WO2012147288A1 - Water-repellent substrate, heat exchanger using water-repellent substrate, and method for producing water-repellent substrate - Google Patents

Water-repellent substrate, heat exchanger using water-repellent substrate, and method for producing water-repellent substrate Download PDF

Info

Publication number
WO2012147288A1
WO2012147288A1 PCT/JP2012/002423 JP2012002423W WO2012147288A1 WO 2012147288 A1 WO2012147288 A1 WO 2012147288A1 JP 2012002423 W JP2012002423 W JP 2012002423W WO 2012147288 A1 WO2012147288 A1 WO 2012147288A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
substrate
needle
repellent
protrusions
Prior art date
Application number
PCT/JP2012/002423
Other languages
French (fr)
Japanese (ja)
Inventor
侑作 西岡
友英 西野
瀧川 賢司
Original Assignee
株式会社デンソー
外山 哲男
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 外山 哲男 filed Critical 株式会社デンソー
Publication of WO2012147288A1 publication Critical patent/WO2012147288A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05341Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/08Coatings; Surface treatments self-cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/20Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes with nanostructures

Definitions

  • the present disclosure relates to a water-repellent base material that repels condensed water generated from the surface of the base material at low temperatures, a heat exchanger using the water-repellent base material, and a method for producing the water-repellent base material.
  • Patent Document 1 As a conventional water-repellent substrate, for example, one described in Patent Document 1 is known.
  • the water-repellent substrate of Patent Document 1 is applied to a window glass for a vehicle and the like, and has a base film having minute irregularities on the surface of the substrate, and a water repellency formed on the minute irregularities of the substrate film. It has a film.
  • the water-repellent film has a surface shape reflecting the minute irregularities of the base film.
  • the surface shape of the water-repellent coating is composed of particulate protrusions and columnar protrusions that are higher in height as measured from the surface of the substrate than the particulate protrusions.
  • CA ⁇ 150 degrees where CA is the contact angle of water droplets on the surface of the water-repellent coating, and TA is the falling angle as the critical angle at which the water droplets fall when dropped.
  • the water-repellent substrate of Patent Document 1 is excellent in dropping water drops dripped on a window glass or the like as described above.
  • water vapor in the air that touches the base material is condensed to generate condensed water from the surface of the base material.
  • the material had a problem that good water repellency of condensed water could not be obtained. That is, in the water-repellent substrate of Patent Document 1, condensed water is generated also from the inside of the recess formed between the particulate protrusions and the columnar protrusions, and the condensed water accumulates in the recess, and further outside the recess. Since the condensed water in each recess is connected to each other to form a large water film, it is difficult to obtain good water repellency of the condensed water and it is difficult for the condensed water to slide down.
  • an object of the present disclosure is to provide a water-repellent substrate having good water repellency with respect to condensed water generated on the surface, a heat exchanger using the water-repellent substrate, and a method for producing the water-repellent substrate. Is to provide.
  • the present disclosure provides a water-repellent substrate including a substrate and a hydrophobic film provided on the surface of the substrate, and a plurality of needles are provided on the surface of the substrate.
  • a plurality of fine protrusions that are finer than the plurality of needle-like protrusions, and the plurality of fine protrusions are formed of the plurality of needle-like protrusions.
  • a water-repellent substrate provided on the surface and the remaining substrate surface between the plurality of needle-like protrusions.
  • a heat-absorbing heat that includes a heat exchange unit and absorbs heat from the air flowing outside the heat exchange unit by a heat medium flowing inside the heat exchange unit.
  • the exchanger at least one of the heat medium distribution tube forming the heat exchange part and the fin connected to the tube and forming a heat transfer surface for the air is the water repellent group.
  • a heat exchanger formed of a material is provided.
  • the present disclosure provides a method for producing a water-repellent substrate comprising a substrate and a hydrophobic film provided on the surface of the substrate, the surface of the substrate Forming a plurality of needle-like projections on the surface of the plurality of needle-like projections and the remaining surface of the base material between the plurality of needle-like projections.
  • a method for producing a water-repellent substrate including forming the hydrophobic film by forming a plurality of fine protrusions that are finer than the above is provided.
  • FIG. 1 is a cross-sectional view showing a water-repellent substrate.
  • FIG. 2 is an enlarged view of a portion indicated by an arrow II in FIG.
  • FIG. 3A and FIG. 3B are enlarged views showing the surface of the base material (magnification 1000 times).
  • 4 (a) and 4 (b) are enlarged views showing the surface (needle-like protrusion) of the substrate (magnification 100000 times).
  • FIG. 5 is a perspective view showing a heat exchanger.
  • FIG. 6 is a model diagram showing a fin cross section and a condensed water droplet diameter.
  • FIG. 7 is a model diagram for obtaining a water drop sliding calculation formula.
  • FIG. 8 is a model diagram for calculating the surface energy of the slidable film.
  • FIG. 1 is a cross-sectional view showing a water-repellent substrate.
  • FIG. 2 is an enlarged view of a portion indicated by an arrow II in FIG.
  • FIG. 9 is a model diagram for calculating the contact angle so that the droplet diameter slides at 0.4 mm.
  • FIG. 10 is a graph for obtaining a contact angle for preventing water droplets from closing in the fin.
  • FIG. 11 (a) is a graph which shows the frost formation time when frost formation and defrost in the heat exchanger based on this indication are repeated, and
  • FIG.11 (b) is frost formation and removal in the heat exchanger of a comparative example. It is a graph which shows frost formation time when frost is repeated.
  • FIG. 1 is a cross-sectional view showing a water-repellent substrate 100
  • FIG. 2 is an enlarged view of a portion indicated by an arrow II in FIG. 1
  • FIGS. 3 (a) and 3 (b) are enlarged views showing the surface of the substrate 110.
  • FIG. 4 (a) and FIG.4 (b) are the enlarged views (magnification 100000 times) which show the surface (needle-shaped projection part 111) of the base material 110.
  • FIG. As shown in FIG. 1, the water-repellent substrate 100 is formed by providing a hydrophobic film 120 on the surface of a substrate 110 formed from an aluminum plate material.
  • the substrate 110 is a plate member made of metal such as aluminum, aluminum alloy, iron, copper, or resin, and a large number of needle-like protrusions 111 extending in a needle shape are formed on the surface of the substrate 110. Yes.
  • the dimension between the protrusions of the needle-like protrusions 111 is defined as a period
  • the period of the needle-like protrusions 111 is about 700 nm to 500 ⁇ m.
  • the period of the acicular protrusion 111 is preferably about 1 ⁇ m to 10 ⁇ m.
  • the needle-like protrusion 111 is a protrusion on the order of microns.
  • the hydrophobic film 120 is formed by a plurality of fine protrusions 121. That is, the hydrophobic film 120 is formed as an aggregate of a plurality of fine protrusions 121.
  • the fine protrusions 121 are protrusions that are formed more finely than the needle-like protrusions 111 on the surface of the needle-like protrusions 111 and the remaining surface of the substrate 110 between the needle-like protrusions 111.
  • the period of the fine protrusions 121 is about 1 nm to 500 nm.
  • the period of the fine protrusions 121 is preferably about 1 nm to 10 nm.
  • the fine protrusion 121 is a nano-order protrusion.
  • the water repellent substrate 110 is manufactured as follows.
  • First step First, a 4 cm 2 (2 cm square) aluminum plate material is manufactured as the base material 110. And the uneven
  • grooved part 112 is made into the uneven
  • Second step (projection forming step)
  • the substrate 110 on which the irregularities 112 were formed was immersed in acetone to clean the surface, and the boehmite treatment was performed by immersing in boiling pure water for 5 minutes.
  • the substrate 110 taken out was cooled, washed by blowing ultrapure water, and dried by blowing nitrogen gas. Thereby, a hydroxyl group was generated on the surface of the substrate 110.
  • a needle-like protrusion 111 was formed on the surface of the substrate 110.
  • An amine such as diethanolamine may be added to boiling water.
  • boehmite treatment of the substrate 110 there are two purposes for the boehmite treatment of the substrate 110 as described above.
  • One is boehmite treatment to form a hydroxyl group on the surface of the substrate 110, and in the subsequent third step, a molecule having a hydrophobic functional group dissolved in a water-saturated solution is reacted with the hydroxyl group. This is to form a strong bond between the substrate 110 and the substrate 110.
  • the second purpose of the boehmite treatment is to etch the surface of the base material 110 in the course of the boehmite treatment, thereby forming the needle-like protrusions 111 having a very fine needle-like structure on the surface of the concavo-convex portion 112.
  • FIGS. 4 (a) and 4 (b) Images obtained by observing the substrate 110 after the boehmite treatment with a scanning electron microscope (SEM) are shown in FIGS. 4 (a) and 4 (b).
  • 4A and 4B are observation results at two representative positions on the surface of the substrate 110.
  • FIG. When the roughness was analyzed from the analysis result from the SEM image, the needle-like protrusion 111 was confirmed. At this time, the arithmetic average height Ra of the needle-like protrusion 111 was 20 nm.
  • Third step (film formation step)
  • the surface of the needle-like protrusion 111 and the needle-like protrusion are formed by immersing the substrate 110 in a water saturated solution of molecules having a hydrophobic functional group.
  • a hydrophobic coating 120 is formed by forming a plurality of fine protrusions 121 each consisting of a molecular chain having a hydrophobic functional group on the surface of the remaining substrate 110 between 111.
  • the base material 110 whose surface was boehmite-treated in the second step was immersed in a 25 mM water saturated xylene solution of ODS (octadecyltrimethylsilane) at room temperature (20 ° C.) for 2 days.
  • ODS octadecyltrimethylsilane
  • Fourth step post-treatment of film forming process
  • the substrate 110 subjected to the film forming process in the third step was washed with acetone and then dried at 80 ° C. for 1 hour.
  • a plurality of molecular chains (alkyl) of C 18 H 37 Si (O ⁇ ) 3 having an alkyl group are formed on the surface of the needle-like protrusion 111 and the remaining surface of the base 110 between the needle-like protrusions 111.
  • Water-repellent substrate in which a plurality of fine protrusions 121 are formed, and a hydrophobic film (water-repellent film) 120 that is a monomolecular film (alkyl monomolecular film) is formed by the plurality of molecular chains. 100 was produced.
  • the fourth step can be omitted.
  • the water-repellent substrate 100 configured as described above has a structure schematically shown in FIGS.
  • the needle-like protrusion 111 is formed by the second step
  • the fine protrusion 121 that is, the hydrophobic film 120 (ODS monomolecular film) is formed by the third step. It has become.
  • the condensed water grows in combination with each other even if condensed water is generated from the bottom surface between the needle-like protrusions 111. Since the fine projections 121 are pushed from the bottom side between the needle-like projections 111 toward the tip side by the fine projections 121, the needle-like projections 111 do not stagnate. Therefore, the condensed water accumulates in the concave portions as in the prior art, and the condensed water in the concave portions is connected to each other outside the concave portions to form a large water film, so that the water is repelled as water droplets of condensed water. You can slide down.
  • the water-repellent substrate 100 of the present embodiment exhibits high sliding performance as described above even under conditions where frost can be generated on the surface at low temperatures. It was possible to delay the time of occurrence.
  • the water-repellent substrate 100 was created by changing the film-forming material in the third step with respect to the first embodiment.
  • the substrate 110 that has undergone the same steps as those of the first embodiment was prepared until the first step and the second step.
  • a substrate 110 whose surface was boehmite-treated in a FAS17 (perfluorodecyloxysilane) 25 mM water-saturated 1,3-bis (trifluoromethyl) benzene (F6xy) solution in the second step. was immersed at room temperature (20 ° C.) for 2 days.
  • the same process as in the fourth step of the first embodiment was performed.
  • a plurality of C 8 F 17 C 2 H 4 Si (O ⁇ ) 3 having a fluoroalkyl group is formed on the surface of the needle-like protrusion 111 and the remaining surface of the base 110 between the needle-like protrusions 111.
  • the molecular chain (fluoroalkyl chain), that is, a plurality of fine protrusions 121 are formed, and the hydrophobic film 120 that is a monomolecular film (fluoroalkyl monomolecular film) is formed by the plurality of molecular chains.
  • a substrate 100 was produced. Note that the fourth step can be omitted.
  • the water-repellent substrate 100 prepared in this way showed the same water repellency as the water-repellent substrate 100 prepared in the first embodiment.
  • the water-repellent substrate 100 was created by changing the film-forming material in the third step with respect to the first and second embodiments.
  • the substrate 110 that has undergone the same steps as those of the first and second embodiments was prepared until the first step and the second step. Then, as a third step (film formation step), a surface of the reaction vessel is sealed in the second step in a sealed and pressurizable container having a capacity of 20 ml in which 0.5 g of C 8 F 17 C 2 H 4 NCO (perfluorodeoxycynate) is enclosed. Boehmite-treated substrate 110 was inserted and sealed, and a gas phase reaction was performed at 150 ° C. for 72 hours.
  • the water-repellent substrate 100 prepared in this way showed the same water repellency as the water-repellent substrate 100 prepared in the first and second embodiments.
  • the water-repellent substrate 100 is created by changing the film forming material in the third step as compared with the first to third embodiments.
  • the base material 110 that has undergone the same processes as those of the first to third embodiments until the first process and the second process was prepared. Then, as a third step (film forming step), a surface-boehmite-treated base in the second step is placed in a 100-ml sealed and pressurizable reaction vessel in which 1.4 g of C 18 H 37 NCO (octadecylicocynate) is enclosed. The material 110 was inserted and sealed, and gas phase reaction was performed at 150 ° C. for 72 hours.
  • a plurality of molecular chains (alkyl chains) of C 18 H 37 NHCOO — having an alkyl group are formed on the surface of the needle-like protrusions 111 and the surface of the remaining base 110 between the needle-like protrusions 111, that is, A water-repellent substrate 100 in which a plurality of fine protrusions 121 were formed and a hydrophobic film 120 as a monomolecular film (alkyl monomolecular film) was formed by the plurality of molecular chains was produced.
  • the water-repellent substrate 100 prepared in this way showed the same water repellency as the water-repellent substrate 100 prepared in the first to third embodiments.
  • the water-repellent substrate 100 described in the first to fourth embodiments is applied to a heat exchanger 200.
  • the heat exchanger 200 is an endothermic heat exchanger, and is an evaporator that cools air for air conditioning in a refrigeration cycle of a vehicle air conditioner, for example, as shown in FIG.
  • the heat exchanger 200 includes a heat exchange unit 210 and a pair of header tanks 220 connected to the heat exchange unit 210.
  • the heat exchanging unit 210 includes a plurality of laminated tubes 211 having a flat cross section, and corrugated fins 212 interposed between the tubes 211.
  • the tubes 211 are tube members through which a refrigerant as a heat medium flows, and both ends of each tube 211 are connected to communicate with the inside of the pair of header tanks 220.
  • the fin 212 is a heat transfer member that is formed in a wave shape from a thin strip material and forms a heat transfer surface, and is joined (connected) to the tube 211. As shown in FIG. 6, a plurality of armor-door louvers 212 a are formed on the heat transfer surfaces of the fins 212.
  • the tubes 211 and the fins 212 are formed by the water-repellent substrate 100 described in any one of the first to fourth embodiments.
  • the refrigerant that has been depressurized in the refrigeration cycle to low temperature and low pressure flows through the plurality of tubes 211, and around the outside of the tubes 211 and around the fins 212 (outside of the heat exchanging unit 210).
  • the air for air conditioning passes through the air and the air for air conditioning is cooled by the refrigerant.
  • the air-conditioning air is cooled, if the temperature of the air-conditioning air falls below the dew point temperature of the water vapor contained in the air, the water vapor becomes condensed water on the surface of the heat exchange unit 210 (tube 211, fin 212). Adhere to.
  • the distance between the heat transfer surfaces is usually set to about 1.5 mm, and the pitch of the louvers 212a is set to about 0.8 mm. Therefore, even when condensed water is generated, the condensed water droplet diameter is 0.4 mm or less so that the condensed water does not form curtains (water clogging) due to surface tension between the louvers 212a having a narrow gap. It is necessary to suppress it so that it becomes.
  • 2 ⁇ rE adhesion force
  • mg ⁇ sin ⁇ gravity along the sliding direction
  • r condensed water droplet radius (m)
  • E surface energy of the sliding film ( J / m 2 )
  • m the mass of the water drop (kg)
  • g the acceleration of gravity (m / s 2 )
  • the tilt angle (degree)
  • ⁇ in FIG. 7 is the contact angle (degree).
  • the surface energy E is obtained based on the formula 1 and the experimental result.
  • 2 ⁇ rE represents adhesion
  • 1/2 ⁇ ⁇ ⁇ V 2 ⁇ A ⁇ C D represents drag
  • r condensed water droplet radius (m)
  • E represents sliding force.
  • is the air density (kg / m 3)
  • V the relative velocity (m / s)
  • A the projected cross section (m 2 )
  • CD the drag coefficient.
  • 1000 (kg / m3)
  • relative velocity V 1 m / s
  • projected cross-sectional area A ⁇ ⁇ 0.2 2
  • drag coefficient CD approximate value
  • the drag of FIG. 10 is in the range of the contact angle ⁇ that exceeds the adhesive force, and the contact angle ⁇ is found to be 148 degrees or more. .
  • the water repellent substrate 100 of the first to fourth embodiments is obtained at a contact angle of 160 degrees.
  • the tube 211 and the fin 212 are used. Condensed water could be satisfactorily slid down and removed without any special operation from the surface. Moreover, since the good sliding down of the condensed water was obtained, it was possible to delay the time for generating frost to a predetermined amount on the surface of the heat exchange unit 210.
  • FIG.11 (a) is a graph which shows frost formation time when frost formation and defrosting are repeated in the heat exchanger 200 based on this indication.
  • FIG.11 (b) is a graph which shows the frost formation time when frost formation and defrosting are repeated in the heat exchanger of a comparative example.
  • the heat exchanger of the comparative example includes a conventional hydrophilic film and does not include the hydrophobic film in the present embodiment.
  • the condensed water is less likely to stagnate in the heat exchanging unit 210, so that the frosting occurs and the ventilation resistance of the heat exchanging unit 210 is a predetermined value (here, The time to 100 Pa) can be greatly reduced.
  • the hydrophobic coating 120 ODS, FAS17, C 8 F 17 C 2 H 4 NCO, has formed the monomolecular film by using a C 18 H 37 NCO, etc., other than these materials
  • a monomolecular film may be formed.
  • any structure having a hydrophobic group such as fluorine on one side and a functional group that easily binds to a hydroxyl group such as O—Si—O on the other side is applicable.
  • numerator which has hydrophobic functional groups like an alkyl group and a fluoroalkyl group is contained as a molecule
  • the method for creating the needle-like protrusion 111 is not limited to the method of each of the above-described embodiments, and besides this, a nanoimprint method or the like can be used.
  • the structure which uses an aluminum plate material was illustrated as the base material 110 in each said embodiment, various metals, such as a copper plate and an iron plate, can be used besides an aluminum plate material.
  • the base material 110 is not limited to a metal, For example, you may form with resin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

A water-repellent substrate (100) is provided with a substrate (110), and a hydrophobic film (120) disposed upon the surface of the substrate (110), wherein a plurality of needle-shaped protrusions (111) is formed on the surface of the substrate (110). The hydrophobic film (120) comprises a plurality of minute protrusions (121) that are finer than the needle-shaped protrusions (111), and the plurality of minute protrusions (121) is disposed upon the needle-shaped protrusions (111) and the surface of the substrate (110) remaining between the surfaces of the needle-shaped protrusions (111). The water-repellent substrate (100) forms at least either a tube (211) that constitutes a heat exchange section (210) of a heat exchanger (200) and is used for circulating a heat transfer medium, or a fin (212) that is connected to the tube (211) and forms a surface that transfers heat to atmospheric air.

Description

撥水性基材、撥水性基材を用いた熱交換器、および撥水性基材の製造方法Water repellent substrate, heat exchanger using water repellent substrate, and method for producing water repellent substrate 関連出願の相互参照Cross-reference of related applications
 本開示は、2011年4月27日に出願された日本特許出願第2011-99198号に基づくものであり、この開示をもってその内容を本明細書中に開示したものとする。 This disclosure is based on Japanese Patent Application No. 2011-99198 filed on Apr. 27, 2011, and the contents thereof are disclosed in this specification.
 本開示は、低温時に基材表面から生成される凝縮水を撥水させる撥水性基材、撥水性基材を用いた熱交換器、および撥水性基材の製造方法に関するものである。 The present disclosure relates to a water-repellent base material that repels condensed water generated from the surface of the base material at low temperatures, a heat exchanger using the water-repellent base material, and a method for producing the water-repellent base material.
 従来の撥水性基材として、例えば特許文献1に記載されたものが知られている。特許文献1の撥水性基材は、車両用の窓ガラス等に適用されるものであって、基材の表面に微小凹凸を有する下地膜と、下地膜の微小凹凸上に形成された撥水性皮膜とを有している。撥水性皮膜は、下地膜の微小凹凸を反映した表面形状となっている。更に、撥水性皮膜の表面形状は、粒子状突起物と、この粒子状突起物よりも基板の表面から測定した高さが高い柱状突起物とから構成されている。 As a conventional water-repellent substrate, for example, one described in Patent Document 1 is known. The water-repellent substrate of Patent Document 1 is applied to a window glass for a vehicle and the like, and has a base film having minute irregularities on the surface of the substrate, and a water repellency formed on the minute irregularities of the substrate film. It has a film. The water-repellent film has a surface shape reflecting the minute irregularities of the base film. Furthermore, the surface shape of the water-repellent coating is composed of particulate protrusions and columnar protrusions that are higher in height as measured from the surface of the substrate than the particulate protrusions.
 撥水性皮膜の表面における水滴の接触角をCA、水滴を滴下したときに水滴が転落する臨界角度としての転落角をTAとしたとき、窓ガラスに適用された特許文献1では、CA≧150度かつTA≦15度、または150度>CA≧145度かつTA≦5度となっており、撥水性に優れ、窓ガラスの表面に水滴が残りにくいものとなっている。 In Patent Document 1 applied to a window glass, CA ≧ 150 degrees, where CA is the contact angle of water droplets on the surface of the water-repellent coating, and TA is the falling angle as the critical angle at which the water droplets fall when dropped. In addition, TA ≦ 15 degrees, or 150 degrees> CA ≧ 145 degrees and TA ≦ 5 degrees, and the water repellency is excellent and water droplets hardly remain on the surface of the window glass.
 しかしながら、特許文献1の撥水性基材では、上記のように窓ガラス等の上に滴下された水滴を転落させることに優れたものとなっている。これに対して、例えば基材が低温場に置かれたときに、基材に触れる空気中の水蒸気が凝縮されて基材の表面から凝縮水が発生する場合では、特許文献1の撥水性基材では、凝縮水の良好な撥水性が得られないという問題があった。即ち、特許文献1の撥水性基材では、粒子状突起物および柱状突起物間に形成される凹部内からも凝縮水が生成される形となり、凹部に凝縮水が溜まり、更に凹部の外側で各凹部内の凝縮水が互いに繋がり大きな水の膜となって形成されていくので、凝縮水の良好な撥水性が得られず、凝縮水を滑落させ難いものとなっていた。 However, the water-repellent substrate of Patent Document 1 is excellent in dropping water drops dripped on a window glass or the like as described above. On the other hand, for example, when the base material is placed in a low temperature field, water vapor in the air that touches the base material is condensed to generate condensed water from the surface of the base material. The material had a problem that good water repellency of condensed water could not be obtained. That is, in the water-repellent substrate of Patent Document 1, condensed water is generated also from the inside of the recess formed between the particulate protrusions and the columnar protrusions, and the condensed water accumulates in the recess, and further outside the recess. Since the condensed water in each recess is connected to each other to form a large water film, it is difficult to obtain good water repellency of the condensed water and it is difficult for the condensed water to slide down.
特許第4198598号公報Japanese Patent No. 4198598
 本開示の目的は、上記問題に鑑み、表面に発生する凝縮水に対して良好な撥水性を有する撥水性基材、撥水性基材を用いた熱交換器、および撥水性基材の製造方法を提供することにある。 In view of the above problems, an object of the present disclosure is to provide a water-repellent substrate having good water repellency with respect to condensed water generated on the surface, a heat exchanger using the water-repellent substrate, and a method for producing the water-repellent substrate. Is to provide.
 上記目的を達成するために、本開示では、基材と、前記基材の表面に設けられた疎水性皮膜とを備える撥水性基材であって、前記基材の表面には、複数の針状突起部が形成されており、前記疎水性皮膜は、前記複数の針状突起部よりも微細な複数の微細突起部からなり、前記複数の微細突起部が、前記複数の針状突起部の表面と、前記複数の針状突起部間の残りの前記基材表面とに設けられている撥水性基材を提供する。 In order to achieve the above object, the present disclosure provides a water-repellent substrate including a substrate and a hydrophobic film provided on the surface of the substrate, and a plurality of needles are provided on the surface of the substrate. A plurality of fine protrusions that are finer than the plurality of needle-like protrusions, and the plurality of fine protrusions are formed of the plurality of needle-like protrusions. Provided is a water-repellent substrate provided on the surface and the remaining substrate surface between the plurality of needle-like protrusions.
 さらに、上記目的を達成するために、本開示では、熱交換部を備え、前記熱交換部の内部を流通する熱媒体によって、前記熱交換部の外部を流通する空気から吸熱する吸熱用の熱交換器であって、前記熱交換部を形成する前記熱媒体流通用のチューブと、前記チューブに接続されて前記空気に対する伝熱面を形成するフィンとのうちの少なくとも一方が、前記撥水性基材によって形成されている熱交換器を提供する。 Furthermore, in order to achieve the above-described object, in the present disclosure, a heat-absorbing heat is provided that includes a heat exchange unit and absorbs heat from the air flowing outside the heat exchange unit by a heat medium flowing inside the heat exchange unit. In the exchanger, at least one of the heat medium distribution tube forming the heat exchange part and the fin connected to the tube and forming a heat transfer surface for the air is the water repellent group. A heat exchanger formed of a material is provided.
 さらに、上記目的を達成するために、本開示では、基材と、前記基材の表面に設けられた疎水性皮膜とを備えた撥水性基材の製造方法であって、前記基材の表面に、複数の針状突起部を形成することと、前記複数の針状突起部の表面と、前記複数の針状突起部間の残りの前記基材表面とに、前記複数の針状突起部よりも微細な複数の微細突起部を形成することで、前記疎水性皮膜を形成することを含む撥水性基材の製造方法を提供する。 Furthermore, to achieve the above object, the present disclosure provides a method for producing a water-repellent substrate comprising a substrate and a hydrophobic film provided on the surface of the substrate, the surface of the substrate Forming a plurality of needle-like projections on the surface of the plurality of needle-like projections and the remaining surface of the base material between the plurality of needle-like projections. A method for producing a water-repellent substrate including forming the hydrophobic film by forming a plurality of fine protrusions that are finer than the above is provided.
図1は撥水性基材を示す断面図である。FIG. 1 is a cross-sectional view showing a water-repellent substrate. 図2は図1中の矢印IIで示す部分の拡大図である。FIG. 2 is an enlarged view of a portion indicated by an arrow II in FIG. 図3(a)および図3(b)は基材の表面を示す拡大図である(倍率1000倍)。FIG. 3A and FIG. 3B are enlarged views showing the surface of the base material (magnification 1000 times). 図4(a)および図4(b)は基材の表面(針状突起部)を示す拡大図である(倍率100000倍)。4 (a) and 4 (b) are enlarged views showing the surface (needle-like protrusion) of the substrate (magnification 100000 times). 図5は熱交換器を示す斜視図である。FIG. 5 is a perspective view showing a heat exchanger. 図6はフィン断面と凝縮水滴径を示すモデル図である。FIG. 6 is a model diagram showing a fin cross section and a condensed water droplet diameter. 図7は水滴滑落計算式を得るためのモデル図である。FIG. 7 is a model diagram for obtaining a water drop sliding calculation formula. 図8は滑水膜の表面エネルギを算出するためのモデル図である。FIG. 8 is a model diagram for calculating the surface energy of the slidable film. 図9は液滴直径が0.4mmで滑落するように接触角を算出するためのモデル図である。FIG. 9 is a model diagram for calculating the contact angle so that the droplet diameter slides at 0.4 mm. 図10はフィン内で水滴が閉塞しないための接触角を求めるグラフである。FIG. 10 is a graph for obtaining a contact angle for preventing water droplets from closing in the fin. 図11(a)は本開示に基づく熱交換器における着霜、除霜を繰り返したときの着霜時間を示すグラフであり、図11(b)は比較例の熱交換器における着霜、除霜を繰り返したときの着霜時間を示すグラフである。FIG. 11 (a) is a graph which shows the frost formation time when frost formation and defrost in the heat exchanger based on this indication are repeated, and FIG.11 (b) is frost formation and removal in the heat exchanger of a comparative example. It is a graph which shows frost formation time when frost is repeated.
 以下に、図面を参照しながら本開示の複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of embodiments of the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly indicate that the combination is possible in each embodiment, but also a combination of the embodiments even if they are not clearly specified unless there is a problem with the combination. It is also possible.
 (第1実施形態)
 第1実施形態の撥水性基材100について、図1~図4(b)を用いて説明する。図1は撥水性基材100を示す断面図、図2は図1中の矢印IIで示す部分の拡大図、図3(a)および図3(b)は基材110の表面を示す拡大図(倍率1000倍)、図4(a)および図4(b)は基材110の表面(針状突起部111)を示す拡大図(倍率100000倍)である。撥水性基材100は、図1に示すように、アルミニウム製板材から形成される基材110の表面に疎水性皮膜120が設けられて形成されている。
(First embodiment)
A water-repellent substrate 100 according to the first embodiment will be described with reference to FIGS. 1 to 4B. 1 is a cross-sectional view showing a water-repellent substrate 100, FIG. 2 is an enlarged view of a portion indicated by an arrow II in FIG. 1, and FIGS. 3 (a) and 3 (b) are enlarged views showing the surface of the substrate 110. (Magnification 1000 times), FIG. 4 (a) and FIG.4 (b) are the enlarged views (magnification 100000 times) which show the surface (needle-shaped projection part 111) of the base material 110. FIG. As shown in FIG. 1, the water-repellent substrate 100 is formed by providing a hydrophobic film 120 on the surface of a substrate 110 formed from an aluminum plate material.
 基材110は、アルミニウム、アルミニウム合金、鉄、銅等の金属製、あるいは樹脂製の板部材であり、基材110の表面には、針状に延びる多数の針状突起部111が形成されている。針状突起部111の突起部と突起部との間の寸法を周期と定義したとき、針状突起部111の周期は、700nm~500μm程度となっている。針状突起部111の周期は、好ましくは1μm~10μm程度が良い。このように針状突起部111は、ミクロンオーダーの突起部となっている。 The substrate 110 is a plate member made of metal such as aluminum, aluminum alloy, iron, copper, or resin, and a large number of needle-like protrusions 111 extending in a needle shape are formed on the surface of the substrate 110. Yes. When the dimension between the protrusions of the needle-like protrusions 111 is defined as a period, the period of the needle-like protrusions 111 is about 700 nm to 500 μm. The period of the acicular protrusion 111 is preferably about 1 μm to 10 μm. Thus, the needle-like protrusion 111 is a protrusion on the order of microns.
 疎水性皮膜120は、複数の微細突起部121によって形成されている。つまり、疎水性皮膜120は、複数の微細突起部121の集合体として形成されている。微細突起部121は、針状突起部111の表面および針状突起部111間の残りの基材110表面において、針状突起部111よりも更に微細に形成された突起部である。微細突起部121の周期は、1nm~500nm程度となっている。微細突起部121の周期は、好ましくは1nm~10nm程度が良い。このように微細突起部121は、ナノオーダーの突起部となっている。 The hydrophobic film 120 is formed by a plurality of fine protrusions 121. That is, the hydrophobic film 120 is formed as an aggregate of a plurality of fine protrusions 121. The fine protrusions 121 are protrusions that are formed more finely than the needle-like protrusions 111 on the surface of the needle-like protrusions 111 and the remaining surface of the substrate 110 between the needle-like protrusions 111. The period of the fine protrusions 121 is about 1 nm to 500 nm. The period of the fine protrusions 121 is preferably about 1 nm to 10 nm. Thus, the fine protrusion 121 is a nano-order protrusion.
 上記の撥水性基材110は、以下のように製造されるようになっている。 The water repellent substrate 110 is manufactured as follows.
 1.第1工程(前工程)
 まず、4cm(2cm四方)のアルミニウム製板材を基材110として製作する。そして、研磨によって、基材110の表面に、凹凸部112を形成する。この凹凸部112は、例えば、熱交換器を構成するチューブやフィンの材料段階における表面と同等の凹凸状態にするものである。
1. First step (previous step)
First, a 4 cm 2 (2 cm square) aluminum plate material is manufactured as the base material 110. And the uneven | corrugated | grooved part 112 is formed in the surface of the base material 110 by grinding | polishing. This uneven | corrugated | grooved part 112 is made into the uneven | corrugated state equivalent to the surface in the material step of the tube and fin which comprise a heat exchanger, for example.
 実際の研磨にあたっては、例えば、#100耐水性紙やすり(三共理化学社製 Fuji Star)を使用した。表面粗さ計測器(Digital Instruments社製 Dektak 6M)を用いて、研磨後の基材110の表面粗さを計測することにより、凹凸部112の周期(山と山との間の寸法)を測定することができる。得られた周期(輪郭曲線要素の平均長さRSm:JIS B0601-2001)は、10μmであることが確認された。なお、このときの凹凸部112の算術平均高さRaは、0.5μmであった。この時の走査型電子顕微鏡(SEM)による表面形状観察像を図3(a)および図3(b)に示す。尚、図3(a)および図3(b)は、基材110の表面の代表の2ヶ所における観察結果である。 In actual polishing, for example, # 100 water-resistant sandpaper (Fuji Star manufactured by Sankyo Rikagaku Co., Ltd.) was used. By measuring the surface roughness of the substrate 110 after polishing using a surface roughness measuring instrument (Dektak 6M, manufactured by Digital Instruments), the period of the irregularities 112 (the dimension between the peaks) is measured. can do. It was confirmed that the obtained period (average length RSm of contour curve element: JIS B0601-2001) was 10 μm. At this time, the arithmetic average height Ra of the uneven portion 112 was 0.5 μm. 3A and 3B show surface shape observation images obtained by a scanning electron microscope (SEM) at this time. 3A and 3B are observation results at two representative positions on the surface of the substrate 110. FIG.
 2.第2工程(突起部形成工程)
 第1工程にて凹凸部112の形成された基材110をアセトンに浸漬して表面清浄化を行い、沸騰する純水中に5分間浸漬することでベーマイト処理を行った。次に、取り出した基材110を冷却後、超純水を吹きかけて洗浄し、窒素ガスを吹きかけて乾燥させた。これにより、基材110の表面に水酸基を生成させた。また、基材110の表面に針状突起部111を形成させた。なお、沸騰水中にジエタノールアミン等のアミン類を添加してもよい。
2. Second step (projection forming step)
In the first step, the substrate 110 on which the irregularities 112 were formed was immersed in acetone to clean the surface, and the boehmite treatment was performed by immersing in boiling pure water for 5 minutes. Next, the substrate 110 taken out was cooled, washed by blowing ultrapure water, and dried by blowing nitrogen gas. Thereby, a hydroxyl group was generated on the surface of the substrate 110. In addition, a needle-like protrusion 111 was formed on the surface of the substrate 110. An amine such as diethanolamine may be added to boiling water.
 上記のように基材110をベーマイト処理する目的は2つある。1つはベーマイト処理することにより基材110の表面に水酸基を形成し、続く第3工程において、水飽和溶液中に溶解された疎水性の官能基を有する分子と水酸基とを反応させ、同分子と基材110との間の強固な結合を形成するためである。 There are two purposes for the boehmite treatment of the substrate 110 as described above. One is boehmite treatment to form a hydroxyl group on the surface of the substrate 110, and in the subsequent third step, a molecule having a hydrophobic functional group dissolved in a water-saturated solution is reacted with the hydroxyl group. This is to form a strong bond between the substrate 110 and the substrate 110.
 ベーマイト処理の目的の2つめは、ベーマイト処理の過程で基材110の表面がエッチングされ、凹凸部112の表面に非常に微細な針状構造をなす針状突起部111を形成させるためである。このベーマイト処理後の基材110を、走査型電子顕微鏡(SEM)で観察した像を図4(a)および図4(b)に示す。尚、図4(a)および図4(b)は、基材110の表面の代表の2ヶ所における観察結果である。このSEM像からの解析結果から粗さの解析をしたところ、針状突起部111が確認された。なお、このときの針状突起部111の算術平均高さRaは、20nmであった。 The second purpose of the boehmite treatment is to etch the surface of the base material 110 in the course of the boehmite treatment, thereby forming the needle-like protrusions 111 having a very fine needle-like structure on the surface of the concavo-convex portion 112. Images obtained by observing the substrate 110 after the boehmite treatment with a scanning electron microscope (SEM) are shown in FIGS. 4 (a) and 4 (b). 4A and 4B are observation results at two representative positions on the surface of the substrate 110. FIG. When the roughness was analyzed from the analysis result from the SEM image, the needle-like protrusion 111 was confirmed. At this time, the arithmetic average height Ra of the needle-like protrusion 111 was 20 nm.
 3.第3工程(製膜工程)
 製膜工程は、上記第1、第2工程の後に、基材110を疎水性の官能基を有する分子の水飽和溶液中に浸漬させることで、針状突起部111の表面および針状突起部111間の残りの基材110表面に、それぞれが疎水性の官能基を有する分子鎖からなる複数の微細突起部121を形成することにより、疎水性皮膜120を形成するものである。
3. Third step (film formation step)
In the film forming step, after the first and second steps, the surface of the needle-like protrusion 111 and the needle-like protrusion are formed by immersing the substrate 110 in a water saturated solution of molecules having a hydrophobic functional group. A hydrophobic coating 120 is formed by forming a plurality of fine protrusions 121 each consisting of a molecular chain having a hydrophobic functional group on the surface of the remaining substrate 110 between 111.
 具体的には、ODS(octadecyltrimethoxysilane)25mMの水飽和キシレン溶液に、第2工程にて表面をベーマイト処理した基材110を室温(20℃)で2日浸積した。 Specifically, the base material 110 whose surface was boehmite-treated in the second step was immersed in a 25 mM water saturated xylene solution of ODS (octadecyltrimethylsilane) at room temperature (20 ° C.) for 2 days.
 4.第4工程(製膜処理の後処理)
 第3工程にて製膜処理を行った基材110をアセトンにて洗浄した後、80℃にて1時間乾燥させた。
4). Fourth step (post-treatment of film forming process)
The substrate 110 subjected to the film forming process in the third step was washed with acetone and then dried at 80 ° C. for 1 hour.
 以上の工程により、針状突起部111の表面、および針状突起部111間の残りの基材110表面に、アルキル基を有するC1837Si(Oの複数の分子鎖(アルキル鎖)、即ち、複数の微細突起部121が形成され、同複数の分子鎖により、単分子膜(アルキル単分子膜)である疎水性皮膜(撥水膜)120が形成された撥水性基材100を作製した。なお、上記第4工程は省略することもできる。 Through the above steps, a plurality of molecular chains (alkyl) of C 18 H 37 Si (O ) 3 having an alkyl group are formed on the surface of the needle-like protrusion 111 and the remaining surface of the base 110 between the needle-like protrusions 111. Water-repellent substrate in which a plurality of fine protrusions 121 are formed, and a hydrophobic film (water-repellent film) 120 that is a monomolecular film (alkyl monomolecular film) is formed by the plurality of molecular chains. 100 was produced. The fourth step can be omitted.
 このように構成された撥水性基材100は、図1、図2に模式的に示す構造を有する。この撥水性基材100においては、針状突起部111が上記第2工程により形成され、微細突起部121、即ち疎水性皮膜120(ODS単分子膜)が上記第3工程により形成されたものとなっている。 The water-repellent substrate 100 configured as described above has a structure schematically shown in FIGS. In this water-repellent substrate 100, the needle-like protrusion 111 is formed by the second step, and the fine protrusion 121, that is, the hydrophobic film 120 (ODS monomolecular film) is formed by the third step. It has become.
 このようにして形成した撥水性基材100は、高い撥水性(接触角=160°)を有しており、3°で配置した撥水性基材100に凝縮水を発生させると、水滴直径1mmとなったときに滑落した。 The water repellent substrate 100 thus formed has high water repellency (contact angle = 160 °), and when condensed water is generated on the water repellent substrate 100 arranged at 3 °, the water droplet diameter is 1 mm. When it became, it slipped down.
 本実施形態では、基材110の表面に凝縮水が発生するような条件下において、凝縮水は、針状突起部111間の底部表面から凝縮水が生成されても、互いに結合して成長していく際に微細突起部121によって針状突起部111間の底部側から先端側に向けて押し出されていくので、針状突起部111間に停滞することがない。よって、従来技術のように凹部に凝縮水が溜まり、更に凹部の外側で各凹部内の凝縮水が互いに繋がり大きな水の膜となって形成されることなく、凝縮水の水滴として撥水させて滑落させていくことができる。 In this embodiment, under the condition that condensed water is generated on the surface of the substrate 110, the condensed water grows in combination with each other even if condensed water is generated from the bottom surface between the needle-like protrusions 111. Since the fine projections 121 are pushed from the bottom side between the needle-like projections 111 toward the tip side by the fine projections 121, the needle-like projections 111 do not stagnate. Therefore, the condensed water accumulates in the concave portions as in the prior art, and the condensed water in the concave portions is connected to each other outside the concave portions to form a large water film, so that the water is repelled as water droplets of condensed water. You can slide down.
 また、本実施形態の撥水性基材100では、低温時において表面に霜が発生しうる条件下においても、上記のように高い滑落性能を発揮することから、撥水性基材100表面に霜の発生が起きる時間を遅らせることができた。 In addition, the water-repellent substrate 100 of the present embodiment exhibits high sliding performance as described above even under conditions where frost can be generated on the surface at low temperatures. It was possible to delay the time of occurrence.
 (第2実施形態)
 第2実施形態では、上記第1実施形態に対して、第3工程における製膜材料を変更して撥水性基材100を作成した。
(Second Embodiment)
In the second embodiment, the water-repellent substrate 100 was created by changing the film-forming material in the third step with respect to the first embodiment.
 即ち、まず、第1工程、および第2工程までは、上記第1実施形態と同一の工程を経た基材110を準備した。そして、第3工程(製膜工程)として、FAS17(perfluorodecyltrimethoxysilane)25mMの水飽和1、3-ビス(トリフルオロメチル)ベンゼン(F6xy)溶液に、第2工程にて表面をベーマイト処理した基材110を室温(20℃)で2日浸積した。 That is, first, the substrate 110 that has undergone the same steps as those of the first embodiment was prepared until the first step and the second step. Then, as a third step (film forming step), a substrate 110 whose surface was boehmite-treated in a FAS17 (perfluorodecyloxysilane) 25 mM water-saturated 1,3-bis (trifluoromethyl) benzene (F6xy) solution in the second step. Was immersed at room temperature (20 ° C.) for 2 days.
 上記第3工程の後、上記第1実施形態の第4工程と同様の処理を行った。以上の工程により、針状突起部111の表面、および針状突起部111間の残りの基材110表面に、フルオロアルキル基を有するC17Si(Oの複数の分子鎖(フルオロアルキル鎖)、即ち、複数の微細突起部121が形成され、同複数の分子鎖により、単分子膜(フルオロアルキル単分子膜)である疎水性皮膜120が形成された撥水性基材100を作製した。なお、第4工程は省略することもできる。 After the third step, the same process as in the fourth step of the first embodiment was performed. Through the above steps, a plurality of C 8 F 17 C 2 H 4 Si (O ) 3 having a fluoroalkyl group is formed on the surface of the needle-like protrusion 111 and the remaining surface of the base 110 between the needle-like protrusions 111. The molecular chain (fluoroalkyl chain), that is, a plurality of fine protrusions 121 are formed, and the hydrophobic film 120 that is a monomolecular film (fluoroalkyl monomolecular film) is formed by the plurality of molecular chains. A substrate 100 was produced. Note that the fourth step can be omitted.
 このようにして作成された撥水性基材100は、第1実施形態にて作成した撥水性基材100と同等の撥水性を示した。 The water-repellent substrate 100 prepared in this way showed the same water repellency as the water-repellent substrate 100 prepared in the first embodiment.
 (第3実施形態)
 第3実施形態では、第1、第2実施形態に対して、第3工程における製膜材料を変更して撥水性基材100を作成した。
(Third embodiment)
In the third embodiment, the water-repellent substrate 100 was created by changing the film-forming material in the third step with respect to the first and second embodiments.
 即ち、まず、第1工程、および第2工程までは、上記第1、第2実施形態と同一の工程を経た基材110を準備した。そして、第3工程(製膜工程)として、C17NCO(perfluorodecylisocyanate)0.5gが封入された容積20mlの密閉加圧可能な反応容器に、第2工程にて表面をベーマイト処理した基材110を挿入して密封し、150℃にて72時間気相反応させた。 That is, first, the substrate 110 that has undergone the same steps as those of the first and second embodiments was prepared until the first step and the second step. Then, as a third step (film formation step), a surface of the reaction vessel is sealed in the second step in a sealed and pressurizable container having a capacity of 20 ml in which 0.5 g of C 8 F 17 C 2 H 4 NCO (perfluorodeoxycynate) is enclosed. Boehmite-treated substrate 110 was inserted and sealed, and a gas phase reaction was performed at 150 ° C. for 72 hours.
 上記第3工程の後、上記第1、第2実施形態の第4工程と同様の処理を行った。以上の工程により、針状突起部111の表面、および針状突起部111間の残りの基材110表面に、フルオロアルキル基を有するC17NHCOOの複数の分子鎖(フルオロアルキル鎖)、即ち、複数の微細突起部121が形成され、同複数の分子鎖により、単分子膜(フルオロアルキル単分子膜)である疎水性皮膜120が形成された撥水性基材100を作製した。なお、第4工程は省略することもできる。 After the third step, the same process as in the fourth step of the first and second embodiments was performed. Through the above-described steps, a plurality of molecular chains of C 8 F 17 C 2 H 4 NHCOO having a fluoroalkyl group are formed on the surface of the needle-like protrusion 111 and the remaining surface of the base material 110 between the needle-like protrusions 111 ( A water-repellent substrate 100 in which a plurality of fine protrusions 121 are formed, and a hydrophobic film 120 that is a monomolecular film (fluoroalkyl monomolecular film) is formed by the plurality of molecular chains. Produced. Note that the fourth step can be omitted.
 このようにして作成された撥水性基材100は、第1、第2実施形態にて作成した撥水性基材100と同等の撥水性を示した。 The water-repellent substrate 100 prepared in this way showed the same water repellency as the water-repellent substrate 100 prepared in the first and second embodiments.
 (第4実施形態)
 第4実施形態では、第1~第3実施形態に対して、第3工程における製膜材料を変更して撥水性基材100を作成した。
(Fourth embodiment)
In the fourth embodiment, the water-repellent substrate 100 is created by changing the film forming material in the third step as compared with the first to third embodiments.
 即ち、まず、第1工程、および第2工程までは上記第1~第3実施形態と同一の工程を経た基材110を準備した。そして、第3工程(製膜工程)として、C1837NCO(octadecylisocyanate)1.4gが封入された容積100mlの密閉加圧可能な反応容器に、第2工程にて表面をベーマイト処理した基材110を挿入して密封し、150℃にて72時間気相反応させた。 That is, first, the base material 110 that has undergone the same processes as those of the first to third embodiments until the first process and the second process was prepared. Then, as a third step (film forming step), a surface-boehmite-treated base in the second step is placed in a 100-ml sealed and pressurizable reaction vessel in which 1.4 g of C 18 H 37 NCO (octadecylicocynate) is enclosed. The material 110 was inserted and sealed, and gas phase reaction was performed at 150 ° C. for 72 hours.
 上記第3工程の後、上記第1~第3実施形態の第4工程と同様の処理を行った。以上の工程により、針状突起部111の表面、および針状突起部111間の残りの基材110表面に、アルキル基を有するC1837NHCOOの複数の分子鎖(アルキル鎖)、即ち、複数の微細突起部121が形成され、同複数の分子鎖により、単分子膜(アルキル単分子膜)である疎水性皮膜120が形成された撥水性基材100を作製した。 After the third step, the same processing as in the fourth step of the first to third embodiments was performed. Through the above steps, a plurality of molecular chains (alkyl chains) of C 18 H 37 NHCOO having an alkyl group are formed on the surface of the needle-like protrusions 111 and the surface of the remaining base 110 between the needle-like protrusions 111, that is, A water-repellent substrate 100 in which a plurality of fine protrusions 121 were formed and a hydrophobic film 120 as a monomolecular film (alkyl monomolecular film) was formed by the plurality of molecular chains was produced.
 このようにして作成された撥水性基材100は、第1~第3実施形態にて作成した撥水性基材100と同等の撥水性を示した。 The water-repellent substrate 100 prepared in this way showed the same water repellency as the water-repellent substrate 100 prepared in the first to third embodiments.
 (第5実施形態)
 第5実施形態は、上記第1~第4実施形態にて説明した撥水性基材100を熱交換器200に適用したものである。
(Fifth embodiment)
In the fifth embodiment, the water-repellent substrate 100 described in the first to fourth embodiments is applied to a heat exchanger 200.
 熱交換器200は、吸熱用の熱交換器であって、図5に示すように、例えば車両用空調装置の冷凍サイクルにおいて空調用空気を冷却する蒸発器となっている。熱交換器200は、熱交換部210と、この熱交換部210に接続される一対のヘッダタンク220とを備えている。熱交換部210は、複数積層される断面扁平状のチューブ211と、各チューブ211の間に介在される波形のフィン212とを有している。チューブ211は、内部を熱媒体としての冷媒が流通する管部材であり、各チューブ211の両先端部は、一対のヘッダタンク220内部にそれぞれ連通するように接続されている。また、フィン212は、薄肉の帯板材から波状に形成されて伝熱面を形成する伝熱部材であり、チューブ211に接合(接続)されている。フィン212の伝熱面には、図6に示すように、鎧戸状のルーバ212aが複数形成されている。第5実施形態の熱交換器200では、上記チューブ211とフィン212とが、上記第1~第4実施形態のいずれか1つにて説明した撥水性基材100によって形成されている。 The heat exchanger 200 is an endothermic heat exchanger, and is an evaporator that cools air for air conditioning in a refrigeration cycle of a vehicle air conditioner, for example, as shown in FIG. The heat exchanger 200 includes a heat exchange unit 210 and a pair of header tanks 220 connected to the heat exchange unit 210. The heat exchanging unit 210 includes a plurality of laminated tubes 211 having a flat cross section, and corrugated fins 212 interposed between the tubes 211. The tubes 211 are tube members through which a refrigerant as a heat medium flows, and both ends of each tube 211 are connected to communicate with the inside of the pair of header tanks 220. Further, the fin 212 is a heat transfer member that is formed in a wave shape from a thin strip material and forms a heat transfer surface, and is joined (connected) to the tube 211. As shown in FIG. 6, a plurality of armor-door louvers 212 a are formed on the heat transfer surfaces of the fins 212. In the heat exchanger 200 of the fifth embodiment, the tubes 211 and the fins 212 are formed by the water-repellent substrate 100 described in any one of the first to fourth embodiments.
 熱交換器200においては、冷凍サイクル内で減圧されて低温低圧となった冷媒が、複数のチューブ211内を流通し、また、チューブ211の外側およびフィン212の周り(熱交換部210の外側)を空調用空気が通過し、空調用空気が冷媒によって冷却されるようになっている。空調用空気が冷却される際に、空調用空気の温度が空気中に含まれる水蒸気の露点温度を下回ると、水蒸気は凝縮水となって熱交換部210(チューブ211、フィン212)の表面に付着する。この凝縮水の付着状態が続くと、熱交換部210を通過する空調空気の通気抵抗が増加し、また凝縮水による熱抵抗が上昇するため、熱交換器200における熱交換性能が低下する。更には、凝縮水は、凍結温度以下となると凍結して熱交換部210の表面に霜となって付着してしまう。よって、吸熱用の熱交換器200においては、まず、作動中に凝縮水が生成されても、生成された凝縮水を撥水作用によって速やかに滑落させることが必要とされる。以下、生成される凝縮水を速やかに滑落させるための条件を検討する。 In the heat exchanger 200, the refrigerant that has been depressurized in the refrigeration cycle to low temperature and low pressure flows through the plurality of tubes 211, and around the outside of the tubes 211 and around the fins 212 (outside of the heat exchanging unit 210). The air for air conditioning passes through the air and the air for air conditioning is cooled by the refrigerant. When the air-conditioning air is cooled, if the temperature of the air-conditioning air falls below the dew point temperature of the water vapor contained in the air, the water vapor becomes condensed water on the surface of the heat exchange unit 210 (tube 211, fin 212). Adhere to. When this condensed water adheres, the ventilation resistance of the conditioned air passing through the heat exchange unit 210 increases and the thermal resistance due to the condensed water increases, so that the heat exchange performance in the heat exchanger 200 decreases. Furthermore, the condensed water freezes when it becomes below the freezing temperature, and adheres to the surface of the heat exchange unit 210 as frost. Therefore, in the heat exchanger 200 for absorbing heat, first, even if condensed water is generated during operation, it is necessary to quickly slide down the generated condensed water by a water repellent action. Hereinafter, the conditions for promptly sliding down the generated condensed water will be examined.
 まず、図6示すように、フィン212においては、通常、各伝熱面間の距離は、1.5mm程度に、またルーバ212aのピッチは0.8mm程度に設定されている。よって、凝縮水が生成された場合でも凝縮水が隙間の狭いルーバ212aの間で表面張力によって幕張り(水滴詰まり)を形成しないように、生成される凝縮水の液滴直径が0.4mm以下となるように抑えてやる必要がある。 First, as shown in FIG. 6, in the fin 212, the distance between the heat transfer surfaces is usually set to about 1.5 mm, and the pitch of the louvers 212a is set to about 0.8 mm. Therefore, even when condensed water is generated, the condensed water droplet diameter is 0.4 mm or less so that the condensed water does not form curtains (water clogging) due to surface tension between the louvers 212a having a narrow gap. It is necessary to suppress it so that it becomes.
 ここで、水滴の滑落計算式については、以下の数式1が知られている。即ち、
 2πrE=mg・sinα (数式1)
 数式1にて、図7に示すように、2πrEは付着力、mg・sinαは滑落方向に沿う重力を表しており、rは凝縮水着滴半径(m)、Eは滑水膜の表面エネルギ(J/m)、mは水滴の質量(kg)、gは重力加速度(m/s)、αは傾斜角(度)であり、図7中のθは接触角(度)である。尚、凝縮水着滴半径rは、接触角θの関数として表すことができ、凝縮水着滴半径r=(水滴直径d/2)・cos(θ-90)である。
Here, the following mathematical formula 1 is known as a water drop sliding formula. That is,
2πrE = mg · sin α (Formula 1)
In Equation 1, as shown in FIG. 7, 2πrE represents adhesion force, mg · sin α represents gravity along the sliding direction, r represents condensed water droplet radius (m), and E represents surface energy of the sliding film ( J / m 2 ), m is the mass of the water drop (kg), g is the acceleration of gravity (m / s 2 ), α is the tilt angle (degree), and θ in FIG. 7 is the contact angle (degree). The condensed water droplet radius r can be expressed as a function of the contact angle θ, and the condensed water droplet radius r = (water droplet diameter d / 2) · cos (θ−90).
 次に、上記数式1と、実験結果とをもとに表面エネルギEを求める。例えば、実験条件として、上記第1実施形態で説明したように、水滴直径dを1mm、傾斜角αを3度、接触角θを160度、無風条件としたときに、水滴が滑落することを確認している(図8)。よって、上記の条件を数式1に代入して、実際に水滴が滑落する際の表面エネルギEを求める。数式1より、
 2・π・0.5・cos(160-90)・E
 =4/3・π・0.5・9.8・sin(3)
となり、E=2.5×10-4(J/m)が得られた。
Next, the surface energy E is obtained based on the formula 1 and the experimental result. For example, as described in the first embodiment, when the water droplet diameter d is 1 mm, the inclination angle α is 3 degrees, the contact angle θ is 160 degrees, and no wind conditions are used as the experimental conditions, the water droplets slide down. This is confirmed (FIG. 8). Therefore, the surface energy E when the water droplet actually slides is obtained by substituting the above conditions into Equation 1. From Equation 1,
2 ・ π ・ 0.5 ・ cos (160-90) ・ E
= 4/3 · π · 0.5 3 · 9.8 · sin (3)
Thus, E = 2.5 × 10 −4 (J / m 2 ) was obtained.
 次に、水滴直径dがルーバ212aの隙間(0.8mm)を確実に通過可能な0.4mmの場合に、滑落可能な接触角θを数式2より算出する。即ち、
 2πrE=1/2・ρ・V・A・C (数式2)
 数式2にて、図9に示すように、2πrEは付着力、1/2・ρ・V・A・Cは抗力を表しており、rは凝縮水着滴半径(m)、Eは滑水膜の表面エネルギ(J/m)、ρは空気密度(kg/m3)、Vは相対速度(m/s)、Aは投影断面積(m)、Cは抗力係数である。
Next, when the water droplet diameter d is 0.4 mm that can surely pass through the gap (0.8 mm) of the louver 212a, the slidable contact angle θ is calculated from Equation 2. That is,
2πrE = 1/2 · ρ · V 2 · A · C D (Formula 2)
In Equation 2, as shown in FIG. 9, 2πrE represents adhesion, 1/2 · ρ · V 2 · A · C D represents drag, r represents condensed water droplet radius (m), and E represents sliding force. The surface energy (J / m 2 ) of the water film, ρ is the air density (kg / m 3), V is the relative velocity (m / s), A is the projected cross section (m 2 ), and CD is the drag coefficient.
 数式2に、凝縮水着滴半径r=(水滴直径d/2)・cos(θ-90)、滑落する際の表面エネルギEを2.5×10-4(J/m)として、空気密度ρ=1000(kg/m3)、相対速度V=1m/s、投影断面積A=π・0.2、抗力係数CD=近似値、を代入して、接触角θに対する付着力と抗力とを求めると図10が得られた。 The air density is expressed by the following equation, where the condensed water droplet radius r = (water droplet diameter d / 2) · cos (θ−90) and the surface energy E when sliding down is 2.5 × 10 −4 (J / m 2 ). By substituting ρ = 1000 (kg / m3), relative velocity V = 1 m / s, projected cross-sectional area A = π · 0.2 2 , drag coefficient CD = approximate value, FIG. 10 was obtained by obtaining.
 凝縮水がルーバ212a間で閉塞しないためには、図10の抗力が付着力よりも上回る接触角θの範囲であることが必要であり、その接触角θは148度以上であることが解った。 In order for the condensed water not to be blocked between the louvers 212a, it is necessary that the drag of FIG. 10 is in the range of the contact angle θ that exceeds the adhesive force, and the contact angle θ is found to be 148 degrees or more. .
 上記第1~第4実施形態の撥水性基材100は、接触角が160度のレベルで得られており、この撥水性基材100を用いた熱交換器200においては、チューブ211やフィン212の表面から特別な操作をすることなく、良好に凝縮水を滑落、および除去することができた。また、凝縮水の良好な滑落が得られたことから、熱交換部210の表面に霜が所定量まで発生する時間を遅らせることができた。 The water repellent substrate 100 of the first to fourth embodiments is obtained at a contact angle of 160 degrees. In the heat exchanger 200 using the water repellent substrate 100, the tube 211 and the fin 212 are used. Condensed water could be satisfactorily slid down and removed without any special operation from the surface. Moreover, since the good sliding down of the condensed water was obtained, it was possible to delay the time for generating frost to a predetermined amount on the surface of the heat exchange unit 210.
 図11(a)は、本開示に基づく熱交換器200において着霜、除霜を繰り返したときの着霜時間を示すグラフである。図11(b)は、比較例の熱交換器において着霜、除霜を繰り返したときの着霜時間を示すグラフである。比較例の熱交換器は、従来の親水性の皮膜を備え、本実施形態における疎水性皮膜を備えないものである。実験条件は、
・着霜運転時において、
  空気側条件として
   乾球温度=2±0.3℃、湿球温度=1±0.3℃、
   前面風速=0.8±0.01m/s、
  冷媒側条件として
   冷媒入口温度=-7.4±0.6℃、冷媒流量=10±0.5L/MIN、
・除霜運転時において、
  空気側条件として
   前面風速=0m/s、
  冷媒側条件として
   冷媒入口温度=13±2℃、冷媒流量=2±0.5L/MIN、
・試験サイクル
  着霜条件で熱交換器の通風抵抗が100Paまで上昇した時点で終了し、除霜運転6分とし、 
  以下、繰り返すものとしとした。
Fig.11 (a) is a graph which shows frost formation time when frost formation and defrosting are repeated in the heat exchanger 200 based on this indication. FIG.11 (b) is a graph which shows the frost formation time when frost formation and defrosting are repeated in the heat exchanger of a comparative example. The heat exchanger of the comparative example includes a conventional hydrophilic film and does not include the hydrophobic film in the present embodiment. Experimental conditions are
・ During frosting operation,
As air-side conditions, dry bulb temperature = 2 ± 0.3 ° C., wet bulb temperature = 1 ± 0.3 ° C.,
Front wind speed = 0.8 ± 0.01m / s,
As refrigerant side conditions, refrigerant inlet temperature = −7.4 ± 0.6 ° C., refrigerant flow rate = 10 ± 0.5 L / MIN,
・ During defrosting operation,
As the air side condition, front wind speed = 0m / s,
As refrigerant side conditions, refrigerant inlet temperature = 13 ± 2 ° C., refrigerant flow rate = 2 ± 0.5 L / MIN,
・ Test cycle It ends when the ventilation resistance of the heat exchanger rises to 100 Pa under frosting conditions, and the defrosting operation is 6 minutes.
The following was repeated.
 本開示では、比較例に対して凝縮水の滑落を促進できるので、凝縮水が熱交換部210に停滞しにくく、よって着霜して、熱交換部210の通風抵抗が所定値(ここでは、100Pa)にいたるまでの時間を大きく低減できている。 In the present disclosure, since the sliding down of the condensed water can be promoted with respect to the comparative example, the condensed water is less likely to stagnate in the heat exchanging unit 210, so that the frosting occurs and the ventilation resistance of the heat exchanging unit 210 is a predetermined value (here, The time to 100 Pa) can be greatly reduced.
 (その他の実施形態)
 以上、本開示の実施形態について説明したが、本開示は、上記実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の形態をとり得ることはいうまでもない。
(Other embodiments)
The embodiments of the present disclosure have been described above. However, the present disclosure is not limited to the above-described embodiments, and it is needless to say that various forms can be employed as long as they belong to the technical scope of the present disclosure.
 例えば、上記各実施形態においては、疎水性皮膜120として、ODS、FAS17、C17NCO、C1837NCO等を用いて単分子膜を形成したが、それら以外の材料で単分子膜を形成しても良い。例えば、片側にフッ素のような疎水基を持ち、反対側にO-Si-Oのような水酸基に結合し易い官能基を持った構造のものならば適用可能である。尚、疎水性皮膜120を構成する分子として、アルキル基、フルオロアルキル基のような疎水性の官能基を有する分子が含まれていると高い疎水性を発現させることができる。 For example, in the above embodiments, the hydrophobic coating 120, ODS, FAS17, C 8 F 17 C 2 H 4 NCO, has formed the monomolecular film by using a C 18 H 37 NCO, etc., other than these materials A monomolecular film may be formed. For example, any structure having a hydrophobic group such as fluorine on one side and a functional group that easily binds to a hydroxyl group such as O—Si—O on the other side is applicable. In addition, when the molecule | numerator which has hydrophobic functional groups like an alkyl group and a fluoroalkyl group is contained as a molecule | numerator which comprises the hydrophobic membrane | film | coat 120, high hydrophobicity can be expressed.
 また、針状突起部111の作成方法は、上述した各実施形態の方法に限定されず、この他にも、ナノインプリント法等を用いることができる。 Further, the method for creating the needle-like protrusion 111 is not limited to the method of each of the above-described embodiments, and besides this, a nanoimprint method or the like can be used.
 また、上記各実施形態では基材110として、アルミニウム製板材を用いる構成を例示したが、アルミニウム製板材以外にも銅板や鉄板等、様々な金属を用いることができる。また、基材110は、金属に限定されず、例えば樹脂で形成されていても良い。
 
Moreover, although the structure which uses an aluminum plate material was illustrated as the base material 110 in each said embodiment, various metals, such as a copper plate and an iron plate, can be used besides an aluminum plate material. Moreover, the base material 110 is not limited to a metal, For example, you may form with resin.

Claims (8)

  1.  基材(110)と、
     前記基材(110)の表面に設けられた疎水性皮膜(120)と
    を備える撥水性基材であって、
     前記基材(110)の表面には、複数の針状突起部(111)が形成されており、
     前記疎水性皮膜(120)は、前記複数の針状突起部(111)よりも微細な複数の微細突起部(121)からなり、前記複数の微細突起部(121)が、前記複数の針状突起部(111)の表面と、前記複数の針状突起部(111)間の残りの前記基材(110)表面とに設けられている撥水性基材。
    A substrate (110);
    A water-repellent substrate comprising a hydrophobic coating (120) provided on the surface of the substrate (110),
    A plurality of needle-like protrusions (111) are formed on the surface of the base material (110),
    The hydrophobic coating (120) is composed of a plurality of fine projections (121) finer than the plurality of needle-like projections (111), and the plurality of fine projections (121) are the plurality of needle-like projections. A water-repellent substrate provided on the surface of the projection (111) and the remaining surface of the substrate (110) between the plurality of needle-like projections (111).
  2.  前記複数の微細突起部(121)は、前記疎水性被膜(120)としての単分子膜を形成する複数の分子鎖であり、前記各分子鎖は、少なくとも1つの疎水性の官能基を有する請求項1に記載の撥水性基材。 The plurality of fine protrusions (121) are a plurality of molecular chains forming a monomolecular film as the hydrophobic coating (120), and each molecular chain has at least one hydrophobic functional group. Item 2. A water-repellent substrate according to Item 1.
  3.  前記少なくとも1つの疎水性の官能基として、アルキル基、およびフルオロアルキル基の少なくとも一方を含む請求項2に記載の撥水性基材。 The water-repellent substrate according to claim 2, comprising at least one of an alkyl group and a fluoroalkyl group as the at least one hydrophobic functional group.
  4.  前記基材(110)は、金属および金属酸化物のうちのいずれか一方からなる請求項2または請求項3に記載の撥水性基材。 The water repellent substrate according to claim 2 or 3, wherein the substrate (110) is made of one of a metal and a metal oxide.
  5.  熱交換部(210)を備え、前記熱交換部(210)の内部を流通する熱媒体によって、前記熱交換部(210)の外部を流通する空気から吸熱する吸熱用の熱交換器であって、
     前記熱交換部(210)を形成する前記熱媒体流通用のチューブ(211)と、前記チューブ(211)に接続されて前記空気に対する伝熱面を形成するフィン(212)とのうちの少なくとも一方が、請求項1~請求項4のいずれか1つに記載の撥水性基材(100)によって形成されている熱交換器。
    A heat exchanger for heat absorption that includes a heat exchange section (210) and absorbs heat from air flowing outside the heat exchange section (210) by a heat medium flowing inside the heat exchange section (210). ,
    At least one of the heat medium distribution tube (211) forming the heat exchange part (210) and the fin (212) connected to the tube (211) and forming a heat transfer surface for the air. A heat exchanger formed by the water-repellent substrate (100) according to any one of claims 1 to 4.
  6.  基材(110)と、前記基材(110)の表面に設けられた疎水性皮膜(120)とを備えた撥水性基材(100)の製造方法であって、
     前記基材(110)の表面に、複数の針状突起部(111)を形成することと、
     前記複数の針状突起部(111)の表面と、前記複数の針状突起部(111)間の残りの前記基材(110)表面とに、前記複数の針状突起部(111)よりも微細な複数の微細突起部(121)を形成することで、前記疎水性皮膜(120)を形成すること
    を含む撥水性基材の製造方法。
    A method for producing a water-repellent substrate (100) comprising a substrate (110) and a hydrophobic coating (120) provided on the surface of the substrate (110),
    Forming a plurality of needle-like protrusions (111) on the surface of the substrate (110);
    The surface of the plurality of needle-like projections (111) and the remaining surface of the base material (110) between the plurality of needle-like projections (111) than the plurality of needle-like projections (111) A method for producing a water-repellent substrate, comprising forming the hydrophobic coating (120) by forming a plurality of fine projections (121).
  7.  前記複数の針状突起部(111)を形成する以前に、前記基材(110)をアルミニウムおよびアルミニウム合金のうちのいずれか一方から形成することをさらに含み、前記複数の針状突起部(111)を形成することは、前記基材(110)をベーマイト処理することによって前記複数の針状突起部(111)を形成することを含む請求項6に記載の製造方法。 Before forming the plurality of needle-like projections (111), the substrate (110) further includes forming one of aluminum and an aluminum alloy, and the plurality of needle-like projections (111) Forming the plurality of needle-like protrusions (111) by performing a boehmite treatment on the base material (110).
  8.  前記複数の微細突起部(121)を形成することは、前記複数の針状突起部(111)が形成された前記基材(110)を、少なくとも1つの疎水性の官能基を有する分子の水飽和溶液に浸漬することで、前記複数の微細突起部(121)を前記基材(110)上に形成することを含む請求項7に記載の製造方法。
     
    The formation of the plurality of fine protrusions (121) means that the base material (110) on which the plurality of needle-like protrusions (111) are formed is a molecular water having at least one hydrophobic functional group. The manufacturing method according to claim 7, comprising forming the plurality of fine protrusions (121) on the substrate (110) by immersing in a saturated solution.
PCT/JP2012/002423 2011-04-27 2012-04-06 Water-repellent substrate, heat exchanger using water-repellent substrate, and method for producing water-repellent substrate WO2012147288A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011099198A JP2012228670A (en) 2011-04-27 2011-04-27 Water-repellent substrate, heat exchanger using water-repellent substrate, and method for producing water-repellent substrate
JP2011-099198 2011-04-27

Publications (1)

Publication Number Publication Date
WO2012147288A1 true WO2012147288A1 (en) 2012-11-01

Family

ID=47071822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002423 WO2012147288A1 (en) 2011-04-27 2012-04-06 Water-repellent substrate, heat exchanger using water-repellent substrate, and method for producing water-repellent substrate

Country Status (2)

Country Link
JP (1) JP2012228670A (en)
WO (1) WO2012147288A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015011072A1 (en) * 2013-07-25 2015-01-29 Fraunhofer Gesellschaft Zur Förderung Der Angew. Forschung E.V. Heat exchanger and method for production thereof and use thereof
WO2016018600A1 (en) * 2014-07-28 2016-02-04 Northrop Grumman Systems Corporation Nano-thermal agents for enhanced interfacial thermal conductance
CN105783575A (en) * 2016-05-17 2016-07-20 李国胜 Heat exchanging piece and indoor temperature adjusting system
JP2018155483A (en) * 2017-03-15 2018-10-04 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Heat transfer pipe with ultra water repellent surface, and manufacturing method thereof
CN110392815A (en) * 2017-03-31 2019-10-29 大金工业株式会社 Heat exchanger and air-conditioning device
US20230063016A1 (en) * 2020-05-22 2023-03-02 Daikin Industries, Ltd. Heat exchanger, method for manufacturing heat exchanger, and refrigerant cycle apparatus
WO2023146473A3 (en) * 2022-01-25 2023-11-02 Nanyang Technological University Surface structuring of additively manufactured articles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193922A (en) * 2014-03-24 2015-11-05 三菱重工業株式会社 Liquid repellent surface fine structure, production method thereof, heat exchanger, and component of air conditioner
JP2016107530A (en) * 2014-12-08 2016-06-20 株式会社豊田中央研究所 Water-repellent material, and production method thereof
KR102132906B1 (en) * 2018-10-23 2020-07-10 포항공과대학교 산학협력단 Superhydrophobic surface structure to enhance condensation efficiency by promoting droplet jumping
CN109974512B (en) * 2019-03-21 2020-10-02 中国科学院理化技术研究所 Micro-nano composite reinforced boiling structure on material surface and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100182A (en) * 1989-09-14 1991-04-25 Mitsubishi Materials Corp Aluminum material having water and oil repellency
JPH0625449A (en) * 1992-07-08 1994-02-01 Matsushita Electric Ind Co Ltd Exceedingly water-repellent film and its production
JPH10281690A (en) * 1997-02-07 1998-10-23 Hitachi Ltd Air conditioner, heat exchanger and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03100182A (en) * 1989-09-14 1991-04-25 Mitsubishi Materials Corp Aluminum material having water and oil repellency
JPH0625449A (en) * 1992-07-08 1994-02-01 Matsushita Electric Ind Co Ltd Exceedingly water-repellent film and its production
JPH10281690A (en) * 1997-02-07 1998-10-23 Hitachi Ltd Air conditioner, heat exchanger and its production

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015011072A1 (en) * 2013-07-25 2015-01-29 Fraunhofer Gesellschaft Zur Förderung Der Angew. Forschung E.V. Heat exchanger and method for production thereof and use thereof
WO2016018600A1 (en) * 2014-07-28 2016-02-04 Northrop Grumman Systems Corporation Nano-thermal agents for enhanced interfacial thermal conductance
US9482477B2 (en) 2014-07-28 2016-11-01 Northrop Grumman Systems Corporation Nano-thermal agents for enhanced interfacial thermal conductance
CN105783575A (en) * 2016-05-17 2016-07-20 李国胜 Heat exchanging piece and indoor temperature adjusting system
JP2018155483A (en) * 2017-03-15 2018-10-04 ドゥサン ヘヴィー インダストリーズ アンド コンストラクション カンパニー リミテッド Heat transfer pipe with ultra water repellent surface, and manufacturing method thereof
CN110392815A (en) * 2017-03-31 2019-10-29 大金工业株式会社 Heat exchanger and air-conditioning device
EP3594603A4 (en) * 2017-03-31 2020-04-15 Daikin Industries, Ltd. Heat exchanger and air-conditioning device
CN110392815B (en) * 2017-03-31 2021-06-11 大金工业株式会社 Heat exchanger and air conditioner
US11828477B2 (en) 2017-03-31 2023-11-28 Daikin Industries, Ltd. Heat exchanger and air conditioner
US20230063016A1 (en) * 2020-05-22 2023-03-02 Daikin Industries, Ltd. Heat exchanger, method for manufacturing heat exchanger, and refrigerant cycle apparatus
WO2023146473A3 (en) * 2022-01-25 2023-11-02 Nanyang Technological University Surface structuring of additively manufactured articles

Also Published As

Publication number Publication date
JP2012228670A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
WO2012147288A1 (en) Water-repellent substrate, heat exchanger using water-repellent substrate, and method for producing water-repellent substrate
Edalatpour et al. Managing water on heat transfer surfaces: A critical review of techniques to modify surface wettability for applications with condensation or evaporation
US20240102750A1 (en) Droplet Ejecting Coatings
JP5867325B2 (en) Method for producing water-repellent substrate
US10525504B2 (en) Functional coatings enhancing condenser performance
Sommers et al. Condensate drainage performance of a plain fin-and-tube heat exchanger constructed from anisotropic micro-grooved fins
CN110392815B (en) Heat exchanger and air conditioner
US10921072B2 (en) Functional coatings enhancing condenser performance
Yang et al. Thermal-hydraulic performance of super-amphiphobic louver-fin flat-tube heat exchanger under fouled condition
US10371466B2 (en) Method of preserving heat exchange surface and method of cooling moist air
JP6600809B2 (en) Base material and equipment using the base material
JPH08323285A (en) Member with excellent water repellency and anti-frosting property and its preparation
JPH1096599A (en) Outdoor heat exchanger unit and air conditioner using it
US10870256B2 (en) Hydrophilic aluminum surface body having hybrid nanostructure and manufacturing method thereof
JP2017150756A (en) Heat exchanger and manufacturing method of fin
JP3059307B2 (en) A member excellent in water repellency and frost prevention and a method of manufacturing the same
JPH03244680A (en) Water-repellent coating composition and heat exchanger using water repellent-coating composition
WO2019150394A1 (en) A modified surface for condensation
Rahman et al. Experimental study of wetting anisotropy and condensate drainage enhancement on microgrooved aluminum surface
JPH03244679A (en) Water-repellent coating composition and heat exchanger coated with water-repellent coating composition
US20210247126A1 (en) Phase Change Barriers and Methods of Use Thereof
JP2021092380A (en) Heat exchanger for exchanging heat with air and plate material to which droplet adheres
JPH03251693A (en) Composition for water repellent coating and heat exchanger employing composition for water repellent coating
Rahman Wetting and frosting/defrosting study on microgrooved surfaces
CN113853506A (en) Member for heat exchanger, air conditioner, and refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12776952

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12776952

Country of ref document: EP

Kind code of ref document: A1