JP3989228B2 - Method for producing alumina carrier with excellent heat resistance - Google Patents

Method for producing alumina carrier with excellent heat resistance Download PDF

Info

Publication number
JP3989228B2
JP3989228B2 JP2001349693A JP2001349693A JP3989228B2 JP 3989228 B2 JP3989228 B2 JP 3989228B2 JP 2001349693 A JP2001349693 A JP 2001349693A JP 2001349693 A JP2001349693 A JP 2001349693A JP 3989228 B2 JP3989228 B2 JP 3989228B2
Authority
JP
Japan
Prior art keywords
catalyst
reactor
aluminum
metal
catalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001349693A
Other languages
Japanese (ja)
Other versions
JP2003144920A (en
Inventor
秀雄 亀山
ショヒラット スティック
修一 川手
浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Shibaura Machinery Corp
Original Assignee
IHI Shibaura Machinery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Shibaura Machinery Corp filed Critical IHI Shibaura Machinery Corp
Priority to JP2001349693A priority Critical patent/JP3989228B2/en
Publication of JP2003144920A publication Critical patent/JP2003144920A/en
Application granted granted Critical
Publication of JP3989228B2 publication Critical patent/JP3989228B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は耐熱性に優れたアルミナ担体の製造方法に関し、特に機械的強度に優れるのみならず、高温における耐久性にも優れたアルミナ触媒担体の製造方法に関する。
【0002】
【従来の技術】
アルミニウム板を陽極酸化し、得られた多孔質陽極酸化被膜を熱水処理してそのBET表面積を増大させ、該表面に触媒を担持させてなる触媒は公知である(特開平2−144154)。
このような面状触媒は熱伝導性に優れるため、熱交換能を有する反応室の壁材等に使用するのに好適であるが、その母材がアルミニウムであるため、強度が小さい上融点が低いので耐熱性に劣り、通常、200℃までが使用限度とされていた。更に、アルミニウムが外部表面に露出している場合には、その部分から腐食が進行するという問題もあった。
【0003】
そこで、強度及び耐熱性を改善するために、クラッド工法でアルミニウムをステンレスに圧延して直接結合させ、得られた基板を陽極酸化したものを使用することが試みられた。しかしながら、この場合には陽極酸化時に、ステンレスとアルミニウムが剥離する場合が極めて多く、陽極酸化の成功率が低い。また陽極酸化が一応成功した場合でも、基板の強度は増すものの、アルミナとステンレスの熱膨張率の差から、高温にさらされたときにアルミナ皮膜がステンレス板から剥離するので、耐熱性が十分でないと言う欠点があった。
【0004】
そこで、上記の欠点を改善するために、ステンレス板にアルミニウムを溶射した基板を使用することも試みられているが、この場合には、製造に際して大型の装置が必要である上、均一な厚みで表面の細孔が揃った多孔質のアルミナ皮質を形成させることが出来ない。従って触媒担持量が少なくなるのみならず、耐熱性も十分ではないという欠点があった。
【0005】
これらの欠点は、ステンレス板の少なくとも一方の面にアルミナ層を有するプレート状アルミナ担体であって、前記ステンレス板とアルミナ層の界面にアルミニウム成分及び鉄成分が存在する拡散層を有すると共に、該拡散層中のアルミニウム及び鉄の含有量がなだらかに変化していることを特徴とする耐熱性に優れたプレート状アルミナ担体(特開平8−281125号公報)によって大幅に改善された。この耐熱性の改善は、特に後焼成の前に水和処理をした場合に著しい。しかしながら、このアルミナ担体の耐熱性も約700℃が限度であり、近年の燃料電池の実用化技術の進展に伴って重要性が増大しているメタンの改質反応等、700℃以上の高温で行われる重要な反応には使用することが出来ないという欠点があった。
【0006】
【発明が解決しようとする課題】
そこで本発明者等は、アルミクラッド材の耐熱性を更に改善すべく鋭意検討した結果、水和処理前の陽極酸化面に細孔拡大化処理を施すことにより、得られたアルミナ担体の耐熱性が更に改善されることを見出し、本発明に到達した。
従って本発明の目的は、機械的強度に優れるのみならず、700℃以上の高温における使用にも耐え得る、耐熱性触媒反応器を提供することにある。
【0007】
【課題を解決するための手段】
本発明の上記の目的は、金属の表面にアルミナ層を介して触媒を担持してなる触媒材料の前記触媒面を反応器内側として有する触媒反応器において、前記触媒材料が、Mg、Cr、Mo、W、Mn、Fe、Co、Ni、Ti、Zr、V、Cu、Ag、Zn、Bi、Sn、Pb、Sbの中から選択された単体又は合金、若しくはこれらの金属を重合させた金属からなる群の中から選択される金属表面にアルミニウム層を設けた後、400℃〜600℃で1〜10時間前焼成し、該焼成された金属の前記アルミニウム表面を陽極酸化し、次いで酸性水溶液を用いて該陽極酸化によって生じた表面細孔を拡大化処理した後、洗浄に換えて、又は洗浄した後、水蒸気若しくは5〜100℃の水を用いて水和処理し、次いで350℃以上で1時間以上後焼成して形成したアルミナ表面に触媒を担持させてなる触媒材料であり、700℃以上の高温における使用に耐え得ることを特徴とする、耐熱性触媒反応器によって達成された。本発明においては、特に、前記表面細孔の拡大化処理が、pHが3〜6.5、温度5℃〜80℃の酸性浴中に1〜6時間浸漬することによって行われることが好ましく、陽極酸化の前に行う前焼成を、荷重下に行うことが好ましい。また、前記触媒材料が、ハニカム状またはコルゲートフィン状に形成されてなることが好ましい。
【0008】
【発明の実施の形態】
本発明のクラッド材は、表面にアルミニウム層を設けることの出来る金属表面にアルミニウム層を設けてなる担体である。その形状は、板状、棒状、筒状、リボン状、ハニカム状等の何れの形状であっても良い。上記した、表面にアルミニウム層を設けることの出来る金属は、Mg、Cr、Mo、W、Mn、Fe、Co、Ni、Ti、Zr、V、Cu、Ag、Zn、Bi、Sn、Pb、Sbの中から選択された単体又は合金、若しくはこれらの金属を重合させた金属であるが、本発明においては、耐熱性の観点から、特にステンレス又はニッケルクロム合金が好ましい。
【0009】
これらの金属表面にアルミニウム層を形成させる方法は、非水メッキ、圧着、蒸着、どぶ付け、溶射、圧延(クラッド法)等の公知の方法の何れであっても良いが、厚みの均一性及び製造容易性の観点から、圧延法を用い、金属表面にアルミニウム板又はアルミニウム箔を貼り合わせることが好ましい。アルミニウム層の厚みは5μm以上であれば良いが、10〜300μmであることが好ましく、特に30〜200μmであることが好ましい。但し、本発明におけるアルミニウムには、陽極酸化が可能なアルミニウム合金を含めるものとする。筒状、ハニカム状等の形状のクラッド材は、板状クラッド材をそれらの形状に加工することによって得られる。
【0010】
上記のようにして調製したクラッド材(クラッド法を用いた場合に限定されない)は、金属層とアルミニウム層の界面がかなりはっきりしており、剥がれ易い。そこで、本発明においては、上記クラッド材を400℃〜600℃、好ましくは450℃〜550℃で1〜10時間焼成し(前焼成)、金属層側の原子とアルミニウム層側の原子を互いに拡散させて、前記界面を中心に拡散層を形成させる。前焼成温度が400℃未満では良好な拡散層を形成させることが出来ない。また、焼成時間は、1時間未満では剥離防止効果に乏しく、10時間以上焼成することは不経済であるので、特に5〜9時間程度とすることが好ましい。尚、焼成は空気中で行っても不活性ガス中で行っても良い。
【0011】
アルミニウム表面の陽極酸化は、公知の陽極酸化技術を用いて容易に行うことができる。尚、通常、陽極酸化の直前に、アルミニウム表面を清浄にする為に、アルカリ水溶液を用いて表面処理し、次いで酸性水溶液で処理を行う。
本発明における陽極酸化に際しては、処理液として、例えばクロム酸、硫酸等の酸化性の強い酸を使用することが好ましい。これによって、アルミニウム層をすべてアルミナ層に変えると共に、必要に応じて設けられた拡散層内部にまで陽極酸化を進行させ、拡散層内部にまで酸素原子を拡散させることが容易となる。尚、処理液の酸濃度は適宜決定すれば良く、例えばクロム酸を用いた場合には2〜4重量%とすることが好ましい。
【0012】
陽極酸化の条件は、アルミナ層のBET表面積が大きくなるように適宜設定すれば良いが、本発明においては、陽極酸化の処理液温度を、0〜50℃、特に常温〜40℃とすることが好ましい。0℃未満ではBET表面積があまり大きくならず、50℃を越えると溶解が激しく、経済的に酸化膜を形成させることが困難となる。又、この陽極酸化の処理時間は処理条件によっても異なるが、例えば2.5重量%のクロム酸水溶液を処理液とし、処理浴温度を38℃、電流密度を19.0A/mとした場合には2時間以上、特に4時間以上とすることが好ましい。
【0013】
本発明では、陽極酸化後350℃以上で1時間以上、好ましくは、450℃〜550℃で更に後焼成を行う。これにより陽極酸化皮膜をγ−アルミナ層とし、触媒担体表面として好ましいものとすると共に、前記拡散層中の拡散原子の濃度変化をよりなだらかなものとする。しかしながら、これだけではメタンの改質反応のような700℃〜800℃で行う反応に耐えられる程の耐熱性は得られない。
【0014】
そこで本発明においては、前記後焼成前の陽極酸化皮膜表面のBET表面積を増大させると共に耐熱性を改善する為に、酸性水溶液を用いて陽極酸化皮膜中の細孔を拡大させる細孔拡大処理を行う。ここで使用する酸性水溶液としては、前記陽極酸化時に使用する処理液と同じものの中から適宜選択して使用することが出来る。従って、陽極酸化の後、同じ処理液中で引き続き細孔拡大処理をすることも出来る。この細孔拡大処理の温度と時間は、処理液として使用する酸の種類や濃度によって適宜設定すれば良い。好ましい条件はpH3〜6である。例えば4重量%の蓚酸を20℃で用いる場合には、約90分以上必要であるが120分で十分である。
【0015】
細孔拡大処理工程を導入することにより何故耐熱性が増大するかは必ずしも明らかではないが、細孔が拡大化されることによって、続いて行われる水和処理が細孔内の深部迄行われアルミナ層の深部が柔らかくなる結果、金属とアルミナ層との熱膨張率の違いを吸収することが可能となり、700℃以上に加熱された場合でも金属表面からアルミナ層が剥離することが防止されるものと考えられる。上記水和処理は、水蒸気又は5〜100℃、好ましくは40〜100℃の水を用いて行う。処理温度及び処理時間は適宜設定することが出来る。水は蒸留水又はイオン交換水であることが好ましい。水和処理の後、前記後焼成が行われる。
【0016】
このようにして得られたアルミナ担体の該アルミナ表面に、公知の如く種々の触媒微粒子を担持させることにより、触媒体を得ることが出来る。従って、本発明のアルミナ担体がプレート状である場合には、アルミナ表面が内面となるように、ハニカム状、コルゲートフィン状等の反応器を形成した後、内面に触媒を担持させれば、触媒反応器となる。また、予め前焼成したクラッド材のアルミ層を内面として反応器を形成し、または、前焼成しないクラッド材のアルミ層を内面として反応器を形成してから前焼成した後、陽極酸化、細孔拡大処理、水和処理、後焼成、触媒担持の各工程を経て触媒反応器を得ることも出来る。
【0017】
【発明の効果】
本発明の製造方法によれば、700℃〜800℃という、従来耐えられないような高温での反応に対しても使用することの出来る、陽極酸化処理して得られるアルミナ層を有するアルミナ担体が得られる。また、細孔拡大処理は、陽極酸化時に用いる処理液をそのまま使用することも出来るので、従来の製造装置を特に改良することなく、そのまま使用することが出来るという利点もある。
【0018】
【実施例】
以下、本発明を実施例によって更に詳述するが、本発明はこれによって限定されるものではない。
【0019】
実施例1.
SUS430にAlを添加した(18%Cr、4%Al)厚さ290μmのステンレスを母材とし、その両面に厚さ40〜50μmのアルミニウムを張り合わせ、圧延機を使用してアルミニウム・ステンレスクラッド基材を得た。得られたクラッド基材を、3.5cm×12.5cmに切りだし、ゴールドファーネス炉を用いて、常温から6℃/分で500℃まで昇温させ、500℃で3時間、0.83g/cmの荷重下に、または、荷重をかけないで、空気中で焼成した。
【0020】
陽極酸化を行う際にクラッド基材の切断面から電流漏れしないようにマスキングを行った。尚、マスキングの密着性をよくするため、基板断面をビニールテープで覆った基板を、20重量%の水酸化ナトリウム溶液で3分間、30重量%硝酸水溶液に1分間浸して表面処理を行った。次いで、前処理としての2分間陽極酸化を行って表面を粗面化した後、イオン交換水で洗浄し、乾燥させ、再度陽極酸化以外の部分にマスキング剤を塗り、約半日、室温で乾燥させた。
【0021】
上記の如く前処理した基板を、2.5%のクロム酸水溶液を用いて、液温30℃、電流密度15.0A/mで12時間陽極酸化を行った。
荷重をかけずに前焼成した場合の陽極酸化の成功率は約33%であり、荷重をかけた場合の成功率は約91%であった。尚、前焼成を行わない場合には、陽極酸化後の試料に、ステンレス層とアルミナ層の界面で部分的な剥離が見られた。
【0022】
陽極酸化後の基材を、4重量%の蓚酸を用い、20℃で2時間細孔拡大処理を行い、次いで80℃のイオン交換水中に1時間浸漬して水和処理した。全体の液量は、何れの処理の場合も液表比(見かけ表面あたりの液量)が7.2で一定となるように行った。
得られた水和処理後の基板を水洗いし、室温で1日乾燥した後、常温から6℃/分で昇温させて500℃とし、500℃で3時間焼成し、本発明のプレート状アルミナ担体を得た。
【0023】
比較例1.
細孔拡大処理を行わなかった他は実施例1と同様にしてプレート状アルミナ担体を得た。
実施例及び比較例で得られた担体を室温から昇温速度20℃/分で820℃迄昇温し、この温度で2時間維持する耐熱試験を30回行ったところ、実施例1で得られた本発明のアルミナ担体の場合にはアルミナ層の剥離が観察されなかったのに対し、比較例1で得られた担体の場合には、アルミナ層は殆ど剥離した。この結果は、本発明の有効性を実証するものである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an alumina carrier excellent in heat resistance, and particularly relates to a method for producing an alumina catalyst carrier excellent not only in mechanical strength but also in durability at high temperatures.
[0002]
[Prior art]
A catalyst body is known in which an aluminum plate is anodized, the resulting porous anodic oxide coating is hydrothermally treated to increase its BET surface area, and a catalyst is supported on the surface (Japanese Patent Laid-Open No. 2-144154). .
Since such a planar catalyst body is excellent in thermal conductivity, it is suitable for use as a wall material of a reaction chamber having heat exchange ability, but since its base material is aluminum, its upper melting point is low in strength. , The heat resistance is inferior, and the use limit is usually up to 200 ° C. Further, when aluminum is exposed on the outer surface, there is also a problem that corrosion proceeds from that portion.
[0003]
Therefore, in order to improve the strength and heat resistance, it has been attempted to use an anodized substrate obtained by rolling aluminum directly to stainless steel by a clad method and directly bonding it. However, in this case, stainless steel and aluminum often peel off during anodization, and the success rate of anodization is low. Even if anodization is successful, the strength of the substrate will increase, but due to the difference in thermal expansion coefficient between alumina and stainless steel, the alumina coating will peel off from the stainless steel plate when exposed to high temperatures, so the heat resistance is not sufficient. There was a drawback.
[0004]
Therefore, in order to improve the above-mentioned drawbacks, it has been attempted to use a substrate in which aluminum is sprayed on a stainless steel plate. In this case, however, a large-scale apparatus is required for manufacturing, and a uniform thickness is required. A porous alumina cortex with uniform pores on the surface cannot be formed. Accordingly, there is a drawback that not only the amount of catalyst supported is reduced, but also the heat resistance is not sufficient.
[0005]
These disadvantages are a plate-like alumina carrier having an alumina layer on at least one surface of a stainless steel plate, having a diffusion layer in which an aluminum component and an iron component are present at the interface between the stainless steel plate and the alumina layer, and the diffusion This was greatly improved by a plate-like alumina support (Japanese Patent Laid-Open No. 8-281125) having excellent heat resistance, characterized in that the contents of aluminum and iron in the layer changed gently. This improvement in heat resistance is particularly remarkable when the hydration treatment is performed before post-baking. However, the heat resistance of the alumina carrier is limited to about 700 ° C., and the reforming reaction of methane, which has become more important with the progress of practical technology of fuel cells in recent years, is used at a high temperature of 700 ° C. or higher. The important reaction carried out has the disadvantage that it cannot be used.
[0006]
[Problems to be solved by the invention]
Therefore, as a result of intensive studies to further improve the heat resistance of the aluminum clad material, the present inventors have carried out pore enlargement treatment on the anodized surface before hydration treatment , and thus the heat resistance of the obtained alumina support. Has been found to be further improved, and the present invention has been achieved.
Accordingly, an object of the present invention is to provide a heat-resistant catalytic reactor that not only has excellent mechanical strength but can withstand use at a high temperature of 700 ° C. or higher.
[0007]
[Means for Solving the Problems]
The above object of the present invention is to provide a catalytic reactor having the catalytic surface of a catalytic material formed by supporting a catalyst on a metal surface via an alumina layer as the inside of the reactor, wherein the catalytic material is Mg, Cr, Mo , W, Mn, Fe, Co, Ni, Ti, Zr, V, Cu, Ag, Zn, Bi, Sn, Pb, Sb, or a metal obtained by polymerizing these metals. An aluminum layer is provided on a metal surface selected from the group consisting of the following, followed by pre-baking at 400 to 600 ° C. for 1 to 10 hours , anodizing the aluminum surface of the fired metal , and then adding an acidic aqueous solution. after enlarging treatment of the surface pores caused by anodising using, instead of washing, or washing after, and hydrated with steam or 5 to 100 ° C. water, then with 350 ° C. or higher 1 More than an hour later This is a catalyst material obtained by supporting a catalyst on the surface of an alumina formed by calcination, and has been achieved by a heat-resistant catalyst reactor characterized by being able to withstand use at a high temperature of 700 ° C. or higher . In the present invention, the surface pore enlargement treatment is particularly preferably performed by immersing in an acidic bath having a pH of 3 to 6.5 and a temperature of 5 ° C. to 80 ° C. for 1 to 6 hours, It is preferable to perform pre-baking performed before anodizing under a load. The catalyst material is preferably formed in a honeycomb shape or a corrugated fin shape .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The clad material of the present invention is a carrier formed by providing an aluminum layer on a metal surface on which an aluminum layer can be provided. The shape may be any shape such as a plate shape, a rod shape, a cylinder shape, a ribbon shape, and a honeycomb shape. The metals that can provide an aluminum layer on the surface are Mg, Cr, Mo, W, Mn, Fe, Co, Ni, Ti, Zr, V, Cu, Ag, Zn, Bi, Sn, Pb, and Sb. From the standpoint of heat resistance, stainless steel or nickel-chromium alloy is particularly preferable in the present invention.
[0009]
The method for forming the aluminum layer on these metal surfaces may be any known method such as non-water plating, pressure bonding, vapor deposition, dripping, thermal spraying, rolling (clad method), etc. From the viewpoint of manufacturability, it is preferable to use a rolling method and attach an aluminum plate or aluminum foil to the metal surface. The thickness of the aluminum layer may be 5 μm or more, preferably 10 to 300 μm, particularly preferably 30 to 200 μm. However, the aluminum in the present invention includes an aluminum alloy that can be anodized. A clad material having a cylindrical shape or a honeycomb shape can be obtained by processing a plate-like clad material into those shapes.
[0010]
The clad material prepared as described above (not limited to the case where the clad method is used) has a very clear interface between the metal layer and the aluminum layer and is easily peeled off. Therefore, in the present invention, the cladding material to 400 ° C. to 600 ° C., preferably at form sintered between 1-10 hours at 450 ° C. to 550 ° C. (before firing), the metal layer side atoms and the aluminum layer side atoms is diffused to each other, Ru to form a diffusion layer around the interface. If the pre-baking temperature is less than 400 ° C., a good diffusion layer cannot be formed. Also, the firing time is less than 1 hour, and the effect of preventing peeling is poor, and firing for 10 hours or more is uneconomical, so it is particularly preferably about 5 to 9 hours. The firing may be performed in air or in an inert gas.
[0011]
Anodization of the aluminum surface can be easily performed using a known anodization technique. In general, immediately before anodization, in order to clean the aluminum surface, a surface treatment is performed using an alkaline aqueous solution, and then a treatment is performed using an acidic aqueous solution.
In the anodic oxidation in the present invention, it is preferable to use a highly oxidizing acid such as chromic acid or sulfuric acid as the treatment liquid. This makes it easy to change all the aluminum layers to alumina layers and to advance anodic oxidation to the inside of the diffusion layer provided as necessary, thereby diffusing oxygen atoms to the inside of the diffusion layer. In addition, what is necessary is just to determine the acid concentration of a process liquid suitably, For example, when using chromic acid, it is preferable to set it as 2 to 4 weight%.
[0012]
The anodizing conditions may be set as appropriate so that the BET surface area of the alumina layer is increased, but in the present invention, the anodizing treatment liquid temperature is set to 0 to 50 ° C., particularly normal temperature to 40 ° C. preferable. If it is less than 0 ° C., the BET surface area does not become very large, and if it exceeds 50 ° C., the dissolution becomes severe and it becomes difficult to economically form an oxide film. The treatment time for this anodic oxidation varies depending on the treatment conditions. For example, when a 2.5% by weight chromic acid aqueous solution is used as the treatment liquid, the treatment bath temperature is 38 ° C., and the current density is 19.0 A / m 2. Is preferably 2 hours or more, particularly 4 hours or more.
[0013]
In the present invention, after the anodic oxidation 3 50 ° C. or higher for 1 hour or more, preferably, it intends row post baking further 450 ° C. to 550 ° C.. This makes the anodic oxide film a γ-alumina layer, which is preferable as the surface of the catalyst carrier, and makes the change in the concentration of diffusion atoms in the diffusion layer more gentle. However, heat resistance sufficient to withstand a reaction performed at 700 ° C. to 800 ° C. such as a reforming reaction of methane cannot be obtained by this alone.
[0014]
Therefore, in the present invention, in order to increase the BET surface area of the surface of the anodized film before post-baking and improve the heat resistance, a pore enlargement process for expanding the pores in the anodized film using an acidic aqueous solution is performed. Do. The acidic aqueous solution used here can be appropriately selected from the same treatment solution used during the anodic oxidation. Therefore, after anodic oxidation, the pore enlargement treatment can be continued in the same treatment liquid. What is necessary is just to set suitably the temperature and time of this pore expansion process according to the kind and density | concentration of the acid which are used as a process liquid. Preferred conditions are pH 3-6. For example, when 4% by weight of succinic acid is used at 20 ° C., about 90 minutes or more is necessary, but 120 minutes is sufficient.
[0015]
It is not always clear why the heat resistance is increased by introducing the pore enlargement treatment step, but the subsequent hydration treatment is carried out to the deep part in the pore by expanding the pore. As a result of the softening of the deep part of the alumina layer, it becomes possible to absorb the difference in thermal expansion coefficient between the metal and the alumina layer, and the alumina layer is prevented from peeling off from the metal surface even when heated to 700 ° C. or higher. It is considered a thing. The said hydration process is performed using water vapor | steam or 5-100 degreeC, Preferably it is 40-100 degreeC water. The processing temperature and processing time can be set as appropriate. The water is preferably distilled water or ion exchange water. After the hydration treatment, the post-baking is performed.
[0016]
A catalyst body can be obtained by supporting various catalyst fine particles on the alumina surface of the alumina support thus obtained, as is well known. Therefore, when the alumina carrier of the present invention is in the form of a plate, a catalyst such as a honeycomb or corrugated fin is formed so that the alumina surface becomes the inner surface, and then the catalyst is supported on the inner surface. It becomes a reactor. In addition, a reactor is formed with an aluminum layer of a pre-fired clad material as an inner surface, or after a reactor is formed with an aluminum layer of a clad material that is not pre-fired as an inner surface, and then pre-fired, anodization A catalytic reactor can also be obtained through each step of expansion treatment, hydration treatment, post-calcination, and catalyst support.
[0017]
【The invention's effect】
According to the production method of the present invention, there is provided an alumina carrier having an alumina layer obtained by anodizing, which can be used for a reaction at a high temperature such as 700 ° C. to 800 ° C. that cannot be conventionally achieved. can get. In addition, the pore enlargement treatment can be used as it is without any particular improvement of the conventional manufacturing apparatus because the treatment liquid used during anodization can be used as it is.
[0018]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in full detail, this invention is not limited by this.
[0019]
Example 1.
SUS430 with Al added (18% Cr, 4% Al) 290μm thick stainless steel as a base material, 40-50μm thick aluminum are laminated on both sides, and using a rolling mill, an aluminum / stainless steel clad substrate Got. The obtained clad substrate was cut out to 3.5 cm × 12.5 cm, heated from a normal temperature to 500 ° C. at 6 ° C./min using a gold furnace, and then at 500 ° C. for 3 hours, 0.83 g / Firing was performed in air with or without a load of cm 2 .
[0020]
Masking was performed so as not to leak current from the cut surface of the clad substrate when anodizing. In order to improve the adhesion of masking, a substrate whose surface was covered with vinyl tape was immersed in a 20 wt% sodium hydroxide solution for 3 minutes and a 30 wt% nitric acid aqueous solution for 1 minute to perform surface treatment. Next, after anodizing for 2 minutes as a pretreatment to roughen the surface, it is washed with ion-exchanged water, dried, and a portion other than the anodized is coated with a masking agent and dried at room temperature for about half a day. It was.
[0021]
The substrate pretreated as described above was anodized using a 2.5% chromic acid aqueous solution at a liquid temperature of 30 ° C. and a current density of 15.0 A / m 2 for 12 hours.
The success rate of anodic oxidation when pre-baked without applying a load was about 33%, and the success rate when applied with a load was about 91%. In the case where pre-firing was not performed, partial peeling was observed at the interface between the stainless steel layer and the alumina layer in the sample after anodization.
[0022]
The substrate after anodization was subjected to pore expansion treatment at 20 ° C. for 2 hours using 4% by weight of oxalic acid, and then dipped in ion exchange water at 80 ° C. for 1 hour to be hydrated. The total liquid volume was adjusted so that the liquid surface ratio (liquid volume per apparent surface) was constant at 7.2 in all treatments.
The obtained hydrated substrate was washed with water, dried at room temperature for 1 day, heated from room temperature at 6 ° C./min to 500 ° C., and calcined at 500 ° C. for 3 hours. A carrier was obtained.
[0023]
Comparative Example 1
A plate-like alumina support was obtained in the same manner as in Example 1 except that the pore enlargement treatment was not performed.
The carrier obtained in the examples and comparative examples was heated from room temperature to 820 ° C. at a heating rate of 20 ° C./min, and a heat resistance test was carried out 30 times at this temperature for 2 hours. In the case of the alumina carrier of the present invention, no peeling of the alumina layer was observed, whereas in the case of the carrier obtained in Comparative Example 1, the alumina layer was almost peeled off. This result demonstrates the effectiveness of the present invention.

Claims (5)

金属の表面にアルミナ層を介して触媒を担持してなる触媒材料の前記触媒面を反応器内側として有する触媒反応器において、前記触媒材料が、Mg、Cr、Mo、W、Mn、Fe、Co、Ni、Ti、Zr、V、Cu、Ag、Zn、Bi、Sn、Pb、Sbの中から選択された単体又は合金、若しくはこれらの金属を重合させた金属からなる群の中から選択される金属表面にアルミニウム層を設けた後、400℃〜600℃で1〜10時間前焼成し、該焼成された金属の前記アルミニウム表面を陽極酸化し、次いで酸性水溶液を用いて該陽極酸化によって生じた表面細孔を拡大化処理した後、洗浄に換えて、又は洗浄した後、水蒸気若しくは5〜100℃の水を用いて水和処理し、次いで350℃以上で1時間以上後焼成して形成したアルミナ表面に触媒を担持させてなる触媒材料であり、700℃〜800℃の高温における使用に耐え得ることを特徴とする、耐熱性触媒反応器。 In a catalytic reactor having the catalytic surface of a catalytic material formed by supporting a catalyst on a metal surface via an alumina layer as the inner side of the reactor, the catalytic material is Mg, Cr, Mo, W, Mn, Fe, Co , Ni, Ti, Zr, V, Cu, Ag, Zn, Bi, Sn, Pb, Sb, selected from the group consisting of simple metals or alloys, or metals obtained by polymerizing these metals After the aluminum layer was provided on the metal surface, pre-fired at 400 ° C. to 600 ° C. for 1 to 10 hours, the aluminum surface of the fired metal was anodized, and then produced by the anodic oxidation using an acidic aqueous solution After expanding the surface pores, instead of washing, or after washing, hydrated with water vapor or water at 5 to 100 ° C. and then post-fired at 350 ° C. or higher for 1 hour or longer. Aluminum A heat-resistant catalytic reactor , characterized in that it is a catalyst material having a catalyst supported on its surface and can withstand use at a high temperature of 700 ° C to 800 ° C. 前記表面細孔の拡大化処理が、pHが3〜6.5、温度5℃〜80℃の酸性浴中に1〜6時間浸漬することによって行われる、請求項1に記載された耐熱性触媒反応器。 The heat-resistant catalyst according to claim 1, wherein the surface pore enlargement treatment is performed by immersing in an acidic bath having a pH of 3 to 6.5 and a temperature of 5 ° C to 80 ° C for 1 to 6 hours. Reactor. 前記前焼成が荷重下になされる、請求項1又は2に記載された耐熱性触媒反応器。 The heat-resistant catalytic reactor according to claim 1 or 2, wherein the pre-calcination is performed under a load . 前記触媒材料がハニカム状またはコルゲートフィン状に形成されてなる、請求項1〜3の何れかに記載された耐熱性触媒反応器。 The heat-resistant catalyst reactor according to any one of claims 1 to 3, wherein the catalyst material is formed in a honeycomb shape or a corrugated fin shape . Mg、Cr、Mo、W、Mn、Fe、Co、Ni、Ti、Zr、V、Cu、Ag、Zn、Bi、Sn、Pb、Sbの中から選択された単体又は合金、若しくはこれらの金属を重合させた金属からなる群の中から選択される金属表面にアルミニウム層を設けた後、荷重下に400℃〜600℃で1〜10時間前焼成してなる金属材料の前記アルミニウム層を内面として反応器を形成した後、前記アルミニウム層表面を陽極酸化し、次いで酸性水溶液を用いて該陽極酸化によって生じた表面細孔を拡大化処理した後、洗浄に換えて、又は洗浄した後、水蒸気若しくは5〜100℃の水を用いて水和処理し、次いで350℃以上で1時間以上後焼成して形成したアルミナ表面に触媒を担持させてなる、請求項1、2又は4の何れかに記載された耐熱性触媒反応器。 A single element or alloy selected from Mg, Cr, Mo, W, Mn, Fe, Co, Ni, Ti, Zr, V, Cu, Ag, Zn, Bi, Sn, Pb, and Sb, or a metal thereof. After providing an aluminum layer on a metal surface selected from the group consisting of polymerized metals, the aluminum layer of the metal material obtained by pre-baking at 400 ° C. to 600 ° C. for 1 to 10 hours under the load is used as the inner surface After forming the reactor, the surface of the aluminum layer is anodized, and then the surface pores generated by the anodization are expanded using an acidic aqueous solution. was hydrated with 5 to 100 ° C. in water and then made by supporting a catalyst on the rear fired to form the alumina surface more than one hour at 350 ° C. or higher, according to claim 1, 2 or 4 by heat Catalytic reactor.
JP2001349693A 2001-11-15 2001-11-15 Method for producing alumina carrier with excellent heat resistance Expired - Lifetime JP3989228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001349693A JP3989228B2 (en) 2001-11-15 2001-11-15 Method for producing alumina carrier with excellent heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001349693A JP3989228B2 (en) 2001-11-15 2001-11-15 Method for producing alumina carrier with excellent heat resistance

Publications (2)

Publication Number Publication Date
JP2003144920A JP2003144920A (en) 2003-05-20
JP3989228B2 true JP3989228B2 (en) 2007-10-10

Family

ID=19162322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001349693A Expired - Lifetime JP3989228B2 (en) 2001-11-15 2001-11-15 Method for producing alumina carrier with excellent heat resistance

Country Status (1)

Country Link
JP (1) JP3989228B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005105298A1 (en) * 2004-03-19 2005-11-10 Tokyo University Of Agriculture And Technology Tlo Co., Ltd. Method and device for treating nitrogen oxides
JP2006320893A (en) * 2005-04-18 2006-11-30 Tokyo Univ Of Agriculture & Technology Selective reduction catalyst for nitrogen oxide
WO2018150823A1 (en) * 2017-02-17 2018-08-23 住友精化株式会社 Method for producing structured catalyst and method for producing hydrogen using structured catalyst

Also Published As

Publication number Publication date
JP2003144920A (en) 2003-05-20

Similar Documents

Publication Publication Date Title
JPS61281861A (en) Oxidation resistant ferrous matrix foil and its production
JP3309971B2 (en) Manufacturing method of exhaust gas purifying catalyst
JP2002541323A5 (en)
JPH06126192A (en) Production of metallic foil coated with oxide
KR101528334B1 (en) a micro channel reactor and a fabricating method thereof
JPS624441A (en) Production of cordierite ceramic honeycomb catalytic body
JP3989228B2 (en) Method for producing alumina carrier with excellent heat resistance
JPS63232855A (en) Catalyst containing anodizing aluminum base material and manufacture thereof
JP3953944B2 (en) Metal foil and honeycomb structure
JP2002066337A (en) Catalyst provided with high heat-transfer capability and preparation process of the same catalyst
JP2002119856A (en) Anodized aluminum catalyst carrier having increased bet specific surface area and its manufacturing method
JP2000355789A (en) High porosity cellular three-dimensional metallic structure made of refractory alloy and its production
JPH08197B2 (en) Substrate for catalyst converter
JPH08281125A (en) Plate-like alumina carrier with high heat resistance, its manufacture, and catalyst body produced by carrying catalyst thereon
WO2018150823A1 (en) Method for producing structured catalyst and method for producing hydrogen using structured catalyst
JPH07289899A (en) Heat resistant substrate for catalyst body and its production
JPH0356147A (en) Preparation of catalyst carrier
JP2898308B2 (en) Continuous catalyst body and method for producing the same
JPH03284356A (en) Plane catalytic body and production thereof
JP3568889B2 (en) Catalyst formed on metal surface and method for forming catalyst on metal surface
JPS5959247A (en) Preparation of catalyst and carrier
JPH02143010A (en) Oxidation combustion with the use of heat conductivity catalyst
JP2003293196A (en) Electrode for electrolysis and production method therefor
JPS5852699B2 (en) Self-cleaning
JPH02277554A (en) Production of catalytic carrier made of sheet metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3989228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term