JP2002028490A - Water vapor reforming catalyst and producing method thereof - Google Patents

Water vapor reforming catalyst and producing method thereof

Info

Publication number
JP2002028490A
JP2002028490A JP2000213093A JP2000213093A JP2002028490A JP 2002028490 A JP2002028490 A JP 2002028490A JP 2000213093 A JP2000213093 A JP 2000213093A JP 2000213093 A JP2000213093 A JP 2000213093A JP 2002028490 A JP2002028490 A JP 2002028490A
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
metal
reforming catalyst
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000213093A
Other languages
Japanese (ja)
Other versions
JP2002028490A5 (en
JP4551538B2 (en
Inventor
Takayuki Shimamune
孝之 島宗
Shigeharu Akatsuka
重治 赤塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furuya Metal Co Ltd
Original Assignee
Furuya Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furuya Metal Co Ltd filed Critical Furuya Metal Co Ltd
Priority to JP2000213093A priority Critical patent/JP4551538B2/en
Publication of JP2002028490A publication Critical patent/JP2002028490A/en
Publication of JP2002028490A5 publication Critical patent/JP2002028490A5/ja
Application granted granted Critical
Publication of JP4551538B2 publication Critical patent/JP4551538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water vapor reforming catalyst which is miniaturized, light in weight, enables obtaining effective catalytic area of a large surface area, moreover, does not cause pressure loss, enable to obtain high performance catalytic activity and is suitable for an on-vehicle fuel cell and a producing method thereof. SOLUTION: This water vapor reforming catalyst is constituted in such a manner that a catalytic substance 2 consisting of ruthenium or ruthenium alloy is deposited on a planar catalyst carrier 1 comprising a metallic foam. Therein, the catalytic substance 2 is deposited on the catalyst carrier 1 by subjecting the catalytic substance 2 to the ion displacement from an acid solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メタノールやメタ
ン類を水蒸気と反応させて水素を含有するガスを得るた
めの水蒸気改質触媒に係り、特に車載用燃料電池の燃料
改質装置(反応装置)に組み込まれる水素製造プロセス
に有効な水蒸気改質触媒及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam reforming catalyst for obtaining a hydrogen-containing gas by reacting methanol or methane with steam, and more particularly to a fuel reformer (reactor) for a fuel cell for a vehicle. The present invention relates to a steam reforming catalyst which is effective for a hydrogen production process incorporated in the above) and a production method thereof.

【0002】[0002]

【従来の技術】低温型燃料電池、特に近年もっとも注目
を集めている高分子固体電解質型燃料電池等の燃料には
純粋な水素が使われる。又、現在では車載用燃料電池の
燃料として水素ボンベからの水素ガスや、水素を吸蔵さ
せた水素吸蔵金属からの水素ガスを受けて燃料電池を運
転させること等が試みられている。ところで、この様な
水素ボンベや水素吸蔵金属は水素ガスを定期的に補充
(供給)する必要があることから、水素供給基地(水素
スタンド)の設置が必要になる。そのためにこれらを実
用化させるためには今後かなりの時間を要するものと考
えられる。
2. Description of the Related Art Pure hydrogen is used as a fuel for a low-temperature fuel cell, particularly a solid polymer electrolyte fuel cell, which has recently attracted the most attention. At present, attempts have been made to operate a fuel cell by receiving hydrogen gas from a hydrogen cylinder or hydrogen gas from a hydrogen storage metal that has stored hydrogen as fuel for a vehicle-mounted fuel cell. By the way, it is necessary to periodically replenish (supply) such a hydrogen cylinder or hydrogen storage metal with hydrogen gas, and therefore, it is necessary to install a hydrogen supply base (hydrogen stand). Therefore, it is considered that a considerable amount of time will be required in order to put these into practical use.

【0003】又、これらに変わるものとして自動車に燃
料電池の燃料改質装置を搭載し、メタノールを燃料とし
て積載してこのメタノールを水蒸気と反応させて水素を
取り出しながらそれを燃料電池に供給する新たな試みが
行われている。ところで、燃料改質装置に使用される改
質触媒にはクロム等の非貴金属が従来使用されていた。
この非貴金属は改質温度が700℃以上と高くなること、
改質装置が大型になること等の問題と共に、改質におけ
るエネルギー効率が悪くなると言った問題が指摘されて
いた。特に燃料電池に使用する水素は改質水素で最も問
題となる水素ガス中の一酸化炭素濃度を1ppm程度又は
それ以下に抑えることが必要と言われ、改質器(反応器
とも言う)に付帯する改質装置が大きくなると共に、塩
のために更に余分なエネルギーを必要とすると言う問題
がある。
Another alternative is to mount a fuel reformer for a fuel cell on an automobile, load methanol as fuel, react the methanol with water vapor, extract hydrogen, and supply it to the fuel cell. Attempts have been made. By the way, a non-precious metal such as chromium has been conventionally used as a reforming catalyst used in a fuel reformer.
This non-precious metal has a high reforming temperature of 700 ° C or higher,
It has been pointed out that the reforming apparatus becomes large and the energy efficiency in the reforming becomes poor. It is said that it is necessary to control the concentration of carbon monoxide in hydrogen gas, which is the most problematic for reformed hydrogen, to about 1 ppm or less, especially for hydrogen used in fuel cells, and is attached to a reformer (also called a reactor). However, there is a problem that the reforming apparatus becomes large, and that extra energy is required for the salt.

【0004】又、この様な問題を解決するために改質触
媒として最近では白金族金属の一つであるルテニウム金
属を使うことが行なわれている。これにより、水素源を
メタノールとした場合、改質温度を400℃以下まで下げ
ることが可能となる。又、ブドアール平衡反応からは一
酸化炭素濃度も併せて下げることができるとされてい
る。
[0004] In order to solve such problems, ruthenium metal, which is one of platinum group metals, has recently been used as a reforming catalyst. This makes it possible to lower the reforming temperature to 400 ° C. or less when the hydrogen source is methanol. It is also stated that the concentration of carbon monoxide can be lowered from the Budoar equilibrium reaction.

【0005】[0005]

【発明が解決しようとする課題】そこで、最近ではルテ
ニウム触媒の活用が注目されているが、車載用燃料電池
用としては小型で能率の良い改質装置を製作するために
は必然的に触媒も小型で高活性のものが必要になる。
Therefore, the use of ruthenium catalysts has recently attracted attention. However, in order to manufacture a compact and efficient reformer for a vehicle fuel cell, the use of a catalyst is inevitable. A small and highly active one is required.

【0006】この様に注目されているルテニウム触媒と
して、従来ではアルミナペレットの表面にルテニウム金
属を担持させたペレット状触媒が主流であるため、有効
触媒面積に比較して、触媒見掛け体積が極めて多くな
る。又、重量的にも大きくなると言う問題を有してい
た。そこで、小型軽量にして有効触媒面積を多くする方
法としては前述のアルミナペレットの粒径を小さくする
と共に、発泡アルミナ等の中空アルミナ担体を使って体
積当たりの触媒面積を大きくする考えがあるが、この場
合は圧力損失が多くなることにより、メタノールと水蒸
気との混合ガスを送るブロワー等の圧送装置が大型にな
ることや、又安定な運転がし難くなること、更に圧力損
失が大きい故にガス流通が悪くなり未反応物の除去等に
問題が出てくる。従って、通常ペレットの平均粒径2〜
5mm程度が限界であり、それにより微少な粒を使うこと
は不可能であるばかりか、触媒の見掛け体積が大きくな
ると言う問題になる。
[0006] As the ruthenium catalyst which has been attracting attention as described above, a pellet-shaped catalyst in which ruthenium metal is supported on the surface of alumina pellets is mainly used in the past. Become. In addition, there is a problem that the weight becomes large. Therefore, as a method of increasing the effective catalyst area by reducing the size and weight, there is a method of reducing the particle size of the above-mentioned alumina pellets and increasing the catalyst area per volume using a hollow alumina carrier such as foamed alumina. In this case, the pressure loss increases, the size of the pumping device such as a blower that feeds a mixed gas of methanol and water vapor increases, the stable operation becomes difficult, and the gas flow increases due to the large pressure loss. And the problem of removal of unreacted substances occurs. Therefore, usually the average particle size of the pellets 2
The limit is about 5 mm, which not only makes it impossible to use fine particles, but also increases the apparent volume of the catalyst.

【0007】又、この様な問題を解決するために金属製
のエスクパンドメッシュを使い、その表面にルテニウム
金属を担持することも考えられるが、このエクスパンド
メッシュではその表面積が比較的に小さく、又重量的に
は担体そのものが無垢であることから、どうしても面積
当たりの重量が大きくなってしまうと言う重量的な面で
問題があった。
In order to solve such a problem, it is conceivable to use a metal escaping mesh and carry ruthenium metal on its surface. However, this expanding mesh has a relatively small surface area. In terms of weight, since the carrier itself is pure, there is a problem in terms of weight that the weight per area is inevitably increased.

【0008】本発明はこの様な従来事情に鑑み、長年に
亘って数々の実験を積み重ねて本発明に至ったものであ
り、その目的とする処は、小型軽量で、大表面積の有効
触媒面積が得られ、しかも、圧力損失が無く高性能の触
媒活性が得られる車載用燃料電池に好適な水蒸気改質触
媒及びその製造方法を提供することにある。
In view of such circumstances, the present invention has been accomplished by conducting many experiments over many years, and the object of the present invention is to provide a small and light-weight, large surface area effective catalyst area. Another object of the present invention is to provide a steam reforming catalyst suitable for an in-vehicle fuel cell and a method for producing the same, which can obtain a high-performance catalytic activity without pressure loss.

【0009】[0009]

【課題を達成するための手段】課題を達成するために本
発明は、触媒担体となる板状の金属多孔体に、ルテニウ
ム又はルテニウムを含有する合金からなる触媒物質を担
持させてなる水蒸気改質触媒である。
In order to achieve the object, the present invention provides a steam reforming method in which a plate-like porous metal body serving as a catalyst carrier carries a catalytic substance comprising ruthenium or an alloy containing ruthenium. It is a catalyst.

【0010】又、本発明では酸液からのイオン置換を行
うことにより、触媒担体となる板状の金属多孔体に、ル
テニウム又はルテニウムを含有する合金からなる触媒物
質を担持させる水蒸気改質触媒の製造方法である。
Further, in the present invention, a steam reforming catalyst is provided in which a plate-like porous metal serving as a catalyst carrier carries a catalyst material comprising ruthenium or a ruthenium-containing alloy by performing ion replacement from an acid solution. It is a manufacturing method.

【0011】又、本発明では上記金属多孔体として、金
属フォーム又は金属短繊維焼結体である。ここで、金属
多孔体が金属フォームからなる場合、触媒物質はフォー
ムの厚さ方向に連通状に点在(存在)する連続気孔群の
孔面や気孔群を三次元的に繋ぐ枝部等のフォーム全体に
均一に担持されるものである。又、本発明では上記金属
多孔体の材質が鉄、ニッケル又はそれらの合金である。
又、本発明では上記ルテニウムを含有する合金が、R
u:Pt=90:10(モル)である。
In the present invention, the metal porous body is a metal foam or a sintered metal short fiber. Here, when the porous metal body is made of a metal foam, the catalyst material is formed of a continuous pore group that is scattered (exists) in the thickness direction of the foam in a continuous manner. It is uniformly supported on the entire foam. In the present invention, the material of the porous metal body is iron, nickel or an alloy thereof.
Further, in the present invention, the alloy containing ruthenium is R
u: Pt = 90: 10 (mol).

【0012】[0012]

【発明の実施の形態】本発明の実施の具体例を説明す
る。図1は本発明水蒸気改質触媒Aの実施形態の一例を
示し、触媒担体1となる板状の金属多孔体としては金属
フォームが望ましい。この金属フォームの見掛け上の表
面積は投影面に対して50〜100倍であり、エクスパンド
メッシュが略2倍であることから、極めて大きいことに
なる。しかも、その重量は厚さが同じ板から製作された
エクスパンドメッシュが板に対して1/2であるのに対
し、金属フォームでは約1/10であることから、極めて軽
量であることが分かる。因みに、金属フォームはウレタ
ンフォーム等を芯材とし、そのフォーム表面に金属層を
電気メッキによって形成した後に、芯材であるウレタン
フォームを焼成により除去することで製作する。従っ
て、本発明が触媒担体1として使用する金属フォーム
は、極めて軽量で、しかも、芯材となるウレタンフォー
ムの形状や厚みを任意に調節することで、その形状や厚
みを自由に選択できると言う利点を有する。又、板状
で、その厚さ方向に連通状に点在(存在)する連続気孔
群や気孔群を三次元的に繋ぐ枝部等を有する断面構造で
あるが故に大表面積の有効触媒面積が得られる。又、こ
の様に大表面積のフォームに対するガスの透過について
も抵抗は通常の編みメッシュ並みであり極めて小さい。
Embodiments of the present invention will be described. FIG. 1 shows an example of an embodiment of the steam reforming catalyst A of the present invention, and a metal foam is desirable as the plate-shaped porous metal body serving as the catalyst carrier 1. The apparent surface area of this metal foam is 50 to 100 times that of the projection surface, and the expanded mesh is almost twice as large, which is extremely large. Moreover, the weight of the expanded mesh made from a plate having the same thickness is 1/2 that of the expanded mesh, whereas that of the metal foam is about 1/10, which indicates that the weight is extremely light. Incidentally, the metal foam is manufactured by using a urethane foam or the like as a core material, forming a metal layer on the foam surface by electroplating, and then removing the urethane foam as a core material by firing. Therefore, the metal foam used as the catalyst carrier 1 in the present invention is extremely lightweight, and the shape and thickness can be freely selected by arbitrarily adjusting the shape and thickness of the urethane foam as the core material. Has advantages. In addition, the cross-sectional structure has a plate-like structure having continuous pores scattered (existing) in the thickness direction thereof and branch portions connecting the pores three-dimensionally. can get. In addition, the resistance to gas permeation through a foam having such a large surface area is as low as that of an ordinary knitted mesh.

【0013】触媒担体1に担持する触媒物質2として
は、白金族金属が特に優れているが、その中でも安定で
しかも還元能に優れているのがルテニウムである。この
触媒物質2としてはルテニウム単体でも良いが、ルテニ
ウムに白金、パラジウム等その他の白金族金属を加えた
ルテニウム合金でも良い。
As the catalytic substance 2 supported on the catalyst carrier 1, platinum group metals are particularly excellent, and among them, ruthenium is stable and has excellent reducing ability. The catalyst substance 2 may be ruthenium alone or a ruthenium alloy obtained by adding other platinum group metals such as platinum and palladium to ruthenium.

【0014】これらのルテニウム又はルテニウム合金を
金属フォームに担持する場合には、金属フォームが三次
元的であるのでイオン化傾向を利用することで容易にし
っかりした担持が可能となる。即ち、ルテニウムはイオ
ン化傾向が極めて小さくルテニウム金属を含有する酸性
の水溶液に金属フォームを浸漬すると、金属が溶出する
と共に、置換反応によってルテニウム金属が金属フォー
ムの表面に付着し易くなる。ここで、酸性溶液を使用す
るのは酸性溶液によって金属フォームの表面に金属が溶
出し、僅かではあるが水素が発生し、それがルテニウム
金属の還元により有効に働いてよりしっかりしたルテニ
ウム金属が析出することからである。
When these ruthenium or ruthenium alloys are supported on a metal foam, the metal foam is three-dimensional, so that it can be easily and firmly supported by utilizing the ionization tendency. That is, when ruthenium has a very small ionization tendency and the metal foam is immersed in an acidic aqueous solution containing ruthenium metal, the metal is eluted and the ruthenium metal is easily attached to the surface of the metal foam by a substitution reaction. Here, when an acidic solution is used, the metal is eluted on the surface of the metal foam by the acidic solution, and a small amount of hydrogen is generated, which works effectively by the reduction of the ruthenium metal to deposit more firm ruthenium metal. Because it is.

【0015】例えば、ニッケルフォームを触媒担体1と
して使用し、塩化ルテニウム酸の10%塩酸溶液に浸漬す
ると、一部のニッケルが溶出すると共に、置換反応によ
って表面に黒色のルテニウム金属が析出する。この置換
反応は液中に含有するルテニウム金属が略完全に無くな
るまで続く。この時、塩酸溶液の色が塩化ルテニウム酸
の褐色からニッケルの淡緑色になる。尚、液中のルテニ
ウムが略完全に無くなった時点で置換反応は終了する
が、時として反応物が無くなってもニッケルの溶出が起
り水素が発生することがあるので、その直前で反応を止
めると良い。又、触媒担体1にルテニウム金属を担持す
るための置換反応時間としては特に限定されるものでは
ないが、例えばルテニウム金属の担持量(厚さ)にもよ
るが、略10分程度で良い。温度は室温で良い。この時、
加熱することで反応速度を上げることも可能である。
For example, when a nickel foam is used as a catalyst carrier 1 and immersed in a 10% hydrochloric acid solution of ruthenic chloride, a part of nickel is eluted and black ruthenium metal is deposited on the surface by a substitution reaction. This substitution reaction continues until the ruthenium metal contained in the liquid is almost completely eliminated. At this time, the color of the hydrochloric acid solution changes from brown of ruthenic chloride to pale green of nickel. The substitution reaction ends when ruthenium in the liquid has almost completely disappeared.However, even if the reactants disappear, nickel elution may occur and hydrogen may be generated. good. Further, the substitution reaction time for supporting the ruthenium metal on the catalyst carrier 1 is not particularly limited, but may be about 10 minutes, depending on, for example, the amount (thickness) of the supported ruthenium metal. The temperature may be room temperature. At this time,
The reaction rate can be increased by heating.

【0016】以上の製法により製作された触媒担体1の
表面にはルテニウム金属特有の表面積が大きく高活性な
所謂ルテニウム黒の状態のルテニウム金属が析出する。
代表的には塩化ルテニウム酸の5〜10%塩酸水溶液に触
媒担体1である金属フォームを室温で浸漬させる。
On the surface of the catalyst carrier 1 manufactured by the above-described method, a so-called ruthenium metal in a so-called ruthenium black state having a large surface area peculiar to the ruthenium metal and having high activity is deposited.
Typically, a metal foam as a catalyst carrier 1 is immersed in a 5 to 10% aqueous solution of ruthenic chloride in hydrochloric acid at room temperature.

【0017】尚、触媒を合金とする場合もルテニウム金
属(白金族金属)のイオン化傾向はほぼ同じであり、ニ
ッケルや鉄に比較して大きく異なるために液に混合液と
するだけで目的の組成の合金層が得られるものである。
これにより、有効な触媒を製作することができる。
In the case where the catalyst is an alloy, the ionization tendency of ruthenium metal (platinum group metal) is almost the same, and is significantly different from that of nickel or iron. Is obtained.
Thereby, an effective catalyst can be manufactured.

【0018】又、水蒸気改質反応して水素を得る物質が
メタノールの場合、改質温度は400℃程度から、メタン
の場合には700℃程度から、又ガソリンの場合では更に
高温度となるが、触媒自体は安定である。この時、金属
フォームからなる触媒担体1は不安定になることがあ
り、使用温度に応じて金属フォームの仕様を変化させる
ことが重要である。即ち、メタノールでは最も細かく、
しかも表面積が大きい金属フォームを使用することがで
きるが、メタン、その他の場合においては耐熱性を考慮
したフォーム構造、例えばフォームを形成する肉厚(フ
ォームの厚さ方向に連通状に点在(内在)する連続気孔
群を三次元的に繋ぐ枝部の厚さ(線径))を大きくする
等の必要性がある。
[0018] In addition, when the substance that obtains hydrogen by the steam reforming reaction is methanol, the reforming temperature is about 400 ° C, in the case of methane, it is about 700 ° C, and in the case of gasoline, the temperature is higher. The catalyst itself is stable. At this time, the catalyst support 1 made of a metal foam may become unstable, and it is important to change the specifications of the metal foam according to the operating temperature. That is, the finest in methanol,
In addition, a metal foam having a large surface area can be used. However, in the case of methane, in other cases, a foam structure considering heat resistance, for example, a wall thickness forming the foam (intermittently scattered in the thickness direction of the foam (internal ), It is necessary to increase the thickness (diameter) of the branch connecting the continuous pore group three-dimensionally.

【0019】次に、実施例1〜3を挙げて本発明を更に
詳細に説明するが、本発明はこれらに限定されるもので
はない。
Next, the present invention will be described in more detail with reference to Examples 1 to 3, but the present invention is not limited to these.

【0020】実施例1 触媒担体1として見掛け厚さが5mmのニッケルフォーム
を用いる。このニッケルフォームは市販品の住友電工社
製の商品名:セルメツト、或いはエルテックシステムズ
社製の商品名:レテック等を使用してもよいが、前述し
たようにウレタンフォーム等を用いて必要に応じて製作
する。このニッケルフォームに触媒物質2としてルテニ
ウムを担持させた。即ち、塩化ルテニウム酸(H2Ru
Cl6)の10%塩酸水溶液を用意し、ニッケルフォーム
は中性洗剤で洗浄脱脂を行う。その後、60℃10%塩酸液
に浸漬して表面の活性化を行う。これを更に脱イオンで
十分に洗浄した後、室温で塩化ルテニウム酸液に浸漬す
る。これにより、最初の3分は全く反応は見られなかっ
たが、その後、ニッケルフォームの表面が黒化すると共
に液の色が薄くなり、淡緑色に変化した。この時点で急
に水素発生が起ったので液から上げて水洗いを行った。
すると、フォームの厚さ方向に連通状に点在(存在)す
る連続気孔群の孔面や気孔群を三次元的に繋ぐ枝部等の
フォーム全体が黒色の被覆に覆われていることが確認さ
れた(図1の拡大図参照)。
Example 1 A nickel foam having an apparent thickness of 5 mm is used as the catalyst carrier 1. As the nickel foam, commercially available product name: Celmet manufactured by Sumitomo Electric Industries, Ltd., or product name: Retec manufactured by Eltec Systems Co., Ltd. may be used. However, as necessary, urethane foam or the like may be used as described above. To manufacture. Ruthenium was supported as the catalyst substance 2 on this nickel foam. That is, ruthenic chloride (H 2 Ru)
A 10% hydrochloric acid aqueous solution of Cl 6 ) is prepared, and the nickel foam is cleaned and degreased with a neutral detergent. Then, the surface is activated by immersion in a 10% hydrochloric acid solution at 60 ° C. After this is further sufficiently washed by deionization, it is immersed in a ruthenic chloride solution at room temperature. As a result, no reaction was observed for the first 3 minutes, but the surface of the nickel foam was blackened and the color of the solution became lighter and changed to pale green. At this point, hydrogen generation occurred suddenly.
Then, it was confirmed that the entire foam, such as the pore surfaces of the continuous pore groups scattered (existing) in the thickness direction of the foam and the branches connecting the pore groups three-dimensionally, was covered with the black coating. (See the enlarged view of FIG. 1).

【0021】そして、得られた本発明の水蒸気改質触媒
A(以後、本製品と言う)を溶解して分析したところ、
投影面に対して70g/m2のルテニウムの析出が見られた。
又、この時のルテニウムの回収率は93〜95%であること
が分かった。又、触媒として温度400℃におけるメタノ
ールの改質反応試験を行った。この時、本製品を10g、
アルミナ粒子にルテニウムを担持させた従来の水蒸気改
質触媒(以後、比較品と言う)を100g夫々反応器に入
れ、夫々に水蒸気とメタノールとの混合ガスを通して改
質反応試験を行ってみたところ、比較品では圧力損失が
0.5気圧であったが、本製品では圧力損失が殆ど認めら
れなかった。これにより、本製品は容易に改質できるこ
とかが分かった。又、100時間連続して改質反応試験を
行ってみたところ、本製品と比較品の両者ともに特段の
変化は認められず本製品は比較品と同様に触媒として有
効であることが分かった。
Then, the obtained steam reforming catalyst A of the present invention (hereinafter referred to as the present product) was dissolved and analyzed.
70 g / m 2 of ruthenium was deposited on the projection surface.
It was also found that the ruthenium recovery at this time was 93 to 95%. Further, a reforming reaction test of methanol at a temperature of 400 ° C. as a catalyst was performed. At this time, 10 g of this product,
100 g of a conventional steam reforming catalyst in which ruthenium was supported on alumina particles (hereinafter referred to as a comparative product) was put into each reactor, and a reforming reaction test was performed through a mixed gas of steam and methanol, respectively. Pressure loss in the comparison product
Although the pressure was 0.5 atm, little pressure loss was observed with this product. This proved that the product could be easily modified. In addition, when the reforming reaction test was conducted continuously for 100 hours, no particular change was observed in both the product and the comparative product, and it was found that the product was effective as a catalyst similarly to the comparative product.

【0022】実施例2 触媒担体1として見掛け厚さが10mmで、フォームを形成
する肉厚(線径)が見掛け上2mmのニッケルフォームを
用い、実施例1と同じ製法で板状の水蒸気改質触媒Aを
製作した。この時、担持させる触媒物質2としてRu:
Pt=90:10(モル)の組成からなるルテニウム合金を
用いた。詳しく述べると、ニッケルフォームを処理する
処理液を5%塩酸とし、これにRu:Pt=90:10(モ
ル)の比率で混合させた塩化ルテニウムと塩化白金との
混合液を用い、これを実施例1と全く同じ製法条件でニ
ッケルフォームの表面に付着させた。これにより、ニッ
ケルフォームの表面が黒色の被覆で覆われた。
Example 2 A plate-shaped steam reforming was carried out by the same production method as in Example 1 using a nickel foam having an apparent thickness of 10 mm as the catalyst carrier 1 and an apparent thickness (wire diameter) of 2 mm for forming the foam. Catalyst A was made. At this time, Ru:
A ruthenium alloy having a composition of Pt = 90: 10 (mol) was used. More specifically, a treatment solution for treating nickel foam is 5% hydrochloric acid, and a mixed solution of ruthenium chloride and platinum chloride mixed with Ru: Pt at a ratio of 90:10 (mol) is used. It adhered to the surface of the nickel foam under exactly the same manufacturing conditions as in Example 1. Thereby, the surface of the nickel foam was covered with the black coating.

【0023】得られた水蒸気改質触媒Aを用いてメタン
を水蒸気と反応させる水蒸気改質試験を行った。この時
の反応温度は700℃である。すると、ほとんど圧力損失
が無い状態で十分に改質が行なわれることが確認され
た。
Using the obtained steam reforming catalyst A, a steam reforming test was conducted in which methane was reacted with steam. The reaction temperature at this time is 700 ° C. Then, it was confirmed that the reforming was sufficiently performed in a state where there was almost no pressure loss.

【0024】実施例3 触媒担体として見掛け厚さ3mmの鉄製短繊維焼結体を用
いた以外は実施例1と全く同じ条件で水蒸気改質触媒を
製作した。得られた水蒸気改質触媒を前述の実施例2と
同じメタンを水蒸気と反応させる水蒸気改質反応試験を
行った。すると、極めて良好な改質効率で水素が得られ
ることが確認された。尚、斯かる改質試験では反応で得
られた水素、CO2、及びCOの混合ガスを精練し、それに
より得たCOは加熱用として使用したのでエネルギー効率
は60%以上となることが分かった。但し、この時の生成
水素中のCO濃度は10ppm程であり、再精製が必要である
ことが確認された。
Example 3 A steam reforming catalyst was produced under exactly the same conditions as in Example 1 except that an iron short fiber sintered body having an apparent thickness of 3 mm was used as a catalyst carrier. The obtained steam reforming catalyst was subjected to the same steam reforming reaction test as in Example 2 in which methane was reacted with steam. Then, it was confirmed that hydrogen was obtained with extremely good reforming efficiency. In addition, in such a reforming test, a mixed gas of hydrogen, CO 2 , and CO obtained by the reaction was scoured, and the obtained CO was used for heating, so that the energy efficiency was found to be 60% or more. Was. However, the CO concentration in the generated hydrogen at this time was about 10 ppm, and it was confirmed that repurification was necessary.

【0025】尚、実施例1〜3において得られた本発明
の水蒸気改質触媒Aを改質器に組み込む場合には厚めに
製作した一枚の触媒Aを、又、それよりも薄く製作した
数枚の触媒Aを多層に組み込む等任意である。又、数枚
を多層に組み込む場合には各触媒A間に隙間を明ける等
任意である。
When the steam reforming catalyst A of the present invention obtained in Examples 1 to 3 was incorporated into a reformer, one thicker catalyst A was manufactured, and a thinner catalyst A was manufactured. Arbitrary, such as incorporating several catalysts A in multiple layers. Further, when several sheets are incorporated in a multilayer, it is optional such as opening a gap between the catalysts A.

【0026】[0026]

【発明の効果】本発明の水蒸気改質触媒及びその製造方
法は叙上の如く構成してなることから下記の作用効果を
奏する。本発明によれば、ルテニウム又はルテニウム合
金からなる触媒物質を担持させる板状の金属多孔体から
なる触媒担体は鉄、ニッケル又はそれらの合金を用いて
製作した金属フォーム又は金属短繊維焼結体である。そ
れ故に、小型軽量で、大表面積の有効触媒面積を有する
水蒸気改質触媒が得られる。従って、改質器に組み込む
ことで、高性能の触媒活性が得られる小型軽量の改質装
置を製作することが可能になる。即ち、メタノール、メ
タン類を燃料とする燃料電池、特に車載用燃料電池の改
質装置を極めて軽量且つ小型化することができる好適な
水蒸気改質触媒を提供することができる。
The steam reforming catalyst of the present invention and the method for producing the same have the following functions and effects because they are constituted as described above. According to the present invention, the catalyst support composed of a plate-shaped porous metal body supporting a catalyst material composed of ruthenium or a ruthenium alloy is iron, nickel or a metal foam or a metal short fiber sintered body manufactured using an alloy thereof. is there. Therefore, a small and lightweight steam reforming catalyst having an effective catalyst area with a large surface area can be obtained. Therefore, by incorporating the reformer into a reformer, it is possible to manufacture a compact and lightweight reformer capable of obtaining high-performance catalytic activity. That is, it is possible to provide a suitable steam reforming catalyst capable of extremely reducing the size and the size of a fuel cell using methanol or methane as a fuel, in particular, a reformer for an in-vehicle fuel cell.

【0027】又、本発明によれば、ガスの透過について
も抵抗は通常の編みメッシュ並みである。即ちガスの圧
力損失が殆ど無いことから、改質触媒にガスを送るブロ
ワー等の圧送装置の圧送能力は小さくて済む。従って、
前述したように改質器のみならず小型の圧送装置で済む
ことから、車載用燃料電池の改質装置として好適な水蒸
気改質触媒となる。
Further, according to the present invention, the resistance to gas permeation is about the same as that of a normal knitted mesh. That is, since there is almost no gas pressure loss, the pumping capacity of a pumping device such as a blower for sending gas to the reforming catalyst can be small. Therefore,
As described above, not only the reformer but also a compact pumping device is required, so that the steam reforming catalyst is suitable as a reforming device for an on-vehicle fuel cell.

【0028】又、本発明によれば、触媒担体へのルテニ
ウム又はルテニウム合金の担持を酸液からのイオン置換
により行うことから、前述した高性能の触媒活性が得ら
れる水蒸気改質触媒を簡単且つ安価に製作することがで
きる。
Further, according to the present invention, since the ruthenium or ruthenium alloy is supported on the catalyst carrier by ion replacement from an acid solution, the above-mentioned steam reforming catalyst capable of obtaining the high-performance catalytic activity can be easily and simply prepared. It can be manufactured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明水蒸気改質触媒の実施形態の一例を示
した断面図
FIG. 1 is a cross-sectional view showing an example of an embodiment of the steam reforming catalyst of the present invention.

【符号の説明】[Explanation of symbols]

A:水蒸気改質触媒 1:触媒担体 2:触媒物質 A: Steam reforming catalyst 1: Catalyst carrier 2: Catalyst substance

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G040 EA02 EA03 EA06 EC03 EC08 4G069 AA03 AA08 BA18 BB02A BB02B BC66A BC66B BC68A BC68B BC70A BC70B CC17 CC25 CC32 EB11 EB15Y FA02 FB16 FB26 5H027 AA02 BA01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G040 EA02 EA03 EA06 EC03 EC08 4G069 AA03 AA08 BA18 BB02A BB02B BC66A BC66B BC68A BC68B BC70A BC70B CC17 CC25 CC32 EB11 EB15Y FA02 FB16 FB26 5H027 AA02 BA01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 板状の金属多孔体、ルテニウム又はルテ
ニウムを含有する合金からなる触媒物質を担持させてな
ることを特徴とする水蒸気改質触媒。
1. A steam reforming catalyst comprising a plate-shaped porous metal body, and a catalyst substance comprising ruthenium or an alloy containing ruthenium supported thereon.
【請求項2】 請求項1記載の金属多孔体が、金属フォ
ーム又は金属短繊維焼結体であることを特徴とする水蒸
気改質触媒。
2. The steam reforming catalyst according to claim 1, wherein the porous metal body is a metal foam or a sintered metal short fiber.
【請求項3】 請求項1又は2記載の金属多孔体が、
鉄、ニッケル又はそれらの合金からなることを特徴とす
る水蒸気改質触媒。
3. The porous metal body according to claim 1 or 2,
A steam reforming catalyst comprising iron, nickel or an alloy thereof.
【請求項4】 板状の金属多孔体に、ルテニウム又はル
テニウムを含有する合金からなる触媒物質を酸液からの
イオン置換を行うことにより担持させることを特徴とす
る水蒸気改質触媒の製造方法。
4. A method for producing a steam reforming catalyst, comprising supporting a plate-shaped porous metal body with a catalyst substance made of ruthenium or an alloy containing ruthenium by ion-exchange from an acid solution.
【請求項5】 請求項4記載の金属多孔体が、金属フォ
ーム又は金属短繊維焼結体であることを特徴とする水蒸
気改質触媒の製造方法。
5. A method for producing a steam reforming catalyst, wherein the porous metal body according to claim 4 is a metal foam or a sintered metal short fiber.
【請求項6】 請求項4又は5記載の金属多孔体が、
鉄、ニッケル又はそれらの合金からなることを特徴とす
る水蒸気改質触媒の製造方法。
6. The metal porous body according to claim 4 or 5,
A method for producing a steam reforming catalyst comprising iron, nickel or an alloy thereof.
JP2000213093A 2000-07-13 2000-07-13 Method for producing steam reforming catalyst Expired - Fee Related JP4551538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000213093A JP4551538B2 (en) 2000-07-13 2000-07-13 Method for producing steam reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000213093A JP4551538B2 (en) 2000-07-13 2000-07-13 Method for producing steam reforming catalyst

Publications (3)

Publication Number Publication Date
JP2002028490A true JP2002028490A (en) 2002-01-29
JP2002028490A5 JP2002028490A5 (en) 2007-08-30
JP4551538B2 JP4551538B2 (en) 2010-09-29

Family

ID=18708904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000213093A Expired - Fee Related JP4551538B2 (en) 2000-07-13 2000-07-13 Method for producing steam reforming catalyst

Country Status (1)

Country Link
JP (1) JP4551538B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005145760A (en) * 2003-11-17 2005-06-09 Takehisa Yamaguchi Hydrogen production system by reforming hydrocarbon
US7223716B1 (en) 1999-04-09 2007-05-29 Nippon Soken, Inc. Ceramic support capable of supporting a catalyst, a catalyst-ceramic body and processes for producing same
US7358210B2 (en) 2001-03-22 2008-04-15 Denso Corporation Ceramic body and ceramic catalyst body
JP2009509299A (en) * 2005-09-16 2009-03-05 アイダテック, エル.エル.シー. Heat-prepared hydrogen generation fuel cell system
JP2012196662A (en) * 2011-03-08 2012-10-18 Denso Corp Steam-reforming catalyst and reforming catalytic body
JP2019034259A (en) * 2017-08-10 2019-03-07 国立研究開発法人物質・材料研究機構 Catalyst for hydrogen production and method for producing the same, and hydrogen production device
JP2019034256A (en) * 2017-08-10 2019-03-07 国立研究開発法人物質・材料研究機構 Catalyst for hydrogen production and method for producing the same, and hydrogen production device using the same
WO2020054170A1 (en) * 2018-09-14 2020-03-19 住友電気工業株式会社 Metallic porous body and steam reformer using same, and production method for metallic porous body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832001A (en) * 1981-08-20 1983-02-24 Babcock Hitachi Kk Apparatus for preparation of hydrogen
WO2000006295A1 (en) * 1998-07-27 2000-02-10 Battelle Memorial Institute Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
WO2000026137A1 (en) * 1998-11-05 2000-05-11 Abb Lummus Global Inc. Production of hydrogen-containing gas streams

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832001A (en) * 1981-08-20 1983-02-24 Babcock Hitachi Kk Apparatus for preparation of hydrogen
WO2000006295A1 (en) * 1998-07-27 2000-02-10 Battelle Memorial Institute Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
WO2000026137A1 (en) * 1998-11-05 2000-05-11 Abb Lummus Global Inc. Production of hydrogen-containing gas streams

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223716B1 (en) 1999-04-09 2007-05-29 Nippon Soken, Inc. Ceramic support capable of supporting a catalyst, a catalyst-ceramic body and processes for producing same
US7723263B2 (en) 1999-04-09 2010-05-25 Nippon Soken, Inc. Ceramic support capable of supporting a catalyst, a catalyst-ceramic body and processes for producing same
US7358210B2 (en) 2001-03-22 2008-04-15 Denso Corporation Ceramic body and ceramic catalyst body
JP2005145760A (en) * 2003-11-17 2005-06-09 Takehisa Yamaguchi Hydrogen production system by reforming hydrocarbon
JP2009509299A (en) * 2005-09-16 2009-03-05 アイダテック, エル.エル.シー. Heat-prepared hydrogen generation fuel cell system
JP2012196662A (en) * 2011-03-08 2012-10-18 Denso Corp Steam-reforming catalyst and reforming catalytic body
JP2019034259A (en) * 2017-08-10 2019-03-07 国立研究開発法人物質・材料研究機構 Catalyst for hydrogen production and method for producing the same, and hydrogen production device
JP2019034256A (en) * 2017-08-10 2019-03-07 国立研究開発法人物質・材料研究機構 Catalyst for hydrogen production and method for producing the same, and hydrogen production device using the same
WO2020054170A1 (en) * 2018-09-14 2020-03-19 住友電気工業株式会社 Metallic porous body and steam reformer using same, and production method for metallic porous body
US11938471B2 (en) 2018-09-14 2024-03-26 Sumitomo Electric Industries, Ltd. Metal porous body, water vapor reformer including the same, and method for manufacturing metal porous body

Also Published As

Publication number Publication date
JP4551538B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
Rizo et al. Shape-controlled nanoparticles as anodic catalysts in low-temperature fuel cells
CA2591162C (en) Hydrogen absorption induced metal deposition on palladium and palladium-alloy particles
Habibi et al. Carbon–ceramic supported bimetallic Pt–Ni nanoparticles as an electrocatalyst for oxidation of formic acid
US7579298B2 (en) Catalyst, electrode for fuel electrode in fuel cell, and fuel cell
US20100252422A1 (en) Carbon fiber-electrocatalysts for the oxidation of ammonia and ethanol in alkaline media and their application to hydrogen production, fuel cells, and purification processes
US8216437B2 (en) Electrochemical cell for oxidation of ammonia and ethanol
EP1232790A1 (en) Catalyst for exothermic or endothermic reaction, catalyst for water-gas-shift reaction and catalyst for selective oxidation of carbon monoxide, and plate-fin heat exchange type reformer
US20070197376A1 (en) Hydrocarbon reforming catalyst, method of preparing the same and fuel processor including the same
Yue et al. Mechanisms of Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction on High-Index Platinum n (111)–(111) Surfaces
WO2006080702A1 (en) Carbon nanotube for fuel cell, nanocompisite comprising the same, method for making the same, and fuel cell using the same
EP1759764A1 (en) Catalyst containing alumina, Cerium and more than 10% (expressed as oxide) by weight of either Strontium and/or Barium for treating NOx-containing exhaust gas.
US20070082236A1 (en) Catalyst for reforming fuel and fuel cell system comprising the same
EP2664378A2 (en) Metal structure catalyst and preparation method thereof
JP4223619B2 (en) Electrolytic cathode and electrolytic cell equipped with the cathode
US20090220682A1 (en) catalysts for fuel cell applications using electroless deposition
US8221610B2 (en) Electrochemical method for providing hydrogen using ammonia and ethanol
JP3908173B2 (en) Platinum-ruthenium based quaternary metal catalyst for direct methanol fuel cell
US20090081500A1 (en) Fuel cell utilizing ammonia, ethanol or combinations thereof
JP2002028490A (en) Water vapor reforming catalyst and producing method thereof
JPH0665038B2 (en) Fuel cell
EP1899264A2 (en) Hydrogen generation catalysys and system for hydrogen generation
US6916458B2 (en) Process for producing hydrogen-containing gas
JP2002028490A5 (en)
Baek et al. Pd–Cu alloy catalyst synthesized by citric acid-assisted galvanic displacement reaction for N 2 O reduction
JP6010935B2 (en) Porous metal body coated with anodized film and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070712

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees