JPH10281690A - Air conditioner, heat exchanger and its production - Google Patents

Air conditioner, heat exchanger and its production

Info

Publication number
JPH10281690A
JPH10281690A JP29510697A JP29510697A JPH10281690A JP H10281690 A JPH10281690 A JP H10281690A JP 29510697 A JP29510697 A JP 29510697A JP 29510697 A JP29510697 A JP 29510697A JP H10281690 A JPH10281690 A JP H10281690A
Authority
JP
Japan
Prior art keywords
heat exchanger
air
heat transfer
transfer surface
side heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP29510697A
Other languages
Japanese (ja)
Inventor
Katsumi Muroi
克美 室井
Yoshito Watabe
義人 渡部
Toshio Hatada
敏夫 畑田
Hiroshi Kogure
博志 小暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29510697A priority Critical patent/JPH10281690A/en
Publication of JPH10281690A publication Critical patent/JPH10281690A/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent frosting as far as possible and lengthen a defrosting period by applying a heat exchanger having an air side water repellent heat transfer surface and a heat exchanger having an air side hydrophylic heat transfer surface to an outdoor heat exchanger unit. SOLUTION: Hydrophilic fins are formed by forming an etching layer 21 with the thickness, for example, about 4 micrometer on an aluminium base 20 to form macro protrusions and recesses and further forming a hydrate oxide layer 22 with the thickness, for example, about 0.2 micrometer and having protrusions and recesses on the surface thereof. Water repellent fins are formed by coating the surfaces of the hydrophilic fins 4 with a water repellent film composed of a hydrophobic compound. In an outdoor heat exchanger unit 10, a plurality of heat transfer tubes 15 are vertically inserted into a plurality of laminated fins 11 to have a heat exchanger 16 having water repellent fins and water droplets scattered from the heat exchanger 16 with the water repellent fins are captured by a capture plate 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ヒートポンプ方式
による空気調和機に関し、親水性を有する空気側伝熱面
を用いた室内熱交換器ユニットと撥水性を有する空気側
伝熱面を用いた室外熱交換器ユニットを組み合わせた高
性能な空気調和機、熱交換器及びその製造法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner, and more particularly, to an indoor heat exchanger unit using an air-side heat transfer surface having hydrophilicity and an outdoor unit using an air-side heat transfer surface having water repellency. The present invention relates to a high-performance air conditioner, a heat exchanger, and a method for manufacturing the same, which are combined with heat exchanger units.

【0002】[0002]

【従来の技術】一般に空気調和機は、室内熱交換器ユニ
ット、室外熱交換器ユニット、圧縮機、四方弁、膨張弁
及び接続配管等から構成されている。従来、室内熱交換
器に用いる空気側伝熱面及び室外熱交換器に用いる空気
側伝熱面は外表面を親水処理することにより、空気側伝
熱面表面に発生する凝縮水を膜状にして流下させて通風
抵抗を低減させる方法が実用化されてきた。
2. Description of the Related Art Generally, an air conditioner includes an indoor heat exchanger unit, an outdoor heat exchanger unit, a compressor, a four-way valve, an expansion valve, a connection pipe, and the like. Conventionally, the air-side heat transfer surface used for the indoor heat exchanger and the air-side heat transfer surface used for the outdoor heat exchanger are subjected to hydrophilic treatment on the outer surface to form condensed water generated on the air-side heat transfer surface into a film. A method of reducing the ventilation resistance by flowing down has been put to practical use.

【0003】例えば、親水性の樹脂を塗装したものある
いはベーマイト処理等の化成処理を施した空気側伝熱面
材を利用している。このような処理を施した例として
は、特開昭63−238285号公報に示されているよ
うな、空気側伝熱面表面に水和酸化物の被膜を形成した
後、けい素化合物あるいは界面活性剤及び水性樹脂塗料
を塗布したものが実用化されており、水切れ性の向上、
騒音の低減等熱交換器の性能向上を図っている。
For example, an air-side heat transfer surface material coated with a hydrophilic resin or subjected to a chemical conversion treatment such as a boehmite treatment is used. As an example of such a treatment, a hydrated oxide film is formed on the air-side heat transfer surface as shown in JP-A-63-238285, and then a silicon compound or an interface is formed. Those coated with an activator and water-based resin paint have been put to practical use,
The performance of the heat exchanger is improved, such as noise reduction.

【0004】しかし、この方法では室外熱交換器におい
て、空気側伝熱面表面温度が、生成する凝縮水が凍結、
霜化する温度以下の場合、例えば暖房運転時において外
気温度が低い場合、空気側伝熱面表面に着霜が発生し、
その量は徐々に増加し、最終的には空気流路を閉塞して
しまう。このままだと、空気調和機の性能が低下してし
まうので、周期的に暖房運転を停止して熱交換器の除霜
を行なわねばならない。そのため室内の快適性が損なわ
れてしまうという問題を生じる。
However, in this method, in the outdoor heat exchanger, the surface temperature of the air-side heat transfer surface causes the generated condensed water to freeze,
If the temperature is below the frosting temperature, for example, when the outside air temperature is low during the heating operation, frost occurs on the air-side heat transfer surface,
The amount gradually increases, and eventually blocks the air flow path. If left unchecked, the performance of the air conditioner will deteriorate, so the heating operation must be periodically stopped to defrost the heat exchanger. Therefore, there is a problem that the indoor comfort is impaired.

【0005】この問題の対策として、室外熱交換器に用
いる空気側伝熱面表面を撥水性化する方法が提案されて
いる(特開平9−113181号公報)。その内容は、
空気側伝熱面材であるアルミニウム基材の表面に厚さ
0.1μm以上のベーマイト皮膜を形成し、平滑面に塗
布された時に接触角が90°以上になるフッ素系又はシ
リコン系の撥水性塗料を、前記皮膜の表面に0.1ない
し10mg/dm2 塗布して撥水被膜を形成して凝縮水
を空気側伝熱面表面に留まることを防止し、霜の発生を
大幅に抑制して着霜防止を図っている。
As a countermeasure against this problem, a method has been proposed in which the surface of the air-side heat transfer surface used in the outdoor heat exchanger is made water-repellent (Japanese Patent Laid-Open No. Hei 9-113181). The contents are
Fluorine- or silicon-based water repellency with a boehmite film with a thickness of 0.1 µm or more formed on the surface of an aluminum base material that is an air-side heat transfer surface material and a contact angle of 90 ° or more when applied to a smooth surface The coating is applied to the surface of the coating at 0.1 to 10 mg / dm 2 to form a water-repellent coating, which prevents condensed water from remaining on the air-side heat transfer surface and greatly suppresses the generation of frost. To prevent frost formation.

【0006】[0006]

【発明が解決しようとする課題】熱交換器の性能向上、
小型化は年々要求が高まり、そのため熱交換器伝熱面積
は増大し、空気側伝熱面ピッチは狭く、空気側伝熱面の
スリット形状は複雑になってきている。しかしながらこ
のような熱交換器では、凝縮水が空気側伝熱面のスリッ
ト部やカラー部に蓄積され空気側伝熱面間でブリッジを
形成し易くなり、通風抵抗の増大、風切り音の増大等の
トラブルが発生してしまう。そこで、より水切れ性の優
れた熱交換器が室内機としては要求されている。また、
空気調和機の使い始めの立ち上げ時において、室内熱交
換器ユニットから「カビ臭」と表現されている異臭を生
じるという問題がある。
SUMMARY OF THE INVENTION Performance improvement of a heat exchanger,
The demand for miniaturization is increasing year by year, so that the heat transfer heat transfer area is increasing, the air-side heat transfer surface pitch is narrow, and the slit shape of the air-side heat transfer surface is becoming complicated. However, in such a heat exchanger, condensed water accumulates in the slits and collars of the air-side heat transfer surface, making it easier to form a bridge between the air-side heat transfer surfaces, increasing ventilation resistance and increasing wind noise. Trouble occurs. Therefore, a heat exchanger having better water drainage properties is demanded as an indoor unit. Also,
When the air conditioner is started to use for the first time, there is a problem that an unpleasant odor expressed as "mold odor" is generated from the indoor heat exchanger unit.

【0007】一方、室外熱交換器ユニットにおいては、
暖房運転時における空気側伝熱面上に発生する着霜によ
り性能が低下するため、その対策が重要課題の一つとな
っている。上記の従来技術の着霜対策技術において、ベ
ーマイトを主体として表面の凹凸を形成し、その後フッ
素系又はシリコン系の撥水塗料を塗布し、接触角が15
0度以上から164度の被膜を実現している。
On the other hand, in the outdoor heat exchanger unit,
Since performance deteriorates due to frost generated on the air-side heat transfer surface during the heating operation, a countermeasure is one of the important issues. In the above-mentioned conventional frost prevention technology, the surface irregularities are formed mainly of boehmite, and then a fluorine-based or silicon-based water-repellent paint is applied, and the contact angle is 15
A coating of 0 to 164 degrees is realized.

【0008】しかしながら、この程度の接触角では、結
露時に発生する凝縮水が被膜上に全面に付着し、さらに
凝縮水の成長と共に合体して直径が1mm前後の水滴の
大きさとなって始めて空気側伝熱面表面を落下すること
が判明した。この被膜を室外熱交換器に適用した場合、
暖房運転時の着霜をある程度は防止することができ、通
風抵抗の増加を抑制することが可能となる。しかしなが
ら、露付き時においては、熱交換器に用いる空気側伝熱
面上に直径が1mm程度の凝縮水滴が付着するため、通
風抵抗の増加が生じて問題となる。
However, at such a contact angle, condensed water generated at the time of dew condensation adheres to the entire surface of the coating film, and further coalesces with the growth of the condensed water to form water droplets having a diameter of about 1 mm before the air side. It was found to fall on the heat transfer surface. When this coating is applied to an outdoor heat exchanger,
Frost formation during the heating operation can be prevented to some extent, and an increase in ventilation resistance can be suppressed. However, at the time of dew, condensed water droplets having a diameter of about 1 mm adhere to the air-side heat transfer surface used in the heat exchanger, which causes a problem of an increase in ventilation resistance.

【0009】また、撥水性被膜の耐久性は極めて重要で
あり、初期性能がよくても経時変化が発生して、撥水性
の低下が生じるのでは実際の製品に適用するには問題が
ある。従来技術においては、耐久性に関しては十分に考
慮されていない。ベーマイト層にフッ素化合物(フルオ
ロアルキルシラン)の被膜を形成した場合、初期の撥水
性は優れており、水の接触角は172度を示し、着霜防
止効果もあるが、約1ヶ月の屋外ばくろを行うと撥水性
が劣化してしまう。
Further, the durability of the water-repellent coating is extremely important, and even if the initial performance is good, a change over time occurs, and if the water-repellency is reduced, there is a problem in application to an actual product. In the prior art, durability is not sufficiently considered. When a film of a fluorine compound (fluoroalkylsilane) is formed on the boehmite layer, the initial water repellency is excellent, the contact angle of water is 172 degrees, and there is an effect of preventing frost formation. Performing blackening degrades the water repellency.

【0010】撥水性の劣化に関して鋭意検討した結果、
撥水性被膜の剥離ばかりでなく、ごみ、汚れ等の付着が
主たる原因の1つであることを見出した。そのメカニズ
ムとしては、以下のように考える。従来の撥水性被膜で
は、被膜表面に1mm程度の凝縮水滴が付着する。その
付着水滴中にはごみ、汚れ等が存在し、凝縮水滴の水の
蒸発にともなってごみ、汚れ等は、被膜表面に残る。
As a result of intensive studies on the deterioration of water repellency,
It has been found that not only peeling of the water-repellent coating but also adhesion of dust and dirt is one of the main causes. The mechanism is considered as follows. In a conventional water repellent coating, condensed water droplets of about 1 mm adhere to the coating surface. Dust, dirt, and the like are present in the adhered water droplets, and the dirt, dirt, and the like remain on the film surface as the water of the condensed water droplet evaporates.

【0011】そして、そこが起点となり、汚れが時間の
経過とともに被膜凹部を埋めて、さらに膜に成長して被
膜表面を覆う。そのため撥水性の低下が生じ、凝縮水滴
は落下せず、空気側伝熱面上で成長し氷結、霜化して空
気側伝熱面間の目詰まりが発生する。このように、従来
技術では被膜の耐久性までは検討されていなかった。本
発明の目的は、暖房運転時における空気側伝熱面上に発
生する着霜を極力防止して除霜周期時間を長くすること
ができ、且つその耐久性も極めて高い被膜を空気側伝熱
面上に形成させた撥水性空気側伝熱面付き熱交換器を、
室外熱交換機ユニット用に、且つ冷房運転時における空
気側伝熱面上に発生する凝縮水が容易に膜状となる、親
水性に優れ、且つ、親水性の耐久性が極めて高い空気側
伝熱面を用いた親水性空気側伝熱面付き熱交換器を、室
内熱交換器ユニット用に構成した高性能空気調和機及び
これら熱交換器の製造方法を提供することにある。ま
た、室内熱交換器ユニットの空気側伝熱面に発生するカ
ビを無くして「カビ臭」を防止し、さらに部屋空間に存
在する異臭を低減することができる熱交換器を提供する
ことにある。
Then, this becomes the starting point, and the dirt fills the concave portions of the film with the passage of time and further grows on the film to cover the surface of the film. As a result, the water repellency is reduced, and the condensed water droplets do not fall, grow on the air-side heat transfer surface, freeze and frost, and clog between the air-side heat transfer surfaces. As described above, the prior art has not examined the durability of the coating. An object of the present invention is to minimize the formation of frost on the air-side heat transfer surface during the heating operation, thereby extending the defrost cycle time, and to form a coating with extremely high durability on the air-side heat transfer surface. Heat exchanger with water repellent air side heat transfer surface formed on the surface,
Air-side heat transfer with excellent hydrophilicity and extremely high durability for condensed water generated on the air-side heat transfer surface during the cooling operation for the outdoor heat exchanger unit. It is an object of the present invention to provide a high-performance air conditioner in which a heat exchanger with a hydrophilic air-side heat transfer surface using a surface is configured for an indoor heat exchanger unit, and a method for manufacturing these heat exchangers. It is another object of the present invention to provide a heat exchanger capable of preventing "mold odor" by eliminating mold generated on an air-side heat transfer surface of an indoor heat exchanger unit and further reducing an unpleasant odor existing in a room space. .

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明による空気調和機は、室内熱交換器
ユニット、室外熱交換器ユニット、圧縮機、四方弁、膨
張弁及び接続配管等によりヒートポンプ式冷凍サイクル
を構成する空気調和機において、露点以下の条件下での
運転時に発生する凝縮水が熱交換器空気側伝熱面表面上
で膜状となる親水性空気側伝熱面付き熱交換器を前記室
内熱交換器ユニットに適用し、且つ、露点以下の条件下
での運転時に発生する凝縮水が熱交換器空気側伝熱面表
面上で凝集し、表面から離脱する撥水性空気側伝熱面付
き熱交換器及び該撥水性空気側伝熱面付き熱交換器から
飛散する水滴を捕捉する親水性空気側伝熱面付き熱交換
器を前記室外熱交換器ユニットに適用したことを特徴と
するものである。
To achieve the above object, an air conditioner according to the present invention comprises an indoor heat exchanger unit, an outdoor heat exchanger unit, a compressor, a four-way valve, an expansion valve, and a connection pipe. In an air conditioner that constitutes a heat pump refrigeration cycle, condensed water generated during operation under the dew point or lower condition becomes a film on the heat exchanger air-side heat transfer surface. Is applied to the indoor heat exchanger unit, and the condensed water generated during operation under the condition of the dew point or less is condensed on the heat exchanger air-side heat transfer surface and repelled from the surface. A heat exchanger with a water-based air-side heat transfer surface and a heat exchanger with a hydrophilic air-side heat transfer surface that captures water droplets scattered from the heat exchanger with a water-repellent air-side heat transfer surface are applied to the outdoor heat exchanger unit. It is characterized by having done.

【0013】上記目的を達成するため、請求項2の発明
による空気調和機は、請求項1において、前記親水性空
気側伝熱面付き熱交換器は、後記請求項3又は4のいず
れかに記載の親水性空気側伝熱面付き熱交換器であり、
前記撥水性空気側伝熱面付き熱交換器は、後記請求項5
又は6のいずれかに記載の撥水性空気側伝熱面付き熱交
換器であることを特徴とするものである。
In order to achieve the above object, an air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect, wherein the heat exchanger with the hydrophilic air-side heat transfer surface is the heat exchanger according to the third or fourth aspect described below. A heat exchanger with a hydrophilic air-side heat transfer surface according to the description,
The heat exchanger with a water-repellent air-side heat transfer surface is described later.
Or a heat exchanger with a water-repellent air-side heat transfer surface according to any one of (6) and (7).

【0014】上記目的を達成するため、請求項3の発明
による親水性空気側伝熱面付き熱交換器は、前記空気側
伝熱面表面に数マイクロメートルオーダー以上のマクロ
凹凸が形成され、さらに、その表面上にナノメートルオ
ーダーからマイクロメートルオーダーのミクロ凹凸を有
する水和酸化物が形成された複合凹凸構造で、且つ、前
記水和酸化物の有効面積拡大率が500倍以上の構造と
したものであることを特徴とするものである。
In order to achieve the above object, the heat exchanger with a hydrophilic air-side heat transfer surface according to the third aspect of the present invention is characterized in that the surface of the air-side heat transfer surface is formed with macro unevenness of several micrometers or more. A composite uneven structure in which a hydrated oxide having micro unevenness on the order of nanometers to micrometer order is formed on the surface thereof, and the effective area expansion rate of the hydrated oxide is 500 times or more. It is characterized by being.

【0015】上記目的を達成するため、請求項4の発明
による親水性空気側伝熱面付き熱交換器は、請求項2に
おいて、前記水和酸化物表面上に、消臭、防汚、抗菌、
防カビのいずれかあるいは複数の作用を有する触媒層が
形成された構造としたものであることを特徴とするもの
である。
According to a fourth aspect of the present invention, there is provided a heat exchanger with a hydrophilic air-side heat transfer surface according to the second aspect of the present invention. ,
The present invention is characterized in that the catalyst layer has a structure in which a catalyst layer having one or a plurality of functions of fungicide is formed.

【0016】上記目的を達成するため、請求項5の発明
による撥水性空気側伝熱面付き熱交換器は、前記空気側
伝熱面の表面に数マイクロメートルオーダー以上のマク
ロ凹凸が形成され、さらに、その表面上にナノメートル
オーダーからマイクロメートルオーダーのミクロ凹凸を
有する水和酸化物が形成された複合凹凸構造で、且つ、
前記水和酸化物の有効面積拡大率が800倍以上を有
し、しかも、その表面を臨界表面張力が20dyn/c
m以下の疎水性化合物からなる撥水性被膜で被覆した構
造としたものであることを特徴とするものである。
To achieve the above object, a heat exchanger with a water-repellent air-side heat transfer surface according to the invention of claim 5 is characterized in that the surface of the air-side heat transfer surface has macro unevenness of several micrometers or more, Furthermore, a composite uneven structure in which a hydrated oxide having micro unevenness on the order of nanometers to micrometer order is formed on its surface, and
The effective area expansion rate of the hydrated oxide is 800 times or more, and the critical surface tension of the hydrated oxide is 20 dyn / c.
It is characterized by having a structure covered with a water-repellent coating made of a hydrophobic compound of m or less.

【0017】上記目的を達成するため、請求項6の発明
による撥水性空気側伝熱面付き熱交換器は、請求項4に
おいて、その表面に形成させた前記水和酸化物層表面上
にパーフルオロ基を有するアルコキシシラン化合物を用
いて撥水性被膜を形成させた構造を有するものであるこ
とを特徴とするものである。
In order to achieve the above object, the heat exchanger with a water-repellent air-side heat transfer surface according to the invention of claim 6 is characterized in that the heat exchanger according to claim 4 has a surface on the surface of the hydrated oxide layer formed on the surface. It has a structure in which a water-repellent coating is formed using an alkoxysilane compound having a fluoro group.

【0018】上記目的を達成するため、請求項7の発明
による親水性空気側伝熱面付き熱交換器の製造方法は、
アルミニウムまたはアルミニウム合金からなる空気側伝
熱面基板を脱脂処理する工程、含塩酸水溶液でエッチン
グ処理によりマクロ凹凸を形成する工程、さらにその表
面にミクロ凹凸を有する水和酸化物を形成して、複合凹
凸構造表面で、且つ、その有効面積拡大率を500倍以
上にする工程を経て親水性空気側伝熱面を製作し、該空
気側伝熱面を用いて熱交換器の製作をすることを特徴と
するものである。
In order to achieve the above object, a method of manufacturing a heat exchanger with a hydrophilic air-side heat transfer surface according to the invention of claim 7 comprises:
A step of degreasing the air-side heat transfer surface substrate made of aluminum or aluminum alloy, a step of forming macro unevenness by etching with an aqueous solution containing hydrochloric acid, and further forming a hydrated oxide having micro unevenness on the surface to form a composite On the concave-convex structure surface, and through a step of increasing the effective area expansion rate by 500 times or more, a hydrophilic air-side heat transfer surface is manufactured, and a heat exchanger is manufactured using the air-side heat transfer surface. It is a feature.

【0019】上記目的を達成するため、請求項8の発明
による撥水性空気側伝熱面付き熱交換器の製造方法は、
アルミニウムまたはアルミニウム合金からなる空気側伝
熱面基板を脱脂処理する工程、含塩酸水溶液でエッチン
グ処理によりマクロ凹凸を形成する工程、さらにその表
面にミクロ凹凸を有する水和酸化物を形成して、複合凹
凸構造表面で、且つ、その面積拡大率を800倍以上に
する工程、及び前記空気側伝熱面表面に表面エネルギー
が臨界表面張力で20dyn/cm以下の疎水基を有す
る化合物を気化させ化学吸着させて撥水性被膜を形成す
る工程を経て撥水性空気側伝熱面を製作し、該空気側伝
熱面を用いて熱交換器の製作をすることを特徴とするも
のである。
To achieve the above object, a method for manufacturing a heat exchanger with a water-repellent air-side heat transfer surface according to the invention of claim 8 comprises:
A step of degreasing the air-side heat transfer surface substrate made of aluminum or aluminum alloy, a step of forming macro unevenness by etching with an aqueous solution containing hydrochloric acid, and further forming a hydrated oxide having micro unevenness on the surface to form a composite A step of increasing the area expansion rate to 800 times or more on the surface of the uneven structure, and vaporizing a compound having a hydrophobic group having a surface energy of 20 dyn / cm or less at a critical surface tension on the surface of the air-side heat transfer surface and chemically adsorbing the compound. Then, a water-repellent air-side heat transfer surface is manufactured through a step of forming a water-repellent coating, and a heat exchanger is manufactured using the air-side heat transfer surface.

【0020】上記目的を達成するため、請求項9の発明
による親水性空気側伝熱面付き熱交換器又は撥水性空気
側伝熱面付き熱交換器の製造方法は、請求項6又は7に
おいて、延び率が15%以上の機械的性質を有するアル
ミニウムまたはアルミニウム合金の素材を熱交換器用空
気側伝熱面材として用いることを特徴とするものであ
る。
In order to achieve the above object, a method of manufacturing a heat exchanger with a hydrophilic air-side heat transfer surface or a heat exchanger with a water-repellent air-side heat transfer surface according to the invention of claim 9 is as defined in claim 6 or 7. An aluminum or aluminum alloy material having a mechanical extension of 15% or more is used as an air-side heat transfer surface material for a heat exchanger.

【0021】上記課題を解決するために、各種表面処理
法を鋭意検討した。その結果、表面エネルギーが臨界表
面張力として20dyn/cm以下の、フルオロアルコ
キシシラン化合物の端部に有するパーフルオロ基を空気
側伝熱面表面に高密度に配向することにより、水滴の付
着を無くし、ごみ、汚れ等の付着防止を図ることがで
き、撥水性が長期間持続することが判明した。
In order to solve the above problems, various surface treatment methods were intensively studied. As a result, the perfluoro groups having the surface energy of 20 dyn / cm or less as a critical surface tension or less at the end of the fluoroalkoxysilane compound are oriented on the surface of the air-side heat transfer surface at high density, thereby eliminating the adhesion of water droplets. It was found that adhesion of dust, dirt, and the like could be prevented, and that water repellency was maintained for a long time.

【0022】その手段は、空気側伝熱面の表面を塩酸を
含む水溶液を用いてエッチングを行い表面に数マイクロ
メートルオーダー以上のマクロ凹凸を形成し、さらにそ
の上にナノメートルオーダーから数マイクロメートルオ
ーダーのミクロ凹凸形状を有する水和酸化物を形成し複
合凹凸構造にして、その有効面積拡大率(実表面積/幾
何学的面積)を800倍以上とする。さらに、表面エネ
ルギーが臨界表面張力として20dyn/cm以下の、
フルオロアルコキシシラン化合物を所定の温度に加熱、
気化させて、前記空気側伝熱面の表面に吸着させること
により、CF3基が被膜最表面に配向し、一方の端部が
前記表面の水酸基と化学吸着して強い結合力を有し、付
着密度の高い被膜が得られる。
In the means, the surface of the air-side heat transfer surface is etched using an aqueous solution containing hydrochloric acid to form macro unevenness on the surface of several micrometers or more, and further, on the surface thereof, from nanometer order to several micrometers. A hydrated oxide having an orderly micro unevenness is formed to form a complex uneven structure, and the effective area expansion ratio (actual surface area / geometric area) is 800 times or more. Further, the surface energy is 20 dyn / cm or less as a critical surface tension,
Heating the fluoroalkoxysilane compound to a predetermined temperature,
By vaporizing and adsorbing on the surface of the air-side heat transfer surface, the CF 3 group is oriented on the outermost surface of the coating, and one end has a strong binding force by chemically adsorbing with the hydroxyl group on the surface, A film having a high adhesion density can be obtained.

【0023】またこの被膜の膜厚は数十ナノメートル以
下であり、下地の水和酸化物が形成する凹凸形状は前記
被膜により埋められることなく保持されるため、撥水性
に寄与する形状効果は減少されることはない。このよう
な被膜を形成することにより、撥水性の持続する、高い
撥水性被膜が得られ、結露時に空気側伝熱面表面に発生
する凝縮水は数ミクロン程度の大きさでも空気側伝熱面
表面から離脱、飛散する。
Further, the thickness of this coating is several tens of nanometers or less, and the unevenness formed by the underlying hydrated oxide is maintained without being filled by the coating. It will not be reduced. By forming such a coating, a high water-repellent coating that maintains water repellency can be obtained, and condensed water generated on the surface of the air-side heat transfer surface during dew condensation can be as small as several microns. Separates and scatters from surface.

【0024】一方、前記方法で複合凹凸形成をした面積
拡大率が500倍以上を有する空気側伝熱面材は、親水
性に優れた、水切り性能が高くまたその耐久性もある表
面を有する空気側伝熱面となる。
On the other hand, an air-side heat transfer surface material having an area expansion ratio of 500 times or more formed with the composite unevenness by the above-mentioned method is an air having a surface having excellent hydrophilicity, high drainage performance and durability. It becomes the side heat transfer surface.

【0025】前記方法による親水性の優れた空気側伝熱
面を室内熱交換器に、また前記方法による撥水性の優れ
た空気側伝熱面を室外熱交換器に適用し、これらを組み
合わせた空気調和機とすることにより通風抵抗の増加を
抑制し、初期性能を長期間維持させることができ、さら
には難着霜化も併せて図ることができ、高性能、高耐久
性空気調和機が実現できる。
The air-side heat transfer surface having excellent hydrophilicity according to the above method is applied to an indoor heat exchanger, and the air-side heat transfer surface having excellent water repellency according to the above method is applied to an outdoor heat exchanger, and these are combined. By using an air conditioner, the increase in ventilation resistance can be suppressed, the initial performance can be maintained for a long time, and furthermore, the formation of hard frost can be achieved. realizable.

【0026】また、本発明の空気調和機は、熱交換器用
空気側伝熱面を脱脂工程、エッチング工程さらに水和酸
化物形成工程により室内熱交換器用に、さらに疎水基を
有する化合物を前記表面に気相化学吸着させ疎水基を形
成する工程により室外熱交換器用に作製し、これら熱交
換器をユニット化して組み合わせることにより達成でき
る。
In the air conditioner of the present invention, the air-side heat transfer surface for the heat exchanger is subjected to a degreasing step, an etching step, and a hydrated oxide forming step. It can be achieved by preparing for an outdoor heat exchanger by a process of forming a hydrophobic group by gas-phase chemical adsorption on, and combining and combining these heat exchangers.

【0027】また、空気側伝熱面素材を予め、親水性処
理、撥水性処理を施してその後空気側伝熱面を形成して
熱交換器を作製することもできる。この場合、素材のア
ルミニウムあるいはアルミニウム合金の機械的性質の延
び率が15%以上あるものを用いるので、後の空気側伝
熱面加工、カラー形成、スリット形成等時に割れの発生
の防止を図ることができる。
Alternatively, the air-side heat transfer surface material may be previously subjected to a hydrophilic treatment and a water-repellent treatment, and then the air-side heat transfer surface may be formed to manufacture a heat exchanger. In this case, a material having an elongation rate of 15% or more in mechanical properties of aluminum or aluminum alloy is used, so that cracks are prevented from occurring at the time of air-side heat transfer surface processing, collar formation, slit formation, and the like. Can be.

【0028】エッチング工程ではClイオンを含む水溶
液、例えば塩酸水溶液を使用するのが好ましい。Clイ
オンは孔食を発生し易く、所定の温度及び所定の時間、
塩酸水溶液にアルミニウムあるいはアルミニウム合金を
浸せきさせると、その表面に多数の孔食が発生し、マク
ロな凹凸が形成される。このマクロ凹凸は、後工程で形
成される水和酸化物の表面積増加に寄与する。
In the etching step, it is preferable to use an aqueous solution containing Cl ions, for example, an aqueous hydrochloric acid solution. Cl ions are likely to generate pitting corrosion, at a predetermined temperature and for a predetermined time,
When aluminum or an aluminum alloy is immersed in a hydrochloric acid aqueous solution, a large number of pits are generated on the surface, and macro unevenness is formed. The macro unevenness contributes to an increase in the surface area of the hydrated oxide formed in a later step.

【0029】水和酸化物形成工程では、水好ましくは脱
イオン水、または脱イオン水にアンモニア水、炭酸塩、
蓚酸塩、トリエタノールアミン、ヒドラジン、あるいは
海水成分の他、マグネシウムイオンおよび炭酸水素イオ
ンの組み合わせ、マグネシウム、炭酸水素イオンおよび
硫酸イオンの組み合わせ、水酸化イオンおよびリチウム
イオンの組み合わせ、水酸化イオン、リチウムイオンお
よび珪酸イオンの組み合わせ、水酸化イオンおよびカル
シウムイオンの組み合わせ、水酸化イオン、リチウムイ
オンおよび硝酸イオンの組み合わせ等の塩類を添加して
使用することができる。
In the hydrated oxide forming step, water, preferably deionized water, or ammonia water, carbonate,
In addition to oxalate, triethanolamine, hydrazine or seawater components, a combination of magnesium ion and hydrogen carbonate ion, a combination of magnesium, hydrogen carbonate ion and sulfate ion, a combination of hydroxide ion and lithium ion, a hydroxide ion, lithium ion And salts such as combinations of silicate ions, combinations of hydroxide ions and calcium ions, and combinations of hydroxide ions, lithium ions and nitrate ions.

【0030】また、室内熱交換器用の空気側伝熱面表面
の水和酸化物の上に、前記水和酸化物が形成するミクロ
凹凸が埋没しない程度の厚さを有する抗菌、防汚、防カ
ビ、消臭作用を有する触媒層、例えばゼオライト、活性
炭、Ti2 等の無機粒子担体上にAg、Cu、Znを
単独あるいは複数担持させた触媒、又はゼオライト、活
性炭等の無機粒子担体上にTi2 を担持させたもの、
あるいはTi2 薄膜からなる層を形成することによ
り、部屋空間の異臭、空気側伝熱面表面に付着する油等
の汚れを分解、カビ発生の防止、抗菌等、空気側伝熱面
表面の清浄化が図れ、また、親水性の耐久性向上にも貢
献できる。
Further, the antibacterial, antifouling, and antifouling materials have such a thickness that the micro unevenness formed by the hydrated oxide is not buried on the hydrated oxide on the surface of the air-side heat transfer surface for the indoor heat exchanger. mold, a catalyst layer having a deodorizing action, such as zeolite, activated carbon, T i O 2 such as Ag on an inorganic particle carrier of, Cu, catalysts obtained by singly or plural carrying Zn, or zeolites, the inorganic particle carrier such as activated carbon which was supported T i O 2 to,
Or by forming a layer made of T i O 2 film, odor room space, decomposing dirt such as oil adhered to the air-side heat transfer surface surface, prevention of the mold growth, antimicrobial, etc., the air-side heat transfer surface surface Can be purified, and the durability of the hydrophilic property can be improved.

【0031】なお、Ti2 光触媒を利用する場合は、
熱交換器空気側伝熱面近傍にUVランプ、ブラックライ
ト等を設置することが好ましい。さらに、空気側伝熱面
と接触する伝熱管が銅材からなる場合は、伝熱管の表面
に電気的絶縁被膜を形成することにより、異種金属の直
接接触を防止し耐食性をより向上させる事ができる。ま
た、電気的絶縁被膜を可塑性を有する物質を用いること
により空気側伝熱面、伝熱管の接触熱抵抗を低減するこ
ともできる。
[0031] In the case of use of T i O 2 photocatalyst,
It is preferable to install a UV lamp, a black light or the like near the heat exchanger air-side heat transfer surface. Furthermore, when the heat transfer tube that is in contact with the air-side heat transfer surface is made of a copper material, by forming an electrical insulating coating on the surface of the heat transfer tube, it is possible to prevent direct contact of dissimilar metals and further improve corrosion resistance. it can. In addition, by using a material having plasticity for the electrical insulating film, the contact thermal resistance of the air-side heat transfer surface and the heat transfer tube can be reduced.

【0032】[0032]

【作用】本発明は、熱交換器の空気側伝熱面表面にマク
ロ凹凸を形成し、さらにその表面にナノメートルオーダ
ーからマイクロメートルオーダーのミクロ凹凸を有する
水和酸化物を形成させた複合表面凹凸構造とし、前記水
和酸化物の表面積を増大させた空気側伝熱面表面とする
ことにより、この構造を有する空気側伝熱面を適用した
熱交換器では、表面が優れた親水性を有することとな
る。
According to the present invention, there is provided a composite surface in which macro unevenness is formed on the air-side heat transfer surface of a heat exchanger, and a hydrated oxide having micro unevenness on the order of nanometer to micrometer is formed on the surface. By making the surface of the hydrated oxide an air-side heat transfer surface with an uneven surface, the heat exchanger using the air-side heat transfer surface having this structure has excellent hydrophilicity. Will have.

【0033】これを、冷房時の室内熱交換器として用い
た場合、空気側伝熱面表面に生成する凝縮水滴は瞬時に
膜状となり、水切り性も良くなるため、高湿度の時にお
ける通風抵抗の増加を抑制することができ、熱交換性能
の向上、低騒音化を図ることができる。また、空気側伝
熱面上の水和酸化物は面積が大きく、この上に触媒層を
形成すれば触媒層の面積をかせぐことができ、触媒とし
て極めて高い活性を示すことになる。
When this is used as an indoor heat exchanger at the time of cooling, the condensed water droplets generated on the surface of the air-side heat transfer surface are instantaneously formed into a film, and the drainage property is improved. Can be suppressed, heat exchange performance can be improved, and noise can be reduced. Further, the hydrated oxide on the air-side heat transfer surface has a large area. If a catalyst layer is formed thereon, the area of the catalyst layer can be increased, and the catalyst exhibits extremely high activity.

【0034】一方、前記空気側伝熱面表面に臨界表面張
力が20dyn/cm以下のフルオロアルコキシシラン
を用いて、化学吸着させて最表面にCF3 基を配向させ
た構造を有する被膜を形成した空気側伝熱面を用いる熱
交換器では、暖房時の室外熱交換器として用いた場合、
空気側伝熱面表面上に生成する凝縮水滴が数マイクロメ
ートルから数十マイクロメートルの小さな径においても
空気側伝熱面表面から離脱、飛散し、高い撥水性を有す
るため、露付き時の通風抵抗の増加が抑制され、また着
霜条件下においても着霜現象は起こり難くなり、通風抵
抗増加の抑制、難着霜化、除霜周期時間の大幅な延長を
図ることができる。
On the other hand, using a fluoroalkoxysilane having a critical surface tension of 20 dyn / cm or less on the surface of the air-side heat transfer surface, a film having a structure in which CF 3 groups are oriented on the outermost surface by chemical adsorption was formed. In the heat exchanger using the air-side heat transfer surface, when used as an outdoor heat exchanger during heating,
The condensed water droplets generated on the air-side heat transfer surface have a small diameter of several micrometers to several tens of micrometers and are separated and scattered from the air-side heat transfer surface, and have high water repellency. The increase in the resistance is suppressed, and the frosting phenomenon hardly occurs even under the frosting condition, so that the increase of the ventilation resistance can be suppressed, the frost formation is difficult, and the defrost cycle time can be largely extended.

【0035】また、空気側伝熱面表面は複合凹凸構造を
有し水和酸化物表面積が増加しているため、フルオロア
ルコキシシランを溶媒を用いずに前記水和酸化物表面に
直接気層化学吸着させて被膜を形成させるため、疎水基
の付着密度は高くなり、より撥水性を呈する。そのため
凝縮水滴はほとんど付着しなくなり、汚れの付着を防止
することができる。このことにより、空気側伝熱面の撥
水性は長期間初期性能を維持することができる。また、
被膜は水和酸化物と化学吸着しているため、被膜の付着
強度は高く、耐久性がある。
Further, since the surface of the air-side heat transfer surface has a complex concavo-convex structure and the surface area of the hydrated oxide is increased, fluoroalkoxysilane is directly applied to the surface of the hydrated oxide without using a solvent. Since the film is formed by adsorption, the adhesion density of the hydrophobic group is increased and the film exhibits more water repellency. Therefore, the condensed water droplets hardly adhere, and the adhesion of dirt can be prevented. Thereby, the water repellency of the air-side heat transfer surface can maintain the initial performance for a long time. Also,
Since the coating is chemically adsorbed to the hydrated oxide, the coating has high adhesion strength and durability.

【0036】したがって、上記熱交換器を組み合わせた
空気調和機では、低温時の暖房能力の向上、動力の低
減、騒音の低下、熱交換器の耐久性の向上等が図れる。
Therefore, in the air conditioner combined with the above heat exchanger, it is possible to improve the heating capacity at a low temperature, reduce the power, reduce the noise, improve the durability of the heat exchanger, and the like.

【0037】また、熱交換器の製造においても、一連の
工程により親水性が高く且つ耐久性に優れた熱交換器、
撥水性が高く且つ耐久性に優れた熱交換器を製作するこ
とができるため、コストの低減化が図れる。
In the production of a heat exchanger, a heat exchanger having high hydrophilicity and excellent durability is obtained by a series of steps.
Since a heat exchanger having high water repellency and excellent durability can be manufactured, cost can be reduced.

【0038】[0038]

【発明の実施の形態】以下に本発明の実施の形態を、具
体的に図1ないし図10を用いて説明する。図1は、本
発明による室内熱交換器ユニット1の断面図である。室
内熱交換器ユニット1は、複数の伝熱管5が、積層され
たフィン4を垂直に貫通した構造の前面側熱交換器3
a、後面側熱交換器3b、ファン6、前部吸い込み口2
a、上部吸い込み口2bから主に構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to FIGS. FIG. 1 is a sectional view of an indoor heat exchanger unit 1 according to the present invention. The indoor heat exchanger unit 1 has a front heat exchanger 3 having a structure in which a plurality of heat transfer tubes 5 vertically penetrate the stacked fins 4.
a, rear heat exchanger 3b, fan 6, front suction port 2
a, the upper suction port 2b.

【0039】本実施例の熱交換器のフィン部の拡大図を
図2に示す。フィン4は多数のスリット4aが切ってあ
り、また伝熱管5の周囲には5マイクロメートル程度の
厚さのエポキシ樹脂4bがコーティングされてフィンの
カラー部と接触しており、例えば銅製の伝熱管の場合電
気的に絶縁され腐食が防止される。
FIG. 2 is an enlarged view of the fin portion of the heat exchanger of this embodiment. The fin 4 is provided with a number of slits 4a, and the periphery of the heat transfer tube 5 is coated with an epoxy resin 4b having a thickness of about 5 micrometers so as to be in contact with the collar portion of the fin. In this case, it is electrically insulated and corrosion is prevented.

【0040】また、図3には図2のフィン4の部分断面
拡大模式図を、図4にはそのSEM観察図を示す。アル
ミニウム基板20の上部には約4マイクロメートルの厚
さのエッチング層21がありマクロ凹凸が形成されてい
る。さらにその表面には約0.2マイクロメートルの厚
さのミクロ凹凸を有する水和酸化物層22が形成されて
いる。
FIG. 3 is a partially enlarged schematic view of the fin 4 of FIG. 2, and FIG. 4 is a SEM observation view thereof. An etching layer 21 having a thickness of about 4 micrometers is formed on the upper portion of the aluminum substrate 20 to form macro unevenness. Further, a hydrated oxide layer 22 having micro unevenness having a thickness of about 0.2 μm is formed on the surface.

【0041】図5は、本発明における1実施例である室
外熱交換器ユニット10の断面図である。室外熱交換器
ユニット10は、主に、積層された複数のフィン11に
複数の伝熱管15が垂直に挿入された撥水性フィン付き
熱交換器16、撥水性フィン付き熱交換器16から飛散
する水滴を捕捉する親水性フィンからなる熱交換器を兼
ねた捕捉板13、ファン12、圧縮機14から構成され
ている。
FIG. 5 is a sectional view of an outdoor heat exchanger unit 10 according to one embodiment of the present invention. The outdoor heat exchanger unit 10 mainly scatters from the heat exchanger 16 with water-repellent fins, in which the plurality of heat transfer tubes 15 are vertically inserted into the plurality of fins 11 stacked, and the heat exchanger 16 with the water-repellent fins. It comprises a catching plate 13 also serving as a heat exchanger made of hydrophilic fins for catching water droplets, a fan 12, and a compressor 14.

【0042】図6はフィン11の部分断面拡大模式図で
ある。本実施例では図3に示したフィンと同様の処理を
施した後、水和酸化物層22の上に疎水基層23を設け
てある。
FIG. 6 is a partially enlarged schematic view of the fin 11. In this embodiment, after performing the same processing as that of the fin shown in FIG. 3, a hydrophobic base layer 23 is provided on the hydrated oxide layer 22.

【0043】次に、上記熱交換器のフィンの表面処理方
法について説明する。伝熱管5とフィン4を備えた室内
熱交換器と、伝熱管15とフィン11を備えた室外熱交
換器を、約373Kに加熱した塩基性脱脂液中に15分
間浸せきして脱脂を行い、水で洗浄する。その後、約3
48Kに加熱した1.5%濃度の塩酸水溶液中に5分間
浸せきしてフィン表面をエッチングする。次に水洗して
368K以上に加熱した脱イオン水中に10分間浸せき
して前記エッチング表面に水和酸化物層を形成させる。
その後、水洗、乾燥を行う。室内熱交換器のフィンはこ
のようにして表面処理される。
Next, a method for treating the surface of the fin of the heat exchanger will be described. The indoor heat exchanger including the heat transfer tubes 5 and the fins 4 and the outdoor heat exchanger including the heat transfer tubes 15 and the fins 11 are immersed in a basic degreasing solution heated to about 373K for 15 minutes to perform degreasing. Wash with water. Then, about 3
The fin surface is etched by immersing in a 1.5% hydrochloric acid aqueous solution heated to 48K for 5 minutes. Next, it is washed with water and immersed in deionized water heated to 368K or more for 10 minutes to form a hydrated oxide layer on the etched surface.
Thereafter, washing and drying are performed. The fins of the indoor heat exchanger are surface treated in this way.

【0044】このフィンの表面積を、BET法により測
定して有効面積拡大率を求めると、1150倍であっ
た。このフィン表面に水滴を落下させると、接触角の測
定ができない程に水滴は瞬時にフィン表面上に広がる。
接触角としては10度未満であり、高い親水性を示し
た。
The surface area of the fin was measured by the BET method to find the effective area enlargement ratio, which was 1150 times. When a water droplet is dropped on the fin surface, the water droplet instantaneously spreads on the fin surface so that the contact angle cannot be measured.
The contact angle was less than 10 degrees, indicating high hydrophilicity.

【0045】室外熱交換器用フィンは、前記室内熱交換
器用フィンをさらに443Kに加熱した容器内に設置し
て、予め気化させたヘプタデカトリデシルフルオロアル
キルシラン(構造式CF3 (CF27 (CH22
i(OCH33 )を前記容器内に導入して、前記フィ
ン表面上に化学吸着させる。この表面処理方法により作
製した室外熱交換器用のフィン表面は、172度以上の
接触角を有し、極めて高い撥水性を示した。
The fins for the outdoor heat exchanger are set in a vessel heated to 443 K, and the fins for the outdoor heat exchanger are vaporized in advance to heptadecatridecylfluoroalkylsilane (structural formula CF 3 (CF 2 ) 7. (CH 2 ) 2 S
i (OCH 3 ) 3 ) is introduced into the vessel and chemisorbed onto the fin surface. The surface of the fin for an outdoor heat exchanger produced by this surface treatment method had a contact angle of 172 degrees or more and exhibited extremely high water repellency.

【0046】このようにして作製した、室内および室外
熱交換器を組み合わせた空気調和機100の暖房運転お
よび冷房運転を行った。空気調和機100の全体構造の
系統概念図を図7に示す。図7において、空気調和機1
00は、ヒートポンプ式冷凍サイクルを構成しており、
室内に配置される親水性フィンを有する室内熱交換器1
と、室外に配置される撥水性フィンを有する室外熱交換
器10と、これらに接続される圧縮機14と、冷房、暖
房における冷媒の流れを切り換える四方弁31及び膨張
弁32と、を備えている。
The heating operation and the cooling operation of the air conditioner 100 combined with the indoor and outdoor heat exchangers manufactured as described above were performed. FIG. 7 is a system conceptual diagram of the overall structure of the air conditioner 100. In FIG. 7, the air conditioner 1
00 constitutes a heat pump refrigeration cycle,
Indoor heat exchanger 1 having hydrophilic fins arranged indoors
And an outdoor heat exchanger 10 having water-repellent fins disposed outdoors, a compressor 14 connected thereto, a four-way valve 31 and an expansion valve 32 for switching the flow of refrigerant in cooling and heating. I have.

【0047】そして、四方弁31が図示実線のように切
り換えられている冷房運転時には、室内熱交換器1が蒸
発器として、室外熱交換器10は凝縮器として機能し、
四方弁31が図示破線のように切り換えられている暖房
運転時には、室内熱交換器1が凝縮器として、室外熱交
換器10は蒸発器として機能する。
During the cooling operation in which the four-way valve 31 is switched as shown by the solid line in the figure, the indoor heat exchanger 1 functions as an evaporator and the outdoor heat exchanger 10 functions as a condenser.
During the heating operation in which the four-way valve 31 is switched as shown by the broken line in the figure, the indoor heat exchanger 1 functions as a condenser, and the outdoor heat exchanger 10 functions as an evaporator.

【0048】暖房運転時、室外熱交換器のフィン表面に
生じる凝縮水滴は、ほとんどが直径が5マイクロメート
ルから30マイクロメートルの小さな水滴の状態で、付
着することなく飛散するのが観察された。そのため氷点
下の環境下においても、フィン表面上の水滴は氷結、霜
化現象が起こり難い。
During the heating operation, it was observed that most of the condensed water droplets generated on the fin surface of the outdoor heat exchanger were small water droplets having a diameter of 5 μm to 30 μm and adhered without scattering. Therefore, even in a sub-zero environment, water droplets on the fin surface are unlikely to freeze and frost.

【0049】従来の親水性フィン付き熱交換器を室外熱
交換器に採用した空気調和機では、上記氷点下の環境
下、例えば外気温度275K、相対湿度85%の場合、
フィン表面に着霜が生じ、除霜周期時間は30分から4
5分であったが、本実施例の空気調和機100において
は、除霜周期時間は160分以上と大幅に延長し、着霜
の抑制を図ることができる。
In an air conditioner in which a conventional heat exchanger with hydrophilic fins is used as an outdoor heat exchanger, in an environment below the freezing point, for example, when the outside air temperature is 275K and the relative humidity is 85%,
Frost is formed on the fin surface, and the defrost cycle time is 30 minutes to 4
Although it is 5 minutes, in the air conditioner 100 of the present embodiment, the defrost cycle time is significantly extended to 160 minutes or more, and frost formation can be suppressed.

【0050】なお、前列熱交換器16から飛散する水滴
の挙動を観察したところ、約70%は下部のドレイン受
けに落下し、後部に飛散する水滴は約30%であった。
この30%の水滴は後部捕捉板13が全て捕捉し、ファ
ン12への付着は観察されなかった。
Observation of the behavior of water droplets scattered from the front row heat exchanger 16 revealed that about 70% of the water droplets fell to the lower drain receiver, and about 30% of the water droplets scattered to the rear.
All of the 30% water droplets were captured by the rear capturing plate 13, and no adhesion to the fan 12 was observed.

【0051】また、冷房運転時における室内熱交換器の
フィン表面に生成する凝縮水滴は、フィン表面上に水滴
として留まらずに瞬時に膜上となり、フィン表面を伝わ
って下方に落下するため、従来の親水性樹脂コーティン
グプレコートフィンを採用した室内熱交換器と比較し、
通風抵抗の増加を抑制して、且つ、低減でき、騒音の低
減化も図ることができる。
In addition, condensed water droplets generated on the fin surface of the indoor heat exchanger during the cooling operation are instantaneously formed on the film without staying as water droplets on the fin surface and fall down along the fin surface. Compared with indoor heat exchangers that adopt pre-coated fins with hydrophilic resin,
An increase in ventilation resistance can be suppressed and reduced, and noise can be reduced.

【0052】図8、9は本発明の一実施例を示す室外熱
交換器のフィン表面の電子顕微鏡写真である。倍率は、
図8が300倍及び図9が30000倍である。図8の
写真からは、フィン表面のエッチング状態がわかり、数
マイクロメートルから数十マイクロメートルのマクロ凹
凸が多数観察できる。さらにこの表面を拡大すると図9
となり、マクロ凹凸表面に花弁状の数十ナノメートルか
ら数百ナノメートルのミクロ凹凸構造が形成されている
ことが観察された。
8 and 9 are electron micrographs of the fin surface of the outdoor heat exchanger showing one embodiment of the present invention. The magnification is
8 is 300 times and FIG. 9 is 30,000 times. From the photograph of FIG. 8, the etching state of the fin surface can be seen, and a large number of macro irregularities ranging from several micrometers to several tens of micrometers can be observed. When this surface is further enlarged, FIG.
It was observed that a petal-shaped micro uneven structure of several tens to several hundreds of nanometers was formed on the macro uneven surface.

【0053】室内熱交換器のフィン表面を、同様にして
電子顕微鏡で観察すると同じ形状の凹凸が見られた。こ
の表面をX線回折分析を行った結果、この形状を有する
化合物は、ベーマイト水和酸化物であることが判明し
た。なお、図9の表面にはヘプタデカトリデシルフルオ
ロアルキルシラン化合物層が形成されているが、確認す
ることはできなかった。
When the fin surface of the indoor heat exchanger was observed with an electron microscope in the same manner, unevenness having the same shape was found. An X-ray diffraction analysis of this surface revealed that the compound having this shape was a boehmite hydrated oxide. Although a heptadecatridecylfluoroalkylsilane compound layer was formed on the surface of FIG. 9, it could not be confirmed.

【0054】このように、フィン表面はナノメートルオ
ーダーからマイクロメートルオーダーに至る広範囲に亘
る、マクロ凹凸とミクロ凹凸を組み合わせた複合凹凸構
造を形成して、水和酸化物層の表面積の増大化を図って
いる。そのため、フィン表面には親水基あるいは疎水基
が高密度に配列しているため、熱交換器のフィン表面は
高い親水性あるいは撥水性を呈する。
As described above, the fin surface forms a complex uneven structure combining macro unevenness and micro unevenness over a wide range from nanometer order to micrometer order to increase the surface area of the hydrated oxide layer. I'm trying. Therefore, since the hydrophilic groups or the hydrophobic groups are arranged at high density on the fin surface, the fin surface of the heat exchanger exhibits high hydrophilicity or water repellency.

【0055】次に、本実施例のフィン材の撥水性および
親水性の耐久性の検討を行った。耐久性の評価は、サン
シャインカーボンアーク灯方式耐候性試験機(スガ試験
機(株)装置)を用いて促進試験で行った。試験片の寸
法は、50mm×150mm×0.10mmである。本
試験片に対し、実施例1と同一条件で親水性と撥水性の
表面処理を施した。次に、この試験片をサンシャインカ
ーボンアーク灯方式耐候性試験機に設置し、所定時間照
射した後取り出し、試験片上に1.0μlの水滴を落下
させて接触角を測定した。
Next, the water repellency and the durability of the hydrophilicity of the fin material of this example were examined. The durability was evaluated by an accelerated test using a sunshine carbon arc lamp type weather resistance tester (Suga Test Machine Co., Ltd.). The dimensions of the test piece are 50 mm × 150 mm × 0.10 mm. This test piece was subjected to a hydrophilic and water-repellent surface treatment under the same conditions as in Example 1. Next, the test piece was placed in a sunshine carbon arc lamp type weather resistance tester, irradiated for a predetermined time, taken out, and a 1.0 μl water drop was dropped on the test piece to measure a contact angle.

【0056】なお、本発明と比較するために、エッチン
グ処理後水和酸化物を形成した試験片及び水和酸化物
(ベーマイト)形成のみの試験片を用い、疎水基を形成
する方法としてヘプタデカトリデシルフルオロアルキル
シランをパーフルオロカーボン溶剤(構造式C818
スリーM社製)に濃度が3%となるように調整した液
に、それぞれの試験片を30分間浸せきし、その後44
3Kで30分加熱して形成した試験片および市販されて
いる親水性樹脂コーティングプレコートアルミニウムフ
ィン材も併せて評価した。結果を表1および図10に示
す。
For comparison with the present invention, heptadeca was used as a method for forming a hydrophobic group by using a test piece on which a hydrated oxide was formed after etching and a test piece on which only a hydrated oxide (boehmite) was formed. Tridecylfluoroalkylsilane is converted to a perfluorocarbon solvent (Structural formula C 8 F 18 ,
Each test piece was immersed for 30 minutes in a solution adjusted to a concentration of 3% in 3M (manufactured by Three M Co.).
A test piece formed by heating at 3K for 30 minutes and a commercially available hydrophilic resin-coated precoated aluminum fin material were also evaluated. The results are shown in Table 1 and FIG.

【0057】[0057]

【表1】 [Table 1]

【0058】表1からわかるように、本発明の親水性被
膜では親水性の劣化は生ぜず、さらに照射時間1000
時間後においてもほとんど劣化は見られず、優れた耐久
性を有し問題は無い。
As can be seen from Table 1, the hydrophilic coating of the present invention did not cause any deterioration in hydrophilicity, and the irradiation time was 1000 hours.
Deterioration is hardly observed even after the time, and there is no problem with excellent durability.

【0059】また、図10からわかるように、本発明の
実施例1における撥水性被膜では、1000時間の照射
時間後においても撥水性は初期の性能を維持し、極めて
高い耐久性を有していることがわかる。一方、ディッピ
ング処理試験片およびベーマイト処理のみの試験片に、
実施例1で用いたフッ素化合物を気相化学吸着させた試
験片のいずれも、照射時間とともに接触角の低下が生
じ、耐久性に問題がある。
As can be seen from FIG. 10, the water-repellent coating in Example 1 of the present invention maintains its initial performance even after an irradiation time of 1000 hours, and has extremely high durability. You can see that there is. On the other hand, dipping test specimens and test specimens with only boehmite treatment
In any of the test pieces used in Example 1 to which the fluorine compound was chemically adsorbed in the gas phase, the contact angle decreased with the irradiation time, and there was a problem in durability.

【0060】さらに、同様にしてエッチングを施したフ
ィン表面にヘプタデカトリデシルフルオロアルキルシラ
ンを気相化学吸着法でコーティングしたところ、初期の
接触角は171度と優れた撥水性を示した。しかしなが
ら、照射時間の経過とともに接触角が低下し、50時間
程度で接触角が40度となり、撥水性の耐久性はなかっ
た。(図示せず)これは、エッチング処理のみでは、水
和酸化物が形成し難く、フッ素化合物の化学吸着が起こ
りにくく、被膜の剥離が発生したためと考えられる。
Further, when the fin surface etched in the same manner was coated with heptadecatridecylfluoroalkylsilane by a gas phase chemical adsorption method, the initial contact angle was 171 °, showing excellent water repellency. However, the contact angle decreased with the passage of irradiation time, and reached about 40 degrees in about 50 hours, and there was no durability of water repellency. This is presumably because the hydrated oxide is hardly formed by the etching treatment alone, the chemical adsorption of the fluorine compound is hard to occur, and the coating peels off.

【0061】本実施例では、熱交換器を構成する銅伝熱
管5、15とアルミフィン4、11とが接触する面にお
いて、銅伝熱管5、15の表面にエポキシ樹脂からなる
絶縁被膜を設けることにより、銅とアルミニウムの直接
接触を防止して耐食性を高めている。また、絶縁被膜と
してその他にシリコン樹脂、アクリル樹脂等の可塑性を
有する物質を用いることにより、従来、拡管処理時に発
生する伝熱管5、15とフィン4、11との接触面に存
在していた空気層を少なくして接触熱抵抗を小さくする
ことができる。なおこのときの絶縁膜の厚さは伝熱特性
から10ミクロンメートル以下が好ましい。
In this embodiment, an insulating film made of epoxy resin is provided on the surfaces of the copper heat transfer tubes 5 and 15 on the surfaces where the copper heat transfer tubes 5 and 15 and the aluminum fins 4 and 11 constituting the heat exchanger are in contact. This prevents direct contact between copper and aluminum and enhances corrosion resistance. In addition, by using a plastic material such as a silicon resin or an acrylic resin as the insulating coating, air existing on the contact surfaces between the heat transfer tubes 5 and 15 and the fins 4 and 11 which are generated at the time of the tube expansion process. The number of layers can be reduced to reduce the contact thermal resistance. Note that the thickness of the insulating film at this time is preferably 10 μm or less from the viewpoint of heat transfer characteristics.

【0062】なお、上述の異種金属の直接接触によるガ
ルバニック腐食の問題は、熱交換器全体をアルミニウム
またはアルミニウム合金のみで作製することにより解決
することができる。この場合、フィンを伝熱管に溶接す
ることが容易であり、接触熱抵抗の問題はなくなる。
The problem of galvanic corrosion caused by the direct contact of dissimilar metals can be solved by manufacturing the entire heat exchanger using only aluminum or an aluminum alloy. In this case, it is easy to weld the fin to the heat transfer tube, and the problem of contact heat resistance is eliminated.

【0063】[0063]

【発明の効果】以上説明したように、本発明によれば、
露点以下の運転条件で発生する凝縮水が表面上で瞬時に
膜状となる空気側伝熱面を用いた熱交換器を室内熱交換
器ユニットに、また露点以下の運転条件で発生する凝縮
水が表面上で凝集、離脱、飛散する空気側伝熱面を用い
た熱交換器を室外熱交換器ユニットに、適用した空気調
和機とすることにより、冷房運転時または暖房運転時の
いずれにおいても各熱交換器の通風抵抗の増加を抑制
し、熱交換性能の向上、低温時の暖房能力の向上、難着
霜化、運転時の騒音低下等を図ることができ、しかも初
期性能を長期間維持し、耐久性にも優れた空気調和機と
することができる。
As described above, according to the present invention,
The condensed water generated under the operating conditions below the dew point instantaneously forms a film on the surface.The heat exchanger using the air-side heat transfer surface is installed in the indoor heat exchanger unit, and the condensed water generated under the operating conditions below the dew point. Coagulation on the surface, departure, the heat exchanger using the air-side heat transfer surface scattered to the outdoor heat exchanger unit, by using the air conditioner applied, during either cooling operation or heating operation By suppressing the increase in ventilation resistance of each heat exchanger, it is possible to improve the heat exchange performance, improve the heating capacity at low temperatures, harden frost, reduce noise during operation, etc. It is possible to maintain the air conditioner with excellent durability.

【0064】また、熱交換器の製造において、一連の共
通する工程により親水性の高い熱交換器、撥水性の高い
熱交換器を製作することができるため、製造工程の短縮
化ができ、コスト低減化が図れる。さらに、触媒層を設
けることにより、室内熱交換器ユニットの抗菌、防カ
ビ、防汚、消臭を図ることができる。
In the manufacture of a heat exchanger, a heat exchanger having high hydrophilicity and a heat exchanger having high water repellency can be manufactured by a series of common steps, so that the manufacturing steps can be shortened and the cost can be reduced. Reduction can be achieved. Further, by providing the catalyst layer, antibacterial, antifungal, antifouling, and deodorizing of the indoor heat exchanger unit can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す空調用室内熱交換器ユ
ニットの断面図。
FIG. 1 is a sectional view of an air conditioning indoor heat exchanger unit showing one embodiment of the present invention.

【図2】本発明の一実施例を示す室内熱交換器のフィン
の部分図。
FIG. 2 is a partial view of a fin of the indoor heat exchanger showing one embodiment of the present invention.

【図3】本発明の一実施例を示す室内熱交換器のフィン
の部分断面模式図。
FIG. 3 is a schematic partial sectional view of a fin of an indoor heat exchanger showing one embodiment of the present invention.

【図4】本発明の一実施例である室内熱交換器のフィン
断面の電子顕微鏡写真。
FIG. 4 is an electron micrograph of a fin cross section of an indoor heat exchanger according to one embodiment of the present invention.

【図5】本発明の一実施例を示す室外熱交換器ユニット
の断面図。
FIG. 5 is a sectional view of an outdoor heat exchanger unit showing one embodiment of the present invention.

【図6】本発明の一実施例を示す室外熱交換器のフィン
の部分断面模式図。
FIG. 6 is a schematic partial cross-sectional view of a fin of an outdoor heat exchanger showing one embodiment of the present invention.

【図7】本発明の一実施例による空気調和機の全体構造
を示す系統概念図。
FIG. 7 is a conceptual diagram showing the overall structure of an air conditioner according to an embodiment of the present invention.

【図8】本発明の一実施例である室外熱交換機フィン表
面の電子顕微鏡写真。
FIG. 8 is an electron micrograph of a fin surface of an outdoor heat exchanger according to one embodiment of the present invention.

【図9】本発明の一実施例である室外熱交換機フィン表
面の電子顕微鏡写真。
FIG. 9 is an electron micrograph of a fin surface of an outdoor heat exchanger according to one embodiment of the present invention.

【図10】本発明の一実施例である撥水性被膜試験片の
サンシャインウェザー試験結果。
FIG. 10 shows the results of a sunshine weather test of a water-repellent film test piece according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…室内熱交換器ユニット、 3a,3
b…室内熱交換器、11…フィン、
6、12…ファン、15…伝熱管
10…室外熱交換器ユニット、1
3…捕捉板、 16…室外
熱交換器、20…アルミニウム基板、
21…エッチング層、22…水和酸化物層、
23…疎水基層、31…四方弁
32…膨張弁100…空気調和
1: indoor heat exchanger unit, 3a, 3
b: indoor heat exchanger, 11: fin,
6, 12 ... fan, 15 ... heat transfer tube
10 outdoor heat exchanger unit, 1
3: capture plate, 16: outdoor heat exchanger, 20: aluminum substrate,
21: etching layer, 22: hydrated oxide layer,
23: hydrophobic base layer, 31: four-way valve
32 ... Expansion valve 100 ... Air conditioner

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小暮 博志 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所冷熱事業部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Kogure 800 Tomita, Ohira, Shimotsuga-gun, Tochigi Pref.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 室内熱交換器ユニット、室外熱交換器ユ
ニット、圧縮機、四方弁、膨張弁及び接続配管等により
ヒートポンプ式冷凍サイクルを構成する空気調和機にお
いて、露点以下の条件下での運転時に発生する凝縮水が
熱交換器空気側伝熱面表面上で膜状となる親水性空気側
伝熱面付き熱交換器を前記室内熱交換器ユニットに適用
し、且つ、露点以下の条件下での運転時に発生する凝縮
水が熱交換器空気側伝熱面表面上で凝集し、表面から離
脱する撥水性空気側伝熱面付き熱交換器及び該撥水性空
気側伝熱面付き熱交換器から飛散する水滴を捕捉する親
水性空気側伝熱面付き熱交換器を前記室外熱交換器ユニ
ットに適用したことを特徴とする空気調和機。
1. An air conditioner comprising a heat pump refrigeration cycle comprising an indoor heat exchanger unit, an outdoor heat exchanger unit, a compressor, a four-way valve, an expansion valve, a connection pipe, and the like, operated under a dew point or lower condition. Applying a heat exchanger with a hydrophilic air-side heat transfer surface in which condensed water generated at the time becomes a film on the heat exchanger air-side heat transfer surface to the indoor heat exchanger unit, and under the condition of a dew point or lower. Generated at the time of operation in the heat exchanger aggregates on the surface of the air-side heat transfer surface of the heat exchanger and separates from the surface, and the heat exchanger with the water-repellent air-side heat transfer surface and heat exchange with the water-repellent air-side heat transfer surface An air conditioner wherein a heat exchanger with a hydrophilic air-side heat transfer surface for catching water droplets scattered from a heat exchanger is applied to the outdoor heat exchanger unit.
【請求項2】 前記親水性空気側伝熱面付き熱交換器
は、後記請求項3又は4のいずれかに記載の親水性空気
側伝熱面付き熱交換器であり、前記撥水性空気側伝熱面
付き熱交換器は、後記請求項5又は6のいずれかに記載
の撥水性空気側伝熱面付き熱交換器であることを特徴と
する請求項1に記載の空気調和機。
2. The heat exchanger with a hydrophilic air side heat transfer surface according to claim 3, wherein the heat exchanger with a hydrophilic air side heat transfer surface is the heat exchanger with a hydrophilic air side heat transfer surface. The air conditioner according to claim 1, wherein the heat exchanger with a heat transfer surface is the heat exchanger with a water-repellent air-side heat transfer surface according to claim 5.
【請求項3】 前記空気側伝熱面表面に数マイクロメー
トルオーダー以上のマクロ凹凸が形成され、さらに、そ
の表面上にナノメートルオーダーからマイクロメートル
オーダーのミクロ凹凸を有する水和酸化物が形成された
複合凹凸構造で、且つ、前記水和酸化物の有効面積拡大
率が500倍以上の構造としたものであることを特徴と
する親水性空気側伝熱面付き熱交換器。
3. The surface of the air-side heat transfer surface has macro unevenness on the order of several micrometers or more, and further has a hydrated oxide having micro unevenness on the order of nanometers to micrometer on the surface. A heat exchanger with a hydrophilic air-side heat transfer surface, wherein the heat exchanger has a complex concavo-convex structure and an effective area expansion ratio of the hydrated oxide is 500 times or more.
【請求項4】 前記親水性空気側伝熱面付き熱交換器
は、前記水和酸化物表面上に、消臭、防汚、抗菌、防カ
ビのいずれかあるいは複数の作用を有する触媒層が形成
された構造としたものであることを特徴とする請求項2
に記載の親水性空気側伝熱面付き熱交換器。
4. The heat exchanger with a hydrophilic air-side heat transfer surface, wherein a catalyst layer having any one or more of deodorant, antifouling, antibacterial, and antifungal functions is formed on the surface of the hydrated oxide. 3. The structure according to claim 2, wherein the structure is formed.
4. The heat exchanger with a hydrophilic air side heat transfer surface according to item 1.
【請求項5】 前記空気側伝熱面の表面に数マイクロメ
ートルオーダー以上のマクロ凹凸が形成され、さらに、
その表面上にナノメートルオーダーからマイクロメート
ルオーダーのミクロ凹凸を有する水和酸化物が形成され
た複合凹凸構造で、且つ、前記水和酸化物の有効面積拡
大率が800倍以上を有し、しかも、その表面を臨界表
面張力が20dyn/cm以下の疎水性化合物からなる
撥水性被膜で被覆した構造としたものであることを特徴
とする撥水性空気側伝熱面付き熱交換器。
5. A macro unevenness of several micrometers or more is formed on the surface of the air-side heat transfer surface,
A composite uneven structure in which hydrated oxides having micro unevenness on the order of nanometers to micrometers are formed on the surface thereof, and the effective area expansion rate of the hydrated oxide is 800 times or more, and A heat exchanger having a water-repellent air-side heat transfer surface, the surface of which is coated with a water-repellent coating made of a hydrophobic compound having a critical surface tension of 20 dyn / cm or less.
【請求項6】 前記撥水性空気側伝熱面付き熱交換器
は、その表面に形成させた前記水和酸化物層表面上にパ
ーフルオロ基を有するアルコキシシラン化合物を用いて
撥水性被膜を形成させた構造を有するものであることを
特徴とする請求項4に記載の撥水性空気側伝熱面付き熱
交換器。
6. The heat exchanger with a water-repellent air-side heat transfer surface, wherein a water-repellent coating is formed by using an alkoxysilane compound having a perfluoro group on the surface of the hydrated oxide layer formed on the surface. The heat exchanger with a water-repellent air-side heat transfer surface according to claim 4, wherein the heat exchanger has a structure in which the heat exchanger is provided.
【請求項7】 アルミニウムまたはアルミニウム合金か
らなる空気側伝熱面基板を脱脂処理する工程、含塩酸水
溶液でエッチング処理によりマクロ凹凸を形成する工
程、さらにその表面にミクロ凹凸を有する水和酸化物を
形成して、複合凹凸構造表面で、且つ、その有効面積拡
大率を500倍以上にする工程を経て親水性空気側伝熱
面を製作し、該空気側伝熱面を用いて熱交換器の製作を
することを特徴とする親水性空気側伝熱面付き熱交換器
の製造方法。
7. A step of degreasing an air-side heat transfer surface substrate made of aluminum or an aluminum alloy, a step of forming macro unevenness by etching with an aqueous solution containing hydrochloric acid, and a step of forming a hydrated oxide having micro unevenness on its surface. Forming and forming a hydrophilic air-side heat transfer surface through a step of increasing the effective area enlargement ratio by 500 times or more on the composite uneven structure surface, and using the air-side heat transfer surface to form a heat exchanger A method for manufacturing a heat exchanger with a hydrophilic air-side heat transfer surface, which is manufactured.
【請求項8】 アルミニウムまたはアルミニウム合金か
らなる空気側伝熱面基板を脱脂処理する工程、含塩酸水
溶液でエッチング処理によりマクロ凹凸を形成する工
程、さらにその表面にミクロ凹凸を有する水和酸化物を
形成して、複合凹凸構造表面で、且つ、その面積拡大率
を800倍以上にする工程、及び前記空気側伝熱面表面
に表面エネルギーが臨界表面張力で20dyn/cm以
下の疎水基を有する化合物を気化させ化学吸着させて撥
水性被膜を形成する工程を経て撥水性空気側伝熱面を製
作し、該空気側伝熱面を用いて熱交換器の製作をするこ
とを特徴とする撥水性空気側伝熱面付き熱交換器の製造
方法。
8. A step of degreasing the air-side heat transfer surface substrate made of aluminum or an aluminum alloy, a step of forming macro unevenness by etching with an aqueous solution containing hydrochloric acid, and a step of forming a hydrated oxide having micro unevenness on the surface. A step of forming the composite uneven structure surface and increasing the area expansion rate to 800 times or more, and a compound having a surface energy of 20 dyn / cm or less in critical surface tension on the surface of the air-side heat transfer surface. A water-repellent air-side heat transfer surface through a process of forming a water-repellent film by vaporizing and chemically adsorbing the water-repellent film, and manufacturing a heat exchanger using the air-side heat transfer surface. Manufacturing method of heat exchanger with air-side heat transfer surface.
【請求項9】 延び率が15%以上の機械的性質を有す
るアルミニウムまたはアルミニウム合金の素材を熱交換
器用空気側伝熱面材として用いることを特徴とする請求
項6又は7に記載の親水性空気側伝熱面付き熱交換器又
は撥水性空気側伝熱面付き熱交換器の製造方法。
9. The hydrophilic material according to claim 6, wherein an aluminum or aluminum alloy material having an elongation of 15% or more is used as an air-side heat transfer surface material for a heat exchanger. A method for manufacturing a heat exchanger with an air-side heat transfer surface or a heat exchanger with a water-repellent air-side heat transfer surface.
JP29510697A 1997-02-07 1997-10-28 Air conditioner, heat exchanger and its production Abandoned JPH10281690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29510697A JPH10281690A (en) 1997-02-07 1997-10-28 Air conditioner, heat exchanger and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-25178 1997-02-07
JP2517897 1997-02-07
JP29510697A JPH10281690A (en) 1997-02-07 1997-10-28 Air conditioner, heat exchanger and its production

Publications (1)

Publication Number Publication Date
JPH10281690A true JPH10281690A (en) 1998-10-23

Family

ID=26362773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29510697A Abandoned JPH10281690A (en) 1997-02-07 1997-10-28 Air conditioner, heat exchanger and its production

Country Status (1)

Country Link
JP (1) JPH10281690A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004527004A (en) * 2001-05-11 2004-09-02 ボシュ・アンド・ロム・インコーポレイテッド How to passivate an intraocular lens
US7325593B2 (en) * 2001-03-21 2008-02-05 Suikoh Top Line Co., Ltd. Radiating fin and radiating method using the radiating fin
JP2008126151A (en) * 2006-11-21 2008-06-05 Alumite Shokubai Kenkyusho:Kk Catalytic body using anodic aluminum oxide film
JP2009115402A (en) * 2007-11-07 2009-05-28 Tokyo Electric Power Co Inc:The Heat exchanger and cooling method
JP2010112667A (en) * 2008-11-10 2010-05-20 Mitsubishi Electric Corp Air conditioner
WO2010101136A1 (en) * 2009-03-02 2010-09-10 セントラル硝子株式会社 Porous network structure, hydrophilic member utilizing same, and processes for producing the porous network structure and the hydrophilic member
JP2010202924A (en) * 2009-03-02 2010-09-16 Central Glass Co Ltd Reticulated porous structure and method for producing the same
JP2012055856A (en) * 2010-09-10 2012-03-22 Tokyo Univ Of Agriculture & Technology Metal catalyst carrier, metal catalyst object, and method for manufacturing the same
WO2012147288A1 (en) * 2011-04-27 2012-11-01 株式会社デンソー Water-repellent substrate, heat exchanger using water-repellent substrate, and method for producing water-repellent substrate
JP2013036733A (en) * 2011-07-12 2013-02-21 Denso Corp Water repellent base material, heat exchanger, and method for manufacturing water repellent base material
JP2013103414A (en) * 2011-11-14 2013-05-30 Toyota Central R&D Labs Inc Water-repellent material and production process thereof
KR20150011537A (en) * 2013-07-23 2015-02-02 엘지전자 주식회사 An heat exchanger, a manufacturing mehtod and a manufacturing device the same
JP2015135208A (en) * 2014-01-17 2015-07-27 株式会社ティラド heat exchanger
WO2016021367A1 (en) * 2014-08-07 2016-02-11 シャープ株式会社 Heat exchanger including fins with surface having bactericidal activity, metallic member with surface having bactericidal activity, method for inhibiting mold growth and sterilization method both using surface of fins of heat exchanger or surface of metallic member, and electrical water boiler, beverage supplier, and lunch box lid all including metallic member
JP2016061526A (en) * 2014-09-19 2016-04-25 株式会社デンソー Heat exchanger
KR101664688B1 (en) * 2015-05-14 2016-10-11 현대자동차주식회사 Evaporator of air conditioner with superhydrophilic and superhydrophobic surface and its preparation method
CN108346633A (en) * 2017-11-08 2018-07-31 中电普瑞电力工程有限公司 A kind of micro-nano structure array heat-delivery surface and preparation method thereof
WO2021193742A1 (en) * 2020-03-25 2021-09-30 本田技研工業株式会社 Functional material and method for producing same
WO2022196497A1 (en) * 2021-03-16 2022-09-22 株式会社山一ハガネ Heat exchanger member, heat exchanger, air conditioner indoor unit, air conditioner outdoor unit, and refrigerator

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7325593B2 (en) * 2001-03-21 2008-02-05 Suikoh Top Line Co., Ltd. Radiating fin and radiating method using the radiating fin
JP2004527004A (en) * 2001-05-11 2004-09-02 ボシュ・アンド・ロム・インコーポレイテッド How to passivate an intraocular lens
JP2008126151A (en) * 2006-11-21 2008-06-05 Alumite Shokubai Kenkyusho:Kk Catalytic body using anodic aluminum oxide film
JP2009115402A (en) * 2007-11-07 2009-05-28 Tokyo Electric Power Co Inc:The Heat exchanger and cooling method
US8708034B2 (en) 2008-11-10 2014-04-29 Mitsubishi Electric Corporation Air conditioner
JP2010112667A (en) * 2008-11-10 2010-05-20 Mitsubishi Electric Corp Air conditioner
WO2010101136A1 (en) * 2009-03-02 2010-09-10 セントラル硝子株式会社 Porous network structure, hydrophilic member utilizing same, and processes for producing the porous network structure and the hydrophilic member
JP2010202924A (en) * 2009-03-02 2010-09-16 Central Glass Co Ltd Reticulated porous structure and method for producing the same
JP2012055856A (en) * 2010-09-10 2012-03-22 Tokyo Univ Of Agriculture & Technology Metal catalyst carrier, metal catalyst object, and method for manufacturing the same
WO2012147288A1 (en) * 2011-04-27 2012-11-01 株式会社デンソー Water-repellent substrate, heat exchanger using water-repellent substrate, and method for producing water-repellent substrate
JP2013036733A (en) * 2011-07-12 2013-02-21 Denso Corp Water repellent base material, heat exchanger, and method for manufacturing water repellent base material
JP2013103414A (en) * 2011-11-14 2013-05-30 Toyota Central R&D Labs Inc Water-repellent material and production process thereof
KR20150011537A (en) * 2013-07-23 2015-02-02 엘지전자 주식회사 An heat exchanger, a manufacturing mehtod and a manufacturing device the same
JP2015135208A (en) * 2014-01-17 2015-07-27 株式会社ティラド heat exchanger
WO2016021367A1 (en) * 2014-08-07 2016-02-11 シャープ株式会社 Heat exchanger including fins with surface having bactericidal activity, metallic member with surface having bactericidal activity, method for inhibiting mold growth and sterilization method both using surface of fins of heat exchanger or surface of metallic member, and electrical water boiler, beverage supplier, and lunch box lid all including metallic member
JPWO2016021367A1 (en) * 2014-08-07 2017-05-25 シャープ株式会社 Heat exchanger having fins with sterilizing surface, metal member having sterilizing surface, sterilization method using fin surface of heat exchanger, electric water heater having metal member, and beverage feeder And lunch box lid
JP2018028148A (en) * 2014-08-07 2018-02-22 シャープ株式会社 Fin with surface having antifungal action, heat exchanger having fin, and metallic component with surface having bactericidal action
JP2016061526A (en) * 2014-09-19 2016-04-25 株式会社デンソー Heat exchanger
KR101664688B1 (en) * 2015-05-14 2016-10-11 현대자동차주식회사 Evaporator of air conditioner with superhydrophilic and superhydrophobic surface and its preparation method
CN108346633A (en) * 2017-11-08 2018-07-31 中电普瑞电力工程有限公司 A kind of micro-nano structure array heat-delivery surface and preparation method thereof
WO2021193742A1 (en) * 2020-03-25 2021-09-30 本田技研工業株式会社 Functional material and method for producing same
JPWO2021193742A1 (en) * 2020-03-25 2021-09-30
WO2022196497A1 (en) * 2021-03-16 2022-09-22 株式会社山一ハガネ Heat exchanger member, heat exchanger, air conditioner indoor unit, air conditioner outdoor unit, and refrigerator

Similar Documents

Publication Publication Date Title
JPH10281690A (en) Air conditioner, heat exchanger and its production
US11441852B2 (en) Droplet ejecting coatings
US10525504B2 (en) Functional coatings enhancing condenser performance
JP5867325B2 (en) Method for producing water-repellent substrate
CN108431542B (en) It is a kind of for improving the alternately arranged heterogeneous wetting surface of condensed water capture rate
JP2012228670A (en) Water-repellent substrate, heat exchanger using water-repellent substrate, and method for producing water-repellent substrate
JP4849086B2 (en) Refrigeration cycle equipment, refrigeration / air conditioning equipment, hot water supply equipment
KR20150061765A (en) Fin for evaporator with water-repellent coating layer And process for producing the same
JPH08323285A (en) Member with excellent water repellency and anti-frosting property and its preparation
JP5859895B2 (en) Aluminum fin material
US10870256B2 (en) Hydrophilic aluminum surface body having hybrid nanostructure and manufacturing method thereof
JP2011208935A (en) Refrigerating cycle device, refrigerating/air conditioning device, and hot water supply device
JP3059307B2 (en) A member excellent in water repellency and frost prevention and a method of manufacturing the same
JPH1096599A (en) Outdoor heat exchanger unit and air conditioner using it
JPH1191024A (en) Water repellent material and manufacture thereof
CN1103904C (en) Outdoor heat exchanger unit and air-conditioner using the unit
JP2003001746A (en) Copper member having hydrophilicity and water repellency, method for manufacturing the same, and heat transfer pipe
JP2001248951A (en) Refrigerator, and manufacturing method for evaporator for refrigerator chamber for use in former
JPS6013429B2 (en) Method for imparting hydrophilicity to the condensation surface of aluminum heat exchangers
JP2002256446A (en) Functional copper base-material and heat exchanger tube
US20240159480A1 (en) Heat exchanger member, heat exchanger, air conditioner indoor unit, air conditioner outdoor unit, and refrigerator
JP2003336986A (en) Heat exchanger for air conditioning and manufacturing method therefor
JP2012088051A (en) Heat transfer material for heat exchanger and method for processing heat transfer surface
CN115867617A (en) Coating composition for heat exchanger
JPH07198290A (en) Aluminum fin material for heat exchanger with excellent hydrophilic property and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20050218