JPH10277551A - Electrolyte water generating device - Google Patents

Electrolyte water generating device

Info

Publication number
JPH10277551A
JPH10277551A JP9089125A JP8912597A JPH10277551A JP H10277551 A JPH10277551 A JP H10277551A JP 9089125 A JP9089125 A JP 9089125A JP 8912597 A JP8912597 A JP 8912597A JP H10277551 A JPH10277551 A JP H10277551A
Authority
JP
Japan
Prior art keywords
positive electrode
water
ferrite
exchange membrane
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9089125A
Other languages
Japanese (ja)
Inventor
Masatoshi Inatani
正敏 稲谷
Koji Nagata
晃司 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP9089125A priority Critical patent/JPH10277551A/en
Publication of JPH10277551A publication Critical patent/JPH10277551A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To smoothly electrolyze water without using harmful heavy metals by forming a partition wall separating a cathode room with a negative electrode from an anode room with a positive electrode from an ion-exchange membrane and forming the positive electrode of the anode room so as to have a surface area of conductive ferrite. SOLUTION: Ion-exchange water being electrolyte liquid 10 produced at a pure water producing device 14 is injected into an anode room 4 by opening an open/closure valve 16. Next, if a DC voltage is applied between an anode 1 of positive potential and a cathode 5 of negative potential, water molecules in the liquid 10 is oxidized so that oxygen gas and ozone gas is generated from the surface of the anode 1, which gas is dissolved into the liquid 10 to produce electrolytic bactericide water. And on the surface of the cathode 5 of a cathode room 6, oxygen in the outside air from an intake and exhaust mechanism 17, flowing electrons of negative potential of a DC power source 9, and hydrogen ions which are passed through a hydrogen ion conduction type ion exchange membrane 7 are present so that water is produced, which water is discharged from an exhaust port 22 in the form of vapor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生鮮野菜の洗浄殺
菌や各種汚染物質の殺菌洗浄、工業材料の表面処理等を
目的に、水溶液を電気分解してオゾンを生成するのに適
した陽電極を備えた電解水生成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode suitable for producing ozone by electrolysis of an aqueous solution for the purpose of cleaning and sterilizing fresh vegetables, sterilizing and cleaning various contaminants, and surface treatment of industrial materials. The present invention relates to an electrolyzed water generation device provided with:

【0002】[0002]

【従来の技術】オゾンの生成方法としては放電や紫外線
により空気中の酸素をオゾンに酸化させる方法と、水を
電気的に水素と酸素に分解し、その副生成物としてオゾ
ンを生成させる方法とがある。空気中の酸素からオゾン
を生成する方法は、空気中の約80%の窒素も同時に酸
化反応を受けるため、二酸化窒素や一酸化窒素等の窒素
酸化物が生成しやすく、処理ガスを水に吹き込み溶解さ
せオゾン水を製造すると、窒素酸化物が硝酸となり強酸
性のオゾン水となる。
2. Description of the Related Art There are two methods of generating ozone: a method of oxidizing oxygen in the air to ozone by electric discharge or ultraviolet rays, a method of electrically decomposing water into hydrogen and oxygen, and generating ozone as a by-product. There is. In the method of generating ozone from oxygen in the air, about 80% of nitrogen in the air undergoes an oxidation reaction at the same time, so that nitrogen oxides such as nitrogen dioxide and nitrogen monoxide are easily generated, and the processing gas is blown into water. When dissolved to produce ozone water, nitrogen oxides become nitric acid and become strongly acidic ozone water.

【0003】また、空気中に含まれる80%の窒素ガス
により、処理ガス中のオゾンガス分圧が非常に低く、溶
解量が小さくなり、製造できるオゾン水濃度に限界があ
る。よって、水に高濃度でオゾンを溶かし、且つ中性で
純粋のクリーンなオゾン水を生成するには水の電気分解
による方法が推奨される。
[0003] Also, due to the 80% nitrogen gas contained in the air, the partial pressure of ozone gas in the processing gas is extremely low, the amount of dissolution is small, and the concentration of ozone water that can be produced is limited. Therefore, in order to dissolve ozone in water at a high concentration and to produce neutral, pure and clean ozone water, a method using water electrolysis is recommended.

【0004】通常、この電気分解によるオゾンの生成に
は、水の入った電解槽をアノード室とカソード室とにイ
オン交換膜で仕切り、そのイオン交換膜の両側に通気性
のある多孔質状の陽電極と陰電極を圧着させたゼロギャ
ップ電解槽を使用する。アノード室には電解液と接する
陽電極があり、この陽電極は多孔質状の金属チタンメッ
シュの基板上に白金めっき層を介して二酸化鉛を電着し
たものを使用する。
Usually, in order to generate ozone by this electrolysis, an electrolytic cell containing water is partitioned into an anode chamber and a cathode chamber by an ion exchange membrane, and air-permeable porous membranes are formed on both sides of the ion exchange membrane. A zero-gap electrolytic cell in which the positive electrode and the negative electrode are pressed is used. The anode compartment has a positive electrode in contact with the electrolytic solution. The positive electrode is formed by electrodepositing lead dioxide on a porous metal titanium mesh substrate via a platinum plating layer.

【0005】カソード室には陰電極を配し、陽電極同様
に多孔質状の金属チタンメッシュ基板上に白金めっき処
理を行ったものを使用する。多孔質状の電極を使用する
理由は、カソード室内で水の電気分解によりイオン交換
膜と陰電極表面との界面で生じる水素ガスを陰電極背面
に順次通過させ排出するためであり、アノード室におい
ても同様にイオン交換膜と陽電極との界面に生じる酸素
ガスやオゾンガスを陽電極背面に順次通過させ排出する
ためである。
[0005] The cathode chamber is provided with a negative electrode, which is formed by subjecting a porous titanium metal mesh substrate to platinum plating similarly to the positive electrode. The reason why the porous electrode is used is that hydrogen gas generated at the interface between the ion exchange membrane and the surface of the negative electrode due to electrolysis of water in the cathode chamber is successively passed through the back of the negative electrode and discharged, and is used in the anode chamber. Similarly, oxygen gas and ozone gas generated at the interface between the ion exchange membrane and the positive electrode are sequentially passed through the back surface of the positive electrode and discharged.

【0006】また、陽電極や陰電極の基体材としては多
孔質の金属チタンを選定し、電極基体の表面に白金や二
酸化鉛を形成するのは、陽電極のイオン交換膜表面が強
酸性となり、これに接する電極膜及び対極基体は当然の
ことながら耐酸性材料でなければならないためである。
[0006] In addition, porous metal titanium is selected as the base material of the positive electrode and the negative electrode, and platinum or lead dioxide is formed on the surface of the electrode substrate because the surface of the ion exchange membrane of the positive electrode becomes strongly acidic. This is because, of course, the electrode film and the counter electrode substrate in contact with this must be made of an acid-resistant material.

【0007】さらに、陽電極の表面処理として二酸化鉛
が選ばれるのは、オゾンの生成を目的とする場合、他の
電極材料では効率面で著しく劣るからである。陽電極の
各種表面処理材とオゾン発生効率との関係については、
P.C.FollerとC.W.TobiasがJ.E
lectrochem.Soc.の129巻506頁に
電流密度とオゾン電流効率との関係として発表されてお
り、そのグラフを図5に示す。
Further, the reason why lead dioxide is selected as the surface treatment of the positive electrode is that when the purpose is to generate ozone, the efficiency of other electrode materials is extremely poor. Regarding the relationship between various surface treatment materials for positive electrode and ozone generation efficiency,
P. C. Foller and C.I. W. Tobias, J. et al. E
electrochem. Soc. Vol. 129, page 506 as a relationship between current density and ozone current efficiency, and a graph thereof is shown in FIG.

【0008】図5より判断すると白金やルテニウムを使
用したDSEよりも、酸化鉛や酸化すず等の金属酸化物
がオゾンを効率良く生成させ、特にβ型の二酸化鉛が最
もオゾンを生成する電流効率値が高いことが明白であ
る。
[0010] Judging from FIG. 5, metal oxides such as lead oxide and tin oxide generate ozone more efficiently than DSE using platinum or ruthenium, and in particular, current efficiency at which β-type lead dioxide generates ozone most. It is clear that the values are high.

【0009】しかしこれらの金属酸化物の物性は非常に
硬度が高く、金属チタンや白金の上に電着により密着さ
せても、密着性が悪く、電解槽を組み立てる際の機械的
強度により、また電解中の酸素発生の力と電解液の流れ
の力により容易に剥離する。
However, the physical properties of these metal oxides are very high, and even if they are brought into close contact with metal titanium or platinum by electrodeposition, the adhesion is poor, and the mechanical strength at the time of assembling the electrolytic cell is high. It is easily peeled off by the power of oxygen generation during electrolysis and the flow of electrolyte.

【0010】上記問題点を解決する方法として特公平3
−41553号公報の様に、二酸化鉛の粉末にフッ素樹
脂を混合して多孔質の板状に成型し、次いで加熱・焼成
し、または加熱・焼成したものをさらに薄く延伸してシ
ート状の電極基板となし、その電極基板を酸化処理した
後、表面にβ型の二酸化鉛のめっきを施すものが提案さ
れている。
As a method for solving the above problem, Japanese Patent Publication No.
As in JP-A-41553, a lead-like powder is mixed with a fluororesin, molded into a porous plate, and then heated and fired, or the heated and fired is stretched further thinly to form a sheet-like electrode. A substrate has been proposed in which a substrate is oxidized and then the surface is plated with β-type lead dioxide.

【0011】このような成型方法であれば電極の基板が
フッ素樹脂のバインダーにより円滑性をもち柔軟性が確
保できると共に、加熱・焼成後にめっきを施すことによ
り焼成で下級の酸化鉛に変質した電極表面材を必要なβ
型の二酸化鉛の面に戻すことが可能で、よって柔軟性を
もつオゾン発生効率の良い電極を得ることができる。
According to such a molding method, the electrode substrate has smoothness and flexibility by the binder of the fluororesin, and the electrode is transformed into lower-grade lead oxide by sintering by plating after heating and sintering. Β required surface material
The electrode can be returned to the surface of the lead dioxide of the mold, and a flexible electrode having high ozone generation efficiency can be obtained.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、上記の
特公平3−41553号公報の様に、二酸化鉛の粉末に
フッ素樹脂を混合して多孔質の板状に成型し、次いで加
熱・焼成し、または加熱・焼成したものをさらに薄く延
伸してシート状の電極基板となし、その電極基板を酸化
処理した後、表面にβ型の二酸化鉛のめっきを施すもの
は、その公報の実施例から推察すると非常に複雑で多大
な工数を必要とする欠点を有する。
However, as described in Japanese Patent Publication No. 3-41553, a powder of lead dioxide is mixed with a fluororesin to form a porous plate, which is then heated and fired. Alternatively, it is inferred from the examples of the gazette that the heated and fired product is further thinned and stretched to form a sheet-shaped electrode substrate, and after the electrode substrate is oxidized, the surface is plated with β-type lead dioxide. Then, there is a disadvantage that it is very complicated and requires a large number of man-hours.

【0013】すなわちフッ素樹脂と二酸化鉛との混練か
らはじまり、ロールによる板の成型、300℃で1時間
の加熱処理、360〜390℃で30分の焼成処理、延
伸処理、60℃3時間の過酸化カリウム水溶液での酸化
処理、硝酸鉛水溶液による二酸化鉛めっき処理が必要
で、以上の工程を通じてようやく陽電極が完成するもの
である。
That is, starting from kneading of a fluororesin and lead dioxide, forming a plate by a roll, heating at 300 ° C. for 1 hour, baking at 360 to 390 ° C. for 30 minutes, stretching, and heating at 60 ° C. for 3 hours. An oxidation treatment with an aqueous solution of potassium oxide and a lead dioxide plating treatment with an aqueous solution of lead nitrate are required, and the positive electrode is finally completed through the above steps.

【0014】また、加熱・焼成により得た電極基板は二
酸化鉛の粉末のバインダーとして使用するフッ素樹脂が
粉末と粉末との間に介在し抵抗体となるため、二酸化鉛
のめっき時には円滑なめっきが困難で、また最終的に電
解液を電気分解するときもオーム損が生じやすいもので
ある。
The electrode substrate obtained by heating and sintering has a fluororesin used as a binder for the powder of lead dioxide interposed between the powder and the powder to form a resistor. It is difficult, and ohmic loss tends to occur when the electrolytic solution is finally electrolyzed.

【0015】さらに、二酸化鉛は鉛化合物として水質汚
濁防止法等の有害物質に指定されているもので、人体に
摂取すると骨組織に沈着し四肢の感覚障害等を引き起こ
し、また、肝障害やけいれん、排尿障害などを起こす。
すなわち、鉛イオンの溶出が懸念されるものは飲用や食
品洗浄殺菌水の用途には使用することは避けるべきであ
る。よって電解液をそのまま殺菌水として使用できず、
一旦発生するオゾンガスを分離し、再度被処理水にバブ
リングしオゾンを水に溶解したオゾン水を作り直す手間
が必要である。
Further, lead dioxide is specified as a harmful substance in the Water Pollution Control Law and the like as a lead compound. When ingested by the human body, it is deposited on bone tissue and causes limb sensory impairment, etc., as well as liver damage and spasm. , Causing dysuria.
That is, if there is a concern that lead ions are eluted, it should be avoided from being used for drinking or sterilizing water for washing food. Therefore, the electrolyte cannot be used as sterile water as it is,
It is necessary to separate the once generated ozone gas, bubbling the water to be treated again, and regenerating ozone water in which ozone is dissolved in water.

【0016】酸化すずもオゾン発生電極の表面処理材と
して可能性があるが、重金属の範疇であり食品用途への
利用は安全とは言い難い。鉄、ニッケル、マンガン、チ
タン等は比較的安全と考えられるが、その酸化物は電極
として必要な導電性がないという致命的な課題を有する
ものである。
[0016] Tin oxide can also be used as a surface treatment material for an ozone generating electrode, but it is in the category of heavy metals and is not safe to use in food applications. Iron, nickel, manganese, titanium and the like are considered to be relatively safe, but their oxides have a fatal problem that they do not have the conductivity required for electrodes.

【0017】[0017]

【課題を解決するための手段】本発明は、陰電極を持つ
カソード室と、電解液に接する陽電極を持つアノード室
と、前記カソード室とアノード室とを仕切る隔壁をイオ
ン交換膜で構成した電解槽で、前記アノード室の陽電極
が酸化物の一種であるが、導電性のあるフェライトの表
面層を有することを特徴とする電解水生成装置であり、
隔壁をフッ素樹脂系イオン交換膜で構成しフェライトの
表面層を有するオゾン発生陽電極表面にフッ素樹脂系イ
オン交換膜と同系統の樹脂を塗布し、その塗布面を前記
フッ素樹脂系イオン交換膜と密着させたことを特徴とす
る電解水生成装置である。
According to the present invention, a cathode chamber having a negative electrode, an anode chamber having a positive electrode in contact with an electrolyte, and a partition partitioning the cathode chamber from the anode chamber are formed by an ion exchange membrane. In the electrolytic cell, the positive electrode of the anode chamber is a kind of oxide, is an electrolyzed water generator characterized by having a surface layer of conductive ferrite,
The partition walls are made of a fluororesin-based ion-exchange membrane, and the same resin as the fluororesin-based ion-exchange membrane is applied to the surface of the ozone generating positive electrode having a ferrite surface layer. It is an electrolyzed water generation device characterized by being closely attached.

【0018】また、その陽電極を耐食性金属基体上に白
金及び/又はパラジウム酸化物を含む下地層を設け、あ
るいはチタン及び/又はタンタルの酸化物からなる複合
酸化物を下地層に設け、その上層にフェライトの表面層
を有するものである。また、フェライトを電解や無電解
めっきにより陽極析出させた表面層を持ち、その際、不
活性の酸化チタン、酸化タンタルの金属酸化物を含むめ
っき浴で分散めっきにより表面層を形成し、又、フェラ
イト表面処理の後、磁化処理により磁力体表面層を有す
るオゾン発生電極とした電解水生成装置である。
The positive electrode may be provided on a corrosion-resistant metal substrate with a base layer containing platinum and / or palladium oxide, or a composite oxide made of titanium and / or tantalum oxide may be provided on the base layer. Has a ferrite surface layer. In addition, it has a surface layer in which ferrite is anodically deposited by electrolysis or electroless plating, and at that time, forms a surface layer by dispersion plating in a plating bath containing a metal oxide of inactive titanium oxide and tantalum oxide, This is an electrolyzed water generating apparatus in which an ozone generating electrode having a magnetic body surface layer is formed by magnetizing after ferrite surface treatment.

【0019】[0019]

【発明の実施の形態】この発明の請求項1に記載の発明
は、陰電極を持つカソード室と、電解液に接する陽電極
を持つアノード室と、前記カソード室とアノード室とを
仕切る隔壁をイオン交換膜で構成した電解槽で、前記ア
ノード室の陽電極がフェライトの表面層を有する電解水
生成装置であり、β型の酸化鉛を使わず、導電性のフェ
ライトを利用することによりオゾン生成効率の高い電解
水生成装置を提供する。
DETAILED DESCRIPTION OF THE INVENTION According to the first aspect of the present invention, a cathode chamber having a negative electrode, an anode chamber having a positive electrode in contact with an electrolyte, and a partition partitioning the cathode chamber and the anode chamber are provided. An electrolytic cell composed of an ion exchange membrane, the positive electrode of the anode chamber is an electrolyzed water generator having a surface layer of ferrite, and ozone generation is achieved by using conductive ferrite without using β-type lead oxide. To provide a highly efficient electrolyzed water generation device.

【0020】請求項2記載の発明は、カソード室とアノ
ード室とを仕切る隔壁をフッ素樹脂系イオン交換膜で構
成し、フェライトの表面層を有するオゾン発生陽電極に
フッ素樹脂系イオン交換膜と同系統の樹脂を塗布し、そ
の塗布面を前記フッ素樹脂系イオン交換膜と密着させた
もので、耐熱性に強く水素イオンのみを効率良く伝達す
るフッ素樹脂系のイオン交換膜を使用することにより、
カソード室にガス拡散電極の使用が可能となり、爆発の
危険のある水素を水に置換でき、安全性の向上を図り、
さらに凹凸状のフェライト面にイオン交換膜と同種のフ
ッ素系樹脂を塗布することで、陽電極面とイオン交換膜
との接触面を大幅に増加させることで接触抵抗を小さく
でき、さらにオゾン発生効率の良い陽電極を得るもので
ある。
According to a second aspect of the present invention, the partition for separating the cathode chamber and the anode chamber is made of a fluorine resin ion exchange membrane, and the ozone generating positive electrode having a ferrite surface layer is made of the same material as the fluorine resin ion exchange membrane. By applying a resin of the system, the coated surface is in close contact with the fluororesin-based ion-exchange membrane, by using a fluororesin-based ion-exchange membrane that efficiently transmits only hydrogen ions with high heat resistance,
Gas diffusion electrodes can be used in the cathode compartment, explosive hydrogen can be replaced with water, and safety can be improved.
Furthermore, by applying the same type of fluororesin as the ion-exchange membrane to the uneven ferrite surface, the contact surface between the positive electrode surface and the ion-exchange membrane can be greatly increased, reducing the contact resistance and further improving the ozone generation efficiency. To obtain a good positive electrode.

【0021】請求項3記載の発明は、耐食性金属基体上
に白金及び/又はパラジウム酸化物を含む下地層を設
け、その上層にフェライトの表面層を有する陽電極とし
たもので、基体との密着性をあげ界面の電気伝達性耐力
を上げ、円滑な水の電気分解ができるオゾン発生陽電極
とするものである。
According to a third aspect of the present invention, there is provided a positive electrode having a base layer containing platinum and / or palladium oxide on a corrosion-resistant metal base and having a ferrite surface layer on the base layer. The ozone generating positive electrode is capable of improving the electrical conductivity of the interface by increasing the electrical properties and improving the smoothness of the electrolysis of water.

【0022】請求項4記載の発明は、耐食性金属基体上
に白金及び/又はパラジウム酸化物と、チタン及び/又
はタンタルの酸化物の下地層を設け、フェライトの表面
層を有する陽電極としたもので、基体との密着性をあげ
界面の電気伝達性耐力を上げ円滑な水の電気分解ができ
るオゾン発生陽電極とするものである。
According to a fourth aspect of the present invention, a positive electrode having a ferrite surface layer is provided by providing an underlayer of platinum and / or palladium oxide and an oxide of titanium and / or tantalum on a corrosion-resistant metal substrate. Thus, an ozone generating positive electrode capable of improving the adhesion to the substrate, increasing the electric conduction resistance of the interface, and smoothly electrolyzing water.

【0023】請求項5記載の発明は、電解又は無電解の
めっき処理によりフェライトを析出させたもので、低温
でのめっき処理による表面層の形成は、焼結法に比べ熱
歪みを避けることができ、多孔質状で複雑な形状の電極
表面層の形成が可能となり、又、フェライト成分を容易
に制御できるものである。
According to a fifth aspect of the present invention, the ferrite is precipitated by electrolytic or electroless plating. The formation of the surface layer by the plating at a low temperature can avoid thermal distortion as compared with the sintering method. This makes it possible to form an electrode surface layer having a porous and complicated shape and to easily control the ferrite component.

【0024】請求項6記載の発明は、フェライトをめっ
き処理により析出させる際、不活性の酸化チタン、酸化
タンタルの金属酸化物を含むめっき浴で分散めっきによ
り複合系の表面層とすることで、めっき歪を小さくする
効果があり、密着性の向上と電極寿命を大きく上げる効
果をもつ。
According to a sixth aspect of the present invention, when the ferrite is precipitated by plating, the composite surface layer is formed by dispersion plating in a plating bath containing an inert titanium oxide or tantalum oxide metal oxide. This has the effect of reducing plating distortion, and has the effect of improving adhesion and greatly extending electrode life.

【0025】請求項7記載の発明は、フェライトで表面
処理の後、磁化処理により磁力体表面層を有する陽電極
としたもので、電解中の鉄等の不純物を吸着することに
よりイオン交換膜の水素イオン等の伝達効率を低下させ
る阻害要因を除去し、イオン交換膜の寿命が飛躍的に延
びる効果をもち、効率よくオゾンの生成を行えるように
したものである。
According to a seventh aspect of the present invention, a positive electrode having a magnetic body surface layer is formed by magnetizing after surface treatment with ferrite, and the ion exchange membrane is formed by adsorbing impurities such as iron during electrolysis. The present invention has the effect of removing the obstructive factors that lower the transmission efficiency of hydrogen ions and the like, has the effect of dramatically extending the life of the ion exchange membrane, and enables efficient generation of ozone.

【0026】以下本発明の一実施の形態について、図面
を参照しながら説明する。 (実施の形態1)図1は本発明の第1の実施の形態であ
るオゾン発生陽電極1を使用した電解水生成装置2の概
要図と電解槽3の横断面図を示すものである。
An embodiment of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 shows a schematic diagram of an electrolyzed water generator 2 using an ozone generating positive electrode 1 according to a first embodiment of the present invention, and a cross-sectional view of an electrolyzer 3.

【0027】電解槽3はオゾン発生陽電極1を持つアノ
ード室4と陰電極5を持つカソード室6とで構成されて
おり、アノード室4とカソード室6はイオン交換膜7で
形成する隔壁8で仕切られている。
The electrolytic cell 3 is composed of an anode chamber 4 having an ozone generating positive electrode 1 and a cathode chamber 6 having a negative electrode 5. The anode chamber 4 and the cathode chamber 6 are formed by partition walls 8 formed by an ion exchange membrane 7. It is divided by.

【0028】イオン交換膜7はスルフォン酸基をもつフ
ッ素樹脂が主体の膜であり、スルホン酸基の水素イオン
が自由に出入りする性質を利用して水素イオン伝導型の
イオン交換膜7として開発されたものである。
The ion exchange membrane 7 is a membrane mainly composed of a fluororesin having sulfonic acid groups, and has been developed as a hydrogen ion conduction type ion exchange membrane 7 by utilizing the property that hydrogen ions of sulfonic acid groups can freely enter and exit. It is a thing.

【0029】このイオン交換膜7は水素イオンのみを伝
達する性質をもつ高分子であり、その他のイオンを伝導
したり、透過したりすることは比較的少ない。本実施例
で使用した水素イオン伝導型膜のイオン交換膜7はデュ
ポン社からナフィオン膜との商品名で販売されているN
117の高分子膜を用いた。
The ion-exchange membrane 7 is a polymer having a property of transmitting only hydrogen ions, and does not easily conduct or transmit other ions. The ion exchange membrane 7 of the hydrogen ion conductive type membrane used in the present embodiment is N.N.
117 polymer film was used.

【0030】9は陽電極1に正電位を、陰電極5に負の
電位を付加する直流電源であり、アノード室4のイオン
交換水である電解液10に浸漬された酸化電位測定電極
11の信号を酸化電位計12で計測し、稼働と停止を制
御するものである。
Reference numeral 9 denotes a DC power supply for applying a positive potential to the positive electrode 1 and a negative potential to the negative electrode 5. The DC power source 9 is provided for the oxidation potential measurement electrode 11 immersed in an electrolyte 10 which is ion-exchanged water in the anode chamber 4. The signal is measured by the oxidation potentiometer 12 to control operation and stop.

【0031】陽電極1は多孔質状の耐食性金属チタンメ
ッシュを基体として用い、最上層の表面層はフェライト
を無電解によるめっき処理により形成したものを用い
た。
As the positive electrode 1, a porous corrosion-resistant titanium metal mesh was used as a base, and the uppermost surface layer was formed by forming ferrite by electroless plating.

【0032】陰電極5は貫通穴を有する多孔性のメッシ
ュ状のものとして、表面に白金超微粒子を担持したカー
ボン粉末とフッ素樹脂粉末の混合物を加圧成形して適度
な揆水性を持たせた多孔質ガス拡散電極を用いた。
The negative electrode 5 was made of a porous mesh having through holes, and a mixture of a carbon powder and a fluororesin powder carrying ultrafine platinum particles on the surface was press-molded to give a moderate water repellency. A porous gas diffusion electrode was used.

【0033】また、両極とも水素イオン伝導型膜7に密
着して取りつけた。13はイオン交換樹脂を搭載した純
水製造装置14と、フロートスイッチ15により自動的
に開閉する開閉バルブ16とで構成するイオン交換水注
入機構であり、イオン交換された電解液10をアノード
室4へ順次送り込むものである。
Both electrodes were attached in close contact with the hydrogen ion conductive membrane 7. Reference numeral 13 denotes an ion-exchanged water injection mechanism including a pure water producing apparatus 14 equipped with an ion-exchange resin and an opening / closing valve 16 automatically opened and closed by a float switch 15. Are sent sequentially to

【0034】17は吸入口18に取りつけられたフィル
ター19を介して外気を吸入する吸入ファン20と、陰
電極5表面に外気を均一に導入するバランスダクト21
と排気口22とからなる吸排気機構であり、カソード室
6に酸素を含む外気を順次送り込むものである。
Reference numeral 17 denotes a suction fan 20 for sucking outside air through a filter 19 attached to a suction port 18, and a balance duct 21 for uniformly introducing outside air to the surface of the negative electrode 5.
And an exhaust port 22 for sequentially feeding outside air containing oxygen into the cathode chamber 6.

【0035】23はアノード室4で処理された電解液1
0を順次排出する排水機構である。24はアノード室4
の電解により発生する酸素ガス又はオゾンガスの排気口
であり、含有する余分なオゾンガスはオゾン分解触媒と
して活性炭を収納した処理塔25により酸素に分解され
大気に放出されるようにしてある。
Reference numeral 23 denotes the electrolytic solution 1 treated in the anode chamber 4.
This is a drainage mechanism for sequentially discharging 0s. 24 is the anode chamber 4
Is an exhaust port of oxygen gas or ozone gas generated by the electrolysis of the above, and excess ozone gas contained therein is decomposed into oxygen by a treatment tower 25 containing activated carbon as an ozone decomposition catalyst and released to the atmosphere.

【0036】27は攪拌装置28と共に電解液10の流
れを生じさせ、電解水10の滞留を防止するガイドであ
る。
Reference numeral 27 denotes a guide for causing the flow of the electrolytic solution 10 together with the stirring device 28 to prevent the electrolytic water 10 from staying.

【0037】図2はオゾン発生陽電極1と陰電極5とを
圧着した接合体の要部拡大断面図である。
FIG. 2 is an enlarged sectional view of a main part of a joined body in which the ozone generating positive electrode 1 and the negative electrode 5 are pressure-bonded.

【0038】イオン交換膜7は酸化タンタルの分散剤2
9とフェライトで形成される表面層30を有する多孔質
状の金属チタンメッシュの耐食性金属基体31を心材と
する陽電極1と拡散電極で形成する陰電極5とで挟まれ
たものとなる。
The ion exchange membrane 7 is made of a tantalum oxide dispersant 2
9 and a porous metal titanium mesh corrosion-resistant metal substrate 31 having a surface layer 30 formed of ferrite, sandwiched between a positive electrode 1 having a core as a core material and a negative electrode 5 formed of a diffusion electrode.

【0039】尚、32、33はそれぞれ直流電源に接続
された集電体であり、電圧を平均化して各電極部に通電
するものである。又、陰電極5の水素イオン伝導型イオ
ン交換膜7との反対面には拡散効率を上げるため白金触
媒を担持したカーボン性ハニカム状集電体34を圧着さ
せてある。
Reference numerals 32 and 33 denote current collectors connected to a DC power supply, respectively, for averaging voltages and supplying current to the respective electrode portions. A carbon honeycomb-shaped current collector 34 supporting a platinum catalyst is pressed against the surface of the negative electrode 5 opposite to the hydrogen ion conduction type ion exchange membrane 7 in order to increase the diffusion efficiency.

【0040】35は陽電極1をイオン交換膜7に密着さ
せる前に塗布したフッ素樹脂系イオン交換膜7と同系統
の樹脂層である。
Reference numeral 35 denotes a resin layer of the same type as the fluororesin-based ion exchange membrane 7 applied before the positive electrode 1 is brought into close contact with the ion exchange membrane 7.

【0041】36は耐食性金属基体31とフェライトの
表面層30との密着性を向上させるために設けた複合酸
化金属で形成する下地層である。
Reference numeral 36 denotes an underlayer formed of a composite metal oxide provided for improving the adhesion between the corrosion-resistant metal base 31 and the surface layer 30 of ferrite.

【0042】ここで、本発明の実施の形態1に用いた陽
電極1の表面処理工程について説明する。はじめに、多
孔質状の耐食性金属チタンメッシュ基体31を5%の界
面活性剤の溶液で超音波洗浄により脱脂し、イオン交換
水ですすいだ後、5%のしゅう酸溶液の沸騰水に5分間
浸漬し表面の酸化層を取り除き、さらに下地処理直前に
1Nの硫酸を電解液とし、4A/dm2 の条件で陰極側
にて電解還元処理した。
Here, the surface treatment step of the positive electrode 1 used in the first embodiment of the present invention will be described. First, the porous corrosion-resistant metallic titanium mesh substrate 31 is degreased by ultrasonic cleaning with a 5% surfactant solution, rinsed with ion-exchanged water, and then immersed in boiling water of a 5% oxalic acid solution for 5 minutes. The oxidized layer on the surface was removed, and immediately before the base treatment, 1N sulfuric acid was used as an electrolytic solution and electrolytic reduction was performed on the cathode side at 4 A / dm 2 .

【0043】上記の前処理後、即、塩化チタンと塩化タ
ンタルと塩化白金酸を各々0.1Mの濃度に調整した塩
酸混合溶液に浸漬し、40℃で15分間の予備乾燥後、
520℃で焼付けた。この焼き付け下地処理を3回繰り
返し、約1μmの導電性複合酸化金属の下地層36を設
けた。
Immediately after the pretreatment, the titanium chloride, the tantalum chloride and the chloroplatinic acid were immersed in a mixed solution of hydrochloric acid adjusted to a concentration of 0.1 M, and preliminarily dried at 40 ° C. for 15 minutes.
Bake at 520 ° C. This baking base treatment was repeated three times to provide a conductive composite metal oxide base layer 36 of about 1 μm.

【0044】次に下地層36処理面を4A/dm2 で3
0秒間の電解還元処理を行った後、次工程であるフェラ
イトのめっき処理を行った。以下、フェライトめっきの
2つの方法について図3及び図4を参照に説明する。
Next, the surface to be treated of the underlayer 36 is treated at 4 A / dm 2 for 3 hours.
After performing the electrolytic reduction treatment for 0 seconds, a ferrite plating treatment as the next step was performed. Hereinafter, two methods of ferrite plating will be described with reference to FIGS.

【0045】図3に第1のフェライトめっき処理法に使
用する装置を示す。まず、めっき槽37にあらかじめ窒
素ガスを通気させ溶存酸素を除去した蒸留水を入れる。
浴44中の酸素除去を継続するために窒素ボンベ38か
らの窒素ガスを通気させながら、塩化鉄供給装置39か
ら30mモル量のFeCl2 ・4(H2 O)を注入し、
スタラー40で攪拌し均一に溶かし、pH調整機41に
充填された50mモルの水酸化ナトリウムによりpHを
6〜7に調整する。さらにpHの緩衝剤として30mモ
ル量の酢酸アンモニウムを添加する。
FIG. 3 shows an apparatus used in the first ferrite plating method. First, distilled water from which dissolved nitrogen has been removed by passing a nitrogen gas through the plating tank 37 in advance.
In order to continue the removal of oxygen in the bath 44, 30 mmol of FeCl 2 .4 (H 2 O) was injected from the iron chloride supply device 39 while passing nitrogen gas from the nitrogen cylinder 38.
The mixture is stirred and uniformly dissolved with a stirrer 40, and the pH is adjusted to 6 to 7 with 50 mmol of sodium hydroxide filled in a pH adjuster 41. Further, 30 mM of ammonium acetate is added as a pH buffer.

【0046】次に、酸化剤として、あらかじめ窒素ガス
を通気させ溶存酸素を除去した蒸留水に50mモルの亜
硝酸ナトリウムを酸化還元電位計42で酸化還元電位が
水素標準電位に対して−0.4V〜−0.5Vに制御し
ながら加えフェライトめっき処理を開始する。
Next, as an oxidizing agent, 50 mmol of sodium nitrite was added to distilled water from which dissolved oxygen had been removed by passing a nitrogen gas in advance, and the oxidation-reduction potential of the redox potential meter was -0.05 with respect to the hydrogen standard potential. The ferrite plating process is started while controlling the voltage at 4 V to -0.5 V.

【0047】酸化が進むとともにpHが酸性側に変化す
るので、pH計43でpHを測定しながら自動のpH調
整機41から50mモルの水酸化ナトリウムを浴44に
注入し、pHを6〜7に自動調整する。
Since the pH changes to an acidic side as the oxidation proceeds, 50 mmol of sodium hydroxide is injected into the bath 44 from an automatic pH adjuster 41 while measuring the pH with a pH meter 43, and the pH is adjusted to 6-7. Automatically adjust to

【0048】1時間のめっき処理で約2μmの厚みのめ
っき層に成長する。尚、耐食性向上、歪み除去のため、
浴中に2g/Lの酸化タンタルを分散させめっき処理す
ることによりフェライトめっき層の中にタンタル粉末が
形成される。尚、この時の浴温度はヒーター45により
60℃に温調する。
By plating for 1 hour, a plating layer having a thickness of about 2 μm is grown. In order to improve corrosion resistance and remove distortion,
Tantalum oxide is formed in the ferrite plating layer by dispersing 2 g / L of tantalum oxide in the bath and plating. The bath temperature at this time is adjusted to 60 ° C. by the heater 45.

【0049】図4に第2のフェライトめっき装置を示
す。めっき操作は陽極析出法であり、電着装置のセル4
6内のプラス電極板47上の純鉄製の対極48と、多孔
質状の金属チタンメッシュである耐食性金属基体31と
で、約2mm厚の多孔質状のセラミックの板スペーサ4
9を挟み、スプリング付ねじ50で取りつけ固定する。
基体面はヒーター51により60〜70℃に加熱され、
50mモルの酸化鉄(II)を含む反応液をポンプ52
で約1L/分の流量で、対極48と、耐食性金属基体3
1とで、挟まれたスペーサ49内を流す。
FIG. 4 shows a second ferrite plating apparatus. The plating operation is an anodic deposition method.
6, a counter electrode 48 made of pure iron on a positive electrode plate 47 and a corrosion-resistant metal substrate 31 made of a porous metal titanium mesh, and a porous ceramic plate spacer 4 having a thickness of about 2 mm.
9 is sandwiched, and attached and fixed with a screw 50 with a spring.
The substrate surface is heated to 60 to 70 ° C. by the heater 51,
The reaction solution containing 50 mmol of iron (II) oxide was pumped through a pump 52.
And the counter electrode 48 and the corrosion-resistant metal substrate 3 at a flow rate of about 1 L / min.
1 flows through the interposed spacer 49.

【0050】この時の基体31の電位は対極に対し約
0.3Vに設定し、電流値は0.1A/dm2 となり、
約20分の処理時間で約2μmの厚みのめっき層に成長
する。溶液槽51中の反応液52は30mモル量のFe
Cl2 ・4(H2 O)を溶かし、2g/Lの酸化タンタ
ルを分散させ、50mモルの水酸化ナトリウムでpHを
6に調整したものを用いる。また、pHの緩衝剤として
30mモル量の酢酸アンモニウムを添加する。
At this time, the potential of the base 31 was set to about 0.3 V with respect to the counter electrode, and the current value was 0.1 A / dm 2 .
It grows into a plating layer having a thickness of about 2 μm in a processing time of about 20 minutes. The reaction solution 52 in the solution tank 51 contains 30 mmol of Fe
A solution prepared by dissolving Cl 2 .4 (H 2 O), dispersing 2 g / L of tantalum oxide, and adjusting the pH to 6 with 50 mmol of sodium hydroxide is used. Also, 30 mM ammonium acetate is added as a pH buffer.

【0051】この陽極析出法によるフェライトめっきに
おける反応について簡単に説明する。(化1)の反応式
はマイナス電極体表面の鉄と鉄イオンとの平衡反応式で
ありpHが6で鉄イオンが30mモルの時の平衡電位は
プルベーダイヤグラムより−0.485Vとなる。
The reaction in ferrite plating by the anodic deposition method will be briefly described. The reaction formula (Chemical Formula 1) is an equilibrium reaction formula between iron and iron ions on the surface of the negative electrode body. When the pH is 6 and the iron ions are 30 mmol, the equilibrium potential is -0.485 V from the Purvey diagram.

【0052】(化2)の平衡電位は同様に−0.303
Vである。よって対極に対し0.182V以上の電位を
プラス電極の基体に加えるとフェライトが形成する。
The equilibrium potential of the chemical formula (2) is also -0.303.
V. Therefore, when a potential of 0.182 V or higher is applied to the base of the positive electrode with respect to the counter electrode, ferrite is formed.

【0053】しかし、(化3)の平衡電位が−0.13
4Vであり、0.351V以上の電位をかけると三価の
酸化鉄が形成し不導体のめっき層が形成する。
However, the equilibrium potential of the chemical formula (3) is -0.13.
It is 4 V, and when a potential of 0.351 V or more is applied, trivalent iron oxide is formed and a nonconductive plating layer is formed.

【0054】またpHを7とした場合には、(化1)の
平衡電位が−0.485Vであるのに対し、(化2)の
平衡電位は−0.540Vで、(化3)の平衡電位は−
0.193Vであり、0V以上で0.292V以下の範
囲内でフェライトが析出することになる。よって、今回
のフェライトめっきの電解条件はpHを6とし、電位を
0.3Vに設定し行った。
When the pH is 7, the equilibrium potential of (Chemical Formula 1) is -0.485 V, whereas the equilibrium potential of (Chemical Formula 2) is -0.540 V, and The equilibrium potential is-
0.193 V, and ferrite precipitates in a range of 0 V or more and 0.292 V or less. Therefore, the electrolysis conditions of this ferrite plating were set to pH 6 and potential to 0.3 V.

【0055】[0055]

【化1】 Embedded image

【0056】[0056]

【化2】 Embedded image

【0057】[0057]

【化3】 Embedded image

【0058】[0058]

【化4】 Embedded image

【0059】尚、浴中に塩化鉄(II)と他の金属イオン
(M)、例えばニッケル、コバルト、亜鉛、マグネシウ
ム等のイオンを添加すると(化4)の反応により各種フ
ェライトが形成される。
When iron (II) chloride and other metal ions (M), for example, ions of nickel, cobalt, zinc, magnesium and the like are added to the bath, various ferrites are formed by the reaction of (Chem. 4).

【0060】以下、上記で説明した実施の形態1の電解
水生成装置2の作用と電解槽3中の化学反応について説
明する。
Hereinafter, the operation of the electrolyzed water generating apparatus 2 of the first embodiment described above and the chemical reaction in the electrolytic cell 3 will be described.

【0061】まず、純水製造装置14を稼働しイオン交
換水を製造する。次に電解液10となるイオン交換水を
開閉バルブ16の開放によりアノード室4に注入する。
開閉バルブ16はフロートスイッチ15が満水を検知す
るまで開放されており、アノード室4が電解液10で満
水になると自動的に閉鎖されることとなる。
First, the pure water producing apparatus 14 is operated to produce ion-exchanged water. Next, ion exchange water serving as the electrolyte 10 is injected into the anode chamber 4 by opening the on-off valve 16.
The opening / closing valve 16 is open until the float switch 15 detects that the water is full, and is automatically closed when the anode chamber 4 becomes full of the electrolyte 10.

【0062】次に、直流電源9の本体電源端子26を商
用電源につなぎ電気分解の運転を開始する。陽電極1を
正電位とし陰電極5を負電位とし陽電極1と陰電極5と
の間に直流電圧3Vを付加した。
Next, the main power supply terminal 26 of the DC power supply 9 is connected to a commercial power supply to start the operation of electrolysis. The positive electrode 1 was set to a positive potential, the negative electrode 5 was set to a negative potential, and a DC voltage of 3 V was applied between the positive electrode 1 and the negative electrode 5.

【0063】陽電極1の表面材質は腐食電位が高く反応
酸素を含むフェライトで形成されており、電極材の溶解
は殆ど無く、陽電極1の表面においては、イオン交換水
である電解液10中の水分子を酸化し、(化5)〜(化
8)の反応が起こる。
The material of the surface of the positive electrode 1 is formed of ferrite having a high corrosion potential and containing reactive oxygen, and there is almost no dissolution of the electrode material. Is oxidized, and the reactions of (Chem. 5) to (Chem. 8) occur.

【0064】反応式の平衡電位より(化5)と(化8)
が主体に形成されるため、陽電極1表面から酸素ガスと
オゾンガスが発生する。
From the equilibrium potential of the reaction formula, (Chem. 5) and (Chem. 8)
Is mainly formed, oxygen gas and ozone gas are generated from the surface of the positive electrode 1.

【0065】また、この酸素ガスと酸化力の強いオゾン
ガスは生成直後電解液中に溶け込み殺菌力を持つ電解殺
菌水が生じる。ここで、白金等のめっき表面であれば、
酸素過電圧が低くなり(化5)の反応のみでオゾンの生
成は少ないが、反応酸素を含むフェライトの酸素が(化
5)の反応式に触媒作用として介在するため(化8)の
反応が積極的に生じることとなりオゾンの生成が効率よ
く行われ、生成ガス中のオゾン濃度は高くなる。
Further, the oxygen gas and the ozone gas having a strong oxidizing power are dissolved in the electrolytic solution immediately after the generation, and electrolytic sterilizing water having a sterilizing power is generated. Here, if it is a plating surface such as platinum,
Oxygen overvoltage is low and ozone generation is small due to only the reaction of (Chem. 5), but the reaction of (Chem. 8) is aggressive because the oxygen of the ferrite containing the reactive oxygen is catalyzed in the reaction of (Chem. 5). Ozone is efficiently generated, and the ozone concentration in the generated gas is increased.

【0066】[0066]

【化5】 Embedded image

【0067】[0067]

【化6】 Embedded image

【0068】[0068]

【化7】 Embedded image

【0069】[0069]

【化8】 Embedded image

【0070】[0070]

【化9】 Embedded image

【0071】ここでは、水素イオンの対イオンの増加は
ほとんどないため過剰となる水素イオンは水素イオン伝
導型膜7を通じてカソード室6に移動する。そのため、
アノード室4内では水素イオン濃度の増加は見られず、
pHは中性を維持することになる。
Here, since there is almost no increase in counter ions of hydrogen ions, excess hydrogen ions move to the cathode chamber 6 through the hydrogen ion conductive type membrane 7. for that reason,
No increase in the hydrogen ion concentration was observed in the anode chamber 4,
The pH will remain neutral.

【0072】さらに、フェライト表面層30面全体に塗
布されたフッ素樹脂系イオン交換膜7と同系統の樹脂層
35により、イオン交換膜7との密着面だけでなく陽電
極1全体から水素イオンが移動することになり、電流密
度が低く平均化されるため効率良く水素イオンの伝達が
できる。
Further, the resin layer 35 of the same type as the fluororesin-based ion exchange membrane 7 coated on the entire surface of the ferrite surface layer 30 allows hydrogen ions not only from the contact surface with the ion exchange membrane 7 but also from the entire positive electrode 1 to be removed. As a result, the current density is reduced and averaged, so that hydrogen ions can be transmitted efficiently.

【0073】カソード室6の陰電極5表面では吸排気機
構17により送り込まれてくる外気に含まれる酸素と、
直流電源9の負の電位として流れてくる電子と、アノー
ド室で生成されて水素イオン伝導型イオン交換膜7を通
過してくる水素イオンとの3つの成分が介在し、(化
9)の反応を起こすことにより水を生成する。生成した
水は水素イオン伝導型イオン交換膜7に吸着するか、蒸
気となって排気口22から排出される。
On the surface of the cathode 5 in the cathode chamber 6, oxygen contained in the outside air sent by the intake / exhaust mechanism 17 and
The three components of the electrons flowing as the negative potential of the DC power supply 9 and the hydrogen ions generated in the anode chamber and passing through the hydrogen ion conduction type ion exchange membrane 7 are interposed, and the reaction of the chemical formula 9 is performed. To generate water. The generated water is adsorbed on the hydrogen ion conduction type ion exchange membrane 7 or is vaporized and discharged from the exhaust port 22.

【0074】又、電気分解によって陽電極1面で発生し
た水素イオンが陰電極5の表面で酸素ガスと反応して水
分に変換する際、十分に反応が起こらず未反応の水素が
残存する可能性がある。この場合を想定して陰電極5の
水素イオン伝導型イオン交換膜7との反対面に白金触媒
を担持したカーボン性ハニカム状の補助集電体34を圧
着させることで水素の処理はさらに完璧に行うことが可
能である。
When hydrogen ions generated on the surface of the positive electrode 1 by electrolysis react with oxygen gas on the surface of the negative electrode 5 and are converted into moisture, unreacted hydrogen may remain without sufficiently reacting. There is. Assuming this case, a carbon honeycomb-shaped auxiliary current collector 34 supporting a platinum catalyst is pressed on the surface of the negative electrode 5 opposite to the hydrogen ion-conducting ion exchange membrane 7, so that the hydrogen treatment is more perfect. It is possible to do.

【0075】尚、陰電極5は貫通穴を有する多孔性のメ
ッシュ状のものとして、表面に白金超微粒子を担持した
カーボン粉末とフッ素樹脂粉末の混合物を加圧成形して
適度な揆水性を持たせた多孔質ガス拡散電極を用い、水
素イオン伝導型イオン交換膜7に密着して取りつけるこ
とにより、外気に含まれる酸素と、陰電極5を経由し運
ばれた電子と、水素イオン伝導型イオン交換膜7を通過
してくる水素イオンとを白金超微粒子の触媒作用でもっ
て円滑に反応させることが可能となるもので、陰電極5
と水素イオン伝導型イオン交換膜7とを隔離すると水素
イオンの移動が不導体のガス層に邪魔されて円滑に行か
ず、また貫通穴が無いと外気に接する面から水素イオン
伝導イオン交換膜7への酸素の移動を陰電極5自身が遮
断するため円滑な3つの成分の反応ができなくなる。
The cathode 5 is made of a porous mesh having through holes, and has a moderate water repellency by pressure molding a mixture of a carbon powder and a fluororesin powder carrying platinum ultrafine particles on the surface. The porous gas diffusion electrode is attached to the hydrogen ion conduction type ion exchange membrane 7 in close contact, so that oxygen contained in the outside air, electrons transported through the negative electrode 5, and hydrogen ion conduction type The hydrogen ions passing through the exchange membrane 7 can be smoothly reacted by the catalytic action of the ultrafine platinum particles.
When the hydrogen ion-conducting ion exchange membrane 7 is isolated from the hydrogen ion-conducting ion exchange membrane 7, the movement of hydrogen ions is hindered by the nonconductive gas layer. Since the negative electrode 5 blocks the transfer of oxygen to the cathode, the three components cannot react smoothly.

【0076】以上のように陰電極5として多孔質ガス拡
散電極のような貫通穴を有する多孔性のメッシュ状のも
のを用い、水素イオン伝導型イオン交換膜7に密着して
取りつけることにより、吸排気機構17で送り込まれる
酸素と、アノード室4から水素イオン伝導型イオン交換
膜7を通過してくる水素イオンと陰極を経由して運ばれ
る電子により水分を生成することは、陰電極5表面から
の水素ガスの発生をなくすことができ、水素ガスによる
火災や爆発の危険を除去することができる。またカソー
ド室6には電解液、浄水、イオン交換水、蒸留水、純水
などを必要としないので電解水の処理や濃度調整の管理
が必要でなくなるため、非常に電解槽の構造が簡素化で
き、設備費用が削減できる。
As described above, a porous mesh-like material having through holes such as a porous gas diffusion electrode is used as the negative electrode 5, and the negative electrode 5 is closely attached to the hydrogen ion conduction type ion exchange membrane 7. The generation of moisture by the oxygen fed by the exhaust mechanism 17, the hydrogen ions passing from the anode chamber 4 through the hydrogen ion conduction type ion exchange membrane 7, and the electrons carried through the cathode is performed from the surface of the negative electrode 5. Hydrogen gas can be eliminated, and the danger of fire and explosion due to hydrogen gas can be eliminated. Further, since the cathode chamber 6 does not require an electrolytic solution, purified water, ion-exchanged water, distilled water, pure water, etc., it is not necessary to control the treatment of the electrolytic water and control the concentration, thereby greatly simplifying the structure of the electrolytic cell. And equipment costs can be reduced.

【0077】また、アノード室4では(化5)〜(化
8)の反応で生じる酸素ラジカルやオゾンや過酸化水素
水の酸化力を利用し、純水の電解殺菌水が製造でき、こ
の電解水は中性に近いことから人体への影響も少なく、
排水においても公害問題が生じないものとなる。
Further, in the anode chamber 4, pure water electrolytic sterilizing water can be produced by utilizing the oxidizing power of oxygen radicals, ozone and hydrogen peroxide water generated by the reactions of (Chem. 5) to (Chem. 8). Because water is close to neutral, it has little effect on the human body,
There will be no pollution problem in drainage.

【0078】尚、酸化電位測定電極11と酸化電位計1
2により酸化還元電位を測定した結果が銀/塩化銀電極
に対し1100mV以上となれば、直流電源9の運転を
ストップし電解を中断するようにした。この時の酸化還
元電位が銀/塩化銀電極に対し1100mVを示すこと
は、この時の電解液10の溶存オゾン濃度が1ppm以
上であることを示すものである。
The oxidation potential measuring electrode 11 and the oxidation potential meter 1
When the result of measuring the oxidation-reduction potential in Step 2 became 1100 mV or more with respect to the silver / silver chloride electrode, the operation of the DC power supply 9 was stopped to stop the electrolysis. The fact that the oxidation-reduction potential at this time is 1100 mV with respect to the silver / silver chloride electrode indicates that the dissolved ozone concentration of the electrolytic solution 10 at this time is 1 ppm or more.

【0079】以上のように水素イオン伝導型イオン交換
膜7を電解槽3の隔壁8として利用することにより、水
素イオンの移動が起こるだけであり、アノード室4の電
解水が強酸性水になることがなく、またカソード室6の
電解水が強アルカリ水になることもないので取扱いが容
易で、排水についても中和処理も必要としない中性オゾ
ン電解水を得ることができる。
As described above, by using the hydrogen ion-conducting ion exchange membrane 7 as the partition wall 8 of the electrolytic cell 3, only the movement of hydrogen ions occurs, and the electrolytic water in the anode chamber 4 becomes strongly acidic water. Since the electrolyzed water in the cathode chamber 6 does not become strongly alkaline water, it is easy to handle, and it is possible to obtain neutral ozone electrolyzed water that does not require any wastewater or neutralization treatment.

【0080】尚、第1の実施の形態では、陽電極1のフ
ェライト表面層30面にフッ素樹脂系イオン交換膜と同
系統の樹脂を塗布することの組合せによって、フッ素樹
脂系イオン交換膜7と陽電極1の面との密着面積を大き
くすることが可能となり局部的に電流密度が高くなるの
を防止できる。
In the first embodiment, the combination of applying the same type of resin as the fluororesin-based ion exchange membrane to the surface of the ferrite surface layer 30 of the positive electrode 1 allows the fluororesin-based ion exchange membrane 7 to be used. The area of contact with the surface of the positive electrode 1 can be increased, and the local increase in current density can be prevented.

【0081】又、耐食性金属基体31とフェライトとの
密着性をあげるために結合金属として白金を使用した
が、パラジウムでも良く、これらは最も一般的な表面処
理剤であり、腐食性がなく生体への影響や廃棄公害を考
慮し選定したもので、その他の金や白金族金属であるル
テニウム、ロジウム、オスミウム、イリジイウムを使用
してもよい。
Although platinum was used as the binding metal to increase the adhesion between the corrosion-resistant metal substrate 31 and the ferrite, palladium may be used, and these are the most common surface treatment agents and have no corrosive properties and can be applied to living organisms. And gold and platinum group metals such as ruthenium, rhodium, osmium and iridium may be used.

【0082】又、第1の実施例の形態ではフェライトの
一種としてマグネタイトの製法を示したが、めっき浴中
にニッケル、コバルト、亜鉛等の他の金属イオンを含有
させるだけで、各種フェライトが形成でき、これらのフ
ェライト電極もオゾン発生電極として良好であり、マグ
ネタイトに限るものではない。
Further, in the embodiment of the first embodiment, the method of producing magnetite is shown as a kind of ferrite, but various ferrites can be formed only by containing other metal ions such as nickel, cobalt and zinc in the plating bath. These ferrite electrodes are also good as ozone generating electrodes, and are not limited to magnetite.

【0083】尚、フェライトめっき処理した後、陽電極
を2000〜2万ガウスの磁場をかけ磁化処理を行うこ
とで、陽電極面に磁力をつけておくと、電解液に不純物
として含まれ、水素イオンの伝達を阻害し、イオン交換
膜の寿命を低下させる鉄分や金属イオンが陽電極表面に
捕らえられ、イオン交換膜の寿命を大幅に伸ばすことが
できる。
After the ferrite plating, the positive electrode is magnetized by applying a magnetic field of 2000 to 20,000 gauss so that a magnetic force is applied to the surface of the positive electrode. Iron and metal ions, which inhibit ion transmission and reduce the life of the ion exchange membrane, are captured on the surface of the positive electrode, thereby greatly extending the life of the ion exchange membrane.

【0084】尚、実施形態1としては排水溝よりオゾン
水を取り出し、直接的に殺菌水として使用する事例を示
したが、ミキシングノズルを取りつけ排出口から発生す
る酸素ガスとオゾンガスとの混合ガスを直接水道水に吹
き込み混合しオゾン水を製造する方法もある。以上のよ
うに耐食性金属基体上に白金及び/又はパラジウム酸化
物と、チタン及びタンタルの酸化物からなる下地層を設
け、酸化タンタルを含む電解又は無電解のめっき処理で
複合酸化物を含むフェライト層を形成し、さらに表面に
イオン交換膜と同系統のフッ素樹脂を塗布した後イオン
交換膜に密着させた電解槽を持つ電解水生成装置であれ
ば、電極基材への密着性を良好にし、電気伝導性とオゾ
ン生成効率を維持するオゾン発生陽電極を得ることがで
きる。又、耐熱性に強く水素イオンのみを効率良く伝達
するフッ素樹脂系のイオン交換膜を使用することによ
り、カソード室にガス拡散電極の使用が可能となり、爆
発の危険のある水の電解で生成する水素を水に置換で
き、安全性の向上が図れる。さらに凹凸状の複合材の表
面にイオン交換膜と同種のフッ素系樹脂を塗布すること
で、陽電極面とイオン交換膜との接触面を大幅に増加さ
せ接触抵抗を小さくでき、効率の良いオゾン発生陽電極
を得る。又、電気導電性の高い金やパラジウムで下地処
理を行うことで円滑な水の電気分解ができ、鉛等の有害
な重金属を使用せず、食品衛生上安全であり食品用途に
も展開できる電解水生成装置を提供するものである。さ
らにフェライトの主成分である鉄は白金やチタンと並び
人体への影響が極力少ない金属であり、生鮮食品の殺菌
水に安心して使用でき、めっき処理法は熱をかけないの
で金属酸化物の変質を予防し、また下地処理に用いた白
金やパラジウムの酸化を抑える効果があるばかりか、電
気伝導性とオゾン生成効率が良好な陽電極表面を形成す
るものである。
In the first embodiment, an example was shown in which ozone water was taken out from a drain and directly used as sterilizing water. However, a mixing nozzle was installed and a mixed gas of oxygen gas and ozone gas generated from an outlet was used. There is also a method in which ozone water is produced by directly blowing and mixing into tap water. As described above, the base layer made of platinum and / or palladium oxide and the oxide of titanium and tantalum is provided on the corrosion-resistant metal substrate, and the ferrite layer containing the composite oxide is formed by electrolytic or electroless plating treatment containing tantalum oxide. If the electrolyzed water generating apparatus has an electrolytic tank closely adhered to the ion exchange membrane after applying the same type of fluororesin as the ion exchange membrane on the surface, the adhesion to the electrode substrate is improved, An ozone-generating positive electrode that maintains electrical conductivity and ozone generation efficiency can be obtained. In addition, by using a fluorine resin-based ion exchange membrane that has high heat resistance and efficiently transmits only hydrogen ions, it is possible to use a gas diffusion electrode in the cathode chamber, and it is generated by electrolysis of water, which is a danger of explosion. Hydrogen can be replaced with water, and safety can be improved. In addition, by applying the same type of fluororesin as the ion-exchange membrane on the surface of the uneven composite material, the contact surface between the positive electrode surface and the ion-exchange membrane can be greatly increased, and the contact resistance can be reduced. Obtain a generating positive electrode. In addition, the electrolysis of water can be performed smoothly by priming with gold or palladium, which has high electrical conductivity, and no harmful heavy metals such as lead are used. A water generation device is provided. In addition, iron, which is the main component of ferrite, is a metal that has as little effect on the human body as platinum and titanium, and can be used with confidence in sterilizing water for fresh foods. This not only has the effect of preventing oxidation and suppressing the oxidation of platinum and palladium used in the undercoating process, but also forms a positive electrode surface having good electrical conductivity and ozone generation efficiency.

【0085】[0085]

【発明の効果】以上のように、本発明の電解水生成装置
は、陰電極を持つカソード室と、電解液に接する陽電極
を持つアノード室と、前記カソード室とアノード室とを
仕切る隔壁をイオン交換膜で構成した電解槽で、前記ア
ノード室の陽電極がフェライトの表面層を有する電解水
生成装置であり、白金及び金属酸化物を含む下地処理に
よりオゾン生成効率が高く導電性のフェライトと耐食性
金属基体と密着性を良好にし、剥がれ難く、円滑な水の
電気分解ができるオゾン発生陽電極とするもので、鉛等
の有害な重金属を使用せず、食品衛生上においても生鮮
食品の殺菌水として安全であり、食品用途にも安心して
使用できる電解水を提供するものである。さらに電極面
に磁力を加えることによりイオン交換膜に影響する不純
物を極力電極面に吸着しイオン交換膜の寿命を長くさせ
ることができる。
As described above, the apparatus for producing electrolyzed water according to the present invention comprises a cathode chamber having a negative electrode, an anode chamber having a positive electrode in contact with an electrolyte, and a partition partitioning the cathode chamber from the anode chamber. In an electrolytic cell composed of an ion exchange membrane, the positive electrode of the anode chamber is an electrolyzed water generator having a surface layer of ferrite. It is an ozone-generating positive electrode that has good adhesion to the corrosion-resistant metal substrate, does not easily peel off, and can smoothly electrolyze water. It does not use harmful heavy metals such as lead and sterilizes fresh food even in food hygiene. It is intended to provide electrolyzed water that is safe as water and can be used safely for food applications. Further, by applying magnetic force to the electrode surface, impurities affecting the ion exchange membrane can be adsorbed to the electrode surface as much as possible, and the life of the ion exchange membrane can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態における電解水生成
装置と電解槽の横断面図
FIG. 1 is a cross-sectional view of an electrolyzed water generator and an electrolyzer according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態における陽電極とイ
オン交換膜と陰電極との接合部の要部拡大断面図
FIG. 2 is an enlarged sectional view of a main part of a junction between a positive electrode, an ion exchange membrane and a negative electrode according to the first embodiment of the present invention.

【図3】本発明の第1の実施の形態におけるフェライト
めっき装置の概略図
FIG. 3 is a schematic diagram of a ferrite plating apparatus according to the first embodiment of the present invention.

【図4】本発明の第1の実施の形態におけるフェライト
めっき装置の概略図
FIG. 4 is a schematic diagram of a ferrite plating apparatus according to the first embodiment of the present invention.

【図5】陽電極表面材料の電流密度とオゾン電流効率と
の関連を示すグラフ
FIG. 5 is a graph showing the relationship between the current density of the positive electrode surface material and the ozone current efficiency.

【符号の説明】[Explanation of symbols]

1 陽電極 2 電解水生成装置 3 電解槽 4 アノード室 5 陰電極 6 カソード室 7 イオン交換膜 8 隔壁 10 電解液 30 表面層 31 基体 36 下地層 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Electrolyzed water generator 3 Electrolyzer 4 Anode chamber 5 Negative electrode 6 Cathode chamber 7 Ion exchange membrane 8 Partition wall 10 Electrolyte 30 Surface layer 31 Substrate 36 Underlayer

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 陰電極を持つカソード室と、電解液に接
する陽電極を持つアノード室と、前記カソード室とアノ
ード室とを仕切る隔壁をイオン交換膜で構成した電解槽
を有し、前記アノード室の陽電極がフェライトの表面層
を有することを特徴とする電解水生成装置。
A cathode chamber having a negative electrode, an anode chamber having a positive electrode in contact with an electrolytic solution, and an electrolytic cell in which a partition partitioning the cathode chamber and the anode chamber is formed of an ion exchange membrane. An electrolyzed water generator, wherein the positive electrode of the chamber has a ferrite surface layer.
【請求項2】 カソード室とアノード室とを仕切る隔壁
をフッ素樹脂系イオン交換膜で構成し、フェライトの表
面層を有するオゾン発生陽電極にフッ素樹脂系イオン交
換膜と同系統の樹脂を塗布し、その塗布面を前記フッ素
樹脂系イオン交換膜と密着させたことを特徴とする電解
水生成装置。
2. A partition partitioning the cathode chamber and the anode chamber from a fluororesin ion exchange membrane, and a resin of the same type as the fluororesin ion exchange membrane is applied to an ozone generating positive electrode having a ferrite surface layer. An electrolyzed water generating apparatus characterized in that the application surface is brought into close contact with the fluororesin-based ion exchange membrane.
【請求項3】 耐食性金属基体上に白金及び/又はパラ
ジウム酸化物を含む下地層を設け、その上層にフェライ
トの表面層を有する陽電極とする請求項1または請求項
2記載の電解水生成装置。
3. The electrolyzed water generating apparatus according to claim 1, wherein an underlayer containing platinum and / or palladium oxide is provided on the corrosion-resistant metal substrate, and a positive electrode having a ferrite surface layer on the underlayer is provided. .
【請求項4】 耐食性金属基体上に白金及び/又はパラ
ジウム酸化物と、チタン及び/又はタンタルの酸化物か
らなる下地層を設け、フェライトの表面層を有する陽電
極とする請求項1または請求項2記載の電解水生成装
置。
4. A positive electrode having a ferrite surface layer provided on a corrosion-resistant metal substrate by providing an underlayer made of platinum and / or palladium oxide and titanium and / or tantalum oxide. 3. The electrolyzed water generator according to 2.
【請求項5】 電解又は無電解のめっき処理によりフェ
ライトを析出させた表面層をもつ陽電極とする請求項1
から請求項4記載の電解水生成装置。
5. A positive electrode having a surface layer on which ferrite is deposited by electrolytic or electroless plating.
The electrolyzed water generator according to claim 4.
【請求項6】 フェライトをめっき処理により析出させ
る際、不活性の酸化チタン、酸化タンタルの金属酸化物
を含むめっき浴で分散めっきにより複合系の表面層とし
た請求項1から請求項5記載の電解水生成装置。
6. The composite surface layer according to claim 1, wherein when the ferrite is deposited by plating, the composite surface layer is formed by dispersive plating in a plating bath containing an inert titanium oxide or tantalum oxide metal oxide. Electrolyzed water generator.
【請求項7】 フェライトで表面処理した後、磁化処理
により磁力体表面層を有する陽電極とした請求項1から
請求項6記載の電解水生成装置。
7. The electrolyzed water generating apparatus according to claim 1, wherein the positive electrode having a magnetic material surface layer is formed by magnetizing after surface treatment with ferrite.
JP9089125A 1997-04-08 1997-04-08 Electrolyte water generating device Pending JPH10277551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9089125A JPH10277551A (en) 1997-04-08 1997-04-08 Electrolyte water generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9089125A JPH10277551A (en) 1997-04-08 1997-04-08 Electrolyte water generating device

Publications (1)

Publication Number Publication Date
JPH10277551A true JPH10277551A (en) 1998-10-20

Family

ID=13962175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9089125A Pending JPH10277551A (en) 1997-04-08 1997-04-08 Electrolyte water generating device

Country Status (1)

Country Link
JP (1) JPH10277551A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210643B1 (en) 1998-07-12 2001-04-03 Hirokazu Shiota Ozonizer
JP2009248059A (en) * 2008-04-10 2009-10-29 Niigata Univ Simultaneously manufacturing apparatus for ozone water and hydrogen peroxide water
JP2011127146A (en) * 2009-12-15 2011-06-30 Mitsubishi Heavy Ind Ltd Power feeder for water electrolysis, water electrolytic apparatus, and method for manufacturing the water electrolytic apparatus
JP2018104810A (en) * 2016-12-26 2018-07-05 パナソニックIpマネジメント株式会社 Membrane electrode assembly and electrochemical hydrogen pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6210643B1 (en) 1998-07-12 2001-04-03 Hirokazu Shiota Ozonizer
JP2009248059A (en) * 2008-04-10 2009-10-29 Niigata Univ Simultaneously manufacturing apparatus for ozone water and hydrogen peroxide water
JP2011127146A (en) * 2009-12-15 2011-06-30 Mitsubishi Heavy Ind Ltd Power feeder for water electrolysis, water electrolytic apparatus, and method for manufacturing the water electrolytic apparatus
JP2018104810A (en) * 2016-12-26 2018-07-05 パナソニックIpマネジメント株式会社 Membrane electrode assembly and electrochemical hydrogen pump

Similar Documents

Publication Publication Date Title
US20100065420A1 (en) Electrode, method of manufacture and use thereof
WO2019149142A1 (en) Novel anode material and preparation method therefor, and device for generating ozone by electrolysis
JPH11104648A (en) Seawater electrolyzing apparatus
CN113264573B (en) Bipolar electrode, preparation method thereof and wastewater treatment system
JPH07214063A (en) Production of electrolytic acidic water and producting device therefor
JP2003145161A (en) Water treatment apparatus and water treatment method
CN111733426B (en) Method and device for electrochemically preparing ferrate based on gas diffusion electrode
JPH10277551A (en) Electrolyte water generating device
JP3821529B2 (en) Electrolyzed water generator
JPS63277799A (en) Method for electrolytically treating metal
CN110747487A (en) Water electrolysis oxygen generation system and air quality control system of closed space
JPH11106976A (en) Electrolytic water-producing device
JP2975577B2 (en) Electrolytic treatment of electroless nickel plating wastewater
JPH08269761A (en) Water electrolytic cell and its production
JPH11264090A (en) Electrolytic ozone generating apparatus and method for stopping its operation
CN111995010B (en) Electrochemical tubular treatment device and method applied to high-concentration cyanide-containing wastewater
JPH11236692A (en) Electrolytic ozone generator
CN110499518B (en) Electrolysis device
CN109052755A (en) The processing method of admiro waste water based on electrocatalytic oxidation
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
CN110863212A (en) Water electrolysis oxygen generation system and air quality control system of closed space
JP2574678B2 (en) Equipment for producing aqueous solution containing peroxide
JPS63243291A (en) Production of anode for ion exchange membrane
JPH07316864A (en) Electrolytic oxidation device
JP2002080986A (en) Electrode for ozone generation, ozonized water manufacturing method and ozonized water manufacturing apparatus using the same