JPS5926341B2 - Denitration catalyst with porous film - Google Patents

Denitration catalyst with porous film

Info

Publication number
JPS5926341B2
JPS5926341B2 JP53082564A JP8256478A JPS5926341B2 JP S5926341 B2 JPS5926341 B2 JP S5926341B2 JP 53082564 A JP53082564 A JP 53082564A JP 8256478 A JP8256478 A JP 8256478A JP S5926341 B2 JPS5926341 B2 JP S5926341B2
Authority
JP
Japan
Prior art keywords
catalyst
compound
film
porous
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53082564A
Other languages
Japanese (ja)
Other versions
JPS558875A (en
Inventor
栄也 稲葉
久雄 荻山
正義 市来
康美 紙野
信夫 松本
健一 長井
政実 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP53082564A priority Critical patent/JPS5926341B2/en
Priority to GB7919186A priority patent/GB2024640B/en
Priority to NLAANVRAGE7904504,A priority patent/NL179552C/en
Priority to IT49522/79A priority patent/IT1119768B/en
Priority to BE2/57900A priority patent/BE877182A/en
Priority to FR7916608A priority patent/FR2430260A1/en
Priority to DE19792926894 priority patent/DE2926894A1/en
Priority to CA331,302A priority patent/CA1131197A/en
Publication of JPS558875A publication Critical patent/JPS558875A/en
Publication of JPS5926341B2 publication Critical patent/JPS5926341B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates

Description

【発明の詳細な説明】 この発明は、排煙中の窒素酸化物(以下、NOxと記す
)をNH3によって選択的に接触還元する反応に供され
る持続性に優れた脱硝触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a long-lasting denitrification catalyst that is used in a reaction that selectively catalytically reduces nitrogen oxides (hereinafter referred to as NOx) in exhaust gas with NH3.

排煙中のNOxの処理方法としては、すでに多くのもの
が提案されているが、そのうち、還元剤としてNH3を
用い、触媒の存在下に所定温度で操作して、NOxをN
2に還元無害化するいわゆる選択的接触還元脱硝法は最
も実用的であるとされる。
Many methods have already been proposed for treating NOx in flue gas, but one method uses NH3 as a reducing agent and operates at a predetermined temperature in the presence of a catalyst to remove NOx.
The so-called selective catalytic reduction denitrification method is said to be the most practical.

この方法で使用される触媒も多くのものが提案されてい
る。
Many catalysts have been proposed for use in this method.

本発明者らは、先に、表層がアルミニウム合金化された
未活性金属材料をアルミニウム可溶性溶液でアツベニウ
ム溶出処理して表面を多孔質化することにより活性化し
てなる脱硝触媒において、活性表層に多孔質シリカの被
膜を形成してなる持続性脱硝触媒を提案した(特願昭5
2−73464号)。
The present inventors have previously developed a denitrification catalyst that is activated by treating an unactivated metal material whose surface layer is aluminum alloyed with aluminum soluble solution to make the surface porous. We proposed a sustainable denitrification catalyst formed by forming a film of high-quality silica (patent application filed in 1973).
2-73464).

この触媒は、大きな機械的強度を有し、またKCI
などの触媒毒物質によって活性劣化をきたさないため、
安定持続的な活性を有する点で優れている。
This catalyst has great mechanical strength and also has KCI
Because it does not cause activity deterioration due to catalyst poisons such as
It is excellent in that it has stable and continuous activity.

本発明者らは、上記触媒の改良につき鋭意研究を重ねた
結果、上記触媒のシリカ被膜の多孔性をさらに向上させ
て反応ガスの被膜通過性をよくし、また上記触媒を担体
として用いてこれに活性物質を担持させることにより、
一層優れた活性を有するとともに強度の点でも申し分の
ない脱硝触媒を完成した。
As a result of intensive research into improving the above catalyst, the present inventors have further improved the porosity of the silica film of the above catalyst to improve the permeability of the reaction gas through the film, and have also improved the silica coating by using the above catalyst as a carrier. By supporting active substances on
We have completed a denitrification catalyst that has even better activity and is also perfect in terms of strength.

すなわち、この発明は、アンモニアによる窒素酸化物の
接触還元用触媒であって、酸性コロイダルシリカと有機
チタン化合物および/または有機錫化合物とを含む被膜
形成溶液に多孔質金属製触媒ベースを浸漬し、乾燥ない
し焼成して触媒ベースに多孔質被膜を形成し、こうして
得られた担体を活性金属化合物含有溶液に浸漬し、乾燥
して活性金属化合物を担持させてなる多孔質被膜を有す
る脱硝触媒である。
That is, the present invention provides a catalyst for catalytic reduction of nitrogen oxides with ammonia, which comprises immersing a porous metal catalyst base in a film-forming solution containing acidic colloidal silica and an organic titanium compound and/or an organic tin compound. A denitrification catalyst having a porous film formed by drying or firing to form a porous film on the catalyst base, immersing the thus obtained carrier in an active metal compound-containing solution, and drying to support the active metal compound. .

多孔質金属製触媒ベースとしては、表層をアルミニウム
合金化した金属材料をアルミニウム可溶性溶液でアツベ
ニウム溶出処理して形成したもの、金属材料の表面をエ
ツチングによって多孔粗面化したものなどが用いられる
Examples of porous metal catalyst bases that can be used include those formed by subjecting a metal material whose surface layer is aluminum alloyed to eluting aluminum with an aluminum-soluble solution, and those formed by etching the surface of a metal material to make it porous and rough.

金属材料の例として(ζ純鉄、鉄基合金、鋼、ニッケル
、ニッケル基合金および銅基合金などが挙げられる。
Examples of metal materials include (ζ pure iron, iron-based alloys, steel, nickel, nickel-based alloys, copper-based alloys, etc.).

金属材料のAI合金化処理+i、たとえば、表面にAI
がコーティングされた金属材料を熱処理することにより
なされる。
AI alloying treatment of metal materials +i, for example, AI on the surface
This is done by heat treating the coated metal material.

AIの溶出処理は、たとえば、表層がA1合金化された
金属材料をA1可溶性溶液に浸漬する方法、同材料にA
1可溶性溶液をスプレーする方法などによりなされる。
Elution treatment of AI can be carried out, for example, by immersing a metal material whose surface layer is alloyed with A1 in an A1-soluble solution;
1. This can be done by a method such as spraying a soluble solution.

A1可溶性溶液としては、NaOHのようなアルカリ金
属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属水
酸化物、鉱酸などの水溶液がよく用いられる。
As the A1-soluble solution, aqueous solutions of alkali metal hydroxides such as NaOH, alkali metal carbonates, alkaline earth metal hydroxides, mineral acids, and the like are often used.

このAI溶出処理によって、金属材料の表層が多孔質化
される。
This AI elution process makes the surface layer of the metal material porous.

多孔質金属材料は、好ましくは酸化処理および(または
)S02処理に付される。
The porous metal material is preferably subjected to an oxidation treatment and/or an S02 treatment.

酸化処理において、処理温度、処理時間、酸素濃度は特
に限定されない。
In the oxidation treatment, the treatment temperature, treatment time, and oxygen concentration are not particularly limited.

好ましくは、室温付近〜400℃において、酸素を0.
1〜20.8容量%含む雰囲気で0,1〜20時間処理
を行う。
Preferably, at around room temperature to 400°C, oxygen is 0.
The treatment is carried out for 0.1 to 20 hours in an atmosphere containing 1 to 20.8% by volume.

S02処理は、好ましくは、室温付近〜400℃におい
て、S02を1100pp以上含む雰囲気で、0.1〜
20時間行なわれる。
The S02 treatment is preferably performed at around room temperature to 400°C, in an atmosphere containing 1100 pp or more of S02, and at a concentration of 0.1 to 400°C.
It will be held for 20 hours.

処理条件をλ上記の範囲内において適宜選択される。The processing conditions λ are appropriately selected within the above range.

コロイダルシリカは酸性のものに限定される。Colloidal silica is limited to acidic materials.

その理由は、酸性コロイダルシリカを用いると、アルカ
リ性コロイダルシリカを用いた場合に比ベテ高い脱硝活
性が得られるからである。
The reason for this is that when acidic colloidal silica is used, a higher denitrification activity can be obtained than when alkaline colloidal silica is used.

酸性コロイドの好ましいPHは3〜4である。The preferred pH of the acidic colloid is 3-4.

被膜形成溶液の濃度および温度、浸漬の時間および回数
は、被膜の厚さが所望の値となるように、適宜選択され
る。
The concentration and temperature of the film-forming solution, the time and number of immersions are appropriately selected so that the thickness of the film becomes a desired value.

乾燥温度は50〜150℃がよい。好ましい実施態様Q
′!、被膜形成溶液として10〜30重量%の5i02
を含むコロイダルシリカを用い、これに触媒ベースを室
温付近で約10分間浸漬し、同ベースを溶液から取出し
た後約90℃で1時間乾燥し、この浸漬・乾燥操作を1
〜6回繰返す。
The drying temperature is preferably 50 to 150°C. Preferred embodiment Q
′! , 10-30% by weight of 5i02 as film-forming solution
The catalyst base was immersed in this colloidal silica at around room temperature for about 10 minutes, and after taking out the base from the solution, it was dried at about 90°C for 1 hour.
Repeat ~6 times.

被膜形成溶液として、コロイダルシリカと高分子エマル
ジョンの混合物を用い、触媒ヘースノ浸漬・乾燥によっ
て被膜を形成し、同ベースを焼成すると、被膜す多孔性
が大巾に向上する。
When a mixture of colloidal silica and polymer emulsion is used as a film-forming solution, a film is formed by dipping and drying in a catalyst base, and the same base is fired, the porosity of the film is greatly improved.

高分子エマルジョンとしては、焼成によって有害ガスを
発生することがないことからアクリル系のものが好まし
く用いられる。
As the polymer emulsion, an acrylic emulsion is preferably used because it does not generate harmful gases during firing.

被膜形成溶液の高分子物質の含量は、被膜の所望の機械
的強度、反応ガス中のダストの成分および粒径等により
適宜選択される。
The content of the polymeric substance in the film-forming solution is appropriately selected depending on the desired mechanical strength of the film, the components and particle size of dust in the reaction gas, and the like.

好ましくは、コロイド中のシリカ(Si02)100重
量部に対し、10〜50重量部の高分子物質が混合され
る。
Preferably, 10 to 50 parts by weight of a polymeric substance is mixed with 100 parts by weight of silica (Si02) in the colloid.

焼成は、空気中で温度450〜700℃好ましくは50
0〜650℃で1〜5時間行われる。
Firing is performed in air at a temperature of 450 to 700°C, preferably 50°C.
It is carried out at 0 to 650°C for 1 to 5 hours.

焼成によって高分子有機成分が除かれる。The polymeric organic components are removed by calcination.

また被膜形成溶液として、コロイダルシリカと高分子エ
マルジョンとチタン化合物との混合物を用いた場合には
、担体性能が向上し、得られた触媒は優れた活性を示す
Furthermore, when a mixture of colloidal silica, a polymer emulsion, and a titanium compound is used as the film-forming solution, the carrier performance is improved and the resulting catalyst exhibits excellent activity.

さらに被膜形成溶液として、コロイダルシリカと高分子
エマルジョンとチタン化合物と錫化合物との混合物を用
いた場合には、耐硫酸性に優れた触媒が得られる。
Furthermore, when a mixture of colloidal silica, a polymer emulsion, a titanium compound, and a tin compound is used as the film-forming solution, a catalyst with excellent sulfuric acid resistance can be obtained.

混合されるチタン化合物としては、ジヒドロキシ・ビス
ラフティクアシド・チタネート Ti(OH)2Cocn(cH3)COOH)2のアン
モニウム塩や、シュウ酸アンモニウムチタネートTi
(OC2(NH4)203 )4等の水溶性有機チタン
が好適に用いられ、また錫化合物としては、ジブチル錫
ラウレートのような有機錫化合物が好適に用いられる。
Examples of the titanium compound to be mixed include ammonium salts of dihydroxy bislavtiquaside titanate Ti(OH)2Cocn(cH3)COOH)2 and ammonium oxalate titanate Ti.
Water-soluble organic titanium such as (OC2(NH4)203)4 is preferably used, and as the tin compound, an organic tin compound such as dibutyltin laurate is preferably used.

これら有機金属化合物が好適に用いられる理由は、これ
ら物質が酸性コロイダルシリカに対する溶解性に優れて
いるからである。
The reason why these organometallic compounds are preferably used is that these substances have excellent solubility in acidic colloidal silica.

これに対し、塩化チタンや塩化錫のような無機化合物は
酸性コロイダルシリカをゲル化する傾向があるので、好
ましくない。
On the other hand, inorganic compounds such as titanium chloride and tin chloride tend to gel the acidic colloidal silica and are therefore not preferred.

これらチタン化合物および錫化合物は、焼成によって熱
分解をきたし、それぞれTiO2およびS n02にな
る。
These titanium compounds and tin compounds are thermally decomposed by firing to become TiO2 and Sn02, respectively.

被膜中におけるTiO2の好適含量は、重量で5i02
100部に対して40〜100部であり、また5n02
の好適含量は、重量で5iO2100部に対し30〜7
0部である。
The preferred content of TiO2 in the film is 5i02 by weight.
40 to 100 copies per 100 copies, and 5n02
The preferred content is 30 to 7 parts per 100 parts of 5iO2 by weight.
It is 0 copies.

担体の浸漬において、活性金属化合物含有溶液としては
、硫酸バナジル、シュウ酸バナジル、メタバナジン酸ア
ンモニウム等のバナジウム化合物を含む溶液、テトライ
ソグロピルチタネート等の加水分解性チタン酸エステル
を含む溶液、鉄、銅、アンチモンの各硫酸塩またはハロ
ゲン化物、タングステン酸塩、クロム酸墳等を含む溶液
が用いられる。
In the immersion of the carrier, the active metal compound-containing solution includes a solution containing a vanadium compound such as vanadyl sulfate, vanadyl oxalate, and ammonium metavanadate, a solution containing a hydrolyzable titanate ester such as tetraisoglopyltitanate, iron, Solutions containing copper, antimony sulfates or halides, tungstates, chromic acid, etc. are used.

この浸漬によって、担体にV化合物、Ti化合物、Fe
化合物、Cu化合物、sb化合物、W化合物、および(
または)Cr化合物が担持される。
By this immersion, V compounds, Ti compounds, and Fe are added to the carrier.
compound, Cu compound, sb compound, W compound, and (
or) a Cr compound is supported.

浸漬後の濃度および温度、浸漬時間等の条件は、触媒に
担持すべき活性成分量による。
Conditions such as concentration, temperature, and immersion time after immersion depend on the amount of active ingredient to be supported on the catalyst.

好適な担持量は、重量でVとして0.15〜1.5%、
Tiとして0.15〜1.5%、Feとして0.16〜
1.6%、Cuとして0.17〜1.7%、sbとして
0.1〜3.0%、Wとして0.15〜1.5%、Cr
として0.2〜2.0%である。
The preferred loading amount is 0.15 to 1.5% as V by weight;
0.15 to 1.5% as Ti, 0.16 to 1.5% as Fe
1.6%, 0.17-1.7% as Cu, 0.1-3.0% as sb, 0.15-1.5% as W, Cr
It is 0.2 to 2.0%.

得られた触媒は、いずれも高い脱硝活性を有す′る。All of the obtained catalysts have high denitrification activity.

ことにV化合物およびTi化合物を担持した触媒は一層
高い活性を有ししかも耐硫酸性にも優れている。
In particular, a catalyst supporting a V compound and a Ti compound has higher activity and is also excellent in sulfuric acid resistance.

この発明による多孔質被膜を有する脱硝触媒は以上のと
おり構成されているので、つぎの効果が奏される。
Since the denitrification catalyst having a porous film according to the present invention is constructed as described above, the following effects are achieved.

すなわち、被膜形成溶液はコロイダルシリカとして酸性
のものを含むので、得られた触媒はアルカリ性コロイダ
ルシリカを用いた触媒に比べて優れた脱硝活性を発揮す
る。
That is, since the film-forming solution contains acidic colloidal silica, the resulting catalyst exhibits superior denitrification activity compared to a catalyst using alkaline colloidal silica.

また被膜形成溶液はチタン化合物および/または錫化合
物として有機金属化合物を含むので、チタンおよび/ま
たは錫を酸性コロイダルシリカに均一に溶解させること
ができ、酸性コロイダルシリカのゲル化を生じるおそれ
がない。
Furthermore, since the film forming solution contains an organometallic compound as a titanium compound and/or a tin compound, titanium and/or tin can be uniformly dissolved in the acidic colloidal silica, and there is no risk of gelation of the acidic colloidal silica.

参考例 1 被膜の多孔度測定 SiO□を22重量%含むコロイダルシリカ(pH=
3.5 )と、表1に示す3種類のアクリル系高分子エ
マルジョンa、bおよびCとをそれぞれ異なる割合で混
合して、11種類の被膜形成溶液A、B・・・・・・・
・・JおよびKを調製した(ただし溶液Aはエマルジョ
ンを含まない)。
Reference Example 1 Measurement of Porosity of Coating Colloidal silica containing 22% by weight of SiO□ (pH=
3.5) and three types of acrylic polymer emulsions a, b, and C shown in Table 1 were mixed in different proportions to form 11 types of film-forming solutions A, B...
... J and K were prepared (however, solution A does not contain an emulsion).

これら11種類の溶液を、それぞれ、11個の内径5c
rILのシャーレ形のステンレス鋼製容器に、深さが約
4mmになるように注いだ。
Each of these 11 types of solutions was
It was poured into a Petri dish-shaped stainless steel container of rIL to a depth of about 4 mm.

これら溶液を90℃で1時間加熱して水分を除去し、生
成した固形物を空気中で500℃で1時間焼成した。
These solutions were heated at 90° C. for 1 hour to remove moisture, and the resulting solids were calcined in air at 500° C. for 1 hour.

こうして形成した被膜を各容器から剥離し、被膜の多孔
度を高圧水銀多孔変針で測定した。
The coating thus formed was peeled off from each container, and the porosity of the coating was measured using a high-pressure mercury porous needle.

結果を表2に示す。また、溶液A、C,E、GおよびJ
を用いて形成した被膜α、β、γ、δおよびεについて
、孔径と全細孔容積との関係を求めた。
The results are shown in Table 2. Also, solutions A, C, E, G and J
The relationship between the pore diameter and the total pore volume was determined for the coatings α, β, γ, δ, and ε formed using the method.

結果を第1図に示す。The results are shown in Figure 1.

同図かられかるように、エマルジョンを含マない溶液か
ら形成した被膜αはやや多孔性に劣るきらいがある力\
高分子エマルジョンを含む溶液から形成した被膜β、γ
、δおよびεは大きな多孔性を有する。
As can be seen from the figure, the coating α formed from a solution that does not contain an emulsion tends to be slightly less porous.
Films β and γ formed from solutions containing polymer emulsions
, δ and ε have large porosity.

またガラス転位温度の低い高分子物質でできたエマルジ
ョンaを用いた場合には、曲線γで示されるように、被
膜の細孔は、孔径30〜70人のものが大部分であって
、被膜内部を反応ガスが通過するのに好適な1000Å
以上の孔径を有する細孔はほとんど存在しないが、ガラ
ス転位温度の高い高分子物質でできたエマルジョンbを
用いた場合には、曲線δで示されるように、被膜は、孔
径1000Å以上の細孔を比較的多(有し、ガス通過性
に優れている。
Furthermore, when emulsion a made of a polymeric substance with a low glass transition temperature is used, most of the pores in the coating have a pore size of 30 to 70 pores, as shown by the curve γ, and the coating 1000 Å suitable for the reaction gas to pass through the inside
There are almost no pores with a pore diameter of 1000 Å or more, but when emulsion b made of a polymer material with a high glass transition temperature is used, as shown by the curve δ, the coating has pores with a pore diameter of 1000 Å or more. It has a relatively large amount of gas and has excellent gas permeability.

参考例 2 a 担体の調製 2mm×33mmX 50 mmのSUS 304(J
IS)鋼板を680℃のAI溶融浴中に20分間浸漬し
た。
Reference Example 2 a Preparation of carrier SUS 304 (J
IS) A steel plate was immersed in an AI melt bath at 680°C for 20 minutes.

こうして表面をAIココ−ィングした鋼板に、窒素ガス
雰囲気下に800℃で1時間熱処理を施し、鋼板内にA
Iを拡散浸透させて鋼板表層をA1合金化した。
The steel plate whose surface was coated with AI in this way was heat treated at 800°C for 1 hour in a nitrogen gas atmosphere, so that A
The surface layer of the steel sheet was made into an A1 alloy by diffusing I.

ついで鋼板を10重量%のNaOH水溶液200m1中
に80℃で3時間浸漬して合金中のAIを溶出させ、表
層を多孔質化した。
The steel plate was then immersed in 200 ml of a 10% by weight NaOH aqueous solution at 80° C. for 3 hours to elute the AI in the alloy and make the surface layer porous.

ついで鋼板を水洗し、風乾した。さらに鋼板を、酸素3
容量%を含む窒素ガスに300℃にて3時間接触させて
、その多孔質表層を酸化処理した。
The steel plate was then washed with water and air-dried. Furthermore, the steel plate is
The porous surface layer was oxidized by contacting with nitrogen gas containing % by volume at 300° C. for 3 hours.

こうして多孔質鋼製触媒ベースを形成した。In this way, a porous steel catalyst base was formed.

つぎに触媒ベースを、参考例1で調製した被膜形成溶液
のうちの溶液Aに室温で10分間浸漬し、これを溶液か
ら取出した後90℃で1時間乾燥した。
Next, the catalyst base was immersed in Solution A of the film-forming solutions prepared in Reference Example 1 at room temperature for 10 minutes, and after being taken out from the solution, it was dried at 90° C. for 1 hour.

この浸漬・乾燥操作を3回繰返して、触媒ベースの表面
に厚さ7〜10μの多孔質シリカ被膜を形成した。
This dipping/drying operation was repeated three times to form a porous silica film with a thickness of 7 to 10 μm on the surface of the catalyst base.

ついで鋼板を空気中600℃で1時間焼成して、高分子
有機成分を除いた。
The steel plate was then fired in air at 600° C. for 1 hour to remove high molecular weight organic components.

こうして担体aを得た。また、参考例1で調製した被膜
形成溶液のうち溶液C,D。
In this way, carrier a was obtained. Also, among the film forming solutions prepared in Reference Example 1, solutions C and D.

GおよびJを用いて、上記と同様の操作を行い、担体c
、d、gおよびjを得た。
Perform the same operation as above using G and J to obtain carrier c
, d, g and j were obtained.

b 担体の強度測定 得られた担体aを、60〜80メツシユの破砕シリカゲ
ルを充填した攪拌槽に入れ看シリカケルを攪拌し、担体
aの表面を摩耗させた。
b Measurement of strength of carrier The obtained carrier a was placed in a stirring tank filled with 60 to 80 mesh pieces of crushed silica gel, and the silica gel was agitated to abrade the surface of carrier a.

所定時間置きに担体の重量変化を求め、その値から担体
の平均摩耗厚さを算出した。
Changes in the weight of the carrier were determined at predetermined intervals, and the average wear thickness of the carrier was calculated from the values.

担体c。d2gおよびjについても同様に操作を行った
carrier c. The same operation was performed for d2g and j.

こうして操作時間と平均摩耗厚さとの関係を求めた。In this way, the relationship between operation time and average wear thickness was determined.

結果を第2図に示す。一般に多孔性が向上すれば耐摩耗
性すなわち機械的強度は低下するが、第2図から明らか
なように、エマルジョンを含む溶液を用いて得た担体C
2d2gおよびjは、エマルジョンを含まない溶液を用
いて得た担体aに比べ、いずれも多孔性に優れている上
に、強度の点でも遜色がない。
The results are shown in Figure 2. Generally, as the porosity improves, the abrasion resistance, that is, the mechanical strength decreases, but as is clear from Figure 2, the carrier C obtained using the solution containing the emulsion
2d2g and j both have superior porosity and are comparable in strength to carrier a obtained using a solution containing no emulsion.

実施例 1 a 触媒の製造 触媒ベースの材料として、径が21mm高さが20mm
の鋼製シシヒリングを用い、参考例2と同様の多孔質化
処理により触媒ベースを6個形成した。
Example 1 a Production of catalyst The catalyst base material had a diameter of 21 mm and a height of 20 mm.
Six catalyst bases were formed by the same porous treatment as in Reference Example 2 using a steel Schissig ring.

また、参考例1でそれぞれ用いたコロイダルシリカおよ
び高分子エマルジョンaの混合液と、Ti(OH)2(
OCH(CH3)COOH)2のアンモニウム塩と、ジ
ブチル錫ラウレートと高分子エマルジョンaの混合液と
をそれぞれ異なる割合で混合して表3に示す4種類の被
膜形成溶液り、M、NおよびOを調製した。
In addition, a mixed solution of colloidal silica and polymer emulsion a used in Reference Example 1, and Ti(OH)2(
The ammonium salt of OCH(CH3)COOH)2, dibutyltin laurate and polymer emulsion a were mixed in different proportions to form four types of film forming solutions shown in Table 3, and M, N and O were mixed. Prepared.

そして先舛ヒ に形成した6個の触媒ベースを、溶液り
およびMに1個ずつ、また溶液Nおよび0に2個ずつ浸
漬した。
Then, the six catalyst bases formed beforehand were immersed, one each in solutions N and M, and two each in solutions N and 0.

以下、参考例2と同様の条件で浸漬・乾燥を繰返し、焼
成を行なって、各ベースの表面に多孔質被膜を形成して
、6個の担体を得た。
Thereafter, immersion and drying were repeated under the same conditions as in Reference Example 2, followed by firing to form a porous film on the surface of each base to obtain six carriers.

ついで、これら担体のうち溶液0を用いて得た1([i
!外の5個にTiO2および(または)V2O5を担持
させた。
Then, among these carriers, 1 ([i
! The outer five were made to support TiO2 and/or V2O5.

TiO2の担持は、液状のテトライソグロビルチタネー
トに、担体を室温で10分間浸漬し、これを液から取出
した後、室温で飽和水蒸気下に12時間放置して上記チ
タネートを加水分解させ、さらに100℃で乾燥を行う
ことによりなされた。
To support TiO2, the support was immersed in liquid tetraisoglobil titanate for 10 minutes at room temperature, and after being taken out from the liquid, the support was left under saturated steam at room temperature for 12 hours to hydrolyze the titanate, and then This was done by drying at 100°C.

またV2O5の担持は、15容量%のモノエタノールア
ミン水溶液14’KNH4VO31molを溶解して調
製した浸漬溶液に、担体を室温で10分間浸漬し、これ
を溶液から取出した後、空気中で300℃で1時間焼成
することによりなされた。
In order to support V2O5, the support was immersed at room temperature for 10 minutes in an immersion solution prepared by dissolving 1 mol of 15% by volume monoethanolamine aqueous solution 14'KNH4VO, and after being taken out of the solution, it was heated in air at 300°C. This was done by baking for 1 hour.

TiO2とV2O5をともに担持する場合には、前者の
担持を先に行った。
When supporting both TiO2 and V2O5, the former was supported first.

こうして表3に示す5種類の触媒1.myn 1.n
2およびGlを得た。
In this way, the five types of catalysts shown in Table 3 1. my 1. n
2 and Gl were obtained.

またこれら化合物を担持しない担体も触媒o2として同
表に示す。
Further, a carrier not supporting any of these compounds is also shown as catalyst o2 in the same table.

b 活性試験 つぎに、これら触媒について、石英製流通型反応管を用
いてそれぞれ活性試験を行った。
b. Activity Test Next, each of these catalysts was subjected to an activity test using a flow-through reaction tube made of quartz.

まず、触媒1を上記反応管に充填して固定し、ついで反
応温度を所定値に制御して、表4に示す組成の試験用調
製排ガスを反応管に流した。
First, Catalyst 1 was filled and fixed in the reaction tube, then the reaction temperature was controlled to a predetermined value, and a prepared exhaust gas for testing having the composition shown in Table 4 was flowed into the reaction tube.

触媒の幾何表面積当りの通ガス量は15m/時である。The gas flow rate per geometric surface area of the catalyst is 15 m/h.

反応管の入口および出口におけるNO濃濃度ノル化量ら
脱硝率を求めた。
The denitrification rate was determined from the amount of NO concentration at the inlet and outlet of the reaction tube.

反応温度を種々変えて同様の操作を繰返し、各温度にお
ける脱硝率を求めた。
The same operation was repeated with various reaction temperatures, and the denitrification rate at each temperature was determined.

触媒m 、 n −1、n −2y O−1およびo2
についても同様にして脱硝率を求めた。
Catalyst m, n-1, n-2y O-1 and o2
The denitrification rate was determined in the same manner.

結果を第3図に示す。同図かられかるように、v205
を担持した触媒はいずれも高い活性を示し、特に高分子
エマルジョンを含む被膜形成溶液を用いて担体を形成し
、これにv205を担持させてなる触媒は、一層高い活
性を有する。
The results are shown in Figure 3. As you can see from the same figure, v205
All catalysts supported on V205 exhibit high activity, and in particular, a catalyst formed by forming a support using a film-forming solution containing a polymer emulsion and supporting v205 on this support has even higher activity.

また、この実施例で得た各触媒を、硫酸蒸気4000p
pmを含む空気に400℃で2時間曝し、その後上記と
同様の操作により各触媒の脱硝率を求めた。
In addition, each catalyst obtained in this example was heated to 4000 p of sulfuric acid vapor.
The catalysts were exposed to air containing pm at 400° C. for 2 hours, and then the denitrification rate of each catalyst was determined by the same operation as above.

結果を第4図に示す。第3図と第4図の比較かられかる
ように、触媒1 、 m 。
The results are shown in Figure 4. As can be seen from the comparison between Figures 3 and 4, catalyst 1, m.

fil、n−2およびo2 は、いずれも350℃以下
の温度においてやや活性低下をきたした。
All of fil, n-2 and o2 exhibited a slight decrease in activity at temperatures below 350°C.

これに対し、被膜中に5n02を含む触媒01は、活性
低下をきたさず、耐硫酸性に優れている。
On the other hand, Catalyst 01 containing 5n02 in its coating does not cause a decrease in activity and has excellent sulfuric acid resistance.

実施例 2 a 触媒の製造 実施例1で用いた被膜形成溶液Oを用い、まり実施例1
で用いた触媒ベースを多数用意し、各ベースの溶液への
浸漬およびこれにつづく乾燥を、各ベースごとに異なる
回数で行った。
Example 2 a Manufacture of catalyst Using the film forming solution O used in Example 1,
A number of catalyst bases were prepared, and each base was immersed in the solution and subsequently dried a different number of times.

以下、実施例1と同様の操作により焼成およびv205
担持を行い、被膜厚さの異なる多数の触媒を得た。
Hereinafter, firing and v205 were performed in the same manner as in Example 1.
A large number of catalysts with different coating thicknesses were obtained by supporting the catalysts.

b 被膜厚さと脱硝率の関係 これら触媒について、300℃における脱硝率を測定し
、被膜厚さと脱硝率の関係を求めた。
b. Relationship between coating thickness and NOx removal rate The NOx removal rates of these catalysts at 300°C were measured to determine the relationship between coating thickness and NOx removal rate.

測定条件は実施例1の場合と同じである。The measurement conditions are the same as in Example 1.

結果を第5図に曲線tで示す。The results are shown in FIG. 5 by curve t.

また触媒ベースとして、実施例1で用いたベースと同形
の菫青石(cordierite)製ラシヒリングおよ
びアルミナ製ラシヒリングをそれぞれ用い、上記と同様
の操作によって被膜厚さと脱硝率の関係を求めた。
Further, as the catalyst base, a cordierite Raschig ring and an alumina Raschig ring having the same shape as the base used in Example 1 were used, and the relationship between the film thickness and the denitrification rate was determined by the same operation as above.

結果を第5図に曲線UおよびVで示す。The results are shown in FIG. 5 by curves U and V.

同図かられかるように、被膜厚さが増すにつれて脱硝率
も向上するが、厚さを20μ以上にしても脱硝率はほと
んど向上しない。
As can be seen from the figure, as the coating thickness increases, the NOx removal rate also improves, but even if the thickness is increased to 20 μm or more, the NOx removal rate hardly improves.

また曲線tと曲線U、Vとの比較から、多孔質化された
鋼材を触媒ベースとして用いた場合には、ベース自体か
なり脱硝活性を有することがわかる。
Further, from a comparison of curve t and curves U and V, it can be seen that when a porous steel material is used as a catalyst base, the base itself has considerable denitrification activity.

参考例 3 a 触媒の製造 参考例2と同様の操作によって触媒ベースを10個形成
した(ただし鋼材として5S41(JIS)を用いた。
Reference Example 3 a Manufacture of catalyst Ten catalyst bases were formed by the same operation as in Reference Example 2 (however, 5S41 (JIS) was used as the steel material.

)これら触媒ベースに、実施例1で調製した被膜形成溶
液りを用いて参考例2と同様の条件で被膜形成処理を施
こし、10個の担体を得た。
) These catalyst bases were subjected to film forming treatment using the film forming solution prepared in Example 1 under the same conditions as in Reference Example 2 to obtain 10 supports.

これら担体のうち1個をNH4VO3の2規定シユウ酸
溶液(1,0モル/l)2oomlに室温で30分間浸
漬し、これを溶液から取出した後、100℃で1時間乾
燥した。
One of these carriers was immersed in 2 ooml of a 2N oxalic acid solution of NH4VO3 (1.0 mol/l) at room temperature for 30 minutes, taken out from the solution, and then dried at 100°C for 1 hour.

こうしてV担持触媒を得た。In this way, a V-supported catalyst was obtained.

また別の1個の担体をテトラノルマルブチルチタネート
のノルマルブチルアルコール溶液(1,5モル/7)に
上記と同条件で浸漬し、同条件で乾燥してTi担持触媒
を得た。
Another carrier was immersed in a n-butyl alcohol solution of tetra-n-butyl titanate (1.5 mol/7) under the same conditions as above and dried under the same conditions to obtain a Ti-supported catalyst.

さらに残りの8個の担体について、まず表5に示す種々
の濃度の上記チタネート溶液を用いて、上記と同様の操
作でTi担持処理を行い、ついで表5に示す種々の濃度
の上記メタバナジン酸塩溶液を用いて、上記と同様の操
作でV担持処理を行って8個のTi+V担持触媒を得た
Furthermore, the remaining eight supports were first subjected to Ti loading treatment in the same manner as above using the titanate solutions with various concentrations shown in Table 5, and then with the above metavanadate solutions with various concentrations shown in Table 5. Using the solution, V supporting treatment was performed in the same manner as above to obtain eight Ti+V supported catalysts.

b 活性試験 神各触
媒について、実施例1と同様の操作によって350℃に
おける脱硝率を求めた。
b Activity Test For each catalyst, the denitrification rate at 350°C was determined by the same operation as in Example 1.

また実施例1と同様に、各触媒について硫酸蒸気による
処理後の脱硝率を求めた。
Further, in the same manner as in Example 1, the denitrification rate after treatment with sulfuric acid vapor was determined for each catalyst.

これら結果を表5に示す。These results are shown in Table 5.

同表かられかるように、Ti化合物およびV化合物をと
もに担持する触媒は、これらの一方を担持する触媒に比
べて高い活性を示し、しかも耐硫酸性にも優れている。
As can be seen from the table, catalysts that support both a Ti compound and a V compound exhibit higher activity than catalysts that support one of them, and also have excellent sulfuric acid resistance.

実施例 3 a 触媒の製造 参考例2で示した多孔質表層を有する触媒ベース7個と
、実施例1で調製した被膜形成溶液0とを用いて、参考
例2と同様の操作によって担体7個を得た。
Example 3 a Production of catalyst Seven catalyst bases having a porous surface layer as shown in Reference Example 2 and 0 of the film forming solution prepared in Example 1 were used to produce seven supports in the same manner as in Reference Example 2. I got it.

ごれら担体をそれぞれ表6に示す金属塩含有溶液A・・
・・・・・・・Gに室温で10分間浸漬し、液から取出
した各担体を100℃で1時間乾燥しさらに300℃で
1時間焼成した。
The metal salt-containing solution A...
......G for 10 minutes at room temperature, each carrier taken out from the solution was dried at 100°C for 1 hour, and further calcined at 300°C for 1 hour.

こうしてFe担持触媒、Cu担持触媒、sb担持触媒、
Sb+Fe 担持触媒、W+Fe担持触媒、Cr担持触
媒を得た。
In this way, Fe supported catalyst, Cu supported catalyst, sb supported catalyst,
A Sb+Fe supported catalyst, a W+Fe supported catalyst, and a Cr supported catalyst were obtained.

b 活性試験 各触媒について、実施例1と同様の操作(ただし触媒の
幾何表面積当りの通ガス量を24 m7時とした)で、
300℃および350℃における脱硝率を求めた。
b Activity test For each catalyst, the same operation as in Example 1 was carried out (however, the amount of gas passed per geometric surface area of the catalyst was 24 m7 hours).
The denitrification rates at 300°C and 350°C were determined.

結果を表6に示す。同表かられかるように、各触媒は特
に高温において高活性を有する。
The results are shown in Table 6. As can be seen from the table, each catalyst has high activity, especially at high temperatures.

実施例 4 a 触媒の製造 参考例2で形成した多孔質表層を有する触媒〕; ベー
ス4個と、参考例2と同様の操作で調製した表7に示す
4種類の被膜形成溶液1,2,3および4とを用いて、
参考例2と同様の操作によって4個の担体を得た。
Example 4 a Production of catalyst Catalyst with porous surface layer formed in Reference Example 2]; Four bases and four types of film forming solutions 1, 2, and 2 shown in Table 7 prepared in the same manner as in Reference Example 2. Using 3 and 4,
Four carriers were obtained by the same operation as in Reference Example 2.

各担体に形成された被膜の組成を表7に示す。Table 7 shows the composition of the coating formed on each carrier.

つぎに、■として50〜10001n9/lの範囲でN
H4VO3を含む各種濃度の水溶液を調製し、これらを
用いて実施例4と同様の活性成分〉担持操作を行った。
Next, as ■, N is in the range of 50 to 10001n9/l.
Aqueous solutions containing H4VO3 at various concentrations were prepared, and the same active ingredient loading operation as in Example 4 was carried out using these solutions.

そして各溶液のV化合物濃度と、被膜中の吸着物質単位
量当りのV担持量との関係を求めた。
Then, the relationship between the V compound concentration of each solution and the amount of V supported per unit amount of adsorbed substance in the film was determined.

これを第6図に示す。同図かられかるように、■化合物
は被膜に強く吸着されて、■濃度が高くなればV担持量
も増す。
This is shown in FIG. As can be seen from the figure, the compound (1) is strongly adsorbed to the coating, and as the concentration (2) increases, the amount of V supported also increases.

b 活性試験 各触媒一ついて、実施例1と同様の操作で、300℃に
おける脱硝率を求め、これと被膜中の吸着物質単位量当
りのV担持量との関係を求めた。
b Activity test Using each catalyst, the denitrification rate at 300° C. was determined in the same manner as in Example 1, and the relationship between this and the amount of V supported per unit amount of adsorbed substance in the film was determined.

これを第7図に示す。同図かられかるように、脱硝率は
、上記吸着物質単位量当りのV≧本 担持量の増加につ
れて向上し、この値が0.01〜0.02の範囲で最高
値を示す。
This is shown in FIG. As can be seen from the figure, the denitrification rate improves as the supported amount increases, with V per unit amount of the adsorbed substance increasing, and this value shows the highest value in the range of 0.01 to 0.02.

この場合、V担持量はVとして0.15〜1.5重量%
である。
In this case, the amount of V supported is 0.15 to 1.5% by weight as V.
It is.

比較例 1 コロイダルシリカとしてアルカリ性(pH9,5)のも
のを用い、その他の操作を実施例1と同様に行って被膜
形成溶液Xを調製し、実施例1と同じ操作により触媒ベ
ースにv205を担持させて、触媒0−1に対応する触
媒Xを得た。
Comparative Example 1 Using alkaline (pH 9,5) colloidal silica, other operations were performed in the same manner as in Example 1 to prepare film forming solution In this way, catalyst X corresponding to catalyst 0-1 was obtained.

この触媒Xについて、実施例と同じ操作によって活性試
験を行った。
An activity test was conducted on this catalyst X using the same procedure as in the example.

試験の結果、触媒Xの活性は、これに対応する触媒01
の活性に比べて低く、特に300〜400℃の温度で
は触媒。
As a result of the test, the activity of catalyst X was lower than that of the corresponding catalyst 01.
The activity is low compared to that of the catalyst, especially at temperatures of 300-400 °C.

−1の活性の約80%しか示さなかった。It showed only about 80% of the activity of -1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は孔径と全細孔容積の関係を示すグラフ、第2図
は処理時間と平均摩耗厚さの関係を示すグラフ、第3図
、第4図は反応温度と脱硝率の関係を示すグラフ、第5
図は被膜厚さと脱硝率の関係を示すグラフ、第6図はV
化合物濃度と吸着物質単位量当りのV担持量との関係を
示すグラフ、第7図は吸着物質単位量当りの■担持量と
脱硝率の関係を示すグラフである。
Figure 1 is a graph showing the relationship between pore diameter and total pore volume, Figure 2 is a graph showing the relationship between treatment time and average wear thickness, and Figures 3 and 4 are graphs showing the relationship between reaction temperature and denitrification rate. Graph, 5th
The figure is a graph showing the relationship between film thickness and denitrification rate, and Figure 6 is V
FIG. 7 is a graph showing the relationship between the compound concentration and the amount of V supported per unit amount of adsorbent, and FIG. 7 is a graph showing the relationship between the amount of V supported per unit amount of adsorbent and the denitrification rate.

Claims (1)

【特許請求の範囲】 1 アンモニアによる窒素酸化物の接触還元用触媒であ
って、酸性コロイダルシリカと有機チタン化合物を含む
被膜形成溶液に多孔質金属製触媒ベースを浸漬し、乾燥
ないし燃焼して触媒ベースに多孔質被膜を形成し、こう
して得られた担体を活性金属化合物含有溶液に浸漬し、
乾燥して活性金属化合物を担持させてなる多孔質被膜を
有する脱硝触媒。 2 多孔質触媒ベースが、表面をアルミニウム合金化し
た金属材料をアルミニウム可溶性溶液でアルミニウム溶
出処理して形成したものである特許請求の範囲第1項記
載の触媒。 3 被膜形成溶液がさらにアクリル系高分子エマルジョ
ンを含む特許請求の範囲第1または2項記載の触媒。 4 被膜形成溶液がさらに有機錫化合物を含む特許請求
の範囲第1〜3項のうちいずれか1項記載の触媒。 5 活性金属化合物がバナジウム化合物である特許請求
の範囲第1〜4項のうちいずれか1項記載の触媒。 6 活性金属化合物がバナジウム化合物とチタン化合物
である特許請求の範囲第1〜4項のうちいずれか1項記
載の触媒。 7 活性金属化合物が鉄、銅のKW塩およびハロゲン化
物、タングステン酸塩並びにクロム酸塩からなる群から
選ばれた化合物であ−る特許請求の範囲第1〜4項のう
ちいずれか1項記載の触媒。
[Scope of Claims] 1. A catalyst for catalytic reduction of nitrogen oxides with ammonia, which is prepared by immersing a porous metal catalyst base in a film-forming solution containing acidic colloidal silica and an organic titanium compound, and drying or burning the catalyst. forming a porous coating on the base, immersing the support thus obtained in a solution containing an active metal compound;
A denitrification catalyst having a porous coating formed by drying and supporting an active metal compound. 2. The catalyst according to claim 1, wherein the porous catalyst base is formed by subjecting a metal material whose surface is aluminum-alloyed to an aluminum elution treatment with an aluminum-soluble solution. 3. The catalyst according to claim 1 or 2, wherein the film-forming solution further contains an acrylic polymer emulsion. 4. The catalyst according to any one of claims 1 to 3, wherein the film-forming solution further contains an organic tin compound. 5. The catalyst according to any one of claims 1 to 4, wherein the active metal compound is a vanadium compound. 6. The catalyst according to any one of claims 1 to 4, wherein the active metal compounds are a vanadium compound and a titanium compound. 7. Any one of claims 1 to 4, wherein the active metal compound is a compound selected from the group consisting of iron, copper KW salts, halides, tungstates, and chromates. catalyst.
JP53082564A 1978-07-06 1978-07-06 Denitration catalyst with porous film Expired JPS5926341B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP53082564A JPS5926341B2 (en) 1978-07-06 1978-07-06 Denitration catalyst with porous film
GB7919186A GB2024640B (en) 1978-07-06 1979-06-01 Denitrating catalyst
NLAANVRAGE7904504,A NL179552C (en) 1978-07-06 1979-06-08 METHOD FOR MANUFACTURING A CATALYST FOR REMOVING NITROGEN OXIDES FROM WASTE GASES
IT49522/79A IT1119768B (en) 1978-07-06 1979-06-22 DENITRATION CATALYSTS WITH POROUS COATING AND PRODUCTION PROCESS OF THE SAME
BE2/57900A BE877182A (en) 1978-07-06 1979-06-22 DENITRATION CATALYSTS CONTAINING A POROUS COATING AND METHOD FOR MANUFACTURING SUCH CATALYSTS
FR7916608A FR2430260A1 (en) 1978-07-06 1979-06-27 DENITRATION CATALYSTS COMPRISING A POROUS COATING AND METHOD FOR PRODUCING THE SAME
DE19792926894 DE2926894A1 (en) 1978-07-06 1979-07-03 METHOD FOR PRODUCING DENITRATING CATALYSTS
CA331,302A CA1131197A (en) 1978-07-06 1979-07-06 Denitrating catalysts having porous coating and process for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53082564A JPS5926341B2 (en) 1978-07-06 1978-07-06 Denitration catalyst with porous film

Publications (2)

Publication Number Publication Date
JPS558875A JPS558875A (en) 1980-01-22
JPS5926341B2 true JPS5926341B2 (en) 1984-06-26

Family

ID=13777977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53082564A Expired JPS5926341B2 (en) 1978-07-06 1978-07-06 Denitration catalyst with porous film

Country Status (8)

Country Link
JP (1) JPS5926341B2 (en)
BE (1) BE877182A (en)
CA (1) CA1131197A (en)
DE (1) DE2926894A1 (en)
FR (1) FR2430260A1 (en)
GB (1) GB2024640B (en)
IT (1) IT1119768B (en)
NL (1) NL179552C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106535A (en) * 1983-11-16 1985-06-12 Mitsubishi Heavy Ind Ltd Catalyst for treating waste gas
ATE45295T1 (en) * 1985-08-19 1989-08-15 Siemens Ag PROCESS FOR MANUFACTURING A CATALYST FOR SELECTIVE REDUCTION OF NITROUS OXIDES IN EXHAUST GASES.
JPS62237947A (en) * 1986-04-09 1987-10-17 Toshiaki Kabe Catalyst body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104194A (en) * 1974-01-19 1975-08-16
JPS5116291A (en) * 1974-07-31 1976-02-09 Takeda Chemical Industries Ltd
JPS524491A (en) * 1975-06-30 1977-01-13 Hitachi Zosen Corp Method of preparing catalyst for removing nox by selective catalytic r eduction with ammonia

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3518206A (en) * 1968-05-17 1970-06-30 Du Pont Supported catalysts composed of substrate coated with colloidal silica and catalyst
GB1490977A (en) * 1973-12-10 1977-11-09 Atomic Energy Authority Uk Catalysts
NL7400525A (en) * 1973-01-27 1974-07-30
SE464798B (en) * 1973-10-24 1991-06-17 Johnson Matthey Co Ltd CATALYST CONTAINING A SUBSTRATE, AN INTERMEDIATE OXID LAYER AND A CATALYTIC LAYER
GB1471138A (en) * 1974-05-06 1977-04-21 Atomic Energy Authority Uk Supports for catalyst materials
GB1574069A (en) * 1976-11-09 1980-09-03 Hitachi Shipbuilding Eng Co Denitrating catalysts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104194A (en) * 1974-01-19 1975-08-16
JPS5116291A (en) * 1974-07-31 1976-02-09 Takeda Chemical Industries Ltd
JPS524491A (en) * 1975-06-30 1977-01-13 Hitachi Zosen Corp Method of preparing catalyst for removing nox by selective catalytic r eduction with ammonia

Also Published As

Publication number Publication date
NL179552C (en) 1986-10-01
IT7949522A0 (en) 1979-06-22
IT1119768B (en) 1986-03-10
JPS558875A (en) 1980-01-22
NL7904504A (en) 1980-01-08
BE877182A (en) 1979-10-15
FR2430260A1 (en) 1980-02-01
CA1131197A (en) 1982-09-07
FR2430260B1 (en) 1983-07-22
NL179552B (en) 1986-05-01
GB2024640B (en) 1983-01-06
GB2024640A (en) 1980-01-16
DE2926894C2 (en) 1987-02-19
DE2926894A1 (en) 1980-01-17

Similar Documents

Publication Publication Date Title
JPS6348584B2 (en)
CA1064894A (en) Process for producing denitrating catalysts
US5164351A (en) Carrier-supported catalyst for the removal of nitrogen-oxides, carbon monoxide and organic compounds from exhaust gases
JP2016203066A (en) Method for regenerating spent denitration catalyst
JPH02169032A (en) New catalyst usable for selective
JP2006297188A (en) Catalyst for treating exhaust gas and production method of catalyst for treating exhaust gas
JP4989545B2 (en) Nitrogen oxide catalytic reduction catalyst
JPH06182205A (en) Production of photocatalyst and the photocatalyst
JPS62168547A (en) Silver catalyst and its production
US4176091A (en) Denitrating catalysts having porous coating and process for producing same
JPS5926341B2 (en) Denitration catalyst with porous film
JP2010142688A (en) Catalyst for selective catalytic reduction of nitrogen oxide
US4225462A (en) Catalyst for reducing nitrogen oxides and process for producing the same
CN112844490B (en) Universal organic waste gas catalyst, preparation method and application
KR800001171B1 (en) Method for manufacture of denitrating catalyst having porous coating
JPS581628B2 (en) Ammonia oxidative decomposition catalyst and its manufacturing method
JPH08150324A (en) Method for catalytically reducing nitrogen oxide
RU2307709C1 (en) Method of production of the platinum catalyst used for purification of the exhaust gases of the internal combustion engines
JPH02160047A (en) Catalyst for oxidation decomposition of ammonia
JPH04122442A (en) Metal catalyst and its preparation
JPS6022930A (en) Gas purification catalyst and its preparation
JP2001113170A (en) Method for manufacturing for denitration catalyst
JP3428312B2 (en) Method for forming titanium oxide film
JPH04114743A (en) Metal catalyst and preparation thereof
JPS6344010B2 (en)