JPH0663423A - Production of catalyst element - Google Patents

Production of catalyst element

Info

Publication number
JPH0663423A
JPH0663423A JP3169281A JP16928191A JPH0663423A JP H0663423 A JPH0663423 A JP H0663423A JP 3169281 A JP3169281 A JP 3169281A JP 16928191 A JP16928191 A JP 16928191A JP H0663423 A JPH0663423 A JP H0663423A
Authority
JP
Japan
Prior art keywords
catalyst
alumina sol
alumina
substrate
boehmite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3169281A
Other languages
Japanese (ja)
Inventor
Hideo Kameyama
山 秀 雄 亀
Tatsuo Kawasaki
崎 龍 夫 川
Shoji Doi
肥 祥 司 土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Kawasaki Steel Corp filed Critical Osaka Gas Co Ltd
Priority to JP3169281A priority Critical patent/JPH0663423A/en
Publication of JPH0663423A publication Critical patent/JPH0663423A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To produce an inexpensive catalyst element having excellent capacity as a reaction catalyst at a high temp. CONSTITUTION:A stainless steel substrate containing aluminum is baked to 1000 deg.C to form a film composed of granular alumina on the surface of the substrate and, subsequently, a liquid containing at least one kind of a boehmite type alumina sol, a gibbsite alumina sol and an amorphous alumina sol is applied to the baked substrate to be dried. Hot water treatment and catalyst supporting treatment are simultaneously applied to the coated substrate using an aqueous soln. with a temp. of 50-350 deg.C containing a catalyst to bake the treated substrate at 400 deg.C or higher or hot water treatment is applied to the coated substrate using water or an aqueous soln. with a temp. of 50-350 deg.C containing no catalyst to form a pseudo-boehmite porous surface and the treated substrate is further baked at 400 deg.C or higher to convert the boehmite porous surface to a porous surface of gamma-alumina. Next, an aqueous soln. containing a catalyst is applied to the porous surface to support the catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高温で使用することので
きる触媒体の製造方法に関し、特に、丈夫で活性の高い
触媒体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a catalyst body that can be used at high temperatures, and more particularly to a method for producing a strong and highly active catalyst body.

【0002】[0002]

【従来技術】近年の自動車工業の発達は生活に多大の利
便さをもたらした一方、排気ガスが生活環境を破壊して
いることが明らかになるに伴い、排気ガスをより無害化
するための方策が検討されている。かかる方策の1つと
して、排気ガスを更に燃焼させて無害化する努力がなさ
れており、そのために高温における燃焼のための触媒体
が開発されている。
2. Description of the Related Art While the recent development of the automobile industry has brought great convenience to daily life, as it has become clear that exhaust gas is destroying the living environment, measures for making the exhaust gas more harmless. Is being considered. As one of such measures, efforts have been made to further burn exhaust gas to make it harmless, and therefore, a catalyst body for combustion at high temperature has been developed.

【0003】これらの中でも、アルミニウムを含有する
ステンレス表面に酸化物ウィスカーを形成させ、これに
触媒を担持させた触媒体(例えば特開昭56−9672
6号及び同56−152965号)は耐熱性が良好で優
れたものであることから、近年、実用の観点から更に開
発が進められている(例えば特開昭57−71898
号、特開平2−26540号及び同2−290252
号)。
Among these, a catalyst body in which oxide whiskers are formed on the surface of stainless steel containing aluminum and a catalyst is supported on the whiskers (for example, JP-A-56-9672).
No. 6 and No. 56-152965) have good heat resistance and are excellent, and therefore, they have been further developed in recent years from the viewpoint of practical use (for example, JP-A-57-71898).
No. 2, 26,540 and 2,290,252.
issue).

【0004】[0004]

【発明が解決しようとする課題】しかしながらこれらの
触媒は何れもウィスカーという特殊な表面を形成させる
工程を経て製造されるので、これを自動車排気ガス以外
の一般の化学反応に応用しようとする場合にはコスト高
になるという欠点があった。
However, since all of these catalysts are manufactured through a process of forming a special surface called whiskers, they are not suitable for general chemical reactions other than automobile exhaust gas. Had the drawback of being expensive.

【0005】本発明者等は上記の欠点を解決すべく鋭意
検討した結果、ウィスカーを形成させなくても、ステン
レス表面に粒状のアルミナ皮膜を形成させ特定の処理を
施すことにより、ウィスカーを形成させた場合に劣らな
い性能を有する触媒体とすることができることを見い出
し、本発明に到達した。
The inventors of the present invention have conducted extensive studies to solve the above-mentioned drawbacks. As a result, even if whiskers are not formed, a granular alumina film is formed on the stainless steel surface and a specific treatment is performed to form whiskers. It was found that a catalyst body having a performance not inferior to that of the above can be obtained, and the present invention has been reached.

【0006】従って本発明の第一の目的は、安価である
と共に、高温での反応触媒として優れた性能を有する触
媒体を提供することにある。本発明の第二の目的は、高
温での反応触媒として優れた性能を有する触媒体の簡単
な製造方法を提供することにある。
Therefore, a first object of the present invention is to provide a catalyst body which is inexpensive and has excellent performance as a reaction catalyst at high temperature. A second object of the present invention is to provide a simple method for producing a catalyst body having excellent performance as a reaction catalyst at high temperature.

【0007】[0007]

【課題を解決するための手段】本発明の上記の諸目的
は、アルミニウムを含有したステンレス基板を1000
℃以上で焼成して該基板の表面に粒状のアルミナによる
皮膜を形成せしめ、次いでベーマイト型のアルミナゾ
ル、ギブサイト型のアルミナゾル又は無定形のアルミナ
ゾルの少なくとも1種を含有する液体を塗布・乾燥した
後、触媒を含有する50〜350℃の水溶液を用い
て、熱水処理と同時に触媒担持処理を施し、次いで40
0℃以上で焼成するか、触媒を含有しない50〜35
0℃の水又は水溶液を用いて熱水処理し、前記表面を擬
ベーマイト化された多孔質表面とした後更に400℃以
上で焼成することにより、前記ベーマイト化された多孔
質表面をγ−アルミナの多孔質表面とし、次いで触媒を
含有する水溶液を用いて触媒担持処理を行うことを特徴
とする触媒体の製造方法によって達成された。
DISCLOSURE OF THE INVENTION The above objects of the present invention are achieved by using a stainless steel substrate containing aluminum 1000
After baking at a temperature of ℃ or more to form a film of granular alumina on the surface of the substrate, and then applying and drying a liquid containing at least one of boehmite type alumina sol, gibbsite type alumina sol or amorphous alumina sol, Using an aqueous solution containing a catalyst at 50 to 350 ° C., a hot water treatment and a catalyst supporting treatment were simultaneously performed, and then 40
Calcination at 0 ° C or higher or catalyst-free 50-35
By subjecting the surface to a pseudo-boehmite porous surface by hot water treatment with water or an aqueous solution at 0 ° C., and further calcining at 400 ° C. or higher, the boehmite porous surface is converted into γ-alumina. It was achieved by a method for producing a catalyst body, which comprises carrying out a catalyst supporting treatment using a porous surface of the above, and then using an aqueous solution containing a catalyst.

【0008】本発明で使用するアルミニウム含有ステン
レスは、1000℃以上での焼成により表面に粒状のア
ルミナによる皮膜を形成せしめることができるステンレ
スであれば良く、このような合金として例えばリバーラ
イトR20−5SR(川崎製鉄(株)製商品名)を挙げ
ることができる。
The aluminum-containing stainless steel used in the present invention may be any stainless steel capable of forming a film of granular alumina on the surface by firing at 1000 ° C. or higher. As such an alloy, for example, Riverlite R20-5SR. (Kawasaki Steel Co., Ltd. product name).

【0009】焼成温度を1000℃以上とすることによ
り、焼成処理を2〜16時間と短くすることができるの
で効率的である上、これによって最終的に製造される触
媒体の耐熱製を十分に高いものとすることができる。
By setting the calcination temperature to 1000 ° C. or higher, the calcination process can be shortened to 2 to 16 hours, which is efficient, and also the heat resistance of the finally produced catalyst body can be sufficiently improved. Can be expensive.

【0010】本発明においては、上記の如くしてステン
レス基板の表面に、粒状のアルミナによる被膜を形成さ
せた後ベーマイト型のアルミナゾル、ギブサイト型のア
ルミナゾル又は無定形のアルミナゾルの中から選択され
た少なくとも1種のアルミナゾルを含有する液体を塗布
し、乾燥する。上記アルミナゾルの製造は公知の方法に
よって行うことができる。
In the present invention, at least one selected from boehmite-type alumina sol, gibbsite-type alumina sol or amorphous alumina sol after forming a film of granular alumina on the surface of the stainless steel substrate as described above. A liquid containing one type of alumina sol is applied and dried. The above-mentioned alumina sol can be produced by a known method.

【0011】この液体の塗布は、前記アルミナ皮膜上に
アルミナゾルを均一に付与するために行うものであり、
従ってあまり高濃度のアルミナゾルの液体を使用しても
アルミナゾルの付着が不均一となるので好ましくない。
又、アルミナゾルの濃度が低すぎても、粒状アルミナ皮
膜の全表面に均一にアルミナゾルを付与することができ
ないので好ましくない。
The application of this liquid is carried out in order to uniformly apply the alumina sol onto the alumina coating,
Therefore, it is not preferable to use an alumina sol liquid having a too high concentration, because the adhesion of the alumina sol becomes non-uniform.
Also, if the concentration of the alumina sol is too low, the alumina sol cannot be uniformly applied to the entire surface of the granular alumina coating, which is not preferable.

【0012】本発明において、アルミナゾルを含有する
液体とは、上記ゾルを例えば水等の溶媒に分散した液体
であり、通常アルミナゾルの濃度として0.1〜10重
量%のものを使用する。経済性・作業性を考慮すると、
上記液体は水を溶媒とする液体であることが好ましく、
又、アルミナゾルの濃度は1〜5重量%とすることが好
ましい。
In the present invention, the liquid containing an alumina sol is a liquid in which the above sol is dispersed in a solvent such as water, and the concentration of the alumina sol is usually 0.1 to 10% by weight. Considering economy and workability,
The liquid is preferably a liquid using water as a solvent,
The concentration of alumina sol is preferably 1 to 5% by weight.

【0013】粒状アルミナ表面に付与されたアルミナゾ
ルは、乾燥後に行われる50〜350℃の水又は水溶液
による熱水処理によって、擬ベーマイト化した多孔質表
面を与える。この多孔質表面は触媒を担持する表面であ
るので、基板上に均一且つしっかりと形成されるか否か
によって、製造される触媒体の性能が大きく影響され
る。又、上記表面は多孔質であるために桟械的強度が弱
く、その表面が厚すぎると剥離等が生ずるので必要最少
限度の厚さとすることが好ましい。
The alumina sol applied to the surface of the granular alumina gives a pseudo-boehmite porous surface by a hot water treatment with water or an aqueous solution at 50 to 350 ° C. after drying. Since this porous surface is a surface for supporting a catalyst, the performance of the produced catalyst body is greatly affected by whether or not it is uniformly and firmly formed on the substrate. Further, since the surface is porous, mechanical strength is weak, and if the surface is too thick, peeling or the like occurs. Therefore, it is preferable that the surface has a minimum necessary thickness.

【0014】このような観点から、前記アルミナゾルを
含有する液体中のアルミナゾル濃度を1〜5重量%程度
とし、塗布及び乾燥を2度以上繰り返して行うことが好
ましい。擬ベーマイト化した多孔質表面は、更に400
℃以上に焼成されて触媒担持性能に優れたγ−アルミナ
となる。
From such a point of view, it is preferable that the concentration of alumina sol in the liquid containing the alumina sol is about 1 to 5% by weight, and the coating and drying are repeated twice or more. The pseudo-boehmite porous surface has 400
When it is fired at a temperature of ℃ or higher, it becomes γ-alumina having excellent catalyst supporting performance.

【0015】熱水処理を行う水又は水溶液はpHを7以
上とすることが好ましく、特に処理時間を短縮するうえ
で10〜12とすることが好ましい。熱水処理の時間は
熱水のpHによっても異なるが、1時間以上とすること
が好ましく、約2時間処理することによりほぼpHに関
係なくBET表面積を顕著に増大させることができる。
熱水処理の具体的方法としては通常浸漬する方法が採用
されるがこれに限定されるわけではない。
The pH of the water or aqueous solution to be subjected to the hot water treatment is preferably 7 or more, more preferably 10 to 12 in order to shorten the treatment time. The hot water treatment time varies depending on the pH of the hot water, but is preferably 1 hour or longer, and the BET surface area can be significantly increased by treating the hot water for about 2 hours regardless of the pH.
As a specific method of hot water treatment, a dipping method is usually adopted, but the method is not limited to this.

【0016】熱水処理時の処理液中に触媒を含有させて
おくことにより、熱水処理と触媒担持処理を同時に行う
ことができ、触媒製造工程を簡単にする上で好ましいの
みならず、理由は明確ではないが、特に高い触媒活性を
得ることができるという点からも好ましい。
By containing a catalyst in the treatment liquid during the hot water treatment, the hot water treatment and the catalyst supporting treatment can be carried out at the same time, which is preferable not only for simplifying the catalyst production process, but also for the reason. Is not clear, but it is preferable from the viewpoint that a particularly high catalytic activity can be obtained.

【0017】本発明で使用する触媒活性を有する金属は
特に限定されるものではないが、例えば白金系金属、白
金系金属の合金、金、金合金、マンガン、鉄、亜鉛、
銅、ニッケル、ニッケル合金、コバルト及びコバルト合
金、ルテニウム等の中から選択することが好ましく、特
に白金、パラジウム、マンガン、亜鉛、鉄、ニッケル及
びコバルトの中から選択することが好ましい。又、これ
らの触媒物質を組み合わせることもできる。
The metal having catalytic activity used in the present invention is not particularly limited, and examples thereof include platinum-based metals, alloys of platinum-based metals, gold, gold alloys, manganese, iron, zinc,
It is preferably selected from copper, nickel, nickel alloys, cobalt and cobalt alloys, ruthenium and the like, and particularly preferably selected from platinum, palladium, manganese, zinc, iron, nickel and cobalt. It is also possible to combine these catalyst substances.

【0018】尚、触媒活性を有する金属の粒径は約1n
m〜100nmであることが好ましく、特に、約5nm
〜50nmの範囲であることが好ましい。熱水処理時の
処理液に上記触媒活性を有する金属を含有させない場合
には、熱水処理後の400℃以上の焼成によって形成さ
れた多孔質のγ−アルミナ表面に公知の方法によって触
媒を担持させる。
The particle size of the metal having catalytic activity is about 1 n.
m to 100 nm is preferred, especially about 5 nm
It is preferably in the range of ˜50 nm. When the treatment liquid at the time of hot water treatment does not contain the metal having the above-mentioned catalytic activity, the catalyst is supported by a known method on the surface of the porous γ-alumina formed by firing at 400 ° C. or higher after the hot water treatment. Let

【0019】上記触媒活性を有する金属をγ−アルミナ
表面に担持させる方法としては、電着法、含浸法、真空
蒸着法、陰極スパッター法、金属スプレー法及び金属ク
ラッド法等の公知の方法の中から適宜選択して採用する
ことができる。
As a method for supporting the above-mentioned metal having catalytic activity on the surface of γ-alumina, among known methods such as electrodeposition method, impregnation method, vacuum deposition method, cathode sputtering method, metal spray method and metal clad method. Can be appropriately selected and employed.

【0020】本発明の触媒体は単なる触媒として使用す
ることができる他、板状触媒体とすることによって例え
ば熱交換の機能を持たせると共に反応室の壁体として使
用することにより反応熱を直接的に外部に取り出すこと
もできる等、種々の使用方法が可能である。
The catalyst body of the present invention can be used not only as a catalyst, but also as a plate-shaped catalyst body, for example, to have a function of heat exchange and also as a wall of a reaction chamber so that reaction heat can be directly applied. Various usages are possible, such as being able to take it out externally.

【0021】[0021]

【発明の効果】以上詳述した如く、本発明の面状触媒体
はステンレスを基板としているので耐熱性及び強度に優
れ、特に200℃以上の触媒反応用の装置材料に有効で
ある。又、本発明の触媒体はアルミナウィスカーの形成
を必要としないので製造が容易であり、安価な触媒体で
ある。
As described above in detail, since the planar catalyst body of the present invention uses stainless steel as a substrate, it has excellent heat resistance and strength, and is particularly effective as an apparatus material for catalytic reaction at 200 ° C. or higher. Further, the catalyst body of the present invention does not require the formation of alumina whiskers, and therefore is easy to manufacture and is an inexpensive catalyst body.

【0022】[0022]

【実施例】以下、本発明を実施例によって更に詳述する
が、本発明はこれによって限定されるものではない。
EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited thereto.

【0023】実施例1.厚さ100μmのアルミニウム
含有ステンレス(リバーライトR20−5SR:川崎製
鉄(株)製商品名)を1000℃で2時間高温酸化した
ところ表面に粒状アルミナの皮膜が形成された。
Example 1. When aluminum containing stainless steel having a thickness of 100 μm (Riverlite R20-5SR: trade name of Kawasaki Steel Co., Ltd.) was subjected to high temperature oxidation at 1000 ° C. for 2 hours, a granular alumina film was formed on the surface.

【0024】次いで、7.5重量%のベーマイト(Ca
taloid AS−3:触媒化学工場(株)社製商品
名)を2倍に希釈してスターラーで攪拌して調整したア
ルミナゾル溶液中に、粒状アルミナで被覆された上記ア
ルミニウム含有ステンレスを常温で約1分間浸漬した後
取り出して1時間自然乾燥させる工程を、2度繰り返し
た。
Next, 7.5% by weight of boehmite (Ca
taloid AS-3: Catalytic Chemical Factory Co., Ltd. (trade name) is diluted twice and stirred with a stirrer to prepare an alumina sol solution, and the aluminum-containing stainless steel coated with granular alumina is about 1 at room temperature. The process of soaking for 1 minute, taking out, and naturally drying for 1 hour was repeated twice.

【0025】次に、pHが11.0で温度85℃の熱水
に2時間浸漬して熱水処理を行ったところ、粒状アルミ
ナ表面は、多孔質の擬ベーマイトに変化したことがX線
回折によって確認された(図1)。更にこれを450℃
で30分間焼成したところ上記多孔質の擬ベーマイト層
は多孔質のγ−アルミナ層に変化したことがX線回折に
よって確認された(図2)。
Next, when hot water treatment was carried out by immersing in hot water having a pH of 11.0 and a temperature of 85 ° C. for 2 hours, the surface of the granular alumina was changed into porous pseudo-boehmite, and X-ray diffraction was conducted. Was confirmed by (Fig. 1). Furthermore, this
It was confirmed by X-ray diffraction that the porous pseudo-boehmite layer was changed to a porous γ-alumina layer when baked for 30 minutes (Fig. 2).

【0026】このようにして得られた、多孔質のγ−ア
ルミナ層によって被覆された基板をpH9.8、85
℃、白金濃度2.5×10-4(g−Pt/ml〕の塩化
白金酸水溶液中に2時間浸漬した。得られた触媒体の諸
特性は(表1)に示した通りである。尚、表中の反応速
度は、触媒みかけ表面積当たりの燃焼速度として、燃焼
気体濃度について1次の関係を有する次式を使用して求
めた。
The substrate coated with the porous γ-alumina layer thus obtained was adjusted to pH 9.8, 85.
It was immersed for 2 hours in a chloroplatinic acid aqueous solution having a platinum concentration of 2.5 × 10 −4 (g-Pt / ml) at 0 ° C. The various properties of the resulting catalyst body are as shown in (Table 1). The reaction rate in the table was obtained by using the following equation having a linear relationship with the combustion gas concentration as the combustion rate per apparent surface area of the catalyst.

【0027】r〔mol/(m2 ・秒)〕=K〔m/
秒〕・C〔mol/m3 〕 又、KA は、アセトン濃度を300ppm、燃焼温度を
200℃をした希薄アセトン燃焼における反応速度定数
を表し、KM は、メタン濃度を1体積%、燃焼温度を4
00℃とした希薄メタン燃焼における反応速度定数を表
す。更に、表中のR.F.はラフネスファクターであ
り、次式によって定義される。 R.F.=(触媒体のBET表面積)/(触媒体のみか
けの表面積)
R [mol / (m 2 · sec)] = K [m /
Sec] · C [mol / m 3 ] Further, K A represents a reaction rate constant in lean acetone combustion with an acetone concentration of 300 ppm and a combustion temperature of 200 ° C., and K M represents a methane concentration of 1% by volume and combustion. Temperature 4
The reaction rate constant in lean methane combustion at 00 ° C is shown. Further, R. F. Is a roughness factor and is defined by the following equation. R. F. = (BET surface area of catalyst body) / (apparent surface area of catalyst body)

【0028】比較例1.厚さ100μmのアルミニウム
含有ステンレス(リバーライトR20−5SR)を92
5℃で4時間燃焼して、表面にアルミナウィスカーを形
成させた他は実施例1と全く同様にして触媒体を製造し
た。得られた触媒体の諸特性は(表1)に示した通りで
ある。
Comparative Example 1. Aluminium-containing stainless steel (Riverlight R20-5SR) with a thickness of 100 μm 92
A catalyst was manufactured in exactly the same manner as in Example 1 except that alumina whiskers were formed on the surface by burning at 5 ° C. for 4 hours. The various properties of the obtained catalyst body are as shown in (Table 1).

【0029】[0029]

【表1】 ─────────────────────────────────── 試料 実施例1 比較例1 ─────────────────────────────────── 焼成温度〔℃〕 1000 925 ─────────────────────────────────── 焼成時間〔h〕 2 4 ─────────────────────────────────── アルミナの形状 粒状 針状 ─────────────────────────────────── R.F.〔−〕 520 520 ─────────────────────────────────── 白金担持量〔10-2g/m2 〕 9.9 9.7 ─────────────────────────────────── KA 〔10-4m/秒〕 45.4 36.6 ─────────────────────────────────── KM 〔10-5m/秒〕 2.2 3.3 ───────────────────────────────────[Table 1] ─────────────────────────────────── Specimen Example 1 Comparative Example 1 ──── ─────────────────────────────── Firing temperature [℃] 1000 925 ──────────── ─────────────────────── Baking time [h] 2 4 ───────────────────── ─────────────── Alumina shape Granular needle shape ────────────────────────────── ────── R. F. [−] 520 520 ─────────────────────────────────── Platinum loading [10 -2 g / m 2 ] 9.9 9.7 ─────────────────────────────────── K A [10 -4 m / sec] 45.4 36.6 ─────────────────────────────────── K M [10 -5 m / sec] 2.2 3.3 ───────────────────────────────────

【0030】表1の結果から、粒状のアルミナ膜を有す
るステンレスを基板として用いた本発明の触媒体は、ウ
ィスカー表面を有する基板を用いた場合の触媒体に比し
て、優るとも劣らない触媒成能を有することが確認され
た。
From the results shown in Table 1, the catalyst body of the present invention using stainless steel having a granular alumina film as a substrate is superior or inferior to the catalyst body using a substrate having a whisker surface. It was confirmed to have the ability.

【0031】実施例2.厚さ100μmのアルミニウム
含有ステンレス(リバーライトR20−5SR:川崎製
鉄(株)製商品名)を1000℃で2時間高温酸化した
ところ表面に粒状アルミナが形成されその皮膜が形成さ
れた。
Example 2. Aluminum-containing stainless steel having a thickness of 100 μm (Riverlite R20-5SR: product name of Kawasaki Iron and Steel Co., Ltd.) was subjected to high temperature oxidation at 1000 ° C. for 2 hours, and granular alumina was formed on the surface to form a film.

【0032】次いで、7.5重量%のベーマイトアルミ
ナ(Cataloid AS−3:触媒化学工場(株)
社製商品名)を2倍に希釈してスターラーで攪拌したア
ルミナゾル溶液中に、粒状アルミナで被覆された、上記
アルミニウム含有合金を常温で約1分間浸漬した後取り
出して1時間自然乾燥させた。
Next, 7.5% by weight of boehmite alumina (Cataloid AS-3: Catalyst Chemical Factory Co., Ltd.)
The above-mentioned aluminum-containing alloy coated with granular alumina was immersed in an alumina sol solution, which was double-diluted (trade name, manufactured by the company) and stirred with a stirrer, at room temperature for about 1 minute, then taken out and naturally dried for 1 hour.

【0033】このようにして得られた、アルミナゾルに
よって被覆された基板をpH9.8、85℃、白金濃度
2.5×10-4(g−Pt/ml〕の塩化白金酸水溶液
中に2時間浸漬して、熱水処理と同時に白金微粒子を表
面に担持させた後、450℃で30分間焼成して触媒体
を得た。得られた触媒体の諸特性は(表2)に示した通
りである。
The thus obtained substrate coated with alumina sol was immersed in a chloroplatinic acid aqueous solution having a pH of 9.8, 85 ° C. and a platinum concentration of 2.5 × 10 −4 (g-Pt / ml) for 2 hours. After immersing and supporting the platinum fine particles on the surface simultaneously with the hot water treatment, the catalyst was obtained by baking for 30 minutes at 450 ° C. The various characteristics of the obtained catalyst are as shown in (Table 2). Is.

【0034】尚、(表2)中のコート回数とは、アルミ
ナゾルをコート処理する処理回数、R.F.〔−〕コー
ト後とは、アルミナゾルをコートした後の基板のBET
表面積を基板のみかけの表面積で除したものであり、そ
の他は(表1)の場合と同じ意味である。
The number of coatings in (Table 2) means the number of coating treatments of alumina sol, R. F. [-] After coating means BET of the substrate after coating with alumina sol.
The surface area is divided by the apparent surface area of the substrate, and other terms have the same meanings as in the case of (Table 1).

【0035】実施例3.実施例2で行ったアルミナゾル
のコーティング処理を4回行った他は実施例2と全く同
様にして触媒体を得、その諸特性を評価した。結果は
(表2)に示した通りである。(表2)の結果から、ア
ルミナゾルのコート回数を増すことにより、白金担持量
を増大させることができ、触媒活性を高めることのでき
ることが確認された。
Example 3. A catalyst body was obtained in the same manner as in Example 2 except that the coating treatment with the alumina sol performed in Example 2 was performed 4 times, and its various properties were evaluated. The results are as shown in (Table 2). From the results of (Table 2), it was confirmed that by increasing the number of times of coating of the alumina sol, the amount of platinum supported can be increased and the catalytic activity can be increased.

【0036】[0036]

【表2】 ─────────────────────────────────── 触媒番号 実施例2 実施例3 ─────────────────────────────────── コート回数 1 4 ─────────────────────────────────── R.F.〔−〕コート後 340 970 ─────────────────────────────────── R.F.〔−〕熱処理後 330 910 ─────────────────────────────────── 白金担持量〔10-2g/m2 〕 6.69 15.1 ─────────────────────────────────── KM 〔10-5m/秒〕 5.75 12.9 ───────────────────────────────────[Table 2] ─────────────────────────────────── Catalyst number Example 2 Example 3 ─── ──────────────────────────────── Number of coats 1 4 ─────────────── ───────────────────── R. F. [−] After coating 340 970 ───────────────────────────────────R. F. [−] After heat treatment 330 910 ─────────────────────────────────── Platinum loading [10 -2 g / m 2] 6.69 15.1 ─────────────────────────────────── K M [10 - 5 m / sec] 5.75 12.9 ────────────────────────────────────

【0037】比較例2.塩化白金酸水溶液への浸漬を常
温で行った他は実施例2と全く同様にして得た触媒体の
白金担持量は3.19×10-2g/m2 、KM は4.1
2×10-5m/秒であり、実施例の触媒体の特性より劣
ることが確認された。
Comparative Example 2. A catalyst body obtained in exactly the same manner as in Example 2 except that the catalyst body was immersed in a chloroplatinic acid aqueous solution at room temperature, had a platinum loading of 3.19 × 10 -2 g / m 2 and a K M of 4.1.
It was 2 × 10 −5 m / sec, which was confirmed to be inferior to the characteristics of the catalyst bodies of the examples.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例における熱水処理後の基板表面のX線回
折図である。尚、図中の△印は、ベーマイト(A1O
(OH))のピークを表す。
FIG. 1 is an X-ray diffraction diagram of a substrate surface after hot water treatment in an example. The triangles in the figure indicate the boehmite (A1O
(OH)) peak.

【図2】実施例における焼成後の基板表面のX線回折図
である。尚、図中の○印は、γ−アルミナのピークを表
す。
FIG. 2 is an X-ray diffraction diagram of a substrate surface after firing in an example. The circles in the figure represent the peaks of γ-alumina.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/86 ZAB A 8017−4G (72)発明者 川 崎 龍 夫 東京都千代田区内幸町2−2−3 川崎製 鉄株式会社東京本社内 (72)発明者 土 肥 祥 司 大阪府大阪市中央区平野町4丁目1番2号 大阪瓦斯株式会社内Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location B01J 23/86 ZAB A 8017-4G (72) Inventor Tatsuo Kawasaki 2-2-3 Uchisaiwaicho, Chiyoda-ku, Tokyo Kawasaki Steel Co., Ltd., Tokyo Head Office (72) Inventor, Shoji Dohi, 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Within Osaka Gas Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウムを含有したステンレス基板
を1000℃以上で焼成して該基板の表面に粒状のアル
ミナによる皮膜を形成せしめ、次いでベーマイト型アル
ミナゾル、ギブサイド型アルミナゾル又は無定形のアル
ミナゾルの少なくとも一種を含有する液体を塗布・乾燥
した後、触媒を含有する50〜350℃の水溶液を用い
て、熱水処理と同時に触媒担持処理を施し、次いで40
0℃以上で焼成することを特徴とする触媒体の製造方
法。
1. A stainless steel substrate containing aluminum is baked at 1000 ° C. or higher to form a film of granular alumina on the surface of the substrate, and then at least one of boehmite type alumina sol, give side alumina sol and amorphous alumina sol is formed. After coating and drying the contained liquid, the catalyst-supporting treatment is carried out simultaneously with the hot water treatment using an aqueous solution containing the catalyst at 50 to 350 ° C., and then 40
A method for producing a catalyst body, which comprises calcination at 0 ° C. or higher.
【請求項2】 アルミナゾルを含有する液体の塗布・乾
燥が、2度以上繰り返して行われる請求項1に記載の触
媒体の製造方法。
2. The method for producing a catalyst body according to claim 1, wherein the coating and drying of the liquid containing the alumina sol is repeated twice or more.
【請求項3】 アルミニウムを含有したステンレス基板
を1000℃以上で焼成して該基材の表面に粒状のアル
ミナによる皮膜を形成せしめ、次いでベーマイト型アル
ミナゾル、ギブサイト型アルミナゾル又は無定形のアル
ミナゾルの少なくとも一種を含有する液体を塗布・乾燥
した後、触媒を含有しない水又は水溶液を用いて50〜
350℃で熱水処理することにより前記基材の表面を擬
ベーマイト化された多孔質表面とした後、更に400℃
以上で焼成することにより前記ベーマイト化多孔質表面
をγ−アルミナの多孔質表面とし、次いで触媒を含有す
る水溶液を用いて触媒担持処理を行うことを特徴とする
触媒体の製造方法。
3. A stainless steel substrate containing aluminum is baked at 1000 ° C. or higher to form a film of granular alumina on the surface of the base material, and then at least one of boehmite type alumina sol, gibbsite type alumina sol and amorphous alumina sol. After applying and drying the liquid containing the
After making the surface of the substrate into a pseudo-boehmite porous surface by hot water treatment at 350 ° C., further 400 ° C.
A method for producing a catalyst body, comprising the step of making the boehmite-formed porous surface into a porous surface of γ-alumina by firing as described above, and then carrying out a catalyst supporting treatment using an aqueous solution containing a catalyst.
【請求項4】 アルミナゾルを含有する液体の塗布・乾
燥が2度以上繰り返し行われる請求項3に記載の触媒体
の製造方法。
4. The method for producing a catalyst body according to claim 3, wherein the application and drying of the liquid containing the alumina sol is repeated twice or more.
JP3169281A 1991-06-14 1991-06-14 Production of catalyst element Pending JPH0663423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3169281A JPH0663423A (en) 1991-06-14 1991-06-14 Production of catalyst element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3169281A JPH0663423A (en) 1991-06-14 1991-06-14 Production of catalyst element

Publications (1)

Publication Number Publication Date
JPH0663423A true JPH0663423A (en) 1994-03-08

Family

ID=15883611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3169281A Pending JPH0663423A (en) 1991-06-14 1991-06-14 Production of catalyst element

Country Status (1)

Country Link
JP (1) JPH0663423A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062302A (en) * 1999-06-23 2001-03-13 Ibiden Co Ltd Catalyst carrier and production thereof
JP2007083204A (en) * 2005-09-26 2007-04-05 Matsushita Electric Ind Co Ltd Pretreatment method when producing metal filter for cleaning exhaust gas, method for producing metal filter for cleaning exhaust gas, and metal filter for cleaning exhaust gas
US7250385B1 (en) 1999-11-16 2007-07-31 Ibiden Co., Ltd. Catalyst and method for preparation thereof
KR100828951B1 (en) * 2006-10-31 2008-05-13 한국과학기술연구원 Fabrication method of metal substrate coated with alumina carrier
JP2009017305A (en) * 2007-07-05 2009-01-22 Hoya Corp Method of manufacturing dust-proof light transmissive member, its application and imaging apparatus provided with the member
US7625529B2 (en) 2000-09-29 2009-12-01 Ibiden Co., Ltd. Catalyst-carrying filter
JP2010214366A (en) * 2009-02-17 2010-09-30 Tokyo Univ Of Agriculture & Technology Carrier for toxic gas decomposition catalyst and method of producing the same
US7923406B2 (en) 2005-01-21 2011-04-12 Samsung Sdi Co., Ltd. Support for fuel reforming catalyst with excellent heat and mass transfer characteristics and method of preparing the same
KR101236643B1 (en) * 2010-12-28 2013-02-22 재단법인 포항산업과학연구원 Preparation method of catalysts for Sulfur production

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4642955B2 (en) * 1999-06-23 2011-03-02 イビデン株式会社 Catalyst support and method for producing the same
US6939825B1 (en) 1999-06-23 2005-09-06 Ibiden Co., Ltd. Carrier for catalyst and method for preparing the same
US7119046B2 (en) 1999-06-23 2006-10-10 Ibiden Co., Ltd. Catalyst carrier and method of producing same
US7196037B2 (en) 1999-06-23 2007-03-27 Ibiden Co., Ltd. Catalyst carrier and method of producing same
JP2001062302A (en) * 1999-06-23 2001-03-13 Ibiden Co Ltd Catalyst carrier and production thereof
US7250385B1 (en) 1999-11-16 2007-07-31 Ibiden Co., Ltd. Catalyst and method for preparation thereof
US7625529B2 (en) 2000-09-29 2009-12-01 Ibiden Co., Ltd. Catalyst-carrying filter
US7923406B2 (en) 2005-01-21 2011-04-12 Samsung Sdi Co., Ltd. Support for fuel reforming catalyst with excellent heat and mass transfer characteristics and method of preparing the same
JP2007083204A (en) * 2005-09-26 2007-04-05 Matsushita Electric Ind Co Ltd Pretreatment method when producing metal filter for cleaning exhaust gas, method for producing metal filter for cleaning exhaust gas, and metal filter for cleaning exhaust gas
KR100828951B1 (en) * 2006-10-31 2008-05-13 한국과학기술연구원 Fabrication method of metal substrate coated with alumina carrier
JP2009017305A (en) * 2007-07-05 2009-01-22 Hoya Corp Method of manufacturing dust-proof light transmissive member, its application and imaging apparatus provided with the member
JP2010214366A (en) * 2009-02-17 2010-09-30 Tokyo Univ Of Agriculture & Technology Carrier for toxic gas decomposition catalyst and method of producing the same
KR101236643B1 (en) * 2010-12-28 2013-02-22 재단법인 포항산업과학연구원 Preparation method of catalysts for Sulfur production

Similar Documents

Publication Publication Date Title
JP3309971B2 (en) Manufacturing method of exhaust gas purifying catalyst
US5795456A (en) Multi-layer non-identical catalyst on metal substrate by electrophoretic deposition
US3767453A (en) Method of depositing a high surface area alumina film on a relatively low surface area support
US4920088A (en) Catalyst for the oxidation of carbon monoxide
US20110251055A1 (en) Supported Precious Metal Catalysts Via Hydrothermal Deposition
GB2094656A (en) Oxide-whisker-covered structural member
JPWO2005056865A1 (en) Method for producing a substrate having a carbon-doped titanium oxide layer
JPH0663423A (en) Production of catalyst element
Giornelli et al. Preparation and characterization of VOx/TiO2 catalytic coatings on stainless steel plates for structured catalytic reactors
JPS62163749A (en) Method for supporting catalytically active substance or precursor thereof by molded carrier and molded catalyst produced thereby
JPWO2005056866A1 (en) Multifunctional material having a carbon-doped titanium oxide layer
JP6416149B2 (en) Method for forming metal oxide coating layer on catalyst support surface, catalyst support and catalyst device including metal oxide coating layer
Martínez Tejada et al. Au/CeO 2 metallic monolith catalysts: influence of the metallic substrate
JP3414794B2 (en) Catalyst production method
KR101528334B1 (en) a micro channel reactor and a fabricating method thereof
US5407887A (en) Porous carrier for catalyst comprising metal oxide-coated metal and method of preparing same
JPH05200312A (en) Manufacturing of catalyst
JPS63242351A (en) Wash coat for catalyst carrier
US2893891A (en) High surface area coating production
JPH02144154A (en) Heat conductive catalytic body and production thereof
JP2003534909A (en) Manufacturing method of catalyst structure with catalyst particles forged on substrate surface
JPH03284356A (en) Plane catalytic body and production thereof
JP3356741B2 (en) Surface-modified nickel fine powder and method for producing the same
JP4650858B2 (en) Method for producing plate-type catalyst and plate-type catalyst
WO2008041756A1 (en) Catalyst for treating an exhaust gas containing organic acid, and method for treating an exhaust gas containing organic acid