JP2794427B2 - Oxidation combustion method using heat conductive catalyst - Google Patents

Oxidation combustion method using heat conductive catalyst

Info

Publication number
JP2794427B2
JP2794427B2 JP63296172A JP29617288A JP2794427B2 JP 2794427 B2 JP2794427 B2 JP 2794427B2 JP 63296172 A JP63296172 A JP 63296172A JP 29617288 A JP29617288 A JP 29617288A JP 2794427 B2 JP2794427 B2 JP 2794427B2
Authority
JP
Japan
Prior art keywords
heat conductive
catalyst
conductive carrier
fluid
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63296172A
Other languages
Japanese (ja)
Other versions
JPH02143010A (en
Inventor
秀雄 亀山
正人 金子
彰 小渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP63296172A priority Critical patent/JP2794427B2/en
Publication of JPH02143010A publication Critical patent/JPH02143010A/en
Application granted granted Critical
Publication of JP2794427B2 publication Critical patent/JP2794427B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば工場排出ガス中の有機物、該有機物
以外の一酸化炭素もしくはメタン、またはメタンなどの
可燃性物質などの被処理流体を効率よく酸化燃焼反応さ
せることができる高熱伝導性触媒体を用いた酸化燃焼方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is intended to efficiently treat a fluid to be treated such as an organic substance in a factory exhaust gas, carbon monoxide or methane other than the organic substance, or a combustible substance such as methane. The present invention relates to an oxidative combustion method using a highly heat-conductive catalyst that can cause an oxidative combustion reaction.

〔従来の技術〕[Conventional technology]

従来、熱伝導性触媒体を用いた酸化燃焼方法として、
例えば熱伝導性担体の表面を粗面化し、そののち触媒活
性を有する金属を担持せしめた熱伝導性触媒体を用いて
酸化燃焼反応を行う方法がある。なお、この触媒反応体
の粗面化は、熱伝導性担体の表面を一般的な粗面加工を
行うことでなされる。
Conventionally, as an oxidation combustion method using a thermally conductive catalyst,
For example, there is a method in which the surface of a heat conductive carrier is roughened, and then an oxidative combustion reaction is performed using a heat conductive catalyst in which a metal having catalytic activity is supported. The catalyst reactant is roughened by performing a general roughening process on the surface of the heat conductive carrier.

また、この触媒反応体として、例えば特開昭47−3378
5号公報、あるいは特開昭62−237947号公報に記載され
たようなものが知られている。
As the catalyst reactant, for example, JP-A-47-3378
Japanese Unexamined Patent Application Publication No. 5 or JP-A-62-237947 is known.

これらの触媒反応体は、被処理流体の流路となる筒状
熱伝導性担体の少なくとも筒内周面を熱伝導性触媒体と
なすことで、この筒内に被処理流体を流通させるだけ触
媒作用により被処理流体の酸化燃焼反応を促進してその
反応効率を向上させるものがある。
These catalytic reactants are formed by forming at least the inner peripheral surface of the cylindrical heat conductive carrier, which serves as a flow path of the fluid to be treated, as a thermally conductive catalyst, so that the catalyst can only flow through the fluid in the cylinder. Some of them promote the oxidative combustion reaction of the fluid to be treated by the action to improve the reaction efficiency.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところで、従来の熱伝導性触媒体を用いた酸化燃焼方
法では、このように熱伝導性担体の表面を一般的な粗面
加工により粗面化しているだけであるため、触媒活性を
有する金属を担持可能な表面積はさほど大きくなく、従
ってこの触媒反応体を使用して酸化燃焼反応を行った場
合の触媒反応もさほど良好ではない。
By the way, in the conventional oxidative combustion method using a thermally conductive catalyst, since the surface of the thermally conductive carrier is merely roughened by general roughening, a metal having catalytic activity is removed. The surface area that can be supported is not so large, and thus the catalytic reaction when oxidizing and burning reaction is performed using this catalytic reactant is not so good.

また、筒状熱伝導性担体を触媒反応体とした場合に
も、触媒活性を有する金属が担持される筒内周面など
は、前述したように一般的な粗面加工により粗面化され
るだけであるため、同様に酸化燃焼反応を行った場合の
触媒反応は良好ではない。
In addition, even when the tubular heat conductive carrier is used as a catalyst reactant, the inner peripheral surface of the cylinder on which a metal having catalytic activity is supported is roughened by general roughening as described above. Therefore, the catalytic reaction when the oxidative combustion reaction is similarly performed is not good.

本発明は、このような従来技術を背景になされたもの
で、より以上に被処理流体の反応効率を向上できる熱伝
導性触媒体を用いた酸化燃焼方法を提供することを目的
とする。
The present invention has been made on the background of such a conventional technique, and an object of the present invention is to provide an oxidative combustion method using a thermally conductive catalyst that can further improve the reaction efficiency of a fluid to be treated.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、熱伝導性担体の表面を粗面化し、そののち
50〜350℃、PH7以上の熱水または水蒸気を用いて熱処理
を施したのち、または熱水処理を施しながら、触媒活性
を有する金属を担持させた熱伝導性触媒体を用いて、可
燃性物質を酸化燃焼させることを特徴とする熱伝導性触
媒体を用いた酸化燃焼方法を提供するものである。。
The present invention provides a method for roughening the surface of a heat conductive carrier,
After a heat treatment using hot water or steam at a temperature of 50 to 350 ° C. and a pH of 7 or more, or while performing a hot water treatment, using a heat conductive catalyst supporting a metal having catalytic activity, a combustible substance is used. To provide an oxidative combustion method using a thermally conductive catalyst, characterized by oxidizing and combusting. .

本発明に使用される熱伝導性担体の素材には、例えば
アルミニウム、マグネシウム、クロム、モリブデン、タ
ングステン、マンガン、鉄、コバルト、ニッケル、チタ
ン、ジルコニウム、バナジウム、銅、銀、亜鉛、ビスマ
ス、スズ、鉛もしくはアンチモンなどからなる単一の金
属、または合金の板、複数の金属板を重合させた金属合
板または海綿状金属板などが使用でき、またそれらの表
面にアルミニウム薄膜を付着させたものが使用でき、特
に鉄、銅、ステンレス合金およびアルミニウムが経済性
などの点から好ましいものの、必ずしもこれらの素材に
限定しなくともよい。また、その形状は、板状などどの
ような形状でもよい。
The material of the heat conductive carrier used in the present invention includes, for example, aluminum, magnesium, chromium, molybdenum, tungsten, manganese, iron, cobalt, nickel, titanium, zirconium, vanadium, copper, silver, zinc, bismuth, tin, A single metal or alloy plate made of lead or antimony, a metal plywood or spongy metal plate obtained by polymerizing multiple metal plates can be used, and those with an aluminum thin film adhered to their surface are used In particular, iron, copper, stainless alloy and aluminum are preferable in terms of economy and the like, but are not necessarily limited to these materials. Further, the shape may be any shape such as a plate shape.

なお、触媒が結着される面は、この熱伝導性担体の適
宜表面であればよく、また結着される触媒の触媒活性を
向上させるために、粗面化した金属表面に触媒担持活性
を有する微粒子を結着させたのち、さらに触媒物質を担
持させることもできる。
The surface to which the catalyst is bound may be any suitable surface of the heat conductive carrier, and in order to improve the catalytic activity of the catalyst to be bound, the catalyst carrying activity is imparted to the roughened metal surface. After binding the fine particles, the catalyst material can be further supported.

このとき、触媒担体として海綿状金属を使用すれば、
触媒担体の熱伝導が大きくなり、熱交換を有する触媒と
して極めて良好なものとなすことができる。
At this time, if a spongy metal is used as the catalyst carrier,
The heat conduction of the catalyst carrier is increased, so that a very good catalyst having heat exchange can be obtained.

また、本発明におけるこの熱伝導性担体の表面を粗面
化方法としては、ボール目立て、砂目立てなどの機械的
方法、エッチングなどの化学的方法、陽極酸化などの電
気化学的方法など、公知の方法の中から適宜選択して採
用することができが、特に表面積を増大させる観点から
陽極酸化の方が好ましい。
In addition, as a method for roughening the surface of the heat conductive carrier in the present invention, known methods such as ball dressing, mechanical methods such as graining, chemical methods such as etching, electrochemical methods such as anodic oxidation, etc. An appropriate method can be selected from the methods, and anodic oxidation is particularly preferable from the viewpoint of increasing the surface area.

この陽極酸化とは、陽極の電位を平衡電位よりも貴の
電位にして酸化反応を行わせるものであり、この陽極酸
化に使用される処理液としては例えばクロム酸水溶液、
シュウ酸水溶液、硫酸水溶液などが挙げられる。
The anodic oxidation is to make the potential of the anode a noble potential than the equilibrium potential to perform an oxidation reaction. Examples of the processing liquid used for the anodic oxidation include a chromic acid aqueous solution,
An oxalic acid aqueous solution, a sulfuric acid aqueous solution and the like can be mentioned.

また、この処理液の温度は、常温〜50℃、特に30〜40
℃が好ましく、常温未満では緻密な膜となり、一方50℃
を超えると溶解が激しく、経済的に酸化膜を形成させる
ことが困難となる。
The temperature of the processing solution is from room temperature to 50 ° C., especially from 30 to 40 ° C.
° C is preferable, and if the temperature is lower than room temperature, a dense film is formed.
If it exceeds 300, the dissolution is severe and it is difficult to form an oxide film economically.

また、この陽極酸化の場合における熱伝導性担体の処
理液との処理時間は、1時間以上、特に6〜12時間が好
ましく、1時間未満では表面積の増大が不充分ととな
り、一方12時間を超えても、表面積の増大は望めず、経
済的に不利となる。
In addition, in the case of this anodization, the processing time of the heat conductive carrier with the processing solution is preferably 1 hour or more, particularly 6 to 12 hours, and if it is less than 1 hour, the increase in surface area becomes insufficient, while 12 hours Even if it exceeds, the increase of the surface area cannot be expected, and it is economically disadvantageous.

さらにまた、前述した海綿状金属を使用する場合はエ
ッチングまたは陽極酸化によって表面を粗面化させる。
このように、触媒を担持させる表面を粗面化することに
よって有効な触媒表面を増大させることができる。
Furthermore, when the above-mentioned spongy metal is used, the surface is roughened by etching or anodic oxidation.
Thus, the effective catalyst surface can be increased by roughening the surface supporting the catalyst.

本発明に使用される熱水および水蒸気とは、触媒体の
表面積を増大させるための熱処理を施すための加熱され
た水および水蒸気である。
The hot water and steam used in the present invention are heated water and steam for performing a heat treatment for increasing the surface area of the catalyst.

この熱水および水蒸気の温度(熱処理温度)は、50〜
350℃、特に50〜150℃が好ましく、50℃未満では触媒体
の表面積の増大が不充分となり、一方150℃を超えると
装置費が嵩み、経済的でない。
The temperature of this hot water and steam (heat treatment temperature) is 50 ~
The temperature is preferably 350 ° C., particularly preferably 50 to 150 ° C., and if it is lower than 50 ° C., the surface area of the catalyst body is insufficiently increased, while if it exceeds 150 ° C., the equipment cost increases and it is not economical.

また、この熱水のPHは、7以上、特に10〜12が好まし
く、7未満では触媒体の溶解が生じて表面積が減少す
る。
Further, the pH of the hot water is preferably 7 or more, particularly preferably 10 to 12, and if it is less than 7, dissolution of the catalyst body occurs to decrease the surface area.

なお、この熱伝導性担体の熱水処理の処理時間は、好
ましくは1〜3時間、特に1〜2時間が好ましく、1時
間未満では表面積の増大が不充分となり、一方3時間を
超えても、表面積の増大は望めず経済的に不利となる。
In addition, the treatment time of the hot water treatment of the heat conductive carrier is preferably 1 to 3 hours, particularly preferably 1 to 2 hours, and if it is less than 1 hour, the increase in surface area becomes insufficient, and even if it exceeds 3 hours. However, an increase in surface area cannot be expected, which is economically disadvantageous.

本発明に使用される触媒活性を有する金属とは、この
熱伝導性触媒体に使用される触媒のことで、その素材は
特に限定されるものではないが、例えば白金族金属、
金、銅、ニッケル、マンガン、鉄、亜鉛、コバルトなど
の単一の金属、またはこれらの合金の中から選択するこ
とが好ましく、特に白金、パラジウム、ニッケルおよび
コバルトの中から選択することが好ましい。また、これ
らの触媒物質を組み合わせることもできる。
The metal having catalytic activity used in the present invention refers to a catalyst used for the thermally conductive catalyst, and its material is not particularly limited. For example, a platinum group metal,
It is preferable to select from a single metal such as gold, copper, nickel, manganese, iron, zinc, cobalt, or an alloy thereof, and it is particularly preferable to select from platinum, palladium, nickel and cobalt. Further, these catalyst substances can be combined.

本発明におけるこの触媒活性を有する金属による熱伝
導性担体の担持は、熱処理後または熱処理と同時に行わ
れる。
In the present invention, the supporting of the thermally conductive carrier by the metal having catalytic activity is performed after or simultaneously with the heat treatment.

本発明における触媒活性を有する金属を担持する方法
としては、電着法、化学的付着法、真空蒸着法、陰極ス
パッター法、金属スプレー法および金属クラッド法など
の公知の方法の中から適宜選択して採用させることがで
きる。例えば、粗面化させた金属表面に触媒担持活性を
有する微粒子を結着させた触媒担体に超微粒子の白金触
媒を担持させる場合には、PHが7以上、好ましくは11〜
13の塩化白金酸(H2PtCl4)の水溶液に浸漬させるなど
の方法を採用させることもできる。
The method for supporting a metal having catalytic activity in the present invention is appropriately selected from known methods such as an electrodeposition method, a chemical deposition method, a vacuum deposition method, a cathode sputtering method, a metal spray method and a metal cladding method. Can be adopted. For example, in the case where an ultrafine platinum catalyst is supported on a catalyst carrier in which fine particles having catalyst supporting activity are bound on a roughened metal surface, the PH is 7 or more, preferably 11 to
Alternatively, a method of immersion in an aqueous solution of chloroplatinic acid (H 2 PtCl 4 ) of No. 13 may be employed.

また、この粗面化された担体表面に2段階の工程を経
て触媒を担持させることもできる。
Further, a catalyst can be supported on the roughened support surface through a two-step process.

すなわち、第1段階は前記粗面化された表面に触媒活
性を有する微粒子を結着させる工程である。
That is, the first step is a step of binding fine particles having catalytic activity to the roughened surface.

このようにして得られた触媒担持活性を有する微粒子
を結着させた金属表面に、次いで超微粒子を触媒物質を
担持させた場合には、単に粗面化された金属表面に触媒
物質の超微粒子を担持させた場合に比べて、著しく触媒
活性を向上させることができる。
When the catalyst material is supported on the metal surface to which the thus-obtained fine particles having the catalyst-supporting activity are bound, and then the ultrafine particles are supported on the metal surface, the ultrafine particles of the catalyst material are simply formed on the roughened metal surface. The catalyst activity can be remarkably improved as compared with the case where is carried.

このようにして製造された熱伝導性触媒体は、被処理
流体の酸化燃焼反応に使用される。
The thermally conductive catalyst body thus manufactured is used for the oxidative combustion reaction of the fluid to be treated.

この被処理流体としては、可燃性物質、例えば工場排
ガス中の有機物、該有機物以外の一酸化炭素、メタン;
そのほかアセトンなどが挙げられる。
Examples of the fluid to be treated include flammable substances such as organic substances in factory exhaust gas, carbon monoxide other than the organic substances, and methane;
Other examples include acetone.

さらに、この被処理流体の酸化燃焼反応における反応
温度は、常温以上、特に150〜1,500℃が好ましく、常温
未満では反応が不充分となり、一方1,500℃を超えると
材料の耐熱性が問題となる。
Further, the reaction temperature of the fluid to be treated in the oxidative combustion reaction is preferably room temperature or higher, particularly preferably 150 to 1,500 ° C. If the temperature is lower than room temperature, the reaction becomes insufficient. On the other hand, if it exceeds 1,500 ° C, the heat resistance of the material becomes a problem.

また、この熱伝導性担体として筒状熱伝導性担体およ
び/またはこの筒状熱伝導性担体内に嵌挿されて筒内に
螺旋流路を形成する螺旋状熱伝導性担体を使用すれば、
被処理流体の触媒体との接触面積を比較的大きく取れ、
従って被処理流体の反応効率をより向上できる。
Further, if a cylindrical heat conductive carrier and / or a helical heat conductive carrier which is inserted into the cylindrical heat conductive carrier to form a helical flow path in the tube is used as the heat conductive carrier,
A relatively large contact area between the fluid to be treated and the catalyst body is obtained.
Therefore, the reaction efficiency of the fluid to be processed can be further improved.

前記筒状熱伝導性担体の素材は、前記熱伝導性担体の
素材と同様で、その形状は円筒状または角形筒状といっ
た筒状体であればどのような形状でもよい。
The material of the tubular heat conductive carrier is the same as the material of the heat conductive carrier, and its shape may be any shape as long as it is a cylindrical body such as a cylinder or a rectangular tube.

なお、この筒状熱伝導性担体における触媒が結着され
る面は少なくともこの内周面が含まれていればよい。ま
た、この触媒も前記熱伝導性担体に担持されるものと同
一のものが使用される。
Note that the surface of the tubular heat conductive carrier to which the catalyst is bound only needs to include at least the inner peripheral surface. Also, the same catalyst as that supported on the heat conductive carrier is used.

前記螺旋状熱伝導性担体は、熱伝導性担体および筒状
熱伝導性担体と同様の素材からなり、その所定表面に触
媒が担持される。
The helical heat conductive carrier is made of the same material as the heat conductive carrier and the tubular heat conductive carrier, and a catalyst is supported on a predetermined surface thereof.

この螺旋状熱伝導性担体は、長尺矩形の金属板を長手
方向に捩じって螺旋状に形成させ、かつ前記のような本
願発明に適用される触媒の担持方法によって触媒を結着
させたものである。
This helical heat conductive support is formed by twisting a long rectangular metal plate in the longitudinal direction to form a helical shape, and binding the catalyst by the catalyst supporting method applied to the present invention as described above. It is a thing.

なお、この螺旋状熱伝導性担体の形状は、板状でなく
とも例えば断面形状が円形、楕円形または多角形などの
適宜形状のものであってもよく、また前述した金属板に
触媒を結着させたのちに捩じって螺旋状に形成させても
よく、さらにアルミナまたはシリカなどの微粒子を結着
させたのちに触媒を担持させてもよい。
The shape of the helical heat conductive carrier is not limited to a plate shape, and may be, for example, a cross-sectional shape having an appropriate shape such as a circle, an ellipse, or a polygon. After being attached, it may be formed into a spiral shape by twisting, and further, a catalyst may be carried after binding fine particles such as alumina or silica.

また、螺旋状熱伝導性担体の捩じれピッチは適宜設定
できる。
The twist pitch of the spiral heat conductive carrier can be set as appropriate.

以下、本発明を図面を参照してさらに詳細に説明す
る。
Hereinafter, the present invention will be described in more detail with reference to the drawings.

本発明の熱伝導性触媒体を用いた酸化燃焼方法に使用
する熱伝導性触媒体Aは、第1図に示すように筒状熱伝
導性担体(熱伝導性担体)10の内周面を粗面化し、その
のち所定の温度およびPHの熱水または水蒸気を用いて熱
処理を施し、次にまたこの内周面に触媒(触媒活性を有
する金属)20を担持したもので、本発明の方法ではこの
熱伝導性触媒体Aの筒内に例えばアセトンなどの被処理
流体Zを流通させることで酸化燃焼反応を行うものであ
る。このように、触媒が担持される筒状熱伝導性担体10
の内周面を熱処理するため、単に筒状熱伝導性担体10に
触媒を担持させたものより、この触媒の熱処理流体に対
する接触面積が大きくなり、従ってより以上に被処理流
体Zの反応効率を向上できる。
As shown in FIG. 1, the heat conductive catalyst A used in the oxidizing and burning method using the heat conductive catalyst of the present invention has an inner peripheral surface of a cylindrical heat conductive carrier (heat conductive carrier) 10. Roughening, followed by heat treatment using hot water or steam at a predetermined temperature and PH, and then carrying a catalyst (metal having catalytic activity) 20 on the inner peripheral surface thereof. In this method, an oxidizing combustion reaction is performed by causing a fluid Z to be treated such as acetone to flow through the cylinder of the thermally conductive catalyst A. Thus, the tubular heat conductive carrier 10 on which the catalyst is supported
In order to heat-treat the inner peripheral surface of the catalyst, the contact area of the catalyst with the heat treatment fluid is larger than that of simply supporting the catalyst on the tubular heat conductive carrier 10, and therefore, the reaction efficiency of the fluid Z to be treated is further improved. Can be improved.

次に、第2図に示すような別の本発明の熱伝導性触媒
体を用いた酸化燃焼方法に使用される熱伝導性触媒体B
は、螺旋状熱伝導性担体(熱伝導性担体)30の表裏面を
粗面化し、そののちこれに所定の温度およびPHの熱水ま
たは水蒸気を用いて熱処理を施し、次にまたこの表裏面
に前記触媒20を担持したものを、触媒20を担持させた筒
状熱伝導性担体10内に嵌挿してこの熱伝導性筒体10内に
螺旋流路40を形成させたものである。
Next, as shown in FIG. 2, another thermally conductive catalyst B used in the oxidation combustion method using the thermally conductive catalyst of the present invention.
Is to roughen the front and back surfaces of the spiral heat conductive carrier (heat conductive carrier) 30, and then heat-treat it with hot water or steam at a predetermined temperature and PH. The helical flow path 40 is formed in the heat conductive tubular body 10 by inserting the catalyst 20 carrying the catalyst 20 into the tubular heat conductive carrier 10 carrying the catalyst 20.

本発明の方法では、この熱伝導性触媒体Aの筒内に同
様に例えばアセトンなどの被処理流体Zを流通させるこ
とで酸化燃焼反応を行うものである。
In the method of the present invention, an oxidative combustion reaction is also performed by causing a fluid to be treated Z such as acetone to flow through the cylinder of the thermally conductive catalyst A in the same manner.

このとき、被処理流体Zの筒状熱伝導性担体10の筒内
の流れは、この筒状熱伝導性担体10の一方の開口部から
筒内に被処理流体Zを供給させると、この被処理流体Z
は筒状熱伝導性担体10内に形成された螺旋流路40に沿っ
て回転されつつ他方の開口部から流出される。このた
め、この筒状熱伝導性担体10の筒内では被処理流体Zの
乱流が発生し、従ってこの被処理流体Zと担持された触
媒20との接触面積が大きくなってさらに被処理流体Zの
反応効率が向上する。
At this time, the flow of the fluid to be treated Z in the cylinder of the tubular heat conductive carrier 10 is caused by supplying the fluid to be treated Z into the cylinder from one opening of the tubular heat conductive carrier 10. Processing fluid Z
Is discharged from the other opening while being rotated along the spiral flow path 40 formed in the tubular heat conductive carrier 10. As a result, a turbulent flow of the fluid Z to be treated is generated in the cylinder of the tubular heat conductive carrier 10, so that the contact area between the fluid Z to be treated and the supported catalyst 20 is increased, and the fluid to be treated is further increased. The reaction efficiency of Z is improved.

またこのとき、この筒状熱伝導性担体10とともに螺旋
状熱伝導性担体30にも触媒20が担持されているため、被
処理流体Zの触媒20との接触面積が大きくなり、従って
より被処理流体Zの反応効率が向上する。
At this time, since the catalyst 20 is also supported on the spiral heat conductive carrier 30 together with the cylindrical heat conductive carrier 10, the contact area of the fluid Z to be treated with the catalyst 20 is increased, and thus The reaction efficiency of the fluid Z is improved.

さらに、酸化燃焼反応において反応生成された熱エネ
ルギーは筒状熱伝導性担体10を伝導して外部放散される
が、このときこの触媒20を担持させていない筒状熱伝導
性担体10内に触媒20を担持する螺旋状熱伝導性担体30を
嵌挿したものの場合には、前述したように筒状熱伝導性
担体10の筒内では被処理流体Zの乱流が発生するため、
この乱流が内周面付近に形成される流体境膜の減少を促
し、より以上の熱伝導性触媒体Aの熱伝導率の向上をも
可能となる。
Further, the heat energy generated in the oxidative combustion reaction is transmitted to the tubular heat conductive carrier 10 and radiated to the outside.At this time, the catalyst is placed in the tubular heat conductive carrier 10 not supporting the catalyst 20. In the case where the helical heat conductive carrier 30 carrying 20 is inserted, a turbulent flow of the processing target fluid Z occurs in the cylinder of the cylindrical heat conductive carrier 10 as described above,
This turbulence promotes a decrease in the fluid film formed near the inner peripheral surface, and it is possible to further improve the thermal conductivity of the thermally conductive catalyst A.

さらにまた、この触媒20を担持させた螺旋状熱伝導性
担体30は、触媒20が劣化したときは、この螺旋状熱伝導
性担体30を筒状熱伝導性担体10から取り出して再生使用
することができる。
Furthermore, when the catalyst 20 has deteriorated, the spiral heat conductive carrier 30 supporting the catalyst 20 can be taken out of the tubular heat conductive carrier 10 and recycled. Can be.

次に、第3図に示すようなさらに別の本発明の熱伝導
性触媒体を用いた酸化燃焼方法に使用される熱伝導性触
媒体Cは、この筒状熱伝導性担体10の外周面に、表面積
を大きくしてこの筒状熱伝導性担体10の熱伝導率をより
以上向上させる多数のフィン11を形成させたものであ
る。
Next, as shown in FIG. 3, a thermal conductive catalyst C used in an oxidizing combustion method using the thermal conductive catalyst of the present invention is an outer peripheral surface of the cylindrical thermal conductive carrier 10. In addition, a large number of fins 11 are formed to increase the surface area to further improve the thermal conductivity of the tubular heat conductive carrier 10.

なお、このフィン11は良好な熱伝導性を有する中空円
盤状であり、中空部に嵌挿される筒状熱伝導性担体10の
外周面の筒軸方向に等間隔で多数突設されているが、こ
れに限定させなくとも例えば他の形状および他の任意間
隔で任意数形成させてもよい。このように、この筒状熱
伝導性担体10の外周面に多数のフィン11を周設させるこ
とで、このフィン11を介して熱伝導係数が高くなり、こ
れによってさらに筒状熱伝導性担体10の熱伝導率が向上
する。
The fins 11 are formed in a hollow disk shape having good thermal conductivity, and a large number of the fins 11 are protruded at equal intervals in the cylinder axis direction on the outer peripheral surface of the cylindrical heat conductive carrier 10 inserted into the hollow portion. However, without being limited to this, any number may be formed in other shapes and other arbitrary intervals, for example. In this way, by providing a large number of fins 11 around the outer peripheral surface of the cylindrical heat conductive carrier 10, the heat conduction coefficient increases through the fins 11, thereby further increasing the cylindrical heat conductive carrier 10. The thermal conductivity is improved.

〔作用〕[Action]

本発明の触媒反応体は、まず熱伝導性担体の表面を粗
面化し、そののち50〜350℃、PH7以上の熱水または水蒸
気を用いて熱処理を施したのち、または熱処理を施しな
がら触媒活性を有する金属を担持せしめることで、熱伝
導性担体の表面が浸食されて実質的に熱伝導性担体の表
面積が増大する。
The catalytic reactant of the present invention first roughens the surface of the thermally conductive carrier, and then performs heat treatment using hot water or steam at 50 to 350 ° C. and PH of 7 or higher, or performs catalytic activity while performing the heat treatment. By supporting a metal having the following formula, the surface of the heat conductive carrier is eroded, and the surface area of the heat conductive carrier is substantially increased.

次にまた、この表面積が増大した熱伝導性担体を用い
て酸化燃焼反応を行うことで、触媒活性を有する金属と
被処理流体との接触面積が増大してより以上にこの被処
理流体の反応効率の向上ができる。
Next, by performing an oxidative combustion reaction using the thermally conductive carrier having the increased surface area, the contact area between the metal having catalytic activity and the fluid to be treated is increased, and the reaction of the fluid to be treated is further increased. Efficiency can be improved.

また、この熱伝導性担体として筒状熱伝導性担体およ
び/またはこの筒状熱伝導性担体内に嵌挿されて筒内に
螺旋流路を形成する螺旋状熱伝導性担体を使用した場合
においては、この筒状熱伝導性担体の一方の開口部から
筒内に被処理流体を供給させると、この被処理流体は筒
内周面に沿って真っ直ぐ、または熱伝導性筒体内に形成
された螺旋流路に沿って回転されつつ他方の開口部から
流出される。このため、この被処理流体と触媒との接触
面積が大きくなってより被処理流体の反応効率が向上す
る。
Further, in the case where a cylindrical heat conductive carrier and / or a helical heat conductive carrier which is inserted into the cylindrical heat conductive carrier and forms a helical flow path in the tube is used as the heat conductive carrier. When the fluid to be treated is supplied into the cylinder from one opening of the tubular heat conductive carrier, the fluid to be treated is formed straight along the inner peripheral surface of the cylinder or formed in the thermally conductive cylinder. While being rotated along the spiral flow path, it flows out of the other opening. For this reason, the contact area between the fluid to be treated and the catalyst is increased, and the reaction efficiency of the fluid to be treated is improved.

また、螺旋状熱伝導性担体を使用した場合には、この
熱伝導性筒体の筒内では被処理流体の乱流が発生し、従
ってこの被処理流体と触媒体に担持された触媒との接触
面積が大きくなってさらに被処理流体の反応効率が向上
する。
When a helical heat conductive carrier is used, a turbulent flow of the fluid to be processed is generated in the heat conductive cylindrical body, and therefore, the flow of the fluid to be processed and the catalyst supported on the catalyst body are generated. The contact area is increased, and the reaction efficiency of the fluid to be treated is further improved.

さらに、この螺旋状熱伝導性担体を使用した場合に
は、発熱または吸熱反応において反応生成された熱エネ
ルギーは、熱伝導性筒体を伝導して外部放散されるが、
このとき前述したように熱伝導性筒体の筒内では被処理
流体の乱流が発生し、従ってこの乱流が内周面付近に形
成される流体境膜の減少を促し、より熱伝導性筒体の熱
伝導率が向上する。
Furthermore, when this helical heat conductive carrier is used, the heat energy generated in the exothermic or endothermic reaction is conducted outside through the heat conductive cylinder,
At this time, as described above, the turbulent flow of the fluid to be processed is generated in the heat conductive cylindrical body, and this turbulent flow promotes the reduction of the fluid film formed near the inner peripheral surface, and the heat conductive property is increased. The thermal conductivity of the cylinder is improved.

さらにまた、螺旋状熱伝導性担体の他に熱伝導性筒体
をも熱伝導性触媒体となした場合には、この筒体周面で
も被処理流体の触媒反応が生じ、従って被処理流体の触
媒体との接触面積がより大きくなり、このためさらに被
処理流体の反応効率が向上する。
Furthermore, when a heat conductive cylinder is also used as the heat conductive catalyst in addition to the spiral heat conductive carrier, a catalytic reaction of the fluid to be treated also occurs on the peripheral surface of the cylinder, and therefore, the fluid to be treated is Has a larger contact area with the catalyst body, which further improves the reaction efficiency of the fluid to be treated.

また、螺旋状熱伝導性担体を使用した場合には、触媒
が劣化した場合にもこの触媒体のみを抜き出させ、再生
後に再び熱伝導性筒体内へ嵌挿させることで、この触媒
体の再生使用が容易にできる。
Also, when a helical heat conductive carrier is used, even when the catalyst has deteriorated, only the catalyst body is extracted, and after regenerating, the catalyst body is inserted again into the heat conductive cylinder to thereby reduce the catalyst body. It can be easily recycled.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照して具体的に説明
するが、本考案はこの実施例に限定されるものではな
い。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings, but the present invention is not limited to these embodiments.

実施例1〜2 第1図の筒状熱伝導性担体のみを熱伝導性触媒体とし
たもの(実施例1)、および第2図に示す筒状熱伝導性
担体内に螺旋状熱伝導性担体を嵌挿し、いずれも熱伝導
性触媒体となしたもの(実施例2)を用い、被処理流体
としてアセトン(600ppm/air)を使用し、反応温度150
〜240℃、流量0.35〜1.20/分の反応条件で酸化燃焼
反応を行った。
Examples 1 and 2 A case where only the tubular heat conductive carrier shown in FIG. 1 was used as the heat conductive catalyst (Example 1), and a case where the helical heat conductivity was contained in the tubular heat conductive carrier shown in FIG. A carrier was inserted, all of which were used as heat conductive catalysts (Example 2), acetone (600 ppm / air) was used as a fluid to be treated, and the reaction temperature was 150.
The oxidation combustion reaction was performed under the reaction conditions of ~ 240 ° C and a flow rate of 0.35 to 1.20 / min.

なお、これらの筒状熱伝導性担体および螺旋状熱伝導
性担体の調製は、 陽極酸化 2.5重量%クロム酸水溶液中、6時間、
液温38℃、電流密度19.0A/m2 焼成 350℃、1時間、空気中 白金担持 2.5g−Pt/ml塩化白金酸熱水溶液 (熱水処理) pH11、2時間 水素還元 200℃、2時間 であった。
The preparation of the tubular heat conductive carrier and the helical heat conductive carrier was carried out in an anodized 2.5 wt% chromic acid aqueous solution for 6 hours.
Liquid temperature 38 ° C, current density 19.0A / m 2 Baking 350 ° C, 1 hour, Platinum-supported in air 2.5g-Pt / ml Chloroplatinic acid hot aqueous solution (Hot water treatment) pH 11, 2 hours Hydrogen reduction 200 ° C, 2 hours Met.

このときの触媒の物性および反応速度を、第1表に示
す。また、第4図にこの酸化燃焼反応における被処理流
体と触媒との接触時間−温度と除去率との関係を、また
第5図にこの酸化燃焼反応における接触時間と除去率と
の関係を示す。
Table 1 shows the physical properties and reaction rate of the catalyst at this time. FIG. 4 shows the relationship between the contact time-temperature of the fluid to be treated and the catalyst in this oxidative combustion reaction and the removal rate, and FIG. 5 shows the relationship between the contact time and the removal rate in this oxidative combustion reaction. .

第1表から明らかなように、熱処理により触媒表面積
が約5倍程度に向上していることが明らかである。ま
た、第4図から明らかなように、300℃以下で完全に酸
化燃焼が可能である。
As is evident from Table 1, it is clear that the surface area of the catalyst has been increased about 5 times by the heat treatment. Further, as is apparent from FIG. 4, it is possible to perform oxidative combustion completely at 300 ° C. or lower.

さらに、第5図から明らかなように、螺旋状熱伝導性
担体を使用することにより、反応管容積あたりの触媒活
性が増大している。
Further, as is apparent from FIG. 5, the use of the helical heat conductive carrier increases the catalytic activity per reaction tube volume.

〔発明の効果〕 本発明は、このように熱伝導性担体の表面を粗面化
し、そののち50〜350℃、PH7以上の熱水または水蒸気を
用いて熱水処理を施したのちまたは熱水処理を施しなが
ら触媒活性を有する金属を担持せしめた熱伝導性触媒体
を用いて、酸化燃焼反応を行うことで、触媒活性を有す
る金属が担持される熱伝導性担体の表面積が大きくな
り、このためより以上に被処理流体の反応効率が向上す
るという効果が得られる。
[Effects of the Invention] The present invention thus roughens the surface of the heat conductive carrier, and then performs a hot water treatment using hot water or steam having a temperature of 50 to 350 ° C. and a pH of 7 or more, or hot water. By performing an oxidative combustion reaction using a thermally conductive catalyst body carrying a metal having catalytic activity while performing the treatment, the surface area of the thermally conductive carrier on which the metal having catalytic activity is carried increases, Therefore, the effect that the reaction efficiency of the fluid to be treated is improved is obtained.

また、この熱伝導性担体として筒状熱伝導性担体およ
び/またはこの筒状熱伝導性担体内に嵌挿されて筒内に
螺旋流路を形成する螺旋状熱伝導性担体を使用した場合
には、触媒活性を有する金属が担持される熱伝導性担体
の表面が円周面であるため、この熱伝導性担体の表面積
が大きくなり、このためより被処理流体の反応効率が向
上するという効果が得られる。
Further, when a tubular heat conductive carrier and / or a spiral heat conductive carrier which is inserted into the tubular heat conductive carrier and forms a spiral flow path in the tube is used as the heat conductive carrier. Is because the surface of the heat conductive carrier on which the metal having catalytic activity is supported is a circumferential surface, so that the surface area of the heat conductive carrier is increased, and the reaction efficiency of the fluid to be treated is further improved. Is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の熱伝導性触媒体を用いた酸化燃焼方法
に使用される熱伝導性触媒体の中央縦断面図、第2図は
本発明の熱伝導性触媒体を用いた酸化燃焼方法に使用さ
れる別の熱伝導性触媒体の中央縦断面図、第3図は本発
明の熱伝導性触媒体を用いた酸化燃焼方法に使用される
さらに別の熱伝導性触媒体の中央縦断面図である。 また、第4図は酸化燃焼反応における被処理流体と触媒
との接触時間−温度と除去率の関係を示す図、第5図は
酸化燃焼反応における被処理流体と触媒との接触時間と
除去率との関係を示す図である。 A、B、C;熱伝導性触媒体 Z;被処理流体 10;筒状熱伝導性担体(熱伝導性担体) 20;触媒(触媒活性を有する金属) 30;螺旋状熱伝導性担体(熱伝導性担体) 40;螺旋流路
FIG. 1 is a central longitudinal sectional view of a heat conductive catalyst used in the oxidation combustion method using the heat conductive catalyst of the present invention, and FIG. 2 is oxidative combustion using the heat conductive catalyst of the present invention. FIG. 3 is a central longitudinal sectional view of another heat conductive catalyst used in the method, and FIG. 3 is a center view of still another heat conductive catalyst used in the oxidation combustion method using the heat conductive catalyst of the present invention. It is a longitudinal cross-sectional view. FIG. 4 is a graph showing the relationship between the contact time between the fluid to be treated and the catalyst in the oxidizing combustion reaction, the temperature and the removal rate, and FIG. FIG. A, B, C; thermal conductive catalyst Z; fluid to be treated 10; tubular thermal conductive carrier (thermal conductive carrier) 20; catalyst (metal having catalytic activity) 30; helical thermal conductive carrier (heat Conductive carrier) 40; spiral channel

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F23G 7/06 102 B01D 53/36 103Z (56)参考文献 特開 平2−144154(JP,A) 特公 昭52−48594(JP,B2) (58)調査した分野(Int.Cl.6,DB名) B01J 21/00 - 38/74────────────────────────────────────────────────── 6 Continuation of the front page (51) Int.Cl. 6 Identification code FIF23G 7/06 102 B01D 53/36 103Z (56) References JP-A-2-144154 (JP, A) JP-B-52-48594 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) B01J 21/00-38/74

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱伝導性担体の表面を粗面化し、そののち
50〜350℃、PH7以上の熱水または水蒸気を用いて熱処理
を施したのち、または熱水処理を施しながら、触媒活性
を有する金属を担持させた熱伝導性触媒体を用いて、可
燃性物質を酸化燃焼させることを特徴とする熱伝導性触
媒体を用いた酸化燃焼方法。
1. The method according to claim 1, wherein the surface of the heat conductive carrier is roughened.
After a heat treatment using hot water or steam at a temperature of 50 to 350 ° C. and a pH of 7 or more, or while performing a hot water treatment, using a heat conductive catalyst supporting a metal having catalytic activity, a combustible substance is used. Oxidizing combustion using a thermally conductive catalyst, characterized by oxidizing combustion.
【請求項2】熱伝導性担体として、筒状熱伝導性担体お
よび/またはこの筒状熱伝導性担体内に嵌挿されて筒内
に螺旋流路を形成する螺旋状熱伝導性担体を使用した請
求項1記載の熱伝導性触媒体を用いた酸化燃焼方法。
2. As the heat conductive carrier, a cylindrical heat conductive carrier and / or a helical heat conductive carrier which is inserted into the cylindrical heat conductive carrier to form a spiral flow path in the tube is used. An oxidative combustion method using the thermally conductive catalyst according to claim 1.
JP63296172A 1988-11-25 1988-11-25 Oxidation combustion method using heat conductive catalyst Expired - Fee Related JP2794427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63296172A JP2794427B2 (en) 1988-11-25 1988-11-25 Oxidation combustion method using heat conductive catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63296172A JP2794427B2 (en) 1988-11-25 1988-11-25 Oxidation combustion method using heat conductive catalyst

Publications (2)

Publication Number Publication Date
JPH02143010A JPH02143010A (en) 1990-06-01
JP2794427B2 true JP2794427B2 (en) 1998-09-03

Family

ID=17830093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63296172A Expired - Fee Related JP2794427B2 (en) 1988-11-25 1988-11-25 Oxidation combustion method using heat conductive catalyst

Country Status (1)

Country Link
JP (1) JP2794427B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007148748A1 (en) * 2006-06-23 2007-12-27 Nissan Motor Co., Ltd. Metal base, method for producing the same, and catalyst
US7824535B2 (en) 2006-02-23 2010-11-02 Fujifilm Corporation Microstructure and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5726466B2 (en) * 2010-09-10 2015-06-03 国立大学法人東京農工大学 Catalyst carrier, catalyst body and method for producing them
CN108602084B (en) 2015-12-23 2021-08-10 联邦科学技术研究组织 Rotating device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824535B2 (en) 2006-02-23 2010-11-02 Fujifilm Corporation Microstructure and method of manufacturing the same
WO2007148748A1 (en) * 2006-06-23 2007-12-27 Nissan Motor Co., Ltd. Metal base, method for producing the same, and catalyst
JP2008023518A (en) * 2006-06-23 2008-02-07 Nissan Motor Co Ltd Metal base, method for producing the same, and catalyst

Also Published As

Publication number Publication date
JPH02143010A (en) 1990-06-01

Similar Documents

Publication Publication Date Title
KR100966992B1 (en) Porous catalyst structure and its manufacturing method
JPS6043175B2 (en) Manufacturing method of metal catalyst
JP2794427B2 (en) Oxidation combustion method using heat conductive catalyst
JP2528701B2 (en) Method for producing thermally conductive catalyst body
JP4986240B2 (en) Catalytic reactor and catalytic reaction apparatus using the same
JP4534154B2 (en) Catalytic combustion device
JP6783292B2 (en) Composite wire type catalyst member and catalyst reactor for hydrogen production using this
JPH0663423A (en) Production of catalyst element
JP2002367622A (en) Separator for low temperature type fuel cell and manufacturing method of the same
JP3081785B2 (en) Catalytic reactor and catalytic reaction method using the same
JPH084104Y2 (en) Exothermic reactor that doubles as a heat exchanger
JP2898308B2 (en) Continuous catalyst body and method for producing the same
JPS59225740A (en) Electrode catalyst and preparation thereof
TW201840365A (en) Method for producing structured catalyst and method for producing hydrogen using structured catalyst
JP5880909B2 (en) Method for producing metal catalyst carrier and method for producing metal catalyst body
JP2620714B2 (en) Control method of catalytic reaction
JPH0760129A (en) Catalyst for treatment of water
WO2008152638A2 (en) Materials, their preparation, and their uses in electrodes for fuel cells
JPH04200745A (en) Production of continuous catalyst body and oxidation of low concentration organic matter using the same
JP2007070645A (en) Method for producing gas diffusion electrode
JPH01275797A (en) Lead dioxide electrode for chromium plating
JPH1073226A (en) Manufacture of continuous catalyst body
JP3222972B2 (en) Electrolytic cell
JPH03284356A (en) Plane catalytic body and production thereof
JP3642534B2 (en) Method for oxidizing halogenated organic gases

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees