JP2528701B2 - Method for producing thermally conductive catalyst body - Google Patents
Method for producing thermally conductive catalyst bodyInfo
- Publication number
- JP2528701B2 JP2528701B2 JP63297727A JP29772788A JP2528701B2 JP 2528701 B2 JP2528701 B2 JP 2528701B2 JP 63297727 A JP63297727 A JP 63297727A JP 29772788 A JP29772788 A JP 29772788A JP 2528701 B2 JP2528701 B2 JP 2528701B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- hot water
- catalyst body
- water treatment
- surface area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003054 catalyst Substances 0.000 title claims description 73
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 46
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 28
- 229910052782 aluminium Inorganic materials 0.000 claims description 21
- 229910052751 metal Inorganic materials 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 21
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 20
- 230000003197 catalytic effect Effects 0.000 claims description 18
- 230000008093 supporting effect Effects 0.000 claims description 13
- 239000010419 fine particle Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 description 24
- 238000006243 chemical reaction Methods 0.000 description 22
- 238000007254 oxidation reaction Methods 0.000 description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 12
- 230000003647 oxidation Effects 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 238000002048 anodisation reaction Methods 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000010335 hydrothermal treatment Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000007743 anodising Methods 0.000 description 4
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 4
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000011120 plywood Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910017767 Cu—Al Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910018054 Ni-Cu Inorganic materials 0.000 description 1
- 229910018481 Ni—Cu Inorganic materials 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- -1 for example Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Catalysts (AREA)
Description
【発明の詳細な説明】 《産業上の利用分野》 本発明は熱伝導性を有する触媒体の製造方法に関し、
特に触媒体を介して熱交換することにより反応熱を有効
利用するに適した熱伝導性触媒体の製造方法に関する。The present invention relates to a method for producing a catalyst body having thermal conductivity,
In particular, the present invention relates to a method for producing a heat conductive catalyst body suitable for effectively utilizing reaction heat by exchanging heat through the catalyst body.
《従来の技術》 触媒活性は触媒の表面積の大きさに依存することか
ら、従来、触媒を超微粒子化したり触媒担体の表面積を
大きくすることが行われている。このような観点から、
通常、触媒の形状は粉状又は粒状であるが、近年熱伝導
型触媒体が提案された(特開昭47−38785号)のに伴
い、反応器の器壁を触媒表面とする提案(実願昭59−17
0459号、実開昭63−16835号)もなされ、反応熱を少し
でも有効に利用しようとする試みがなされている(「ラ
ネー型接触反応エレメント」表面、第24巻143〜153(19
86年)参照)。<< Prior Art >> Since the catalytic activity depends on the surface area of the catalyst, it has been conventionally practiced to make the catalyst ultrafine particles or to increase the surface area of the catalyst carrier. From this perspective,
Usually, the shape of the catalyst is powdery or granular, but with the recent proposal of a heat conduction type catalyst body (Japanese Patent Laid-Open No. 4738785), it is proposed to use the wall of the reactor as the catalyst surface (actually). Wish sho 59-17
No. 0459, Shokai No. 63-16835), and attempts have been made to effectively utilize the heat of reaction as much as possible ("Raney-type catalytic reaction element" surface, Vol. 24, 143-153 (19).
(86 years))).
《発明が解決しようとする課題》 しかしながら、熱伝導型触媒はその熱伝導という機能
を発揮させるために、反応壁を構成し得る平面形状を有
する熱伝導性担体の該平面上に触媒を担持せしめたもの
となるので、触媒としての表面積は粉状又は粒状のもの
より著しく小さくなり、触媒としては不利とならざるを
得ない。<< Problems to be Solved by the Invention >> However, in order for the heat conduction type catalyst to exert its function of heat conduction, the catalyst is supported on the plane of a heat conductive carrier having a plane shape capable of forming a reaction wall. Therefore, the surface area as a catalyst becomes remarkably smaller than that of powdery or granular ones, which is inevitable as a catalyst.
このような欠点を解決する触媒体として、我々はアル
ミニウム層を有した金属表面に多孔質アルミナ層を形成
させた後該多孔質アルミナ層表面に触媒担持活性を有す
る微粒子を結着せしめ、次いで触媒を担持せしめること
により触媒活性自体を著しく高めた触媒体を開発した
(特開昭62−237947号)。As a catalyst body for solving such a drawback, we have formed a porous alumina layer on the surface of a metal having an aluminum layer, and then bound fine particles having a catalyst supporting activity to the surface of the porous alumina layer. A catalyst has been developed in which the catalytic activity itself is remarkably enhanced by supporting the catalyst (JP-A-62-137947).
本発明者等は、上記触媒体について更に研究を進める
中で、多孔質アルミナ層表面を熱水処理した場合には、
上記触媒体のBET表面積を増大させることができるのみ
ならず、この処理によって触媒担持活性を有する微粒子
を結着せしめる工程を省略し得ること及び、上記熱水処
理と同時に触媒をアルミナ層表面に担持せしめた場合に
は、触媒活性自体が改良されることを見い出し本発明に
到達した。The present inventors, while proceeding with further research on the above catalyst body, when the surface of the porous alumina layer is treated with hot water,
Not only can the BET surface area of the catalyst body be increased, but the step of binding fine particles having a catalyst supporting activity can be omitted by this treatment, and the catalyst can be supported on the surface of the alumina layer simultaneously with the hot water treatment. The inventors have found that the catalytic activity itself is improved when it is allowed to reach the present invention.
従って本発明の第1の目的は、熱伝導機能を有する触
媒体のBET表面積を増大させるための簡易な方法を提供
することにある。Therefore, the first object of the present invention is to provide a simple method for increasing the BET surface area of a catalyst body having a heat conduction function.
本発明の第2の目的は、熱伝導機能を有する触媒体
の、触媒の重量単位あたりの触媒活性を改良するための
新規な方法を提供することにある。A second object of the present invention is to provide a novel method for improving the catalytic activity of a catalyst body having a heat transfer function per weight unit of the catalyst.
《課題を解決するための手段》 本発明の上記の諸目的は、少くとも10μmのアルミニ
ウム層を有する熱伝導性担体のアルミニウム表面に多孔
質なアルミナ層を形成させ次いで50℃〜350℃で熱水処
理した後、又は、熱水処理を行いながら触媒活性を有す
る金属を前記アルミナ層に担持せしめることを特徴とす
る、熱伝導性触媒体の製造方法によって達成された。<< Means for Solving the Problems >> The above objects of the present invention are to form a porous alumina layer on the aluminum surface of a heat conductive carrier having an aluminum layer of at least 10 μm, and then heat at 50 ° C. to 350 ° C. This is achieved by a method for producing a heat conductive catalyst body, which comprises carrying a metal having catalytic activity on the alumina layer after the water treatment or while performing the hot water treatment.
本発明の方法によって得られる熱伝導性触媒体は、熱
伝導性担体の表面に触媒を担持せしめたものである。こ
の場合、触媒を担持せしめるための表面は、アルミナ表
面であることが必要であるが、アルミナ層が表面に少な
くとも5μmあれば良い。The heat conductive catalyst body obtained by the method of the present invention comprises a heat conductive carrier on which the catalyst is carried. In this case, the surface on which the catalyst is supported needs to be an alumina surface, but the alumina layer may be at least 5 μm on the surface.
従って、熱伝導性担体の素材としては、例えばマグネ
シウム、クロム、モリブデン、タングステン、マンガ
ン、鉄、コバルト、ニッケル、チタン、ジルコニウム、
バナジウム、銅、銀、亜鉛、ビスマス、スズ、鉛及びア
ンチモンなどからなる単一の金属又は合金の板、複数の
金属板を重合させた金属合板又は海綿状金属板等の表面
に公知の方法によって10μm以上のアルミニウム層を設
けたもの若しくはアルミニウム板を使用することがで
き、特に鉄、銅、ステンレス合金をアルミニウム層で被
覆したもの又はアルミニウムが経済性などの点から好ま
しく、強度まで加味すると、鉄及びステンレス合金をア
ルミニウム層で被覆したものが好ましい。Therefore, as the material of the heat conductive carrier, for example, magnesium, chromium, molybdenum, tungsten, manganese, iron, cobalt, nickel, titanium, zirconium,
By a known method on the surface of a single metal or alloy plate made of vanadium, copper, silver, zinc, bismuth, tin, lead and antimony, a metal plywood obtained by polymerizing a plurality of metal plates or a spongy metal plate It is possible to use an aluminum plate provided with an aluminum layer of 10 μm or more, or an aluminum plate. In particular, iron, copper, or a stainless steel alloy coated with an aluminum layer or aluminum is preferable from the viewpoint of economical efficiency, etc. And a stainless alloy coated with an aluminum layer is preferred.
金属又は合板等の表面にアルミニウム層を形成せしめ
る方法は、非水メッキ、圧着(アルミクラッド)、蒸
着、どぶ付け等の公知の方法の中から適宜選択して用い
ることができる。The method of forming the aluminum layer on the surface of the metal or plywood can be appropriately selected and used from known methods such as non-water plating, pressure bonding (aluminum clad), vapor deposition, and dusting.
熱伝導性担体のアルミニウム表面に多孔質なアルミナ
層を形成せしめる方法としては、ボール目立て、砂目立
てなどの機械的方法又はエッチングなどの化学的方法で
アルミニウム表面を粗面化した後、バーナー等により酸
化処理する方法、アルミナを塗布する方法若しくは陽極
酸化などの電気化学的方法など、公知の方法の中から適
宜選択して採用することができるが、特に、表面積の増
大の観点から陽極酸化の方法若しくは他の方法に加えて
陽極酸化する方法が好ましい。As a method for forming a porous alumina layer on the aluminum surface of the thermally conductive carrier, ball roughening, roughening the aluminum surface by a mechanical method such as graining or a chemical method such as etching, and then using a burner or the like. The method may be appropriately selected from known methods such as a method of oxidizing treatment, a method of applying alumina, or an electrochemical method such as anodizing, and the method of anodizing is particularly preferable from the viewpoint of increasing the surface area. Alternatively, a method of anodic oxidation in addition to other methods is preferable.
この陽極酸化の技術は周知であり、処理液として例え
ばクロム酸水溶液、臭酸水溶液、硫酸水溶液等を使用す
ることも周知である。陽極酸化の条件は、アルミナ層の
BET表面積が大きくなるように適宜設定することができ
るが、本発明においては陽極酸化の処理液温度を、常温
〜50℃、特に30〜40℃とすることが好ましい。常温未満
では表面積が小さくなる。一方50℃を越えると溶解が激
しく、経済的に酸化膜を形成させることが困難となる。The technique of this anodic oxidation is well known, and it is also well known to use, for example, a chromic acid aqueous solution, a hydrobromic acid aqueous solution, a sulfuric acid aqueous solution or the like as the treatment liquid. The conditions of anodization are as follows:
The BET surface area can be appropriately set so as to be large, but in the present invention, the temperature of the anodizing treatment solution is preferably room temperature to 50 ° C, particularly 30 to 40 ° C. If the temperature is below room temperature, the surface area will be small. On the other hand, if the temperature exceeds 50 ° C, the dissolution is so severe that it becomes difficult to economically form an oxide film.
又、この陽極酸化の処理時間は処理条件によって異な
るが、例えば2.5重量%のクロム酸水溶液を処理液と
し、処理浴温度を30℃、電流密度を19.0A/m2とした場合
には2時間以上、特に4時間以上とすることが好まし
い。The treatment time of this anodic oxidation depends on the treatment conditions. For example, if a 2.5 wt% chromic acid aqueous solution is used as the treatment liquid, the treatment bath temperature is 30 ° C., and the current density is 19.0 A / m 2 , it takes 2 hours. It is preferable that the time is at least 4 hours.
上記の如くして多孔質アルミナ層を形成せしめた熱伝
導性担体の表面に施す熱水処理とは、触媒を担持せしめ
る多孔質アルミナ表面を50〜350℃の熱水又は水蒸気に
よって処理する手段である。この場合、50℃未満では触
媒体の表面積が不十分となり、350℃を越えてもより良
い効果を得ることができず経済的でない。The hot water treatment applied to the surface of the heat conductive carrier on which the porous alumina layer is formed as described above is a means of treating the porous alumina surface supporting the catalyst with hot water or steam at 50 to 350 ° C. is there. In this case, if the temperature is lower than 50 ° C, the surface area of the catalyst is insufficient, and if the temperature exceeds 350 ° C, a better effect cannot be obtained, which is not economical.
更に、この熱水のpHは、7以上特に10〜12とすること
が処理時間を短縮することができるので好ましい。Furthermore, it is preferable that the pH of the hot water be 7 or more, especially 10 to 12 because the treatment time can be shortened.
熱水処理の処理時間は熱水のpHによっても異なるが、
5分以上とすることが好ましく、約2時間処理すること
によりほぼpH値に関係なくBET表面積を顕著に増大させ
ることができる。The treatment time of hot water treatment varies depending on the pH of hot water,
It is preferably 5 minutes or more, and the BET surface area can be significantly increased by treating for about 2 hours regardless of the pH value.
上記の如き熱水処理によって、BET表面積を約10倍に
増大させることができるので、熱水処理後のアルミナ表
面に触媒活性を有する金属を担持させることにより、触
媒体の触媒能は熱水処理を行わない場合の略10倍とな
る。熱水処理後又は熱水処理前のアルミナ表面に特開昭
62−237947号に開示されている、シリカやγ−アルミナ
等の触媒担持活性を有する微粒子を結着せしめた場合に
は、熱水処理だけの場合より約1.7倍程度BET表面積を更
に増大せしめることができる。By the hot water treatment as described above, the BET surface area can be increased about 10 times, so by supporting a metal having catalytic activity on the alumina surface after the hot water treatment, the catalytic ability of the catalyst body can be improved by the hot water treatment. It will be about 10 times that without. Alumina surface after or before hot water treatment
In the case of binding fine particles having a catalyst-supporting activity such as silica and γ-alumina disclosed in No. 62-237947, it is possible to further increase the BET surface area by about 1.7 times as compared with the case of only hot water treatment. You can
ここで、触媒活性を有する金属は特に限定されるもの
ではないが、例えば白金族金属、白金族金属の合金、
金、金合金、マンガン、鉄、亜鉛、銅、ニッケル、ニッ
ケル合金、コバルト及びコバルト合金の中から選択する
ことが好ましく、特に白金、パラジウム、ルテニウム、
マンガン、亜鉛、鉄、ニッケル、銅及びコバルトの中か
ら選択することが好ましい。又、これらの触媒物質を組
み合わせることもできる。Here, the metal having catalytic activity is not particularly limited, for example, platinum group metal, alloy of platinum group metal,
It is preferable to select from gold, gold alloy, manganese, iron, zinc, copper, nickel, nickel alloy, cobalt and cobalt alloy, particularly platinum, palladium, ruthenium,
It is preferably selected from manganese, zinc, iron, nickel, copper and cobalt. It is also possible to combine these catalyst substances.
触媒活性を有する金属を担持せしめる方法としては、
電着法、化学的付着法、真空蒸着法、陰極スパッター
法、金属スプレー法及び金属クラッド法などの公知の方
法の中から適宜選択して採用することができる。As a method of supporting a metal having catalytic activity,
The electrodeposition method, the chemical adhesion method, the vacuum deposition method, the cathode sputtering method, the metal spray method, the metal clad method and the like can be appropriately selected and used from among known methods.
特に化学的付着法を採用した場合には、前記熱水処理
と触媒活性を有する金属を担持せしめる工程とを同時に
行うことができるので処理工程が簡略化されて好ましい
のみならず、理由は必ずしも明確ではないが、このよう
な同時処理をした場合には、触媒重量単位あたりの触媒
活性が特に増大するので好ましい。Especially when a chemical deposition method is adopted, the hot water treatment and the step of supporting a metal having catalytic activity can be carried out simultaneously, so that the treatment step is not only simplified and preferable, but the reason is not always clear. However, such simultaneous treatment is preferable because the catalyst activity per catalyst weight unit is particularly increased.
上記熱水処理の前に前記触媒担持活性を有する微粒子
を結着せしめておくことにより、触媒活性は最高とな
る。しかしながら、この場合には触媒活性が高くなり過
ぎて反応の選択性が劣化し、副反応を生ずる場合が生ず
るので、使用する触媒や、対象とする反応等に特に注意
することが必要である。By binding the fine particles having the catalyst supporting activity before the hot water treatment, the catalytic activity is maximized. However, in this case, the catalytic activity becomes too high and the selectivity of the reaction deteriorates, which may cause side reactions. Therefore, it is necessary to pay particular attention to the catalyst to be used, the target reaction, and the like.
即ち、例えば触媒活性を有する金属として白金を使用
する場合には、陽極酸化後必要に応じて触媒担持活性粒
子を結着せしめた熱伝導性担体を用いて塩化白金酸の水
溶液中で熱水処理を行えば良い。この場合、塩化白金酸
の濃度を高くすれば処理時間を短縮することができる。
又、pHは触媒活性を有する金属を担持せしめるに好都合
な値とし、pH、温度条件、液濃度等を勘案して処理時間
を設定すれば良い。That is, for example, in the case of using platinum as a metal having catalytic activity, a hydrothermal treatment in an aqueous solution of chloroplatinic acid is performed after the anodization using a heat conductive carrier to which catalyst supporting active particles are bound, if necessary. Should be done. In this case, the treatment time can be shortened by increasing the concentration of chloroplatinic acid.
The pH is set to a value convenient for supporting a metal having catalytic activity, and the treatment time may be set in consideration of pH, temperature conditions, liquid concentration and the like.
本発明の方法によって作製した触媒体は、純粋に触媒
体として使用する場合には、担体の表裏に同時に触媒を
担持せしめ、反応管の中へ挿入して使用することができ
る。しかしながら熱伝導の機能を利用した熱交換の機能
をも有効に発揮せしめるためには、触媒体を反応管の少
なくとも一つの壁面とすることが好ましい。このように
することにより、実開昭63−16835号に開示した如く、
反応の結果発生した熱を触媒体を介して原料ガスに供給
することにより反応のために有効に利用することができ
るのみならず、触媒体の一方の面を少なくとも1つの壁
とする反応室内で発熱反応を行わせる一方、他方の面を
少なくとも1つの壁とする隣接する反応室内で吸熱反応
を行わせ、発熱反応で発生した熱を触媒体を介して吸熱
反応室へ供給することもできる。前者の場合には、原料
ガスと接触する面には、触媒を担持せしめる必要はない
が、後者の場合には触媒担体の表裏に、夫々目的とする
発熱反応及び吸熱反応に適した触媒を担持させる。When the catalyst body produced by the method of the present invention is used purely as a catalyst body, it can be used by inserting the catalyst into the reaction tube by simultaneously supporting the catalyst on the front and back sides of the carrier. However, in order to effectively exhibit the function of heat exchange utilizing the function of heat conduction, it is preferable that the catalyst body is at least one wall surface of the reaction tube. By doing so, as disclosed in Japanese Utility Model Publication No. 63-16835,
By supplying the heat generated as a result of the reaction to the raw material gas through the catalyst body, the heat can be effectively utilized for the reaction as well as in a reaction chamber having one surface of the catalyst body as at least one wall. While causing an exothermic reaction, an endothermic reaction may be performed in an adjacent reaction chamber having the other surface as at least one wall, and heat generated by the exothermic reaction may be supplied to the endothermic reaction chamber via the catalytic body. In the former case, it is not necessary to support the catalyst on the surface that comes into contact with the raw material gas, but in the latter case, the catalysts suitable for the desired exothermic reaction and endothermic reaction are respectively supported on the front and back of the catalyst carrier. Let
上記の如く、本発明によって得られる触媒体は種々の
使用方法が可能であるので、使用方法に応じて、板状、
リボン状、管状、ハニカム状等の形状とすることができ
る。As described above, the catalyst body obtained according to the present invention can be used in various ways.
The shape may be ribbon, tube, honeycomb, or the like.
この時、触媒担体として海綿状金属を使用すれば、触
媒担体の熱伝導が大きくなり、熱交換を有する触媒とし
て極めて良好なものとすることができる。海綿状金属と
しては、例えば、Al、Mo、Cu、Ni−Cu合金、Mo−Cu−Al
合金等を挙げることができる。At this time, if a spongy metal is used as the catalyst carrier, the heat conductivity of the catalyst carrier is increased, and the catalyst having heat exchange can be made extremely excellent. As the spongy metal, for example, Al, Mo, Cu, Ni-Cu alloy, Mo-Cu-Al.
Examples thereof include alloys.
本発明においては、所望の反応に応じて触媒活性を有
する金属の種類を選択することにより、酸化反応、水素
化反応、脱水素反応、加水分解反応に対して極めて有効
な、熱伝導性触媒体を得ることができる。In the present invention, by selecting the kind of metal having catalytic activity according to the desired reaction, a heat conductive catalyst body that is extremely effective for oxidation reaction, hydrogenation reaction, dehydrogenation reaction, and hydrolysis reaction. Can be obtained.
又、第5図に示す如く、本発明に係る触媒担体は通常
触媒担体として使用されるアルミナより著しく熱伝導性
が高く、熱交換機能を持たせるのに適している。Further, as shown in FIG. 5, the catalyst carrier according to the present invention has a remarkably higher thermal conductivity than alumina usually used as a catalyst carrier, and is suitable for having a heat exchange function.
《発明の効果》 以上詳述した如く、本発明によって得られる触媒体
は、BET表面積が大きく触媒能に優れるのみならず、良
好な熱伝導体でもあるので、熱交換機能を持たせること
により従来排熱とされていた反応熱を有効に利用するの
に適している。特にケミカルヒートポンプの発熱反応室
と吸熱反応室の隔壁に応用することによって、ケミカル
ヒートポンプの熱効率を著しく改善することが可能であ
る。<Effects of the Invention> As described in detail above, the catalyst body obtained by the present invention is not only a large BET surface area and excellent in catalytic ability, but also a good heat conductor. It is suitable for effectively utilizing the heat of reaction that was considered to be waste heat. In particular, the thermal efficiency of the chemical heat pump can be remarkably improved by applying it to the partition walls of the exothermic reaction chamber and the endothermic reaction chamber of the chemical heat pump.
《実施例》 以下本発明を実施例によって更に詳述するが、本発明
はこれによって限定されるものではない。<< Examples >> The present invention will be described in more detail with reference to Examples below, but the present invention is not limited thereto.
実施例1. 〔熱水処理の効果の実証〕 厚さ0.1m/mのアルミニウム板を20重量%の水酸化ナト
リウムで3分間洗浄した後水洗し、次いで30重量%の硝
酸で1時間洗浄し、更に水洗した。上記の如く処理した
熱伝導性担体を、2.5重量%のクロム酸水溶液で液温30
℃、電流密度20A/m2で6時間陽極酸化を行った場合のBE
T表面積を測定した。更にその熱伝導性担体を3重量%
のアルミナゾル溶液に常温で浸漬しアルミナコーティン
グしたもの、pH=10で80℃の熱水中で1時間熱水処理し
たもの及びそれらをともに行ったものについてのBET表
面積も測定した。それらの結果を第1図に示す。Example 1 [Demonstration of Effect of Hot Water Treatment] An aluminum plate having a thickness of 0.1 m / m was washed with 20% by weight of sodium hydroxide for 3 minutes, then with water, and then with 30% by weight of nitric acid for 1 hour. , Then washed with water. The thermally conductive carrier treated as described above is treated with a 2.5 wt% chromic acid aqueous solution at a liquid temperature of 30
° C., in the case of performing 6 hours anodic oxidation at a current density of 20A / m 2 BE
The T surface area was measured. Furthermore, the heat conductive carrier is 3% by weight.
The BET surface area of the alumina sol solution, which was immersed in the alumina sol solution at room temperature and coated with alumina, which was treated with hot water at 80 ° C for 1 hour in hot water at pH = 10, and those which were performed together were also measured. FIG. 1 shows the results.
第1図の結果から明らかな如く、陽極酸化のみの場合
に比し、アルミナコーティング処理によりBET表面積が
約1.4倍増大し熱水処理によってBET表面積が約9倍増大
し、アルミナコーティングと合わせた処理により約16倍
のBET表面積の増大が認められた。As is clear from the results shown in Fig. 1, the alumina coating treatment increased the BET surface area by about 1.4 times, and the hydrothermal treatment increased the BET surface area by about 9 times, compared with the case of only anodization. Showed that the BET surface area increased about 16 times.
次に、厚さ0.4m/mのステンレス板に約40μmの厚さに
アルミニウムを非水メッキしこれを熱伝導性担体とし
た。得られた熱伝導性担体を5重量%の水酸化ナトリウ
ムで5分間洗浄した後水洗し、次いで30重量%の硝酸で
洗浄し更に水洗した。上記の如く前処理した熱伝導性担
体を2.5重量%のクロム酸水溶液で、液温30℃、電流密
度19.0A/m2で6時間及び18時間陽極酸化を行った場合の
陽極酸化表面のBET表面積を測定した結果を伝熱面積あ
たりのBETで表したものは第2図に示す如くであった。
又、2時間乃至18時間の陽極酸化の後更にpH10.8、82℃
の熱水中で2時間熱水処理した後のBET表面積を、陽極
酸化の処理時間との関連で測定した結果も併せて第2図
に示した。第2図の結果から、熱水処理によって陽極酸
化のみで熱水処理をしない場合よりBET表面積が約7倍
増大した事が明らかである。又、この陽極酸化の条件で
は陽極酸化時間は約4時間で十分であることが判明し
た。この場合のアルミナ層のBET表面積は、約225m2/g−
Al2O3であった。Next, a stainless plate having a thickness of 0.4 m / m was non-water-plated with aluminum to a thickness of about 40 μm to obtain a heat conductive carrier. The heat conductive carrier thus obtained was washed with 5% by weight of sodium hydroxide for 5 minutes, then washed with water, then with 30% by weight of nitric acid and further washed with water. The BET of the anodized surface when the thermally conductive carrier pretreated as described above was anodized with 2.5 wt% aqueous chromic acid solution at a liquid temperature of 30 ° C. and a current density of 19.0 A / m 2 for 6 hours and 18 hours. The result of measuring the surface area, expressed as BET per heat transfer area, is as shown in FIG.
Also, after anodic oxidation for 2 to 18 hours, pH is 10.8 and 82 ℃.
FIG. 2 also shows the results of measuring the BET surface area after the hot water treatment for 2 hours in hot water in relation to the treatment time of anodization. From the results in FIG. 2, it is clear that the hot water treatment increased the BET surface area by about 7 times as compared with the case where only the anodic oxidation was not performed. It was also found that under the conditions of this anodic oxidation, an anodic oxidation time of about 4 hours was sufficient. The BET surface area of the alumina layer in this case is about 225 m 2 / g-
It was Al 2 O 3 .
次に、熱水処理におけるpHの影響を見るために、上記
の条件で6時間陽極酸化した熱伝導性担体を用いて種々
のpH値で82℃の熱水処理を1時間(●印)及び2時間
(○印)行った時のBET表面積を測定した。結果は第3
図に示した通りであり、この結果から、pHが7以上で特
に良好な結果を得ることができることが明らかである。
又BET表面積の、82℃における熱水処理時間依存性は第
4図に示す如くであり、pHが7以上あれば熱水処理時間
は1時間で十分であることが判明した。Next, in order to see the effect of pH in hot water treatment, hot water treatment at 82 ° C. for 1 hour (marked with ●) at various pH values was performed using a thermally conductive carrier anodized under the above conditions for 6 hours. The BET surface area was measured after 2 hours (circle). The result is the third
As shown in the figure, it is clear from this result that particularly good results can be obtained when the pH is 7 or more.
The dependence of the BET surface area on the hot water treatment time at 82 ° C. is as shown in FIG. 4, and it was found that the hot water treatment time of 1 hour is sufficient if the pH is 7 or more.
上記、6時間陽極酸化した後、pH10、82℃で1時間熱
水処理した熱伝導性担体をpH10の塩化白金酸0.5重量%
水溶液に常温で1時間浸漬した。得られた触媒体の諸特
性は次に示す通りであった。After the above anodic oxidation for 6 hours, the thermally conductive carrier treated with hot water at pH 10 and 82 ° C. for 1 hour was treated with 0.5% by weight of chloroplatinic acid of pH 10.
It was immersed in the aqueous solution at room temperature for 1 hour. The characteristics of the obtained catalyst body were as follows.
尚、反応速度定数は、アセトンの酸化反応(200℃、
アセトンの初期濃度:600ppm)に対して求めた値であ
る。 The reaction rate constant is the oxidation reaction of acetone (200 ° C,
This is the value obtained for the initial concentration of acetone: 600 ppm).
比較例1. 熱水処理を行わない他は実施例1と全く同様にして、
熱伝導性触媒体を得た。得られた触媒体の諸特性は次の
通りであり、触媒重量基準速度定数及び白金重量基準速
度定数の何れにおいても、実施例1の本願発明の場合に
は及ばないことが確認された。Comparative Example 1. In exactly the same manner as in Example 1 except that hot water treatment was not performed,
A thermally conductive catalyst body was obtained. The various characteristics of the obtained catalyst body are as follows, and it was confirmed that neither the catalyst weight standard rate constant nor the platinum weight standard rate constant was inferior to the case of the present invention of Example 1.
実施例2. 塩化白金酸の処理浴を82℃とした他は実施例1と全く
同様にして触媒体を得た。得られた触媒体の諸特性は次
の通りであり、その性能が実施例1の場合より改善され
ることが判明した。 Example 2 A catalyst body was obtained in exactly the same manner as in Example 1 except that the treatment bath of chloroplatinic acid was changed to 82 ° C. The properties of the obtained catalyst body are as follows, and it was found that the performance was improved as compared with the case of Example 1.
実施例3. 熱水処理を行わなかった他は実施例2と全く同様にし
て得られた触媒体の性能は次表の通りであり、実施例2
の場合より更に良好な結果が得られた。82℃でpH10の塩
化白金酸水溶液に浸漬することは実質的に熱水処理と同
等であるので、本実施例の結果は、熱水処理と同時に触
媒を担持せしめることによって、最も高い活性を有する
触媒体を製造することができることを実証するものであ
る。本実施例の触媒体に担持された白金担持量は実施例
1及び実施例2の場合と略等しいにもかかわらず、白金
重量基準速度定数が大きいことから、熱水処理と同時に
触媒を担持せしめることによって触媒事態の活性も増大
したものと推定される。 Example 3 The performance of the catalyst body obtained in exactly the same manner as in Example 2 except that the hydrothermal treatment was not performed is as shown in the following table.
Even better results were obtained than in the case of. Since immersion in a chloroplatinic acid aqueous solution having a pH of 10 at 82 ° C. is substantially equivalent to hydrothermal treatment, the results of this example show that the catalyst has the highest activity by supporting the catalyst simultaneously with hydrothermal treatment. It demonstrates that a catalyst body can be produced. Although the amount of platinum supported on the catalyst body of this example was substantially the same as that of Examples 1 and 2, since the platinum weight-based rate constant was large, the catalyst was supported simultaneously with the hot water treatment. As a result, it is estimated that the activity of the catalyst situation also increased.
第1図は、陽極酸化処理、アルミナコーティング処理、
熱水処理及びそれらの組み合わせによりBET表面積が増
大することを示したものである。 第2図は、陽極酸化表面のBET表面積及び、陽極酸化後p
H10.8、82℃で2時間熱水処理した後のBET表面積の陽極
酸化時間依存性を表すグラフである。 図中○は熱水処理を行った場合、□は熱水処理を行わな
い場合である。 第3図は、BET表面積の熱水処理時のpH依存性を示すグ
ラフである。図中●は熱水処理1時間、○は2時間の場
合である。 第4図は、BET表面積の熱水処理時間依存性を示すグラ
フである。 第5図は、アルミナ、アルミニウム、陽極酸化アルミニ
ウム、陽極酸化アルミニウムに更にγ−アルミナコーテ
ィングした各種の担体の熱伝導度を比較したグラフであ
る。FIG. 1 shows anodizing treatment, alumina coating treatment,
It is shown that the BET surface area is increased by the hot water treatment and the combination thereof. Figure 2 shows the BET surface area of the anodized surface and p after the anodization.
It is a graph showing the anodic oxidation time dependence of the BET surface area after H2 hot water treatment at 82 ° C for 2 hours. In the figure, ○ indicates that hot water treatment was performed, and □ indicates that hot water treatment was not performed. FIG. 3 is a graph showing the pH dependence of the BET surface area during hot water treatment. In the figure, ● indicates the case of hot water treatment for 1 hour, and ○ indicates the case of 2 hours. FIG. 4 is a graph showing the dependency of BET surface area on hot water treatment time. FIG. 5 is a graph comparing the thermal conductivity of alumina, aluminum, anodized aluminum, and various carriers obtained by further coating γ-alumina on anodized aluminum.
Claims (3)
熱伝導性担体のアルミニウム表面に多孔質なアルミナ層
を形成させ次いで50℃〜350℃で熱水処理した後、又
は、熱水処理を行いながら触媒活性を有する金属を前記
アルミナ層に担持せしめることを特徴とする熱伝導性触
媒体の製造方法。1. A porous alumina layer is formed on the aluminum surface of a heat conductive carrier having an aluminum layer of at least 10 μm and then subjected to hot water treatment at 50 ° C. to 350 ° C., or while performing hot water treatment. A method for producing a heat conductive catalyst body, which comprises supporting a metal having catalytic activity on the alumina layer.
ミナ層の表面上に、触媒担持活性微粒子を結着せしめる
請求項1に記載された熱伝導性触媒体の製造方法。2. The method for producing a heat conductive catalyst body according to claim 1, wherein the catalyst-supporting active fine particles are bound on the surface of the porous alumina layer before or after the hot water treatment.
の多孔質アルミナ層の表面に対して行われる、請求項2
に記載された熱伝導性触媒体の製造方法。3. The binding of the catalyst-supporting active fine particles is performed on the surface of the porous alumina layer before the hot water treatment.
The method for producing the heat conductive catalyst body described in 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63297727A JP2528701B2 (en) | 1988-11-25 | 1988-11-25 | Method for producing thermally conductive catalyst body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63297727A JP2528701B2 (en) | 1988-11-25 | 1988-11-25 | Method for producing thermally conductive catalyst body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02144154A JPH02144154A (en) | 1990-06-01 |
JP2528701B2 true JP2528701B2 (en) | 1996-08-28 |
Family
ID=17850397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63297727A Expired - Lifetime JP2528701B2 (en) | 1988-11-25 | 1988-11-25 | Method for producing thermally conductive catalyst body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2528701B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012055856A (en) * | 2010-09-10 | 2012-03-22 | Tokyo Univ Of Agriculture & Technology | Metal catalyst carrier, metal catalyst object, and method for manufacturing the same |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001037988A1 (en) * | 1999-11-25 | 2001-05-31 | Kawasaki Jukogyo Kabushiki Kaisha | Catalyst for exothermic or endothermic reaction, catalyst for water-gas-shift reaction and catalyst for selective oxidation of carbon monoxide, and plate-fin heat exchange type reformer |
JP2002273208A (en) * | 2001-03-22 | 2002-09-24 | Japan Science & Technology Corp | Discharge electrode formed by supporting photocatalyst, discharge reaction apparatus using the same and gas decomposition method using discharge reaction apparatus |
JPWO2005099900A1 (en) * | 2004-04-01 | 2008-03-06 | 国立大学法人東京農工大学 | Method for producing alumite catalyst body |
JP2007245116A (en) * | 2006-03-20 | 2007-09-27 | Fujifilm Corp | Catalysts support |
JP5726466B2 (en) * | 2010-09-10 | 2015-06-03 | 国立大学法人東京農工大学 | Catalyst carrier, catalyst body and method for producing them |
US8568665B2 (en) | 2010-12-28 | 2013-10-29 | Nippon Seisen Co., Ltd. | Catalyst structure and hydrogenation/dehydrogenation reaction module using the same catalyst structure |
WO2020065956A1 (en) * | 2018-09-28 | 2020-04-02 | 日立化成株式会社 | Steam reforming method, steam reforming member, and steam reformer |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5295590A (en) * | 1976-02-09 | 1977-08-11 | Riken Keikinzoku Kogyo Kk | Catalyst carriers and the manufacture |
JPS5936547A (en) * | 1982-08-23 | 1984-02-28 | Babcock Hitachi Kk | Catalyst composition for contact combustion |
-
1988
- 1988-11-25 JP JP63297727A patent/JP2528701B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012055856A (en) * | 2010-09-10 | 2012-03-22 | Tokyo Univ Of Agriculture & Technology | Metal catalyst carrier, metal catalyst object, and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JPH02144154A (en) | 1990-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NL2005112C2 (en) | Process to prepare metal nanoparticles or metal oxide nanoparticles. | |
US4252690A (en) | Metallic catalyst and process for preparing the same | |
US4019969A (en) | Method of manufacturing catalytic tubes with wall-supported catalyst, particularly for steam reforming of hydrocarbons and methanation | |
JP2528701B2 (en) | Method for producing thermally conductive catalyst body | |
Ghodbane et al. | Electrochemical reduction of nitrate on pyrolytic graphite-supported Cu and Pd–Cu electrocatalysts | |
US3228892A (en) | Method for preparing supported catalytic structures | |
CA1137922A (en) | Process for manufacturing sheet metal elements or strips having a catalytic surface structure | |
CN101590411B (en) | Non-noble metal hydrogenation catalyst and preparation method thereof | |
JP2931812B1 (en) | Electrode for electrolysis and method for producing the same | |
JPH03119094A (en) | Reformed gas-producing equipment by electroless plating and method therefor | |
JP2898308B2 (en) | Continuous catalyst body and method for producing the same | |
CN102154635A (en) | Preparation process of porous stainless steel supported palladium or palladium alloy membrane | |
EP0225659B2 (en) | A process for producing catalysts | |
JP2794427B2 (en) | Oxidation combustion method using heat conductive catalyst | |
US6099914A (en) | Electrolytic process and apparatus | |
JP2003340280A (en) | Co selective oxidation catalyst, manufacturing method therefor, heat exchange type reactor using co selective oxidation catalyst and usage thereof | |
JPH0663423A (en) | Production of catalyst element | |
JP5880909B2 (en) | Method for producing metal catalyst carrier and method for producing metal catalyst body | |
JPS62237947A (en) | Catalyst body | |
JPH1073226A (en) | Manufacture of continuous catalyst body | |
CN100369304C (en) | Method for preparing catalysis electrode for silicon based minisize direct carbinol fuel cell | |
JP2002028490A (en) | Water vapor reforming catalyst and producing method thereof | |
JPH02179891A (en) | Anode for generate oxygen and production thereof | |
JPH04200745A (en) | Production of continuous catalyst body and oxidation of low concentration organic matter using the same | |
JP2004510577A (en) | Self-cleaning catalytically active surface for microfabrication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080614 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090614 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090614 Year of fee payment: 13 |