JPH03284356A - Plane catalytic body and production thereof - Google Patents

Plane catalytic body and production thereof

Info

Publication number
JPH03284356A
JPH03284356A JP2083797A JP8379790A JPH03284356A JP H03284356 A JPH03284356 A JP H03284356A JP 2083797 A JP2083797 A JP 2083797A JP 8379790 A JP8379790 A JP 8379790A JP H03284356 A JPH03284356 A JP H03284356A
Authority
JP
Japan
Prior art keywords
alumina
metal
catalyst
alloy
planar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2083797A
Other languages
Japanese (ja)
Inventor
Hideo Kameyama
秀雄 亀山
Ryoko Yamanaka
良子 山中
Tatsuo Kawasaki
川崎 龍夫
Shoji Doi
祥司 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Kawasaki Steel Corp filed Critical Osaka Gas Co Ltd
Priority to JP2083797A priority Critical patent/JPH03284356A/en
Publication of JPH03284356A publication Critical patent/JPH03284356A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To render catalytic activity at >=200 deg.C to a plane catalytic body and to improve the heat resistance and strength by supporting a metal having catalytic activity on the surface of a metal substrate made of an Al-contg. alloy. CONSTITUTION:A plane Al-contg. alloy is fired at a high temp., preferably 900-1,000 deg.C to form an alumina-based layer on the surface. The alloy is then hydrothermally treated at 50-350 deg.C and a metal having catalytic activity is supported on the alumina-based layer to produce a plane catalytic body. The metal may be supported during the hydrothermal treatment. The alumina-based layer is preferably coated with gamma-alumina before the metal is supported.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は触媒反応用の装置材料として使用することので
きる面状触媒体及びその製造方法に関し、更に詳しくは
面状のアルミニウム含有合金の表面に触媒を担持せしめ
た面状触媒体及びその製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a planar catalyst body that can be used as an equipment material for catalytic reactions, and a method for producing the same, and more particularly, to The present invention relates to a planar catalyst body having a catalyst supported thereon and a method for manufacturing the same.

(従来の技術) 本発明者等はケミカルヒートポンプ等の発熱反応器の壁
面材料に適した金属基盤触媒体を開発すべく、先に純ア
ルミニウム表面を有する金属を基盤とする様々な触媒体
及びその製造方法を提案した(特開昭62−23794
7号、特願昭63−297727号、特願平1−215
553号)。
(Prior Art) In order to develop a metal-based catalyst suitable for wall materials of exothermic reactors such as chemical heat pumps, the present inventors first developed various metal-based catalysts having a pure aluminum surface and their use. proposed a manufacturing method (Japanese Patent Application Laid-Open No. 62-23794)
No. 7, Japanese Patent Application No. 1987-297727, Japanese Patent Application No. 1-215
No. 553).

しかしながら、これ等の触媒体は少なくとも基盤表面が
アルミニウムであるため、耐熱性や強度の点で欠点を有
していた。
However, since at least the base surface of these catalyst bodies is made of aluminum, they have drawbacks in terms of heat resistance and strength.

本発明者等は上記の欠点を解決すべく鋭意検討を重ねた
結果、耐熱性及び高強度を有するアルミニムを含有する
合金を900〜1,200℃の高温で焼成した場合には
、該表面にアルミナを主成分とする層が形成されること
、この層を熱水処理することにより多孔質化した金属基
盤表面に触媒を担持せしめることにより触媒活性に優れ
た面状触媒体とすることができることを見出し本発明に
到達した。
The inventors of the present invention have made extensive studies to solve the above-mentioned drawbacks, and have found that when an alloy containing aluminum, which has heat resistance and high strength, is fired at a high temperature of 900 to 1,200 degrees Celsius, the surface A layer containing alumina as a main component is formed, and by treating this layer with hot water, a catalyst can be supported on the surface of the metal base, which has become porous, resulting in a planar catalyst with excellent catalytic activity. This discovery led to the present invention.

(発明が解決しようとする課題) 従って、本発明の第1の目的は、200°C以上の触媒
反応用の装置材料として使用することができる耐熱性及
び強度に優れた面状触媒体を提供することにある。
(Problems to be Solved by the Invention) Therefore, the first object of the present invention is to provide a planar catalyst body with excellent heat resistance and strength that can be used as an equipment material for catalytic reactions at temperatures of 200°C or higher. It's about doing.

本発明の第2の目的は、アルミニウムを含有し耐熱性及
び強度の高い金属表面に高活性触媒を担持せしめる面状
触媒体の製造方法を提供することにある。
A second object of the present invention is to provide a method for manufacturing a planar catalyst body in which a highly active catalyst is supported on the surface of a metal containing aluminum and having high heat resistance and strength.

(課題を解決するための手段) 本発明の上記の諸口的は、金属表面に触媒を担持せしめ
た面状触媒体であって、前記金属基盤がアルミニウム含
有合金であることを特徴とする面状触媒体、及びその製
造方法によって達成された。
(Means for Solving the Problems) The above aspects of the present invention are a planar catalyst body in which a catalyst is supported on a metal surface, the planar catalyst body being characterized in that the metal base is an aluminum-containing alloy. This was achieved by a catalyst and a method for producing the same.

本発明で使用するアルミニウム含有合金は、高温焼成に
より表面にアルミナを主成分とする被膜を形成せしめる
ことができる合金であれば良く、このような合金として
例えばリバーライトR2O−5SR(川崎製鉄■製画品
名)を挙げることができる。
The aluminum-containing alloy used in the present invention may be any alloy that can form a coating mainly composed of alumina on the surface by high-temperature firing. Examples of such an alloy include Riverite R2O-5SR (made by Kawasaki Steel Corporation). (Artwork name).

係るアルミニウム含有合金の表面にアルミナを主成分と
する層を形成せしめるには、該合金を900°C〜1,
200℃の範囲で焼成することにより形成せしめること
ができるが、特に、900℃〜1,000℃の範囲とす
ることが好ましい。
In order to form a layer mainly composed of alumina on the surface of such an aluminum-containing alloy, the alloy is heated at 900°C to 1,000°C.
Although it can be formed by firing at a temperature in the range of 200°C, it is particularly preferable to set the temperature in the range of 900°C to 1,000°C.

本発明においては、上記の如くして焼成したアルミニウ
ム含有合金を、更に、50〜350°Cの熱水又は水蒸
気によって処理して触媒体の表面積を更に増大せしめる
ことができる。この場合の熱水のpHは、7以上である
ことが好ましく、特に10〜12とすることが処理時間
を短縮する上で好ましい。
In the present invention, the aluminum-containing alloy fired as described above can be further treated with hot water or steam at 50 to 350°C to further increase the surface area of the catalyst body. In this case, the pH of the hot water is preferably 7 or higher, and particularly preferably 10 to 12 in order to shorten the treatment time.

熱水処理の時間は熱水のpHによっても異なるが、1時
間以上とすることが好ましく、約2時間処理することに
よりほぼpH値に関係なくBET表面積を顕著に増大さ
せることができる。
Although the duration of the hot water treatment varies depending on the pH of the hot water, it is preferably 1 hour or more, and by treating for about 2 hours, the BET surface area can be significantly increased almost regardless of the pH value.

本発明で使用する触媒活性を有する金属は特に限定され
るものではないが、例えば白金族金属、白金族金属の合
金、金、金合金、マンガン、鉄、亜鉛、銅、ニッケル、
ニッケル合金、コバルト及びコバルト合金、ルテニウム
等の中から選択することが好ましく、特に白金、パラジ
ウム、マンガン、亜鉛、鉄、ニッケル及びコバルトの中
から選択することが好ましい。又、これらの触媒物質を
組合わせることもできる。
The metals having catalytic activity used in the present invention are not particularly limited, but include, for example, platinum group metals, alloys of platinum group metals, gold, gold alloys, manganese, iron, zinc, copper, nickel,
Preferably, the material is selected from nickel alloys, cobalt and cobalt alloys, ruthenium, etc., particularly platinum, palladium, manganese, zinc, iron, nickel and cobalt. It is also possible to combine these catalyst materials.

尚、触媒活性を有する金属の粒径は約Inn〜1100
nであることが好ましく、特に約5nm〜50nmの範
囲であることが好ましい。
Incidentally, the particle size of the metal having catalytic activity is about Inn~1100
Preferably it is n, particularly preferably in the range of about 5 nm to 50 nm.

上記触媒活性を有する金属を前記焼成したアルミニム含
有合金基盤に担持せしめる方法としては、電着法、化学
的付着法、真空蒸着法、陰極スパッター法、金属スプレ
ー法及び金属クラッド法等の公知の方法の中から適宜選
択して採用することができる。
The method for supporting the catalytically active metal on the fired aluminum-containing alloy substrate includes known methods such as electrodeposition, chemical deposition, vacuum evaporation, cathode sputtering, metal spraying, and metal cladding. An appropriate selection can be made from among them.

上記の担持方法のうち、化学的付着法を採用する場合に
は、前記熱水処理と触媒活性を有する金属を担持せしめ
る工程とを同時に行うことができるので処理工程が簡略
化されて好ましいのみならず、理由は或・ずしも明確で
はないが、このような同時処理をした場合には触媒重量
単位あたりの触媒活性が特に増大するので好ましい。又
、電着法を採用する場合には、限界担持量以上の超微粒
子を基体表面に担持させるために、所望の超微粒子触媒
と共にアルミナゾルやシリカゾルの如き所謂陽性ゾルを
含有する溶液中に基体を陰極とし、基体表面に前記超微
粒子触媒を電着させることが好ましい。
Among the above-mentioned supporting methods, when a chemical adhesion method is adopted, the above-mentioned hot water treatment and the step of supporting a catalytically active metal can be carried out simultaneously, which simplifies the treatment steps and is preferable. Although the reason is not clear, such simultaneous treatment is preferable because the catalytic activity per unit weight of the catalyst is particularly increased. When electrodeposition is employed, the substrate is placed in a solution containing a so-called positive sol, such as alumina sol or silica sol, together with the desired ultrafine particle catalyst, in order to support the ultrafine particles in an amount exceeding the limit support amount on the surface of the substrate. It is preferable to use the ultrafine particle catalyst as a cathode and electrodeposit the ultrafine particle catalyst on the surface of the substrate.

本発明においては、触媒担体としての活性を更に高める
ために、熱水処理後又は熱水処理前にアルミナゾルやシ
リカゾルのような陽性ゾルを含有する溶液でコーティン
グ処理し、更に必要に応じて約350°Cで焼成すると
いう工程を加えても良い。
In the present invention, in order to further enhance the activity as a catalyst carrier, coating treatment is performed with a solution containing a positive sol such as alumina sol or silica sol after or before the hydrothermal treatment, and if necessary, about 350 A step of firing at °C may be added.

本発明の触媒体は単なる触媒として使用する他に、例え
ば熱交換の機能を持たせ、反応室の壁体として使用する
ことにより反応熱を直接的に外部に取り出す事もできる
等、種々の使用方法が可能であるので、使用方法に応じ
て、板状、リボン状、管状、ハニカム状等の形状とする
In addition to being used simply as a catalyst, the catalyst body of the present invention can be used in a variety of ways, such as by providing a heat exchange function and using it as a wall of a reaction chamber to directly extract the reaction heat to the outside. Depending on the method of use, it can be shaped into a plate, ribbon, tube, honeycomb, etc.

(効 果) 以上詳述した如く、本発明の面状触媒体は、アルミニウ
ム含有合金を金属基盤としているので、耐熱性及び強度
に優れ特に200°C以上の触媒反応用の装置材料に有
効である。
(Effects) As detailed above, since the planar catalyst body of the present invention has an aluminum-containing alloy as a metal base, it has excellent heat resistance and strength, and is particularly effective as an equipment material for catalytic reactions at temperatures of 200°C or higher. be.

又、本発明の面状触媒体はアルミニウム含有合金を単に
高温焼成するだけで容易にアルミナを主成分とする層を
該表面に形成せしめることができるので、陽極酸化法等
の他の方法に比し製造が容易である。
In addition, the planar catalyst of the present invention can easily form a layer mainly composed of alumina on the surface of an aluminum-containing alloy by simply firing it at a high temperature, so it is more effective than other methods such as anodization. It is easy to manufacture.

(実施例) 以下、本発明を実施例によって更に詳述するが、本発明
はこれによって限定されるものではない。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

参考例1゜ 厚さ100μmのアルミニウム含有合金(リバーライ)
R20−5SR:川崎製鉄■製画品名)を950℃で8
時間高温酸化したところ表面にアルミナを主成分とする
層が形成された。このアルミナを主成分とする層の比表
面積及び面積値を第1表に示す。
Reference example 1゜100μm thick aluminum-containing alloy (Riverly)
R20-5SR: Kawasaki Steel ■Product name) at 950℃ 8
When oxidized at high temperature for several hours, a layer mainly composed of alumina was formed on the surface. Table 1 shows the specific surface area and area value of this layer containing alumina as a main component.

第1表 参考例2゜ 参考例1で得られたアルミナを、主成分とする層を有す
るアルミニウム含有合金を、pHが11゜0、温度85
℃の熱水に2時間浸漬して熱水処理を行った後の、アル
ミナを主成分とする層の比表面積及び面積値を第1表に
示す。
Table 1 Reference Example 2゜An aluminum-containing alloy having a layer containing alumina as a main component obtained in Reference Example 1 was prepared at a pH of 11゜0 and a temperature of 85゜.
Table 1 shows the specific surface area and area value of the layer containing alumina as a main component after hot water treatment by immersion in hot water at .degree. C. for 2 hours.

参考例3゜ 7.5重量%のベーマイトアルミナ( Cataloid AS−3:触媒化学向上■社製商品
名)を2倍に希釈してスターラーで攪拌したアルミナゾ
ル溶液中に、参考例1で得られたアルミニウム含有合金
を常温で約1分間浸漬した後取り出して、1時間自然乾
燥して基盤表面にアルミナをコーティングした。次いで
、350°Cに設定した電気炉に該基盤を入れて1¥f
間焼成した。この基盤の面積値を第2表に示す。
Reference Example 3 7.5% by weight of boehmite alumina (Cataloid AS-3: Catalyst Chemistry Komatsu Co., Ltd. product name) was diluted to 2 times and stirred with a stirrer into an alumina sol solution. The aluminum-containing alloy was immersed at room temperature for about 1 minute, then taken out and air-dried for 1 hour to coat the substrate surface with alumina. Next, the substrate was placed in an electric furnace set at 350°C and heated for 1 yen.
Baked for a while. The area values of this base are shown in Table 2.

第2表 と同様にしてアルミナコーティング処理を行った。Table 2 Alumina coating treatment was performed in the same manner as above.

この基盤の面積値を測定した結果を表2に示す。Table 2 shows the results of measuring the area value of this base.

第2表の結果から、アルミナコーティング処理を行うこ
とにより面積値が約10倍に増大することが判明した。
From the results in Table 2, it was found that the area value increased about 10 times by performing the alumina coating treatment.

又、含浸処理を2回行うことにより、面積値がより増大
することも判明した。
It has also been found that the area value can be further increased by performing the impregnation treatment twice.

実施例1゜ 参考例4のアルミナコーティング処理を施した基盤をp
H9,8,85°C1白金濃度2.5X10−’ (g
−P t/me)の塩化白金酸水溶液中に2時間浸漬し
た。得られた触媒体の諸特性は第3表に示した通りであ
る。
Example 1゜The base coated with alumina from Reference Example 4 was
H9,8,85°C1 Platinum concentration 2.5X10-' (g
-Pt/me) in a chloroplatinic acid aqueous solution for 2 hours. The properties of the obtained catalyst are shown in Table 3.

比較例1 ステンレス基盤白金担持触媒体(エンゲルハルト社製)
の諸特性を実施例1と同様にして求めた結果を第3表に
示す。
Comparative Example 1 Stainless steel-based platinum supported catalyst (manufactured by Engelhard)
Table 3 shows the results of various characteristics obtained in the same manner as in Example 1.

参考例4゜ アルミナゾル溶液に2回浸漬する他は参考例3第3表 ンレス触媒体(比較例1)よりも高い反応速度定数を示
し、特に白金あたりの活性は、市販品の約2倍であるこ
とが確認された。これは、多孔質なアルミナを主成分と
する層に白金が高分散で担持されているためと推定され
る。
Reference Example 4 Except for being immersed twice in an alumina sol solution, the reaction rate constant of Reference Example 3 was higher than that of the third table (Comparative Example 1), and in particular, the activity per platinum was about twice that of the commercially available product. It was confirmed that there is. This is presumed to be because platinum is supported in a highly dispersed manner in a layer whose main component is porous alumina.

Claims (1)

【特許請求の範囲】 1)金属表面に触媒を担持せしめた面状触媒体であって
、前記金属基盤がアルミニウム含有合金であることを特
徴とする面状触媒体。 2)面状のアルミニウム含有合金を高温焼成して該表面
にアルミナを主成分とする層を形成せしめ、次いで50
℃〜350℃で熱水処理した後、又は、熱水処理を行い
ながら触媒活性を有する金属を前記アルミナを主成分と
する層上に担持せしめることを特徴とする面状触媒体の
製造方法。 3)高温焼成を900℃〜1,000℃で行う請求項2
に記載の面状触媒体の製造方法。4)熱水処理を施した
アルミナを主成分とする層に触媒活性を有する金属を担
持せしめる前に、該アルミナを主成分とする層にγ−ア
ルミナをコーティングする請求項2又は3に記載の面状
触媒体の製造方法。
[Scope of Claims] 1) A planar catalyst having a catalyst supported on a metal surface, wherein the metal base is an aluminum-containing alloy. 2) A planar aluminum-containing alloy is fired at high temperature to form a layer mainly composed of alumina on the surface, and then 50%
A method for producing a planar catalyst body, which comprises supporting a metal having catalytic activity on the alumina-based layer after or while performing a hydrothermal treatment at a temperature of .degree. C. to 350.degree. 3) Claim 2 in which the high temperature firing is performed at 900°C to 1,000°C.
A method for producing a planar catalyst body as described in . 4) The method according to claim 2 or 3, wherein the layer containing alumina as a main component is coated with γ-alumina before the layer containing catalytically active metal is supported on the layer containing hydrothermally treated alumina as a main component. Method for manufacturing a planar catalyst body.
JP2083797A 1990-03-30 1990-03-30 Plane catalytic body and production thereof Pending JPH03284356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2083797A JPH03284356A (en) 1990-03-30 1990-03-30 Plane catalytic body and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2083797A JPH03284356A (en) 1990-03-30 1990-03-30 Plane catalytic body and production thereof

Publications (1)

Publication Number Publication Date
JPH03284356A true JPH03284356A (en) 1991-12-16

Family

ID=13812646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2083797A Pending JPH03284356A (en) 1990-03-30 1990-03-30 Plane catalytic body and production thereof

Country Status (1)

Country Link
JP (1) JPH03284356A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518381A (en) * 1997-09-26 2001-10-16 バッテル・メモリアル・インスティチュート Microchannel laminated mass exchanger and manufacturing method
JP2006518269A (en) * 2002-10-29 2006-08-10 コーニング・インコーポレーテッド Coated microstructure and manufacturing method
JP2009017305A (en) * 2007-07-05 2009-01-22 Hoya Corp Method of manufacturing dust-proof light transmissive member, its application and imaging apparatus provided with the member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001518381A (en) * 1997-09-26 2001-10-16 バッテル・メモリアル・インスティチュート Microchannel laminated mass exchanger and manufacturing method
JP2006518269A (en) * 2002-10-29 2006-08-10 コーニング・インコーポレーテッド Coated microstructure and manufacturing method
JP2009017305A (en) * 2007-07-05 2009-01-22 Hoya Corp Method of manufacturing dust-proof light transmissive member, its application and imaging apparatus provided with the member

Similar Documents

Publication Publication Date Title
JP2640944B2 (en) Catalyst production method
JP3450979B2 (en) Metallic material having photocatalytic activity and method for producing the same
CN114531855A (en) Cobalt-containing metal foam element and method for the production thereof
KR101738486B1 (en) Method for forming metal oxide coating layer on catalyst substrate, calalyst substrate including metal oxide coating layer and catalyst apparatus
JP2018177625A (en) Method of forming magnesium-containing layer of surface of metal support, catalyst support containing its coating layer, and catalyst device
KR101528334B1 (en) a micro channel reactor and a fabricating method thereof
JPH0663423A (en) Production of catalyst element
JPH03284356A (en) Plane catalytic body and production thereof
EP0193398B1 (en) Method for coating a metal covered with metal oxide film with refractory metal oxide
JPH02144154A (en) Heat conductive catalytic body and production thereof
US4190560A (en) Process for preparing catalyst on carrier systems
SU795441A3 (en) Method of producing catalyst for purification of gases containing organic and inorganic compounds
JP3910318B2 (en) Method for producing ultrafine particle support
JP3989228B2 (en) Method for producing alumina carrier with excellent heat resistance
JPH0531533B2 (en)
JPH0459048A (en) Catalyst for steam reforming
JP6042713B2 (en) Method for producing aldehyde
US20090124488A1 (en) Substrate with Spatially Selective Metal Coating, Method for Production and Use Thereof
JPH10258234A (en) Metal-supporting catalyst
JP2898308B2 (en) Continuous catalyst body and method for producing the same
RU2745741C1 (en) Method for producing catalyst and ammonia oxidation catalyst itself
JPH1073226A (en) Manufacture of continuous catalyst body
JPH0515778A (en) Methanol reforming catalyst
JPS63291642A (en) Manufacture of noble metal catalyst
JPH04200745A (en) Production of continuous catalyst body and oxidation of low concentration organic matter using the same