JP2012055856A - Metal catalyst carrier, metal catalyst object, and method for manufacturing the same - Google Patents

Metal catalyst carrier, metal catalyst object, and method for manufacturing the same Download PDF

Info

Publication number
JP2012055856A
JP2012055856A JP2010203245A JP2010203245A JP2012055856A JP 2012055856 A JP2012055856 A JP 2012055856A JP 2010203245 A JP2010203245 A JP 2010203245A JP 2010203245 A JP2010203245 A JP 2010203245A JP 2012055856 A JP2012055856 A JP 2012055856A
Authority
JP
Japan
Prior art keywords
catalyst
metal
catalyst carrier
structure layer
metal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010203245A
Other languages
Japanese (ja)
Other versions
JP5880909B2 (en
Inventor
Makoto Sakurai
誠 櫻井
Hiromi Hiramatsu
宏美 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Japan Capacitor Industrial Co Ltd
Original Assignee
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Japan Capacitor Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture, Japan Capacitor Industrial Co Ltd filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2010203245A priority Critical patent/JP5880909B2/en
Publication of JP2012055856A publication Critical patent/JP2012055856A/en
Application granted granted Critical
Publication of JP5880909B2 publication Critical patent/JP5880909B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve a drawback in which in a conventional catalyst carrier which makes a catalyst carrier layer adhere to a metal substrate, there are peeling of a catalyst layer, and carrier unevenness of a catalyst layer.SOLUTION: The metal carrier includes: a metal substrate; and a spongy structure layer made to form on the surface of the metal substrate. The metal carrier is characterized by forming a coating by hydration treatment on the spongy structure layer.

Description

本発明は、各種フィルター、吸着剤または充填材などの用途に有用な多孔体である金属触媒担体、金属触媒体及びこれらの製造方法に関するものである。   The present invention relates to a metal catalyst carrier that is a porous body useful for various filters, adsorbents, fillers, and the like, a metal catalyst body, and a method for producing them.

従来の金属触媒体として、引用文献1〜7には、アルミニウム基板表面に陽極酸化皮膜(アルマイト皮膜)を形成させて、その皮膜にできた微細孔に触媒を担持せしめるものが記載されている。   As conventional metal catalyst bodies, cited references 1 to 7 describe a technique in which an anodized film (alumite film) is formed on the surface of an aluminum substrate and the catalyst is supported in the fine pores formed in the film.

また、引用文献8〜11には、金属基板に触媒担持層を付着せしめて、その触媒担持層に触媒を担持せしめるものが記載されている。   References 8 to 11 describe a technique in which a catalyst support layer is attached to a metal substrate and a catalyst is supported on the catalyst support layer.

特開昭59−59247号公報JP 59-59247 A 特開平2−144154号公報JP-A-2-144154 特開平8−246190公報JP-A-8-246190 特開平10−73226号公報JP-A-10-73226 特開2002−119856号公報JP 2002-119856 A 特開2007−237090号公報JP 2007-237090 A 特開2008−126151号公報JP 2008-126151 A 特開平8−332394号公報JP-A-8-332394 特開2007−44574号公報JP 2007-44574 A 特許第4263268号公報Japanese Patent No. 4263268 特開2008−259968号公報JP 2008-259968 A

しかしながら、前記アルマイト皮膜を用いる触媒体は、陽極酸化処理が必要であるため、製造が簡便でなく、コストが高いという欠点があった。   However, since the catalyst body using the alumite film requires an anodic oxidation treatment, there are disadvantages that the production is not simple and the cost is high.

また、金属基板に触媒担持層を付着せしめた触媒体は、触媒層の剥離、支持体と触媒スラリーとの密着性の問題、触媒層の担持ムラの問題がある。また、触媒活性を高めるために触媒の量を増すことが考えられるが、担持量を増やすため、触媒層を厚くすると、バインダー成分が活性成分を覆ってしまい、反応物が活性成分に接触しないため、思ったより活性が得られないという問題があった。   Further, the catalyst body in which the catalyst support layer is adhered to the metal substrate has problems of peeling of the catalyst layer, adhesion between the support and the catalyst slurry, and uneven support of the catalyst layer. In order to increase the catalyst activity, it is conceivable to increase the amount of the catalyst. However, if the catalyst layer is made thicker in order to increase the supported amount, the binder component covers the active component and the reactant does not contact the active component. There was a problem that activity could not be obtained than expected.

本発明は前記の欠点を除くようにしたものである。   The present invention eliminates the above-mentioned drawbacks.

本発明においては、金属基板の表面に微細な細孔の連なった海綿状構造の多孔体層を形成せしめて触媒担体を製造せしめる。また、この海綿状構造層を有する金属基板を水和処理して、その海綿状構造層に水和皮膜を形成せしめ、これを焼成して触媒担体を製造せしめてもよい。その後、触媒を担持せしめて触媒体を形成せしめて、前記触媒体を、例えばメタルハニカム構造に成形せしめる。   In the present invention, a catalyst carrier is produced by forming a sponge-like porous body layer having fine pores on the surface of a metal substrate. Alternatively, the metal substrate having the sponge-like structure layer may be hydrated to form a hydrated film on the sponge-like structure layer, and this may be fired to produce a catalyst carrier. Thereafter, a catalyst is loaded to form a catalyst body, and the catalyst body is formed into a metal honeycomb structure, for example.

なお、触媒担体を製造せしめた後、これをメタルハニカム構造に成形してから、触媒を担持せしめて触媒体を形成せしめてもよい。また、触媒担体の製造前又は製造中にメタルハニカム構造に成形せしめてもよい。   Alternatively, after the catalyst carrier is manufactured, it may be formed into a metal honeycomb structure, and then the catalyst may be supported to form a catalyst body. Further, it may be formed into a metal honeycomb structure before or during manufacture of the catalyst carrier.

前記金属基板は、特に限定されず、アルミニウム、ニッケル、タンタル、銅などの金属、それらの合金からなる。また、支持体の表面に前記金属層を形成せしめたものでも良い。また、クラッド材であっても良い。   The said metal substrate is not specifically limited, It consists of metals, such as aluminum, nickel, a tantalum, copper, and those alloys. Moreover, what formed the said metal layer on the surface of a support body may be used. Further, a clad material may be used.

前記金属基板の形状は、箔、ワイヤー状など用途により選択できる。また、メタルハニカム状、ペレット状のものでもよい。また、厚さも自由に選択される。   The shape of the metal substrate can be selected depending on applications such as foil and wire. Further, a metal honeycomb shape or a pellet shape may be used. Also, the thickness can be freely selected.

前記海綿状構造層の形成方法は、特に限定されず、電気化学的エッチング処理などの電気化学的手法、蒸着などの物理的手法などの拡面処理により行う。   The method for forming the spongy structure layer is not particularly limited, and is performed by an area expansion process such as an electrochemical technique such as an electrochemical etching process or a physical technique such as vapor deposition.

前記電気化学的手法は、例えば、図1に示すように、アルミニウム基板などの金属基板1(箔を含む。以下同じ。)をハロゲンイオンを含んだ溶液(例えば、塩酸)浴2で交流により電解処理せしめる。この電解処理により、前記金属基板1の表面で、腐食と皮膜形成が交互に繰り返され、微細な細孔が連なった海綿状の構造層が形成される。   For example, as shown in FIG. 1, the electrochemical method electrolyzes a metal substrate 1 (including a foil; the same applies hereinafter) such as an aluminum substrate in a solution (for example, hydrochloric acid) bath 2 containing halogen ions by alternating current. Let it be processed. By this electrolytic treatment, corrosion and film formation are alternately repeated on the surface of the metal substrate 1 to form a spongy structure layer in which fine pores are connected.

前記金属基板の表面に形成される海綿状構造層の厚さは、特に限定はないが、1μmより薄くすると分解活性が低下し、100μmより厚くすると分解活性の向上がなく圧損のみが上昇するため、金属表面から1〜100μmの厚さが好ましい。   The thickness of the spongy structure layer formed on the surface of the metal substrate is not particularly limited, but if the thickness is less than 1 μm, the decomposition activity decreases, and if the thickness is greater than 100 μm, only the pressure loss increases without improving the decomposition activity. A thickness of 1 to 100 μm from the metal surface is preferable.

また、海綿状構造層の細孔径は大きすぎると触媒担持量が減少するので、平均孔径は最大で1000nmで、特に25〜300nmが好ましい。   Further, if the pore size of the spongy structure layer is too large, the amount of catalyst supported decreases, so the average pore size is 1000 nm at the maximum, and 25 to 300 nm is particularly preferable.

なお、図2は海綿状構造層を形成せしめたアルミニウム基板の断面のSEM写真を示し、図3はその模式図を示し、3は海綿状構造層、4は微細孔である。 2 shows an SEM photograph of a cross section of the aluminum substrate on which the spongy structure layer is formed, FIG. 3 is a schematic view thereof, 3 is a spongy structure layer, and 4 is a fine hole.

前記水和処理は、前記金属基板の表面積を拡大するために行うものである。なお、例えば、アルミニウム基板を水和処理した場合には、海綿状構造層に水酸化アルミニウムの皮膜が形成され、この際の水和処理液は特に限定されず、例えば、10〜100℃の水または温水、熱水によって行なわれる。また、反応促進剤として、トリエタノールアミン、アンモニア、ケイ酸ナトリウムなどを添加してもよい。   The hydration treatment is performed to increase the surface area of the metal substrate. For example, when an aluminum substrate is hydrated, a film of aluminum hydroxide is formed on the spongy structure layer, and the hydration solution at this time is not particularly limited. Or it is performed by warm water or hot water. Moreover, you may add triethanolamine, ammonia, sodium silicate, etc. as a reaction accelerator.

前記焼成処理は、水和皮膜中の水分を脱水して金属基板の表面積を拡大するものである。なお、例えば、アルミニウム基板を水和処理して焼成処理した場合には、焼成温度が300℃未満であるとアルミナの出来方が不十分であり、550℃より温度が高いと基体が損傷して表面積が低下して好ましくないため、300〜550℃の間で5分〜3時間の間で行う。   The baking treatment is to dehydrate moisture in the hydrated film and increase the surface area of the metal substrate. For example, when the aluminum substrate is hydrated and fired, if the firing temperature is less than 300 ° C., the alumina is not sufficiently produced, and if the temperature is higher than 550 ° C., the substrate is damaged. Since the surface area is unfavorably lowered, the reaction is performed at 300 to 550 ° C. for 5 minutes to 3 hours.

前記触媒担体に担持される触媒活性を有する金属は、特に限定されず、例えば、触媒活性を有する公知の金属、合金または金属化合物が挙げられる。例えば、白金系金属、白金系金属の化合物、パラジウム、ロジウム、インジウム、銀、レニウム、錫、セリウム、ジルコニウム、金、金合金、マンガン、鉄、亜鉛、銅、ニッケル、ニッケル合金、コバルト、コバルト合金、ルテニウム等の金属、酸化物、炭酸塩等化合物の中から選択することが望ましい。また、これらの触媒物質を組み合わせてもよい。   The metal having catalytic activity supported on the catalyst carrier is not particularly limited, and examples thereof include known metals, alloys or metal compounds having catalytic activity. For example, platinum metal, platinum metal compound, palladium, rhodium, indium, silver, rhenium, tin, cerium, zirconium, gold, gold alloy, manganese, iron, zinc, copper, nickel, nickel alloy, cobalt, cobalt alloy It is desirable to select from a metal such as ruthenium, a compound such as an oxide or carbonate. Moreover, you may combine these catalyst substances.

前記触媒担体に触媒を担持する方法は、例えば、触媒活性を有する金属を海綿状構造層又は皮膜に吸着させ、更に触媒反応に用いられる物質と接触しても脱着しない程度固定させる。   In the method of supporting a catalyst on the catalyst carrier, for example, a metal having catalytic activity is adsorbed on a spongy structure layer or film, and further fixed so as not to be desorbed even when contacted with a substance used for catalytic reaction.

具体的には、特に限定されず、例えば、含浸法、電着法、イオン交換法、共沈法、沈着法、水熱合成法、気相合成法等の公知の方法を用いる。特に、触媒活性を有する金属イオンを含有する水溶液に浸漬させる含浸法が好ましい。含浸法に用いられる水溶液は、触媒活性を有する金属を含む、塩化物、臭化物、アンモニウム化合物、シアン化物、アルカリ金属塩、これらの複合化合物を用いて調整することができる。   Specifically, it is not particularly limited, and for example, a known method such as an impregnation method, an electrodeposition method, an ion exchange method, a coprecipitation method, a deposition method, a hydrothermal synthesis method, or a gas phase synthesis method is used. In particular, an impregnation method of immersing in an aqueous solution containing metal ions having catalytic activity is preferable. The aqueous solution used for the impregnation method can be prepared by using a chloride, bromide, ammonium compound, cyanide, alkali metal salt, or a complex compound thereof containing a metal having catalytic activity.

また、触媒活性を有する金属を固着させるために焼成処理を行うこともできる。   In addition, a calcination treatment can be performed to fix a metal having catalytic activity.

本発明においては、簡便で、かつ、安価で大面積の触媒担体を得ることができる。また、単位面積当たりの有効触媒量を増やす事ができ、高効率、高耐久な触媒活性を得られるという大きな利益がある。   In the present invention, a simple, inexpensive and large-area catalyst carrier can be obtained. In addition, the effective amount of catalyst per unit area can be increased, and there is a great advantage that highly efficient and highly durable catalyst activity can be obtained.

また、アルミニウム基材においては、触媒との密着性も良い。   Moreover, in an aluminum base material, adhesiveness with a catalyst is also good.

また、基材表面に直接水和皮膜を付与することができるので、触媒の密着性が良く、高活性、高耐久性がある。   In addition, since the hydrated film can be directly applied to the surface of the substrate, the adhesion of the catalyst is good, and there is high activity and high durability.

また、海綿状構造層の厚みをコントロールすることにより触媒層厚を自由に設計でき、かつ海綿状構造層の下層部の触媒も活性発揮することができる為、単位面積当たりの有効触媒量を増やすことが可能となる。   In addition, by controlling the thickness of the sponge-like structure layer, the catalyst layer thickness can be designed freely, and the catalyst in the lower layer of the sponge-like structure layer can also be activated, so the amount of effective catalyst per unit area is increased. It becomes possible.

また、金属基板表面に直接、触媒担体となる多孔体を形成するため、含浸法等により多孔体内部に触媒が担持され、触媒の密着性が良好なものとなる。   In addition, since the porous body serving as the catalyst carrier is formed directly on the surface of the metal substrate, the catalyst is supported inside the porous body by an impregnation method or the like, and the adhesion of the catalyst is improved.

また、マイクロリアクターのマイクロ流路壁面の処理にも適用できる。   It can also be applied to the treatment of the microreactor wall surface of the microreactor.

本発明の海綿状構造層を形成するために使用する装置の説明図である。It is explanatory drawing of the apparatus used in order to form the sponge-like structure layer of this invention. 本発明の海綿状構造層を有する金属基板の断面のSEM写真である。It is a SEM photograph of the section of the metal substrate which has the spongy structure layer of the present invention. 本発明の海綿状構造層を有する金属基板の模式図である。It is a schematic diagram of the metal substrate which has the sponge-like structure layer of this invention.

本発明の金属触媒担体は、金属基板と、前記金属基板の表面に形成せしめた海綿状構造層とよりなることを特徴とする。   The metal catalyst carrier of the present invention comprises a metal substrate and a spongy structure layer formed on the surface of the metal substrate.

また、前記海綿状構造層に、水和処理による皮膜が形成されていることを特徴とする。   Further, the sponge-like structure layer is formed with a film by hydration treatment.

また、前記海綿状構造層に、水和処理した後に焼成した皮膜が形成されていることを特徴とする。   Further, the sponge-like structure layer is characterized in that a film baked after being hydrated is formed.

また、本発明の触媒担体の製造方法は、金属基板の表面に海綿状構造層を形成せしめる第一の工程と、前記金属基板を水和処理する第二の工程と、前記金属基板を焼成する第三の工程とよりなることを特徴とする。   The method for producing a catalyst carrier of the present invention includes a first step of forming a spongy structure layer on the surface of the metal substrate, a second step of hydrating the metal substrate, and firing the metal substrate. It is characterized by comprising the third step.

また、前記金属基板の表面に形成された海綿状構造層の厚さが1〜100μmであることを特徴とする。   The sponge-like structure layer formed on the surface of the metal substrate has a thickness of 1 to 100 μm.

前記海綿状構造層に形成される微細孔の平均径が25〜300nmであることを特徴とする。   The average diameter of the micropores formed in the sponge-like structure layer is 25 to 300 nm.

また、前記触媒担体に、触媒を担持せしめる。   A catalyst is supported on the catalyst carrier.

また、前記触媒担体又は触媒体がメタルハニカム構造に形成されている。   The catalyst carrier or catalyst body is formed in a metal honeycomb structure.

以下、本発明を実施例によって更に詳述するが、本発明はこれによって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in full detail, this invention is not limited by this.

(比較例1)
未処理の25μm厚のアルミニウム箔にメタノール水蒸気改質触媒スラリー(Cu/ZnO触媒粉末、及びアルミナゾルバインダー、凝集剤等混合物)を吹きつけ、焼成し固着させた。
(Comparative Example 1)
Methanol steam reforming catalyst slurry (a mixture of Cu / ZnO catalyst powder and alumina sol binder, flocculant, etc.) was sprayed onto an untreated aluminum foil having a thickness of 25 μm, and fired and fixed.

25μm厚のアルミニウム箔をエッチング浴温75℃、10wt%塩酸+0.1wt%硫酸の浴で周波数75Hz、電流密度0.6A/cm2の交流電流で15秒間電解した。その場合の海綿状エッチング層厚は片面約5μm、微細孔径平均は約50nmであった。その後、このエッチング処理したアルミニウム箔を80℃のイオン交換水中にて1時間水和処理を行った。このエッチング処理及び水和処理を施したアルミニウム箔を銅、亜鉛イオンの溶解する液に浸漬し、銅、亜鉛を担持して触媒体を得た。この場合の触媒担持量は1.0g/m2であった。 An aluminum foil having a thickness of 25 μm was electrolyzed in an etching bath temperature of 75 ° C. in a bath of 10 wt% hydrochloric acid + 0.1 wt% sulfuric acid with an alternating current having a frequency of 75 Hz and a current density of 0.6 A / cm 2 for 15 seconds. In this case, the thickness of the spongy etching layer was about 5 μm on one side, and the average fine pore diameter was about 50 nm. Then, this etched aluminum foil was hydrated in ion exchange water at 80 ° C. for 1 hour. The aluminum foil subjected to this etching treatment and hydration treatment was immersed in a solution in which copper and zinc ions were dissolved, and copper and zinc were supported to obtain a catalyst body. In this case, the catalyst loading was 1.0 g / m 2 .

50μm厚のアルミニウム箔を用いた以外は実施例1と同様の操作を行い、触媒体を得た。この場合の触媒担持量は1.0g/m2であった。 A catalyst body was obtained in the same manner as in Example 1 except that an aluminum foil having a thickness of 50 μm was used. In this case, the catalyst loading was 1.0 g / m 2 .

50μm厚のアルミニウム箔をエッチング浴温75℃、10wt%塩酸+0.1wt%硫酸の浴で周波数100Hz、電流密度0.6A/cm2の交流電流で30秒間電解した。その場合の海綿状エッチング層厚は片面約10μm、微細孔径平均は約25nmであった。その後、実験例1と同様の操作を行い、触媒体を得た。この場合の触媒担持量は2.1g/m2であった。 An aluminum foil having a thickness of 50 μm was electrolyzed in an etching bath temperature of 75 ° C. and a 10 wt% hydrochloric acid + 0.1 wt% sulfuric acid bath at an alternating current with a frequency of 100 Hz and a current density of 0.6 A / cm 2 for 30 seconds. In this case, the thickness of the spongy etching layer was about 10 μm on one side, and the average fine pore diameter was about 25 nm. Thereafter, the same operation as in Experimental Example 1 was performed to obtain a catalyst body. In this case, the catalyst loading was 2.1 g / m 2 .

50μm厚のアルミニウム箔をエッチング浴温75℃、10wt%塩酸+0.1wt%硫酸の浴で周波数75Hz、電流密度0.6A/cm2の交流電流で30秒間電解した。その場合の海綿状エッチング層厚は片面約10μm、微細孔径平均は約50nmであった。その後、実験例1と同様の操作を行い、触媒体を得た。この場合の触媒担持量は2.0g/m2であった。 An aluminum foil having a thickness of 50 μm was electrolyzed with an alternating current having a frequency of 75 Hz and a current density of 0.6 A / cm 2 in an etching bath temperature of 75 ° C., 10 wt% hydrochloric acid + 0.1 wt% sulfuric acid for 30 seconds. In this case, the thickness of the spongy etching layer was about 10 μm on one side, and the average fine pore diameter was about 50 nm. Thereafter, the same operation as in Experimental Example 1 was performed to obtain a catalyst body. In this case, the amount of catalyst supported was 2.0 g / m 2 .

50μm厚のアルミニウム箔をエッチング浴温75℃、10wt%塩酸+0.1wt%硫酸の浴で周波数10Hz、電流密度0.6A/cm2の交流電流で30秒間電解した。その場合の海綿状エッチング層厚は片面約10μm、微細孔径平均は約300nmであった。その後、実験例1と同様の操作を行い、触媒体を得た。この場合の触媒担持量は1.6g/m2であった。 An aluminum foil having a thickness of 50 μm was electrolyzed with an alternating current having a frequency of 10 Hz and a current density of 0.6 A / cm 2 in an etching bath temperature of 75 ° C., 10 wt% hydrochloric acid + 0.1 wt% sulfuric acid for 30 seconds. In this case, the thickness of the spongy etching layer was about 10 μm on one side, and the average fine pore diameter was about 300 nm. Thereafter, the same operation as in Experimental Example 1 was performed to obtain a catalyst body. In this case, the amount of catalyst supported was 1.6 g / m 2 .

50μm厚のアルミニウム箔をエッチング浴温75℃、10wt%塩酸+0.1wt%硫酸の浴で周波数8Hz、電流密度0.6A/cm2の交流電流で30秒間電解した。その場合の海綿状エッチング層厚は片面約10μm、微細孔径平均は約400nmであった。その後、実験例1と同様の操作を行い、触媒体を得た。この場合の触媒担持量は1.0g/m2であった。 An aluminum foil having a thickness of 50 μm was electrolyzed with an alternating current having a frequency of 8 Hz and a current density of 0.6 A / cm 2 in an etching bath temperature of 75 ° C., 10 wt% hydrochloric acid + 0.1 wt% sulfuric acid for 30 seconds. In this case, the thickness of the spongy etching layer was about 10 μm on one side, and the average fine pore diameter was about 400 nm. Thereafter, the same operation as in Experimental Example 1 was performed to obtain a catalyst body. In this case, the catalyst loading was 1.0 g / m 2 .

50μm厚のアルミニウム箔をエッチング浴温75℃、10wt%塩酸+0.1wt%硫酸の浴で周波数75Hz、電流密度0.6A/cm2の交流電流で45秒間電解した。その場合の海綿状エッチング層厚は片面約15μm、微細孔径平均は約50nmであった。その後、実験例1と同様の操作を行い、触媒体を得た。この場合の触媒担持量は3.0g/m2であった。 An aluminum foil having a thickness of 50 μm was electrolyzed in an etching bath temperature of 75 ° C. in a 10 wt% hydrochloric acid + 0.1 wt% sulfuric acid bath at an alternating current with a frequency of 75 Hz and a current density of 0.6 A / cm 2 for 45 seconds. In this case, the thickness of the spongy etching layer was about 15 μm on one side, and the average fine pore diameter was about 50 nm. Thereafter, the same operation as in Experimental Example 1 was performed to obtain a catalyst body. In this case, the amount of catalyst supported was 3.0 g / m 2 .

50μm厚のアルミニウム箔をエッチング浴温75℃、10wt%塩酸+0.1wt%硫酸の浴で周波数75Hz、電流密度0.6A/cm2の交流電流で60秒間電解した。その場合の海綿状エッチング層厚は片面約20μm、微細孔径平均は約50nmであった。その後、実験例1と同様の操作を行い、触媒体を得た。この場合の触媒担持量は4.0g/m2であった。 An aluminum foil having a thickness of 50 μm was electrolyzed in an etching bath temperature of 75 ° C. in a 10 wt% hydrochloric acid + 0.1 wt% sulfuric acid bath at an alternating current having a frequency of 75 Hz and a current density of 0.6 A / cm 2 for 60 seconds. In this case, the thickness of the spongy etching layer was about 20 μm on one side, and the average fine pore diameter was about 50 nm. Thereafter, the same operation as in Experimental Example 1 was performed to obtain a catalyst body. In this case, the amount of catalyst supported was 4.0 g / m 2 .

100μm厚のアルミニウム箔をエッチング浴温75℃、10wt%塩酸+0.1wt%硫酸の浴で周波数75Hz、電流密度0.6A/cm2の交流電流で120秒間電解した。その場合の海綿状エッチング層厚は片面約40μm、微細孔径平均は約50nmであった。その後、実験例1と同様の操作を行い、触媒体を得た。この場合の触媒担持量は8.0g/m2であった。 An aluminum foil having a thickness of 100 μm was electrolyzed in an etching bath temperature of 75 ° C. in a bath of 10 wt% hydrochloric acid + 0.1 wt% sulfuric acid with an alternating current having a frequency of 75 Hz and a current density of 0.6 A / cm 2 for 120 seconds. In this case, the thickness of the spongy etching layer was about 40 μm on one side, and the average fine pore diameter was about 50 nm. Thereafter, the same operation as in Experimental Example 1 was performed to obtain a catalyst body. In this case, the amount of catalyst supported was 8.0 g / m 2 .

200μm厚のアルミニウム箔をエッチング浴温75℃、10wt%塩酸+0.1wt%硫酸の浴で周波数75Hz、電流密度0.6A/cm2の交流電流で240秒間電解した。その場合の海綿状エッチング層厚は片面約80μm、微細孔径平均は約50nmであった。その後、実験例1と同様の操作を行い、触媒体を得た。この場合の触媒担持量は15.0g/m2であった。 An aluminum foil having a thickness of 200 μm was electrolyzed in an etching bath temperature of 75 ° C. in a bath of 10 wt% hydrochloric acid + 0.1 wt% sulfuric acid at an alternating current of a frequency of 75 Hz and a current density of 0.6 A / cm 2 for 240 seconds. In this case, the thickness of the spongy etching layer was about 80 μm on one side, and the average fine pore diameter was about 50 nm. Thereafter, the same operation as in Experimental Example 1 was performed to obtain a catalyst body. In this case, the catalyst loading was 15.0 g / m 2 .

触媒活性の評価として、本発明による触媒担体の特徴として高比表面積であることを活かし、今後伸張が期待される燃料電池用小型改質器への応用を視野に入れ、メタノールの水蒸気改質を行い評価した。   For the evaluation of catalyst activity, taking advantage of the high specific surface area as a feature of the catalyst carrier according to the present invention, the steam reforming of methanol is carried out with a view to application to small reformers for fuel cells that are expected to grow in the future. Performed and evaluated.

ステンレス製の円筒状反応管に、箔形状で作成した触媒体を切り出した後、挿入し、電気炉で改質反応温度を300℃まで加熱した。メタノールと水蒸気の混合ガスを触媒量に対して一定量で導入し改質ガスの分析を行い、評価した。
その分解測定データを表1に示す。
A catalyst body prepared in a foil shape was cut out into a stainless steel cylindrical reaction tube, inserted, and the reforming reaction temperature was heated to 300 ° C. in an electric furnace. A mixed gas of methanol and water vapor was introduced at a constant amount with respect to the catalyst amount, and the reformed gas was analyzed and evaluated.
The decomposition measurement data is shown in Table 1.

Figure 2012055856
Figure 2012055856

その結果、本発明の海綿体構造層を有する金属触媒体は優れた性能であることが判明した。   As a result, it was found that the metal catalyst body having the sponge structure layer of the present invention has excellent performance.

1 アルミニウム基板
2 浴
3 海綿状構造層
4 微細孔
1 Aluminum substrate 2 Bath 3 Sponge-like structure layer 4 Micropores

Claims (13)

金属基板と、前記金属基板の表面に形成せしめた海綿状構造層とよりなることを特徴とする金属触媒担体。   A metal catalyst carrier comprising a metal substrate and a spongy structure layer formed on the surface of the metal substrate. 前記金属基板の表面に形成された海綿状構造層の厚さが1〜100μmであることを特徴とする請求項1記載の金属触媒担体。   The metal catalyst carrier according to claim 1, wherein the sponge-like structure layer formed on the surface of the metal substrate has a thickness of 1 to 100 µm. 前記海綿状構造層に形成される微細孔の平均径が25〜300nmであることを特徴とする請求項1または2記載の金属触媒担体。   The metal catalyst carrier according to claim 1 or 2, wherein an average diameter of the fine pores formed in the sponge-like structure layer is 25 to 300 nm. 前記海綿状構造層に、水和処理による皮膜が形成されていることを特徴とする請求項1、2または3記載の金属触媒担体。   The metal catalyst carrier according to claim 1, 2 or 3, wherein a film by hydration treatment is formed on the sponge-like structure layer. 前記海綿状構造層に、水和処理した後に焼成した皮膜が形成されていることを特徴とする請求項1、2または3記載の金属触媒担体。   The metal catalyst carrier according to claim 1, 2 or 3, wherein the sponge-like structure layer is formed with a film baked after being hydrated. 請求項1、2、3、4または5の何れかに記載された触媒担体に、触媒を担持せしめた金属触媒体。   A metal catalyst body in which a catalyst is supported on the catalyst carrier according to any one of claims 1, 2, 3, 4 and 5. 請求項1、2、3、4または5の何れかに記載された触媒担体がメタルハニカム構造に形成され、この触媒担体に、触媒が担持されていることを特徴とする金属触媒体。   A metal catalyst body, wherein the catalyst carrier according to any one of claims 1, 2, 3, 4 and 5 is formed in a metal honeycomb structure, and a catalyst is supported on the catalyst carrier. 金属基板の表面に海綿状構造層を形成せしめる第一の工程と、
前記金属基板を水和処理する第二の工程と、
前記金属基板を焼成する第三の工程と
よりなることを特徴とする金属触媒担体の製造方法。
A first step of forming a spongy structure layer on the surface of the metal substrate;
A second step of hydrating the metal substrate;
A method for producing a metal catalyst carrier, comprising a third step of firing the metal substrate.
前記金属基板の表面に形成された海綿状構造層の厚さが1〜100μmであることを特徴とする請求項8記載の金属触媒担体の製造方法。   9. The method for producing a metal catalyst carrier according to claim 8, wherein the sponge-like structure layer formed on the surface of the metal substrate has a thickness of 1 to 100 [mu] m. 前記海綿状構造層に形成される微細孔の平均径が25〜300nmであることを特徴とする請求項8または9記載の金属触媒担体の製造方法。   The method for producing a metal catalyst carrier according to claim 8 or 9, wherein the average diameter of the micropores formed in the sponge-like structure layer is 25 to 300 nm. 請求項8、9または10の何れかに記載された触媒担体に、触媒を担持せしめる工程を更に有することを特徴とする金属触媒体の製造方法。   A method for producing a metal catalyst body, further comprising a step of supporting a catalyst on the catalyst carrier according to any one of claims 8, 9 and 10. 請求項8、9または10の何れかに記載された触媒担体をメタルハニカム構造に形成せしめる工程と、
前記触媒担体に、触媒を担持せしめる工程と
を更に有することを特徴とする金属触媒体の製造方法。
Forming the catalyst carrier according to claim 8, 9 or 10 into a metal honeycomb structure;
A method for producing a metal catalyst body, further comprising a step of supporting the catalyst on the catalyst carrier.
請求項8、9または10の何れかに記載された触媒担体に、触媒を担持せしめて触媒体を製造せしめる工程と、
前記触媒体をメタルハニカム構造に形成せしめる工程と
を更に有することを特徴とする金属触媒体の製造方法。
A step of supporting a catalyst on the catalyst carrier according to claim 8, 9 or 10 to produce a catalyst body;
And a step of forming the catalyst body into a metal honeycomb structure.
JP2010203245A 2010-09-10 2010-09-10 Method for producing metal catalyst carrier and method for producing metal catalyst body Expired - Fee Related JP5880909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010203245A JP5880909B2 (en) 2010-09-10 2010-09-10 Method for producing metal catalyst carrier and method for producing metal catalyst body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010203245A JP5880909B2 (en) 2010-09-10 2010-09-10 Method for producing metal catalyst carrier and method for producing metal catalyst body

Publications (2)

Publication Number Publication Date
JP2012055856A true JP2012055856A (en) 2012-03-22
JP5880909B2 JP5880909B2 (en) 2016-03-09

Family

ID=46053609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010203245A Expired - Fee Related JP5880909B2 (en) 2010-09-10 2010-09-10 Method for producing metal catalyst carrier and method for producing metal catalyst body

Country Status (1)

Country Link
JP (1) JP5880909B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016007589A (en) * 2014-06-26 2016-01-18 ダイセルポリマー株式会社 Carrier for fine particles
WO2021049038A1 (en) * 2019-09-13 2021-03-18 日立化成株式会社 Treatment member, treatment method, and treatment device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852699B2 (en) * 1975-07-17 1983-11-24 松下電器産業株式会社 Self-cleaning
JPH0278443A (en) * 1988-09-13 1990-03-19 Matsushita Electric Ind Co Ltd Production of catalyst carrier for purification of exhaust gas
JP2528701B2 (en) * 1988-11-25 1996-08-28 秀雄 亀山 Method for producing thermally conductive catalyst body
JPH1073226A (en) * 1996-08-30 1998-03-17 Hideo Kameyama Manufacture of continuous catalyst body
JPH10281690A (en) * 1997-02-07 1998-10-23 Hitachi Ltd Air conditioner, heat exchanger and its production
JP2002119856A (en) * 2000-10-13 2002-04-23 Hideo Kameyama Anodized aluminum catalyst carrier having increased bet specific surface area and its manufacturing method
JP2007245116A (en) * 2006-03-20 2007-09-27 Fujifilm Corp Catalysts support

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852699B2 (en) * 1975-07-17 1983-11-24 松下電器産業株式会社 Self-cleaning
JPH0278443A (en) * 1988-09-13 1990-03-19 Matsushita Electric Ind Co Ltd Production of catalyst carrier for purification of exhaust gas
JP2528701B2 (en) * 1988-11-25 1996-08-28 秀雄 亀山 Method for producing thermally conductive catalyst body
JPH1073226A (en) * 1996-08-30 1998-03-17 Hideo Kameyama Manufacture of continuous catalyst body
JPH10281690A (en) * 1997-02-07 1998-10-23 Hitachi Ltd Air conditioner, heat exchanger and its production
JP2002119856A (en) * 2000-10-13 2002-04-23 Hideo Kameyama Anodized aluminum catalyst carrier having increased bet specific surface area and its manufacturing method
JP2007245116A (en) * 2006-03-20 2007-09-27 Fujifilm Corp Catalysts support

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016007589A (en) * 2014-06-26 2016-01-18 ダイセルポリマー株式会社 Carrier for fine particles
WO2021049038A1 (en) * 2019-09-13 2021-03-18 日立化成株式会社 Treatment member, treatment method, and treatment device

Also Published As

Publication number Publication date
JP5880909B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
US20240026551A1 (en) Materials and methods for the electrochemical reduction of carbon dioxide
RU2268324C2 (en) Electrode for production of hydrogen (versions) and method of its manufacture (versions)
JP4884333B2 (en) Electrode for electrolysis
JP6100341B2 (en) Method for producing a catalyst comprising a ruthenium-containing catalyst layer formed on the surface of a structure
JPWO2018047961A1 (en) Method of manufacturing anode for alkaline water electrolysis and anode for alkaline water electrolysis
JP4903457B2 (en) Metal-porous substrate composite material and method for producing the same
JP2022126752A (en) Electrochemical cell electrode and electrochemical cell
JP2022531603A (en) Electrode for electrolysis
KR20180008404A (en) Method for the catalytically induced hydrolysis and regeneration of metal borohydride solutions
JP2007283184A (en) Hydrogen separation thin membrane and manufacturing method
JP5880909B2 (en) Method for producing metal catalyst carrier and method for producing metal catalyst body
Volpe et al. Optimized bath for electroless deposition of palladium on amorphous alumina membranes
CN109576733B (en) Preparation method of carbon fiber loaded chlorine evolution catalytic electrode
JP5726466B2 (en) Catalyst carrier, catalyst body and method for producing them
JP4986240B2 (en) Catalytic reactor and catalytic reaction apparatus using the same
JP2008126151A (en) Catalytic body using anodic aluminum oxide film
Minch et al. A versatile approach to processing of high active area pillar coral-and sponge-like Pt-nanostructures. Application to electrocatalysis
JP2022509659A (en) Electrode for electrolysis
JP6588816B2 (en) Chlorine generating electrode
JP2002066337A (en) Catalyst provided with high heat-transfer capability and preparation process of the same catalyst
JPH02144154A (en) Heat conductive catalytic body and production thereof
JP7033215B2 (en) Active layer composition of reduction electrode for electrolysis and reduction electrode derived from it
JP4716825B2 (en) Manufacturing method of gas diffusion electrode
JP3868513B2 (en) Electrode for seawater electrolysis and method for producing the same
JP5888718B2 (en) Catalytic body and method of chemical reaction of substance using the catalytic body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160120

R150 Certificate of patent or registration of utility model

Ref document number: 5880909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees