JP2002256446A - Functional copper base-material and heat exchanger tube - Google Patents

Functional copper base-material and heat exchanger tube

Info

Publication number
JP2002256446A
JP2002256446A JP2001062282A JP2001062282A JP2002256446A JP 2002256446 A JP2002256446 A JP 2002256446A JP 2001062282 A JP2001062282 A JP 2001062282A JP 2001062282 A JP2001062282 A JP 2001062282A JP 2002256446 A JP2002256446 A JP 2002256446A
Authority
JP
Japan
Prior art keywords
copper
group
uneven structure
fine uneven
copper tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001062282A
Other languages
Japanese (ja)
Inventor
Katsumi Muroi
克美 室井
Kazuya Matsuo
一也 松尾
Tomomi Umeda
知巳 梅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001062282A priority Critical patent/JP2002256446A/en
Publication of JP2002256446A publication Critical patent/JP2002256446A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/63Treatment of copper or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coating which greatly improves wettability of the surface of a copper base-material and has durability, and to provide a manufacturing method therefor. SOLUTION: A method includes forming a layer 101 having a structure with submicron size of fine unevenness on the surface of the copper base-material 100, by forming copper oxide on the surface by immersing the copper base- material 100 in an alkaline aqueous solution of high temperature, or by immersing the copper base-material in an electroless copper plating bath. The method, subsequently, reacts the surface of the layer 101 having the structure with fine unevenness with a thiol compound having a function group such as a hydrophilic group or a hydrophobic group at the end group, and forms a coating consisting of a sulfur compound layer 102 on the surface of the layer 101 having a structure with fine unevenness.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銅基材表面に機能
性を付与する表面処理に関する。
The present invention relates to a surface treatment for imparting functionality to a copper base material surface.

【0002】[0002]

【従来の技術】銅基材は水に対する濡れ性が悪く、水に
対する接触角は約80度を示す。吸収式冷凍機に用いら
れている蒸発器の銅製伝熱管においては、伝熱管内部に
熱源水を流し、伝熱管外周部に沿い、上部から液冷媒
(水)を滴下・散布させて蒸発させる。この伝熱管の性
能を向上させるには、伝熱管全面で液冷媒の蒸発が行な
われるように、伝熱管全面が液冷媒で覆われる、つまり
液冷媒で濡れる必要がある。ところが前述したように銅
表面は濡れ性が悪いため、伝熱管全面が濡れず、ドライ
アウトが発生しやすい。伝熱管全面が濡れないと蒸発面
積が減り、性能低下が生じる。したがって伝熱管表面の
水との濡れ性を良くすることにより性能は向上する。そ
してその濡れ性を改善するために、種々な方法が提案さ
れている。
2. Description of the Related Art Copper base materials have poor wettability with water, and have a contact angle with water of about 80 degrees. In a copper heat transfer tube of an evaporator used in an absorption refrigerator, a heat source water is caused to flow inside the heat transfer tube, and a liquid refrigerant (water) is dropped and sprayed from the upper portion along the outer periphery of the heat transfer tube to evaporate. In order to improve the performance of the heat transfer tube, it is necessary that the entire surface of the heat transfer tube is covered with the liquid refrigerant, that is, wet with the liquid refrigerant so that the liquid refrigerant is evaporated on the entire surface of the heat transfer tube. However, as described above, since the copper surface has poor wettability, the entire surface of the heat transfer tube is not wet, and dryout is likely to occur. If the entire surface of the heat transfer tube is not wet, the evaporation area is reduced and the performance is reduced. Therefore, the performance is improved by improving the wettability of the heat transfer tube surface with water. In order to improve the wettability, various methods have been proposed.

【0003】特開平11―211376号公報では、銅
伝熱管を高温のアルカリ溶液中に浸漬して酸化銅被膜を
形成する方法が、特開平10―253195号公報で
は、ブラスト処理後に加熱処理を施して酸化銅を形成す
る方法が、特開平6―82126号記載の公報ではコロ
ナ放電による酸化膜形成方法が、特開2000―220
981号公報では、微細格子状のガーゼを伝熱管表面に
被覆して毛細管現象を利用して濡れ性を改善する方法
が、それぞれ提案されている。
In Japanese Patent Application Laid-Open No. Hei 11-213376, a method of forming a copper oxide film by immersing a copper heat transfer tube in a high-temperature alkaline solution is disclosed. In Japanese Patent Application Laid-Open No. 10-253195, a heat treatment is performed after blasting. Japanese Patent Application Laid-Open No. 6-82126 discloses a method for forming an oxide film by corona discharge.
No. 981 proposes a method of coating the surface of a heat transfer tube with fine gauze gauze to improve wettability by utilizing a capillary phenomenon.

【0004】またパッケージエアコン、ルームエアコン
等の空調機においては、室内機と室外機を結ぶ冷媒用配
管として、冷媒がガス化して流れる配管(一般にガス管
と言われている)およびガス、液の二相あるいは液が流
れる配管(一般に液管と言われている)の2本が配置さ
れている。このうち、蒸発器の出口から圧縮機の入り口
に至るまでの配管、いわゆるガス管は管内の圧力損失が
大きくならないように液管と比較して管径を大きくして
ある。またこれらの配管は銅製の平滑管が使用されてい
る。
In an air conditioner such as a package air conditioner or a room air conditioner, as a refrigerant pipe connecting the indoor unit and the outdoor unit, a pipe (generally referred to as a gas pipe) through which the refrigerant gasifies and a gas or liquid pipe are provided. Two pipes of two phases or pipes through which liquid flows (generally called liquid pipes) are arranged. Among them, the pipe from the outlet of the evaporator to the inlet of the compressor, the so-called gas pipe, has a larger pipe diameter than the liquid pipe so as not to increase the pressure loss in the pipe. These pipes are copper smooth pipes.

【0005】また銅基材の表面機能性向上技術の他の方
法の一つに、官能基を有するチオール化合物を銅表面に
化学反応させて機能性被膜を構成させる方法が報告され
ている。たとえば特開平11―274602号公報にお
いては、銅電極の表面に水酸基、アミノ基、カルボキシ
ル基、カルボニル基、アルデヒド基等の官能基を有する
自己組織化膜を形成する光半導体素子に関して開示され
ている。すなわちチオール基を持つ分子は金、銀、銅な
どと化学吸着し、チオール基とは反対側に機能性官能基
を導入することで種々の機能を金、銀、銅などの固体表
面に導入することができる。
As another method for improving the surface functionality of a copper base material, there has been reported a method of forming a functional film by chemically reacting a thiol compound having a functional group on a copper surface. For example, JP-A-11-274602 discloses an optical semiconductor device that forms a self-assembled film having a functional group such as a hydroxyl group, an amino group, a carboxyl group, a carbonyl group, or an aldehyde group on the surface of a copper electrode. . That is, a molecule having a thiol group chemically adsorbs to gold, silver, copper, etc., and introduces various functions to a solid surface of gold, silver, copper, etc. by introducing a functional functional group on the side opposite to the thiol group. be able to.

【0006】[0006]

【発明が解決しようとする課題】金表面へ親水基の官能
基を有するチオール化合物を反応させると極めて高い親
水性を呈する表面ができることが従来知られている。ジ
ャーナル オブ ジ アメリカン ケミカル ソサエテ
ィ(Journal of the American Chemical Society.vol.
111(No.1)p325(1989))には、金表
面に水酸基、カルボキシル基等の親水基の官能基を有す
るチオール化合物を反応させることにより、金表面の接
触角が10度以下になり、親水性を呈することが報告され
ている。この処理が銅基材表面に対しても有効であるこ
とも同様に報告されている。しかしながら銅表面は酸化
物を形成しやすいため、チオール化合物の適用は金より
難しい。実際に銅表面にチオール化合物の一つであるH
S(CH10CHOHのエタノール溶液を用い
て、金、銅基材と反応させて水滴落下法により接触角を
測定したところ、チオール化合物を反応させた銅の接触
角は31度を示し、チオール化合物を反応させた金の接触
角の5度という低い値と比較すると濡れ性は悪く、銅表
面の濡れ性改良としては不十分であることが判明した。
It is conventionally known that when a thiol compound having a hydrophilic functional group is reacted with a gold surface, a surface having extremely high hydrophilicity can be formed. Journal of the American Chemical Society. Vol.
111 (No. 1) p325 (1989)), by reacting a thiol compound having a functional group of a hydrophilic group such as a hydroxyl group or a carboxyl group on the gold surface, the contact angle of the gold surface becomes 10 degrees or less, It is reported to exhibit hydrophilicity. It has been reported that this treatment is also effective for the copper substrate surface. However, application of thiol compounds is more difficult than gold, because copper surfaces tend to form oxides. Actually, one of the thiol compounds, H,
Using a solution of S (CH 2 ) 10 CH 2 OH in ethanol and reacting it with gold and copper substrates and measuring the contact angle by the water drop method, the contact angle of the copper reacted with the thiol compound was 31 °. As shown, the wettability was poor compared to the low contact angle of 5 degrees of gold reacted with the thiol compound, and it was found that the wettability of the copper surface was insufficient.

【0007】また銅基材表面の濡れ性改善法として、吸
収式冷凍機の蒸発器の伝熱管に関する特開平2000―
220981号公報においては、微細格子状のガーゼを
伝熱管表面に被覆して毛細管現象を利用して濡れを改善
する方法が開示されている。しかしながらこの方法では
ガーゼの伝熱管への密着性、さらにその耐久性およびガ
ーゼの寿命等に関して問題がある。
As a method for improving the wettability of the surface of a copper substrate, Japanese Patent Laid-Open No. 2000-2000 discloses a heat transfer tube for an evaporator of an absorption refrigerator.
Japanese Patent No. 220981 discloses a method of coating the heat transfer tube surface with a gauze having a fine lattice shape to improve the wetting by utilizing the capillary phenomenon. However, this method has problems with the adhesion of the gauze to the heat transfer tube, the durability thereof, the life of the gauze, and the like.

【0008】特開平6―82126号公報記載のコロナ
放電による親水化処理方法では、伝熱管外表面に−C=
O(ケトン基)の親水基を有する酸化膜を形成して親水
性を向上させているが、これを作成する装置が大掛かり
になり、製造コストに影響を及ぼす。またケトン基の付
着の耐久性がなく親水性の信頼性は低い。
[0008] In the method of hydrophilization treatment by corona discharge described in JP-A-6-82126, -C =
Although an oxide film having a hydrophilic group of O (ketone group) is formed to improve the hydrophilicity, an apparatus for forming the oxide film becomes large-scale, which affects the manufacturing cost. In addition, there is no durability in attaching ketone groups, and the reliability of hydrophilicity is low.

【0009】特開平11―211376号公報記載の酸
化銅被膜では、表面の十分な親水化が特に初期時におい
て果たせないという問題がある。
[0009] The copper oxide coating described in Japanese Patent Application Laid-Open No. 11-213376 has a problem that sufficient hydrophilicity of the surface cannot be achieved particularly at the initial stage.

【0010】特開平10―253195号公報記載の、
ブラスト処理後に加熱処理を施して酸化銅を形成する方
法では、銅基材が加熱処理により軟化して材料強度の低
下が生じるという問題がある。
[0010] JP-A-10-253195 describes,
In the method of forming a copper oxide by performing a heat treatment after the blast treatment, there is a problem that the copper base material is softened by the heat treatment and the material strength is reduced.

【0011】空調機に適用されている冷媒中には冷凍機
油が添加されている。この冷凍機油は冷媒と相溶作用が
あるものが一般に使用されている。配管内において冷媒
が液相状態にあるときは冷凍機油は冷媒と一緒に流れ、
管内の圧力損失は低い。ところが冷媒が気相状態である
と冷凍機油が分離して管壁に付着する現象が生じ、管内
圧力損失が高くなる。また管壁への付着により圧縮機に
戻る冷凍機油が減少してしまうため、そのままでは潤滑
不良の危険性が高まる。そのため、安全性を考慮して添
加する冷凍機油量を増加させている。冷凍機油量の増加
のため圧縮機の効率低下、サイクル効率低下等が生じる
が、潤滑不良を避けるため、効率をある程度犠牲にして
いる。添加する冷凍機油量を増加させないでも済むよう
にするには、管壁へ冷凍機油が付着しにくいような表面
にする必要がある。
Refrigerating machine oil is added to the refrigerant applied to the air conditioner. As this refrigerating machine oil, one having a compatibilizing action with the refrigerant is generally used. When the refrigerant is in the liquid phase in the pipe, the refrigerating machine oil flows together with the refrigerant,
The pressure loss in the pipe is low. However, when the refrigerant is in a gaseous state, a phenomenon occurs in which the refrigerating machine oil separates and adheres to the pipe wall, and the pressure loss in the pipe increases. In addition, since the amount of refrigerating machine oil returning to the compressor due to adhesion to the pipe wall decreases, the risk of poor lubrication increases as it is. Therefore, the amount of refrigerating machine oil to be added is increased in consideration of safety. An increase in the amount of refrigerating machine oil causes a decrease in compressor efficiency, a decrease in cycle efficiency, and the like. However, efficiency is sacrificed to some extent in order to avoid poor lubrication. In order not to increase the amount of refrigerating machine oil to be added, it is necessary to make the surface such that the refrigerating machine oil does not easily adhere to the pipe wall.

【0012】本発明の目的は、表面に耐久性のある超親
水性被膜、超撥水性被膜等の高機能性被膜を有する銅基
材およびその製造方法を提供することにある。
An object of the present invention is to provide a copper substrate having a highly functional coating such as a durable superhydrophilic coating or superhydrophobic coating on the surface and a method for producing the same.

【0013】[0013]

【課題を解決するための手段】先に述べたように、チオ
ール化合物の一つであるHS(CH10CHOH
のエタノール溶液を用いて、銅基材と反応させて濡れ性
を改善した場合、満足できる濡れ性は得られなかった。
発明者等は、チオール化合物と反応させる銅基材の表面
形状に着目し、表面形状の粗さを種々に変化させて試験
を行なった結果、銅基材の表面に微細凹凸構造を形成
し、この微細凹凸構造にチオール化合物を反応させてチ
オラート結合による被膜を作ることにより、チオール化
合物の親水基、疎水基などの官能基が効果的に作用する
ことを見出した。そして、前記微細凹凸構造は、めっき
法あるいは化成処理法により形成されたものが望ましい
ことを見出した。
As described above, one of the thiol compounds, HS (CH 2 ) 10 CH 2 OH, is used.
When the wettability was improved by reacting with a copper substrate using the ethanol solution of No. 4, satisfactory wettability was not obtained.
The inventors focused on the surface shape of the copper substrate to be reacted with the thiol compound, and as a result of conducting tests by changing the roughness of the surface shape variously, a fine uneven structure was formed on the surface of the copper substrate, It has been found that a functional group such as a hydrophilic group or a hydrophobic group of the thiol compound acts effectively by reacting the thiol compound with the fine uneven structure to form a film by a thiolate bond. It has been found that the fine uneven structure is preferably formed by a plating method or a chemical conversion method.

【0014】すなわち、上記の課題は、銅基材表面に微
細凹凸構造を有する層を設け、さらにこの微細凹凸構造
の層に、末端基に親水基や疎水基等の官能基を有するチ
オール化合物を反応させてチオラート結合させることに
より達成できる。前記微細凹凸構造は、表面凹凸の凸部
のピーク間の距離がミクロンオ−ダーあるいはサブミク
ロンオーダーであるような微細な凹凸構造である。
[0014] That is, the above problem is to provide a layer having a fine uneven structure on the surface of a copper base material, and further provide a layer of the fine uneven structure with a thiol compound having a functional group such as a hydrophilic group or a hydrophobic group at a terminal group. It can be achieved by reacting to form a thiolate bond. The fine concavo-convex structure is a fine concavo-convex structure in which the distance between the peaks of the convex portions of the surface unevenness is on the order of microns or submicrons.

【0015】銅基材表面に微細凹凸構造を有する層を形
成する方法に関して説明する。その代表的な方法は
(1)酸化銅を形成する方法、(2)銅めっきを行なう
方法等をあげることができる。
A method for forming a layer having a fine uneven structure on the surface of a copper substrate will be described. Typical methods include (1) a method of forming copper oxide, and (2) a method of performing copper plating.

【0016】(1)の酸化銅を形成する方法では、高温
のアルカリ水溶液液中に銅基材を浸漬することにより、
銅基材表面に酸化銅を形成する(化成処理法)。形成さ
れた酸化銅は、図2(SEM(走査電子顕微鏡)にて観
察した写真)に示すように、サブミクロンの大きさのひ
げ状の結晶形態を有している。なお、酸化銅を還元して
金属銅とした場合でもひげ状結晶形態は変化しないた
め、同様に利用することができる。(2)の銅めっきで
は、銅基板表面に、パラジウム触媒を付与させ、還元剤
を混合した無電解銅めっき浴中に浸漬させることによ
り、Cu−Ni−Pを析出させ、微細凹凸構造を形成す
ることができる。形成されためっき面は、図3(めっき
の表面SEM像)に示すように、サブミクロンの大きさを
有する針状の形態であることが分かる。無電解銅めっき
でなく、通常の電気めっきとしてもよい。
In the method (1) for forming copper oxide, a copper base material is immersed in a high-temperature aqueous alkali solution,
Copper oxide is formed on a copper base material surface (chemical conversion treatment method). The formed copper oxide has a whisker-like crystal morphology with a submicron size, as shown in FIG. 2 (a photograph observed with a scanning electron microscope (SEM)). Note that, even when copper oxide is reduced to metallic copper, the whisker-like crystal form does not change, so that it can be used similarly. In the copper plating of (2), a palladium catalyst is applied to the surface of the copper substrate, and the copper substrate is immersed in an electroless copper plating bath mixed with a reducing agent to precipitate Cu-Ni-P and form a fine uneven structure. can do. As shown in FIG. 3 (SEM image of plating surface), the formed plating surface has a needle-like shape having a submicron size. Instead of electroless copper plating, normal electroplating may be used.

【0017】これらの手法は、多層プリント配線板の内
層銅箔と絶縁樹脂を接着するために行われる銅箔の粗化
処理に一般に用いられている方法である。微細凹凸構造
は、この他の化成処理としてエッチング処理法により形
成することもできる。
These methods are generally used for the roughening treatment of a copper foil performed for bonding an inner layer copper foil of a multilayer printed wiring board and an insulating resin. The fine concavo-convex structure can also be formed by an etching method as another chemical conversion treatment.

【0018】チオール化合物の分子は、末端基に水酸
基、カルボキシ基、アミノ基等の親水基やCF基、C
基の疎水基を有する官能基を備えた直鎖構造で、銅
基材のCuあるいはCu合金とチオール化合物分子中の
硫黄原子が化学的に結合するため被膜の密着強度は高
く、耐久性がある。またこの被膜は単分子膜であり、チ
オール化合物の末端基の官能基(親水基や疎水基を有す
る)が最表面となるように配向するため、被膜としては
親水性や疎水性あるいは撥水性を呈する。さらに銅基材
表面にはサブミクロンの微細凹凸構造が形成されている
ため、親水性はより親水性となり超親水性を示し、疎水
性はより疎水性となり、超撥水性を示すことになる。親
水性や撥水性は接触角を用いて表現されるが、ここで
は、概念的に、接触角が10度以下の場合を超親水性、15
0度以上の場合を超撥水性とする。
The molecule of the thiol compound has a hydrophilic group such as a hydroxyl group, a carboxy group, an amino group, a CF 3 group,
In linear structure having a functional group having a hydrophobic group of H 3 group, the adhesion strength of the film for Cu or Cu alloy and a sulfur atom of the thiol compound in the molecule of the copper base is chemically bonded is high, durability There is. In addition, since this coating is a monomolecular film and is oriented so that the functional group (having a hydrophilic group or a hydrophobic group) of the terminal group of the thiol compound becomes the outermost surface, the coating has hydrophilicity, hydrophobicity, or water repellency. Present. Further, since a submicron fine uneven structure is formed on the surface of the copper base material, the hydrophilicity becomes more hydrophilic and shows superhydrophilicity, and the hydrophobicity becomes more hydrophobic and shows superhydrophobicity. Although hydrophilicity and water repellency are expressed using a contact angle, here, conceptually, when the contact angle is 10 degrees or less, super hydrophilicity, 15
The case where the temperature is 0 degrees or more is defined as super water repellency.

【0019】図1に、本発明における銅基材表面の被膜
の構造の一例、末端基の官能基に水酸基を有する場合の
模式図を示す。図示の例は、銅基材100上に微細凹凸
構造層101を設け、さらにその表面に、末端基に水酸
基(親水基)を有するチオール化合物を反応させて硫黄
化合物層102を形成したものである。このような構造
の被膜を、伝熱管内を流れる熱交換媒体と、前記伝熱管
の外表面に滴下された熱交換媒体との間で熱交換を行な
うように構成された熱交換器に用いる伝熱管、例えば吸
収式冷凍機の蒸発器の伝熱管外表面に形成することによ
り、性能向上を図ることができる。
FIG. 1 is a schematic diagram showing an example of the structure of a film on the surface of a copper base material according to the present invention, in the case where the functional group of the terminal group has a hydroxyl group. In the illustrated example, a fine uneven structure layer 101 is provided on a copper base material 100, and a thiol compound having a hydroxyl group (hydrophilic group) at a terminal group is reacted on the surface thereof to form a sulfur compound layer 102. . The coating having such a structure is used for a heat exchanger configured to exchange heat between a heat exchange medium flowing in the heat transfer tube and a heat exchange medium dropped on the outer surface of the heat transfer tube. By forming the heat pipe on the outer surface of the heat transfer tube of an evaporator of an absorption refrigerator, for example, the performance can be improved.

【0020】吸収式冷凍機の蒸発器の場合、蒸発器を構
成する伝熱管の外表面にめっき法あるいは化成処理法に
より微細凹凸構造層を設け、さらに微細凹凸構造層を形
成した伝熱管を官能基を有するチオール化合物溶液中に
浸漬してその微細凹凸構造層表面に、親水基を有するチ
オール化合物を反応させて、親水性被膜を形成する。こ
れにより、伝熱管外表面に滴下された水(冷媒)が伝熱
管外表面に広く濡れ広がり、濡れ性の改良による伝熱性
能の向上を図ることができる。
In the case of an evaporator of an absorption refrigerator, a fine concavo-convex structure layer is provided on the outer surface of the heat transfer tube constituting the evaporator by a plating method or a chemical conversion treatment, and the heat transfer tube on which the fine concavo-convex structure layer is formed is functionally applied. A hydrophilic film is formed by immersing in a thiol compound solution having a group and reacting the thiol compound having a hydrophilic group on the surface of the fine uneven structure layer. Thus, the water (refrigerant) dropped on the outer surface of the heat transfer tube widely spreads on the outer surface of the heat transfer tube, and the heat transfer performance can be improved by improving the wettability.

【0021】また空調機用の前記配管(ガス管、液管)
の場合、配管の内面に微細凹凸構造層を形成し、この微
細凹凸構造層に疎水基を有するチオール化合物を反応さ
せて撥水性被膜を形成する。この撥水性被膜により、冷
媒中の油が配管内面へ付着するのを防ぐことができ、管
内圧力損失を減らすことができる。また、配管内面への
油付着量が低減されるので、冷凍機油の添加量を減らす
ことができ、圧縮機性能効率、サイクル性能効率が向上
する。
The above-mentioned piping for an air conditioner (gas pipe, liquid pipe)
In the case of (1), a fine uneven structure layer is formed on the inner surface of the pipe, and a thiol compound having a hydrophobic group is reacted with the fine uneven structure layer to form a water-repellent coating. This water-repellent coating can prevent oil in the refrigerant from adhering to the inner surface of the pipe, and can reduce pressure loss in the pipe. Further, since the amount of oil adhering to the inner surface of the pipe is reduced, the amount of refrigerating machine oil added can be reduced, and the compressor performance efficiency and cycle performance efficiency are improved.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施の形態を図1
〜図4を参照して説明する。
FIG. 1 is a block diagram showing an embodiment of the present invention.
This will be described with reference to FIGS.

【0023】(第1の実施の形態)まず、銅基板表面
に、針状形態を有する微細凹凸構造の被膜を形成する。
ここでは、無電解銅めっき法の一つである荏原ユージラ
イト(株)のインタープレートプロセスにより、次の手
順で微細凹凸構造の被膜を形成した。銅基材をアルカリ
脱脂、エッチングの前処理を施した後、銅基材表面にパ
ラジウム触媒を析出させ、温度70℃の硫酸銅、硫酸ニ
ッケル、次亜リン酸ナトリウム組成のめっき液浴に10
分間浸漬し、約1μmの厚さの針状無電解銅めっき被膜
を形成した。
First Embodiment First, a coating having a fine concavo-convex structure having a needle shape is formed on the surface of a copper substrate.
Here, a film having a fine uneven structure was formed by the following procedure by an interplate process of Ebara Ujilite Co., Ltd., which is one of the electroless copper plating methods. After subjecting the copper substrate to alkaline degreasing and pre-etching treatment, a palladium catalyst is deposited on the surface of the copper substrate, and the solution is placed in a plating solution bath containing copper sulfate, nickel sulfate, and sodium hypophosphite at a temperature of 70 ° C.
After immersion for about 1 minute, an acicular electroless copper plating film having a thickness of about 1 μm was formed.

【0024】その後、次に11−メルカプトウンデカノ
ール OH(CH11SHのチオール化合物を、濃
度が1mM(ミリモル)となるように溶媒のエタノール
液に溶解した溶液を作成し、この溶液中に上記銅基材を
常温で24時間浸漬した。24時間浸漬したのち、上記
銅基材を取り出してエタノール液にて洗浄し、大気乾燥
を行なった。
Then, a solution was prepared by dissolving a thiol compound of 11-mercaptoundecanol OH (CH 2 ) 11 SH in an ethanol solution of a solvent such that the concentration became 1 mM (mmol). Was immersed at room temperature for 24 hours. After immersion for 24 hours, the copper substrate was taken out, washed with an ethanol solution, and air-dried.

【0025】次にこの試料の水との濡れ性を0.5μl
(マイクロリットル)の水滴を落として、その時の水と
の接触角を測定して評価したところ、接触角は5度と極
めて高い親水性を示した。
Next, the wettability of this sample with water was 0.5 μl
(Microliters) of water droplets were dropped, and the contact angle with water at that time was measured and evaluated. As a result, the contact angle was extremely high, being 5 degrees.

【0026】このように、濡れ性の改善が難しい銅基材
表面に微細凹凸構造層を設け、さらにこの微細凹凸構造
層に、末端に官能基を有するチオール化合物を反応させ
て被膜を形成させることにより、濡れ性を向上でき且つ
長期間にわたって濡れ性の向上を保持できることが可能
となる。
As described above, the fine uneven structure layer is provided on the surface of the copper base material where it is difficult to improve the wettability, and a thiol compound having a functional group at the terminal is reacted with the fine uneven structure layer to form a coating film. Thereby, it is possible to improve the wettability and to maintain the improvement in the wettability over a long period of time.

【0027】また、チオール化合物として、11−メル
カプトウンデカノールの代わりに1−ドデカンチオール
CH(CH11SHを用いて同様にして被膜を
形成し、接触角を測定したところ、173度となり超撥
水性を示した。
Further, a film was formed in the same manner using 1-dodecanethiol CH 3 (CH 2 ) 11 SH instead of 11-mercaptoundecanol as a thiol compound, and the contact angle was measured. It showed super water repellency.

【0028】なお、上記実施の形態では、無電解銅めっ
きにより銅基材表面に微細凹凸構造層を設けたが、無電
解銅めっきによらず通常の電気めっきにより微細凹凸構
造層を形成することも可能である。
In the above embodiment, the fine uneven structure layer is provided on the surface of the copper substrate by electroless copper plating. However, the fine uneven structure layer may be formed by ordinary electroplating, not by electroless copper plating. Is also possible.

【0029】本実施の形態の適用した伝熱管を用いるこ
とにより、蒸発器の高性能化が図れ、蒸発器さらには吸
収式冷凍機の小型化、コスト低減化が可能になった。
By using the heat transfer tube to which this embodiment is applied, the performance of the evaporator can be improved, and the evaporator and the absorption refrigerator can be reduced in size and cost.

【0030】続いて空調機の配管に本発明を適用した例
を示す。図4は、空調調和機のサイクル構成を示したも
のである。図示の空調調和機は、室外機416と、室外
機416に互いに並列に接続された複数台の室内機41
7、418で構成されている。
Next, an example in which the present invention is applied to piping of an air conditioner will be described. FIG. 4 shows a cycle configuration of the air conditioner. The illustrated air conditioner includes an outdoor unit 416 and a plurality of indoor units 41 connected to the outdoor unit 416 in parallel with each other.
7, 418.

【0031】室外機416は、圧縮機401と、圧縮機
401の吐出側にAポート、吸い込み側にCポートをそ
れぞれ接続した四方弁402と、四方弁402のBポー
トに一端を接続した室外熱交換器403と、室外熱交換
器403の他端に一端を接続された高圧容器(気液分離
レシーバ)404と、高圧容器(気液分離レシーバ)4
04の他端に接続された阻止弁409と、四方弁402
のDポートに接続された阻止弁410と、を含んで構成
されている。高圧容器404は、気液分離機と受液器と
しての機能を合わせもっている。
The outdoor unit 416 includes a compressor 401, a four-way valve 402 having an A port connected to the discharge side of the compressor 401 and a C port connected to the suction side, and an outdoor heat source having one end connected to the B port of the four-way valve 402. Exchanger 403, high-pressure vessel (gas-liquid separation receiver) 404 having one end connected to the other end of outdoor heat exchanger 403, and high-pressure vessel (gas-liquid separation receiver) 4
04 and a four-way valve 402
And a blocking valve 410 connected to the D port. The high-pressure container 404 has a function as a gas-liquid separator and a function as a liquid receiver.

【0032】室内機417は、室内熱交換器407と、
室内熱交換器407に一端を接続された減圧装置405
を含んで構成され、室内機418は、室内熱交換器40
8と、室内熱交換器408に一端を接続された減圧装置
406を含んで構成されている。減圧装置405、40
6他端は、前記阻止弁409に接続配管414を介して
接続され、室内熱交換器407、408の減圧装置と反
対側の端部は、それぞれ接続配管415を介して前記阻
止弁410に接続されている。
The indoor unit 417 includes an indoor heat exchanger 407,
Decompression device 405 having one end connected to indoor heat exchanger 407
The indoor unit 418 includes the indoor heat exchanger 40
8 and a decompression device 406 having one end connected to the indoor heat exchanger 408. Decompression devices 405, 40
6 The other end is connected to the blocking valve 409 via a connection pipe 414, and the ends of the indoor heat exchangers 407 and 408 on the side opposite to the pressure reducing device are connected to the blocking valve 410 via a connection pipe 415, respectively. Have been.

【0033】上記構成の装置において、冷房運転時の冷
媒は、図中の実線矢印の方向に流れる。図では、四方弁
402の位置は、冷房運転時の位置にある。一方、暖房
運転時では、四方弁402の操作位置を切り替えて、冷
媒を破線矢印の方向に流す。
In the apparatus having the above configuration, the refrigerant flows during the cooling operation in the direction indicated by the solid arrow in the figure. In the figure, the position of the four-way valve 402 is at the time of the cooling operation. On the other hand, during the heating operation, the operation position of the four-way valve 402 is switched, and the refrigerant flows in the direction of the dashed arrow.

【0034】使用する冷媒は、フロンR22はもとより
HFC系冷媒、例えばR407C,R410A、R3
2、R134a、R404A等の冷媒でもよく、またH
C系冷媒や自然系冷媒、例えばプロパン、イソブタン、
二酸化炭素、アンモニア等の冷媒でも使用される。
The refrigerant used is not only Freon R22 but also HFC-based refrigerants, for example, R407C, R410A, R3
2, a refrigerant such as R134a, R404A, etc.
C-based refrigerants and natural-based refrigerants such as propane, isobutane,
It is also used for refrigerants such as carbon dioxide and ammonia.

【0035】空調機用の接続配管415には外径15.
9mmの無酸素銅管を用いた。この無酸素銅管内面に無
電解銅めっきを施し、その後1m M濃度1−ドデカンチ
オール・エタノール溶液中に浸漬し、被膜を形成した。
無電解銅めっきは前記方法に従い、脱脂、エッチング、
触媒付与、めっき等の処理はケミカルポンプを用いて各
液を配管内に供給して処理を行った。めっき被膜厚さは
約1μmである。形成した被膜をSEMで観察したとこ
ろ針状の結晶形態が観察された。チオール化合物として
は1mM濃度の1−ドデカンチオール・エタノール溶液
を用い、この溶液をめっき後の管内に充填し、24時間
そのままにして被膜を形成した。次いで1−ドデカンチ
オール・エタノール溶液を排出し、管内面をエタノール
液にて洗浄し、大気乾燥を行なった。
The connection pipe 415 for the air conditioner has an outer diameter of 15.
A 9 mm oxygen-free copper tube was used. The inner surface of the oxygen-free copper tube was subjected to electroless copper plating, and then immersed in a 1 mM concentration 1-dodecanethiol / ethanol solution to form a coating.
Electroless copper plating, according to the above method, degreasing, etching,
For treatments such as catalyst application and plating, each solution was supplied into a pipe using a chemical pump. The plating thickness is about 1 μm. When the formed film was observed by SEM, a needle-like crystal form was observed. A 1 mM concentration of 1-dodecanethiol / ethanol solution was used as a thiol compound, and this solution was filled in a tube after plating and left as it was for 24 hours to form a film. Next, the 1-dodecanethiol / ethanol solution was discharged, the inner surface of the tube was washed with an ethanol solution, and air dried.

【0036】現在空調機用冷媒に用いられている冷凍機
油は、冷媒の種類によって異なるが、アルキルベンゼン
系、エーテル油、エステル油等が主である。被膜形成後
の前記銅管につき、これらの冷凍機油に対する濡れ性を
調べた。なお管内表面の接触角測定は難しいので、銅板
材を用いて同様の処理を行って調べた。各種冷凍機油に
対する接触角は165度前後の値を示し、撥油性が高い
被膜であることが確認できた。
The refrigerating machine oil currently used as a refrigerant for an air conditioner differs depending on the type of the refrigerant, but is mainly an alkylbenzene type, ether oil, ester oil or the like. The wettability of the copper tube after the formation of the film with respect to the refrigerator oil was examined. Since it is difficult to measure the contact angle of the inner surface of the tube, the same treatment was performed using a copper plate material and examined. The contact angle with respect to various types of refrigerator oil showed a value of around 165 degrees, and it was confirmed that the film had high oil repellency.

【0037】また1−ドデカンチオールの代わりに、H
S(CH(CFCFのチオール化合物を
用いて同様な処理を施した。各種冷凍機油に対する接触
角は168度前後の値を示し、1−ドデカンチオール・
エタノール溶液を用いた場合と同様、高い撥油性を示し
た。
In place of 1-dodecanethiol, H
The same treatment was performed using a thiol compound of S (CH 2 ) 2 (CF 2 ) 5 CF 3 . The contact angle with various refrigerator oils is around 168 degrees, and 1-dodecanethiol.
As in the case of using the ethanol solution, high oil repellency was exhibited.

【0038】このような高い撥油性を示す配管を用いる
ことにより、冷凍機油の配管への付着が減少する。この
ため冷媒へ添加する冷凍機油量を低減することが可能と
なり、配管内の圧力損失の低減化が図れ、圧縮機、及び
サイクル効率の向上を図ることができる。(第2の実施
の形態)無酸素銅の銅基材をアルカリ脱脂処理後、95
℃に昇温させたエボノールCスペシャル(Japan Metal
Finishing Co.Ltd製)溶液に5分間浸漬し、その後取り
出して水洗、乾燥を行なった。続いて11−メルカプト
ウンデカノール OH(CH11SHのチオール化
合物を、濃度が1mMとなるように溶媒のエタノール液
に溶解した溶液を作成し、この溶液中に上記銅基材を常
温で24時間浸漬した。その後、上記銅基材表面をエタ
ノール液で洗浄し、大気乾燥して被膜を形成した。この
被膜の水に対する接触角を測定したところ、5度以下と
なり超親水性を呈した。
By using a pipe exhibiting such high oil repellency, adhesion of refrigeration oil to the pipe is reduced. Therefore, the amount of refrigerating machine oil added to the refrigerant can be reduced, the pressure loss in the piping can be reduced, and the compressor and cycle efficiency can be improved. (Second Embodiment) After oxygen-free copper base material is subjected to alkaline degreasing treatment, 95%
Ebonol C Special (Japan Metal
(Finishing Co. Ltd. solution) for 5 minutes, then taken out, washed with water and dried. Subsequently, a solution was prepared by dissolving a thiol compound of 11-mercaptoundecanol OH (CH 2 ) 11 SH in an ethanol solution of a solvent so as to have a concentration of 1 mM, and the copper substrate was placed in the solution at room temperature. Soaked for 24 hours. Thereafter, the surface of the copper substrate was washed with an ethanol solution and dried in the air to form a film. When the contact angle of this coating with water was measured, it was 5 degrees or less, indicating super hydrophilicity.

【0039】得られた被膜の耐久性を、脱イオン水の流
水(5ml/s)に30日間浸漬してのち接触角を測定
したところ、被膜の親水性の低下は見られず、耐久性の
高い被膜であることが確認できた。
The durability of the obtained coating film was measured by immersing it in running water (5 ml / s) of deionized water for 30 days and then measuring the contact angle. It was confirmed that the coating was high.

【0040】次に伝熱管として外径15.9mm、肉厚
0.6mmのリン脱酸銅の平滑管を用いて、上記処理条
件と同一条件下にて伝熱管外表面に親水化処理を行なっ
た。表面は黒色を呈し、SEMで観察したところサブミ
クロンのひげ結晶の形態を有していた。また上記伝熱管
外表面に水滴を落下させたところ、水滴は外周全面に濡
れ広がり高い親水性を示した。接触角を測定したとこ
ろ、5度以下であった。
Next, using a smoothed pipe made of phosphorus-deoxidized copper having an outer diameter of 15.9 mm and a wall thickness of 0.6 mm as a heat transfer tube, the outer surface of the heat transfer tube is subjected to a hydrophilization treatment under the same conditions as those described above. Was. The surface was black and had a whisker crystal morphology of submicron when observed by SEM. Further, when the water droplet was dropped on the outer surface of the heat transfer tube, the water droplet spread over the entire outer periphery and showed high hydrophilicity. The measured contact angle was 5 degrees or less.

【0041】なお伝熱管の外表面を転造、機械加工等に
より凹凸を形成した面に於いても、前記チオラート化合
物による被膜形成処理が可能である。
It is to be noted that a film forming process using the thiolate compound is also possible on a surface on which the outer surface of the heat transfer tube is formed with irregularities by rolling, machining, or the like.

【0042】本実施の形態によっても、伝熱管外表面の
濡れ性が向上し、蒸発器、さらには吸収式冷凍機の性能
向上、また小型化に貢献することができる。
According to the present embodiment, the wettability of the outer surface of the heat transfer tube is improved, and the performance of the evaporator and the absorption refrigerator can be improved and the size can be reduced.

【0043】なお、上記各実施の形態においては、めっ
き法あるいは化成処理法によって微細凹凸構造を形成し
たが、これらの方法によらずミクロンオーダーあるいは
サブミクロンオーダーの微細凹凸構造を配管の表面(内
表面)に形成するようにしても差し支えない。
In each of the above embodiments, the fine uneven structure is formed by the plating method or the chemical conversion method. However, the fine uneven structure of the micron order or the submicron order is formed on the surface (inside) of the pipe regardless of these methods. (Surface).

【0044】[0044]

【発明の効果】本発明によれば、銅基材表面に耐久性の
ある超親水性被膜、超撥水性被膜あるいは撥油性被膜等
の高機能性被膜を形成することが可能になった。
According to the present invention, it has become possible to form a highly functional coating such as a durable superhydrophilic coating, superhydrophobic coating or oil-repellent coating on the surface of a copper substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を示す被膜構造模式図である。FIG. 1 is a schematic diagram of a coating structure showing the principle of the present invention.

【図2】本発明の実施の形態の銅基板上の酸化銅表面を
SEMで観察した写真を示す図である。
FIG. 2 shows a copper oxide surface on a copper substrate according to an embodiment of the present invention.
It is a figure which shows the photograph observed by SEM.

【図3】本発明の実施の形態の銅基材上のめっき表面を
SEMで観察した写真を示す図である。
FIG. 3 shows a plating surface on a copper base material according to an embodiment of the present invention.
It is a figure which shows the photograph observed by SEM.

【図4】本発明が適用される空調機の構成例を示す系統
図である。
FIG. 4 is a system diagram showing a configuration example of an air conditioner to which the present invention is applied.

【符号の説明】[Explanation of symbols]

100 銅基材 101 微細凹凸構造層 102 硫黄化合物層 401 圧縮機 402 四方弁 403 室外熱交換器 404 高圧容器 405、406 減圧装置 407、408 室内熱交換器 409、410 阻止弁 414、415 接続配管 416 室外機 417、418 室内機 REFERENCE SIGNS LIST 100 Copper base material 101 Fine uneven structure layer 102 Sulfur compound layer 401 Compressor 402 Four-way valve 403 Outdoor heat exchanger 404 High-pressure vessel 405, 406 Pressure reducing device 407, 408 Indoor heat exchanger 409, 410 Restriction valve 414, 415 Connection pipe 416 Outdoor units 417, 418 Indoor units

フロントページの続き (72)発明者 梅田 知巳 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 Fターム(参考) 4K022 AA02 AA33 BA08 BA31 CA03 CA04 CA06 DA01 EA02 4K026 AA06 AA11 AA25 BA01 BB10 CA39 DA03 DA11 Continued on the front page (72) Inventor Tomomi Umeda 502 Kandate-cho, Tsuchiura-shi, Ibaraki F-term in Machine Research Laboratory, Hitachi Ltd. 4K022 AA02 AA33 BA08 BA31 CA03 CA04 CA06 DA01 EA02 4K026 AA06 AA11 AA25 BA01 BB10 CA39 DA03 DA11

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 銅基材表面に形成された微細凹凸構造
と、さらに該微細凹凸構造の表面にチオラート結合を介
して形成され、最表面に官能基を有する化合物層と、を
有してなる機能性銅基材。
1. A fine uneven structure formed on the surface of a copper base material, and a compound layer formed on the surface of the fine uneven structure via a thiolate bond and having a functional group on the outermost surface. Functional copper substrate.
【請求項2】 内表面にめっき法あるいは化成処理法に
より形成された微細凹凸構造層と、さらに該微細凹凸構
造層表面にチオラート基を介して結合され、最表面にC
基あるいはCH基の官能基を配向させた被膜と、
を有してなる銅管で構成された空調機用配管。
2. A fine uneven structure layer formed on the inner surface by a plating method or a chemical conversion treatment method, and further bonded to the surface of the fine uneven structure layer via a thiolate group.
A coating in which functional groups of F 3 or CH 3 are oriented,
An air conditioner pipe composed of a copper pipe having:
【請求項3】 外面に形成された微細凹凸構造層と、該
微細凹凸構造層表面にチオラート基を介して結合され、
最表面に親水基の官能基が配向された被膜と、を有して
なる銅管で形成された伝熱管。
3. A fine uneven structure layer formed on an outer surface and bonded to the surface of the fine uneven structure layer via a thiolate group,
A heat transfer tube formed of a copper tube having, on the outermost surface, a coating in which a hydrophilic functional group is oriented.
【請求項4】 銅管の内表面にめっき法あるいは化成処
理法により微細凹凸構造層を形成する手順と、内表面に
微細凹凸構造層を形成した前記銅管に、CF 基あるい
はCH基の官能基を有するチオール化合物溶液を満た
し、その内表面にチオール化合物溶液を接触させる手順
と、前記銅管内のチオール化合物溶液を排出して該銅管
内を溶剤を用いて洗浄したのち乾燥させる手順と、を有
してなり、前記銅管の内表面に、チオラート基を介し
て、最表面にCF基あるいはCH基の官能基を配向
させた被膜を形成することを特徴とする銅管の表面処理
方法。
4. A plating method or a chemical treatment on the inner surface of the copper tube.
Procedure for forming a fine uneven structure layer by the method
CF is added to the copper tube on which the fine uneven structure layer is formed. 3Group
Is CH3Filled with a thiol compound solution having a functional group
And bringing the thiol compound solution into contact with its inner surface
Discharging the thiol compound solution in the copper tube,
Cleaning the inside with a solvent and drying it.
And the inner surface of the copper tube is provided with a thiolate group.
And CF on the outermost surface3Group or CH3Orient functional group
Surface treatment of copper tubes characterized by forming a coated film
Method.
【請求項5】 銅管の外表面にめっき法あるいは化成処
理法により微細凹凸構造層を形成する手順と、外表面に
微細凹凸構造層を形成した前記銅管を、親水基の官能基
を有するチオール化合物溶液中に浸漬する手順と、前記
浸漬した銅管を溶剤にて洗浄したのち乾燥させる手順
と、を有してなり、銅管の外表面に、チオラート基を介
して、最表面に親水基の官能基を配向させた被膜を形成
することを特徴とする銅管の表面処理方法。
5. A procedure for forming a fine concavo-convex structure layer on the outer surface of a copper tube by a plating method or a chemical conversion treatment method, and a method for forming the fine concavo-convex structure layer on the outer surface of the copper tube having a hydrophilic functional group. A procedure of immersing in a thiol compound solution, and a procedure of washing and drying the immersed copper tube with a solvent, and then drying the outer surface of the copper tube with a thiolate group on the outermost surface. A method for treating a surface of a copper tube, comprising forming a film in which the functional groups are oriented.
JP2001062282A 2001-03-06 2001-03-06 Functional copper base-material and heat exchanger tube Pending JP2002256446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001062282A JP2002256446A (en) 2001-03-06 2001-03-06 Functional copper base-material and heat exchanger tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001062282A JP2002256446A (en) 2001-03-06 2001-03-06 Functional copper base-material and heat exchanger tube

Publications (1)

Publication Number Publication Date
JP2002256446A true JP2002256446A (en) 2002-09-11

Family

ID=18921443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001062282A Pending JP2002256446A (en) 2001-03-06 2001-03-06 Functional copper base-material and heat exchanger tube

Country Status (1)

Country Link
JP (1) JP2002256446A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304143A (en) * 2007-06-08 2008-12-18 Denso Corp Heat exchange member and heat exchange device
JP2010504428A (en) * 2006-09-20 2010-02-12 ザ クイーンズ ユニバーシティ オブ ベルファスト Method for coating a metal article with a surface having controlled wettability
WO2016056086A1 (en) * 2014-10-08 2016-04-14 三菱電機株式会社 Refrigerant pipe and heat pump device
WO2018062146A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Method for producing piping and method for forming oxide film on inner surface of copper pipe
WO2018131709A1 (en) * 2017-01-16 2018-07-19 仲山貴金属鍍金株式会社 Base member having increased surface hydrophobicity or hydrophilicity
WO2020013344A1 (en) * 2018-07-13 2020-01-16 仲山貴金属鍍金株式会社 Metal capillary provided in end portion with water-repellent outer circumferential surface

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010504428A (en) * 2006-09-20 2010-02-12 ザ クイーンズ ユニバーシティ オブ ベルファスト Method for coating a metal article with a surface having controlled wettability
JP2008304143A (en) * 2007-06-08 2008-12-18 Denso Corp Heat exchange member and heat exchange device
US8256502B2 (en) 2007-06-08 2012-09-04 Denso Corporation Heat exchange member and heat exchange apparatus
WO2016056086A1 (en) * 2014-10-08 2016-04-14 三菱電機株式会社 Refrigerant pipe and heat pump device
JPWO2016056086A1 (en) * 2014-10-08 2017-04-27 三菱電機株式会社 Refrigerant piping and heat pump device
WO2018062146A1 (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Method for producing piping and method for forming oxide film on inner surface of copper pipe
JP2018053333A (en) * 2016-09-30 2018-04-05 ダイキン工業株式会社 Production method of piping, and oxide film formation method on copper tube inner surface
CN109790623A (en) * 2016-09-30 2019-05-21 大金工业株式会社 The manufacturing method of pipeline and the oxide film forming method of copper pipe inner surface
US11377742B2 (en) 2016-09-30 2022-07-05 Daikin Industries, Ltd. Method for producing piping and method for forming oxide film on inner surface of copper pipe
WO2018131709A1 (en) * 2017-01-16 2018-07-19 仲山貴金属鍍金株式会社 Base member having increased surface hydrophobicity or hydrophilicity
WO2020013344A1 (en) * 2018-07-13 2020-01-16 仲山貴金属鍍金株式会社 Metal capillary provided in end portion with water-repellent outer circumferential surface

Similar Documents

Publication Publication Date Title
Nguyen et al. A comprehensive review on micro/nanoscale surface modification techniques for heat transfer enhancement in heat exchanger
US11808531B2 (en) Droplet ejecting coatings
US10525504B2 (en) Functional coatings enhancing condenser performance
JP5867325B2 (en) Method for producing water-repellent substrate
CN108431542B (en) It is a kind of for improving the alternately arranged heterogeneous wetting surface of condensed water capture rate
EP2321456B1 (en) Drying appliance comprising a heat exchanger having a coating
EP2829835B1 (en) Heat exchanger and method and apparatus for manufacturing the same
JPH10281690A (en) Air conditioner, heat exchanger and its production
JP2012228670A (en) Water-repellent substrate, heat exchanger using water-repellent substrate, and method for producing water-repellent substrate
JP2002256446A (en) Functional copper base-material and heat exchanger tube
CN110998217B (en) Heat exchange element with microstructured coating and method for producing same
JP2003001746A (en) Copper member having hydrophilicity and water repellency, method for manufacturing the same, and heat transfer pipe
US10921072B2 (en) Functional coatings enhancing condenser performance
JP2507060B2 (en) Aluminum heat exchanger and manufacturing method thereof
CN115325852B (en) Heat exchanger and method for manufacturing the same
JP2003293166A (en) Copper or copper alloy tube and method for producing the same
JPH11325792A (en) Heat exchanger
JP3258244B2 (en) Fin material for heat exchanger with excellent hydrophilicity
JPH11201688A (en) Fin material for heat-exchanger
JPH0679820A (en) Member excellent in water repellency and anti-frosting properties and manufacture thereof
CN110763055B (en) Surface hydrophobic modified composite condensation enhanced heat transfer pipe and preparation method thereof
JPH1143777A (en) Aluminum or aluminum alloy material excellent in water repellency and frosting preventability and its production
JP5506566B2 (en) Aluminum fin for heat exchanger and heat exchanger
WO2023024743A1 (en) Heat exchanger and processing method therefor
JP3274048B2 (en) Aluminum member for heat exchanger and method of manufacturing the same