼成処理の温度条件が実施例1とは異なっていた。
[Comparative Example 2]
In Comparative Example 2, the same plate-like alumina carrier as in Example 1 was used. The treatment (soaking treatment and firing treatment) for supporting the catalyst component on the plate-like carrier was the same as in Example 1 in that the treatment was carried out in two steps, but the temperature conditions for the firing treatment were implemented as described below. It was different from Example 1.

比較例2では、プレート状担体を、浸漬処理として硝酸ニッケル水溶液(3mol/L、pH=5.1)中に3時間浸漬した。次いで、自然乾燥後、第1焼成処理として空気中で700℃、3時間焼成処理し、ニッケル成分を含浸担持した。更に、第1焼成処理を終えたプレート状担体を、第2浸漬処理として硝酸ニッケル水溶液(3mol/L、pH=5.1)中に3時間浸漬した。次いで、自然乾燥後、第2焼成処理として空気中で500℃、3時間焼成処理し、ニッケル成分を含浸担持した。得られた構造体触媒において、触媒成分であるニッケルの担持量は実施例1と同量であった。また、以降の水素還元処理および水蒸気改質反応試験の条件も実施例1と同じとした。   In Comparative Example 2, the plate-shaped carrier was immersed in an aqueous nickel nitrate solution (3 mol / L, pH = 5.1) for 3 hours as an immersion treatment. Next, after natural drying, a first baking treatment was carried out in air at 700 ° C. for 3 hours to impregnate and carry a nickel component. Further, the plate-like carrier after the first baking treatment was immersed in an aqueous nickel nitrate solution (3 mol / L, pH = 5.1) for 3 hours as a second immersion treatment. Next, after natural drying, a second baking treatment was carried out in air at 500 ° C. for 3 hours to impregnate and carry the nickel component. In the obtained structure catalyst, the supported amount of nickel as the catalyst component was the same as in Example 1. The conditions for the subsequent hydrogen reduction treatment and steam reforming reaction test were also the same as in Example 1.

試験開始1時間後、反応で得られた水素含有混合ガスを水冷式のガス冷却器で冷却し、過剰の水蒸気は凝縮水として除去し、ガス分析装置で組成分析をした。水を除いたドライ状態に換算したガス組成は、水素が76.0%、二酸化炭素が7.0%、一酸化炭素が17.0%、メタンは検出下限以下で検出されなかった。これは実施例1と同じであった。   One hour after the start of the test, the hydrogen-containing mixed gas obtained by the reaction was cooled with a water-cooled gas cooler, excess water vapor was removed as condensed water, and the composition was analyzed with a gas analyzer. The gas composition converted to the dry state excluding water was 76.0% for hydrogen, 7.0% for carbon dioxide, 17.0% for carbon monoxide, and methane was not detected below the detection limit. This was the same as Example 1.

しかしながら、試験開始24時間後において、水を除いたドライ状態に換算したガス組成は、水素が72.0%、二酸化炭素が10.0%、一酸化炭素が10.0%、メタンが8.0%であり、未反応のメタンが検出された。このことから、本比較例では、明らかに触媒活性の低下が認められた。   However, after 24 hours from the start of the test, the gas composition converted to a dry state excluding water is 72.0% for hydrogen, 10.0% for carbon dioxide, 10.0% for carbon monoxide, and 8.8% for methane. 0% and unreacted methane was detected. From this, in this comparative example, the fall of the catalyst activity was recognized clearly.

〔実施例2〕
実施例2では、水蒸気改質反応による水素の製造に用いるための構造体触媒は実施例1と同じものを用いた。実施例2では、図2に示した概略構成を有するガス発生装置Xを使用して、水蒸気改質反応を行った。同図に示したガス発生装置Xは、改質反応器1と、電源2と、コントローラ3とを備える。改質反応器1の材質としては、ステンレス鋼であるSUS304材を用いた。改質反応器1内に配置された構造体触媒4の両端には電極5,6が接続されており、電極5,6を介して構造体触媒4に電流が流れるように構成された。改質反応器1自体は、外部加熱器(図示略)により加熱可能とされた。
[Example 2]
In Example 2, the same structure catalyst as that used in Example 1 was used for producing hydrogen by the steam reforming reaction. In Example 2, the steam reforming reaction was performed using the gas generator X having the schematic configuration shown in FIG. The gas generator X shown in the figure includes a reforming reactor 1, a power source 2, and a controller 3. As the material of the reforming reactor 1, SUS304 material which is stainless steel was used. Electrodes 5 and 6 are connected to both ends of the structure catalyst 4 arranged in the reforming reactor 1, and a current flows through the structure catalyst 4 via the electrodes 5 and 6. The reforming reactor 1 itself can be heated by an external heater (not shown).

実施例2では、構造体触媒4(金属支持体であるニッケルクロム合金)への通電により、構造体触媒4の表面温度が反応に最適な750℃となるように電流値と通電時間をコントロールし、反応温度の保温効果を高めるために外部加熱として500℃にて加熱とした。圧力は実施例1と同じ大気圧下で実施した。   In Example 2, the current value and the energization time are controlled so that the surface temperature of the structure catalyst 4 becomes 750 ° C. optimum for the reaction by energizing the structure catalyst 4 (nickel chromium alloy which is a metal support). In order to enhance the heat retention effect of the reaction temperature, heating was performed at 500 ° C. as external heating. The pressure was carried out under the same atmospheric pressure as in Example 1.

試験開始1時間後、反応で得られた水素含有混合ガスを水冷式のガス冷却器7で冷却し、過剰の水蒸気は凝縮水として除去し、ガス分析装置で組成分析をした。水を除いたドライ状態に換算したガス組成は、水素が76.0%、二酸化炭素が7.0%、一酸化炭素が17.0%、メタンは検出下限以下で検出されなかった。   One hour after the start of the test, the hydrogen-containing mixed gas obtained by the reaction was cooled with a water-cooled gas cooler 7, excess water vapor was removed as condensed water, and composition analysis was performed with a gas analyzer. The gas composition converted to the dry state excluding water was 76.0% for hydrogen, 7.0% for carbon dioxide, 17.0% for carbon monoxide, and methane was not detected below the detection limit.

試験開始24時間後、水を除いたドライ状態に換算したガス組成は、水素が76.0%、二酸化炭素が7.0%、一酸化炭素が17.0%、メタンは検出下限以下で検出されず、触媒活性の低下は認められなかった。   24 hours after the start of the test, the gas composition converted to a dry state excluding water was 76.0% for hydrogen, 7.0% for carbon dioxide, 17.0% for carbon monoxide, and methane detected below the detection limit. No decrease in catalytic activity was observed.

〔実施例3〕
実施例3では、水蒸気改質反応による水素の製造に用いるための構造体触媒は実施例1および2と同じものを用いた。実施例3において前記実施例2と異なる点は、第1に、改質反応器の材質として、耐熱性は高いが高価なインコネル(登録商標)800を用いたこと、第2に、水蒸気改質反応では通電加熱操作は行なわず、外部加熱として800℃にて加熱し、改質反応器内での反応温度を750℃となるようにした点であった。実施例3におけるそれ以外の操作条件は実施例2と同じとした。反応で得られた水素含有混合ガス(ドライ状態)のガス組成は、試験開始1時間後、24時間後共に実施例2と同じ組成であった。
Example 3
In Example 3, the same structure catalyst as that used in Examples 1 and 2 was used for the production of hydrogen by the steam reforming reaction. Example 3 differs from Example 2 in that, firstly, the material of the reforming reactor is Inconel (registered trademark) 800, which has high heat resistance but is expensive, and secondly, steam reforming. In the reaction, no electric heating operation was performed, and heating was performed at 800 ° C. as external heating so that the reaction temperature in the reforming reactor was 750 ° C. The other operating conditions in Example 3 were the same as in Example 2. The gas composition of the hydrogen-containing mixed gas (dry state) obtained by the reaction was the same as that of Example 2 after 1 hour and 24 hours from the start of the test.

実施例2,3から理解されるように、実施例2の場合には、構造体触媒4(構造体触媒の心材である金属支持体)への通電により当該構造体触媒4自体を発熱させて、外部加熱として必要な熱エネルギーを大幅に低減することができる。その結果、水蒸気改質反応を適切に行うための全体の熱エネルギー効率を高めることができ、水素の製造コスト削減に寄与する。   As understood from Examples 2 and 3, in the case of Example 2, the structure catalyst 4 itself is caused to generate heat by energizing the structure catalyst 4 (metal support which is the core of the structure catalyst). The heat energy required for external heating can be greatly reduced. As a result, the overall thermal energy efficiency for appropriately performing the steam reforming reaction can be increased, which contributes to the reduction of hydrogen production costs.

X ガス発生装置
1 改質反応器
2 電源
3 コントローラ
4 構造体触媒
5 電極
6 電極
7 ガス冷却器
X Gas generator 1 Reforming reactor 2 Power source 3 Controller 4 Structure catalyst 5 Electrode 6 Electrode 7 Gas cooler

Claims (9)

金属支持体の表面にアルミニウム層が形成されたクラッド基材を用いて構造体触媒を製造する方法であって、
前記アルミニウム層の表面をアルミナ層に変換するための陽極酸化処理を行い、
前記陽極酸化処理を終えた前記クラッド基材に対して、触媒成分を含有する水溶液中に浸漬する第1浸漬処理を行い、
前記第1浸漬処理を終えた前記クラッド基材に対して、酸化雰囲気下において120〜500℃の温度範囲で焼成する第1焼成処理を行い、
前記第1焼成処理を終えた前記クラッド基材に対して、前記触媒成分を含有する水溶液中に浸漬する第2浸漬処理を行い、
前記第2浸漬処理を終えた前記クラッド基材に対して、酸化雰囲気下において500〜700℃の温度範囲で焼成する第2焼成処理を行う、構造体触媒の製造方法。
A method for producing a structural catalyst using a clad substrate having an aluminum layer formed on the surface of a metal support,
Anodizing for converting the surface of the aluminum layer into an alumina layer,
For the clad substrate that has been subjected to the anodization treatment, a first immersion treatment is performed in which the clad substrate is immersed in an aqueous solution containing a catalyst component,
For the clad substrate that has completed the first immersion treatment, a first firing treatment is performed in a temperature range of 120 to 500 ° C. in an oxidizing atmosphere,
For the clad substrate that has finished the first baking treatment, a second immersion treatment is performed in which the clad substrate is immersed in an aqueous solution containing the catalyst component,
The manufacturing method of a structure catalyst which performs the 2nd calcination process which calcinates in the temperature range of 500-700 ° C in the oxidizing atmosphere to the clad base material which finished the 2nd immersion treatment.
前記触媒成分は、ニッケルを含む金属である、請求項1に記載の構造体触媒の製造方法。   The method for producing a structural catalyst according to claim 1, wherein the catalyst component is a metal containing nickel. 前記金属支持体は、ニッケルクロム合金からなる、請求項1または2に記載の構造体触媒の製造方法。   The said metal support body is a manufacturing method of the structure catalyst of Claim 1 or 2 which consists of a nickel chromium alloy. 前記陽極酸化処理は、前記アルミニウム層が全てアルミナ層に変化するまで行う、請求項1〜3のいずれかに記載の構造体触媒の製造方法。   The method for producing a structural catalyst according to any one of claims 1 to 3, wherein the anodic oxidation treatment is performed until all of the aluminum layer is changed to an alumina layer. 前記陽極酸化処理の後で、前記第1浸漬処理の前に、前記クラッド基材を酸性溶液中にて処理して、前記陽極酸化処理により前記アルミナ層に形成された細孔を拡大する細孔拡大処理をさらに行う、請求項1〜4のいずれかに記載の構造体触媒の製造方法。   After the anodizing treatment and before the first dipping treatment, the clad substrate is treated in an acidic solution to expand pores formed in the alumina layer by the anodizing treatment. The manufacturing method of the structure catalyst in any one of Claims 1-4 which further performs an expansion process. 前記細孔拡大処理の後で、前記第1浸漬処理の前に、前記クラッド基材を水蒸気または液相の水にて処理して、前記アルミナを水和させる水和処理をさらに行う、請求項5に記載の構造体触媒の製造方法。   The hydration treatment is further performed by hydrating the alumina by treating the clad substrate with water vapor or liquid phase water after the pore enlargement treatment and before the first immersion treatment. 6. A process for producing the structure catalyst according to 5. 前記第2焼成処理の後に、前記クラッド基材を酸性溶液中にて処理して、前記陽極酸化処理により前記アルミナ層に形成された細孔を拡大する細孔拡大処理をさらに行う、請求項1〜4のいずれかに記載の構造体触媒の製造方法。   2. The pore enlargement treatment is further performed after the second firing treatment, in which the clad substrate is treated in an acidic solution, and the pores formed in the alumina layer by the anodization treatment are enlarged. The manufacturing method of the structure catalyst in any one of -4. 請求項1〜7に記載の構造体触媒の製造方法により得られた構造体触媒を用いて行う水素の製造方法であって、
前記構造体触媒を改質反応器の内部に配置し、当該改質反応器を加熱しつつ、炭化水素と水とを含む原料ガスを前記改質反応器内で改質反応させる、水素の製造方法。
A method for producing hydrogen using the structure catalyst obtained by the method for producing a structure catalyst according to claim 1,
Production of hydrogen, wherein the structural catalyst is disposed inside a reforming reactor, and the reforming reactor is heated and a raw material gas containing hydrocarbon and water is reformed in the reforming reactor. Method.
請求項3に記載の構造体触媒の製造方法により得られた構造体触媒を用いて行う水素の製造方法であって、
前記構造体触媒を改質反応器の内部に配置し、前記金属支持体に電流を流すことによって前記構造体触媒を発熱させつつ、炭化水素と水とを含む原料ガスを前記改質反応器内で改質反応させる、水素の製造方法。
A method for producing hydrogen using the structure catalyst obtained by the method for producing a structure catalyst according to claim 3,
The structural catalyst is disposed inside the reforming reactor, and current is passed through the metal support to heat the structural catalyst, and a raw material gas containing hydrocarbon and water is introduced into the reforming reactor. A method for producing hydrogen by reforming reaction.
JP2018568064A 2017-02-17 2018-01-24 Method for producing structure catalyst, and method for producing hydrogen using structure catalyst Pending JPWO2018150823A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017027885 2017-02-17
JP2017027885 2017-02-17
PCT/JP2018/002086 WO2018150823A1 (en) 2017-02-17 2018-01-24 Method for producing structured catalyst and method for producing hydrogen using structured catalyst

Publications (1)

Publication Number Publication Date
JPWO2018150823A1 true JPWO2018150823A1 (en) 2019-12-12

Family

ID=63170157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018568064A Pending JPWO2018150823A1 (en) 2017-02-17 2018-01-24 Method for producing structure catalyst, and method for producing hydrogen using structure catalyst

Country Status (3)

Country Link
JP (1) JPWO2018150823A1 (en)
TW (1) TW201840365A (en)
WO (1) WO2018150823A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102467320B1 (en) * 2020-09-24 2022-11-16 한국과학기술연구원 A hydrogen generation catalyst comprising a nickel-aluminum intermetallic compound and the method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003144920A (en) * 2001-11-15 2003-05-20 Hideo Kameyama Method for manufacturing alumina carrier excellent in heat resistance
WO2005089939A1 (en) * 2004-03-19 2005-09-29 Tokyo University Of Agriculture And Technology Tlo Co., Ltd. Catalyst for reducing nitrogen oxides, catalytic article using the same and method for reducing nitrogen oxides in exhaust gas
JP2011031162A (en) * 2009-07-31 2011-02-17 Tokyo Univ Of Agriculture & Technology Plate-shaped nickel catalyst object for steam reforming reaction of hydrocarbon
CN102247849A (en) * 2011-05-24 2011-11-23 上海应用技术学院 Alumina-nickel catalytic composite membrane and preparation method and application thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003144920A (en) * 2001-11-15 2003-05-20 Hideo Kameyama Method for manufacturing alumina carrier excellent in heat resistance
WO2005089939A1 (en) * 2004-03-19 2005-09-29 Tokyo University Of Agriculture And Technology Tlo Co., Ltd. Catalyst for reducing nitrogen oxides, catalytic article using the same and method for reducing nitrogen oxides in exhaust gas
JP2011031162A (en) * 2009-07-31 2011-02-17 Tokyo Univ Of Agriculture & Technology Plate-shaped nickel catalyst object for steam reforming reaction of hydrocarbon
CN102247849A (en) * 2011-05-24 2011-11-23 上海应用技术学院 Alumina-nickel catalytic composite membrane and preparation method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L. ZHOU ET AL.: "A novel catalyst with plate-type anodic alumina supports, Ni/NiAl2O4/γ-Al2O3/alloy, for steam refor", APPLIED CATALYSIS A: GENERAL, vol. 347, JPN6013025550, 2008, pages 200 - 207, XP023613567, ISSN: 0004661756, DOI: 10.1016/j.apcata.2008.06.007 *

Also Published As

Publication number Publication date
WO2018150823A1 (en) 2018-08-23
TW201840365A (en) 2018-11-16

Similar Documents

Publication Publication Date Title
Juarez et al. Nanoporous metals with structural hierarchy: A review
Yougui et al. Non-Pt anode catalysts for alkaline direct alcohol fuel cells
JPWO2018047961A1 (en) Method of manufacturing anode for alkaline water electrolysis and anode for alkaline water electrolysis
JP5531125B1 (en) Catalyst for polymer electrolyte fuel cell and method for producing the same
Myagmarjav et al. Research and development on membrane IS process for hydrogen production using solar heat
JP2007283184A (en) Hydrogen separation thin membrane and manufacturing method
Rezaei et al. Electrocatalytic activity of bimetallic PdAu nanostructure supported on nanoporous stainless steel surface using galvanic replacement reaction toward the glycerol oxidation in alkaline media
JP6741545B2 (en) Catalyst for polymer electrolyte fuel cell and method for producing the same
JP2007237090A (en) Catalytic body using anodized aluminum film
WO2018150823A1 (en) Method for producing structured catalyst and method for producing hydrogen using structured catalyst
WO2019181681A1 (en) Production method for structured catalyst and hydrogen production method using structured catalyst
JP2008126151A (en) Catalytic body using anodic aluminum oxide film
Samadi et al. Plasma electrolytic oxidation layers as alternative supports for metallic catalysts used in oxidation reaction for environmental application
JP5489508B2 (en) Hydrogen catalyst material
Wang et al. Facile and green sculptured engineering of 3D hierarchical porous metals via gaseous oxidation-reduction and their use in efficient oxygen evolution reactions
JPWO2020049851A1 (en) Method for manufacturing metal porous body, fuel cell and metal porous body
JP5726466B2 (en) Catalyst carrier, catalyst body and method for producing them
JP2023095833A (en) Electrode for chlorine generation
CN112103519B (en) Porous nickel-loaded perovskite catalyst
JPH02144154A (en) Heat conductive catalytic body and production thereof
US11548067B2 (en) Method for producing an open-pored metal body having an oxide layer and metal body produced by said method
KR100462286B1 (en) Water Gas Shift Catalyst with Ceramic on Metal Morphology and Method for Manufacturing the Same
JP6783292B2 (en) Composite wire type catalyst member and catalyst reactor for hydrogen production using this
JP5880909B2 (en) Method for producing metal catalyst carrier and method for producing metal catalyst body
JP3989228B2 (en) Method for producing alumina carrier with excellent heat resistance

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190710

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220607