JPH08150324A - Method for catalytically reducing nitrogen oxide - Google Patents

Method for catalytically reducing nitrogen oxide

Info

Publication number
JPH08150324A
JPH08150324A JP3043006A JP4300691A JPH08150324A JP H08150324 A JPH08150324 A JP H08150324A JP 3043006 A JP3043006 A JP 3043006A JP 4300691 A JP4300691 A JP 4300691A JP H08150324 A JPH08150324 A JP H08150324A
Authority
JP
Japan
Prior art keywords
catalyst
production example
aqueous solution
liter
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3043006A
Other languages
Japanese (ja)
Inventor
Tadao Nakatsuji
忠夫 仲辻
Hiromasu Shimizu
宏益 清水
Fujio Suganuma
藤夫 菅沼
Mitsunori Tabata
光紀 田畑
Hideaki Hamada
秀昭 浜田
Tatsuhiko Ito
建彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Sakai Chemical Industry Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Agency of Industrial Science and Technology
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Cosmo Oil Co Ltd, Petroleum Energy Center PEC, Sakai Chemical Industry Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP3043006A priority Critical patent/JPH08150324A/en
Publication of JPH08150324A publication Critical patent/JPH08150324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE: To efficiently and catalytically reduce NOx in exhaust gas by using alcohol as a reducing agent when NOx in exhaust gas is selectively and catalytically reduced with a reducing agent in the presence of a catalyst. CONSTITUTION: When harmful NOx contained in exhaust gas discharged from an automobile, etc., is selectively and catalytically reduced with a reducing agent, alcohol is added as the reducing agent to the exhaust gas and this reducing agent is brought into contact with a catalyst to reduce and remove the NOx. By this method, NOx in exhaust gas is efficiently removed under coexistence of nitrogen. The alcohol is lower alcohol which is liq. at ordinary temp. and becomes gas at a reaction temp. and it is preferably ethanol, propanol or isopropanol. The amt. of the alcohol added is preferably 0.1-10 times (mol) that of NOx contained in exhaust gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は窒素酸化物の接触還元方
法に係わり、詳しくは工場、自動車などから排出される
排気ガスの中に含まれる有害な窒素酸化物を特定の還元
剤により選択的に効率良く接触還元する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for catalytic reduction of nitrogen oxides, and more specifically, it can selectively remove harmful nitrogen oxides contained in exhaust gas emitted from factories, automobiles, etc. by a specific reducing agent. The present invention relates to a method for efficient catalytic reduction.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
排気ガス中に含まれる窒素酸化物は、該窒素酸化物を
酸化した後、アルカリに吸収させる方法、NH3 、H
2 、CO等の還元剤を用いて窒素に変える方法などによ
って除去されてきた。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
Nitrogen oxides contained in the exhaust gas after oxidizing the nitrogen oxide, a method of absorbing the alkali, NH 3, H
2 , it has been removed by a method of changing to nitrogen using a reducing agent such as CO.

【0003】しかしながら、の方法による場合は、公
害防止のためのアルカリの排液処理が必要となり、また
の方法において還元剤としてNH3 等のアルカリ剤を
用いる場合においては、これが排気ガス中のSOxと反
応して塩類を生成し、この塩類が触媒の還元活性を低下
させてしまうという問題があった。また、のH2 、C
Oを還元剤として用いる場合は、これらが低濃度に存在
するNOX よりも高濃度に存在するO2 と優先的に反応
してしまうため、NOX を低減するためには多量の還元
剤を必要とするという問題があった。
However, in the case of the method (1), it is necessary to perform drainage treatment of alkali for preventing pollution, and in the case of using an alkali agent such as NH 3 as a reducing agent in the method (2), this is SOx in exhaust gas. However, there is a problem in that the salt reacts with the salt to form a salt, and the salt reduces the reducing activity of the catalyst. Also, H 2 , C
When O is used as a reducing agent, these react preferentially with O 2 present in a high concentration rather than NO X present in a low concentration. Therefore, in order to reduce NO X , a large amount of reducing agent should be used. There was a problem of needing it.

【0004】上記およびの方法以外に、還元剤を
用いることなく窒素酸化物を触媒により直接分解する方
法が提案されているが、触媒の窒素酸化物分解活性が低
いため、実用に供し得ないという問題があった。
In addition to the above methods and methods, a method of directly decomposing nitrogen oxides with a catalyst without using a reducing agent has been proposed, but it is not practically applicable because the catalyst has a low activity of decomposing nitrogen oxides. There was a problem.

【0005】本発明は以上の事情に鑑みてなされたもの
であって、その目的とするところは、酸素共存下におい
て、排気ガス中の窒素酸化物を効率的に除去する方法を
提供するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for efficiently removing nitrogen oxides in exhaust gas in the coexistence of oxygen. .

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る窒素酸化物の接触還元方法は、排気ガス
中に還元剤としてアルコール類を添加し、この還元剤を
触媒と接触させることにより、排気ガス中の窒素酸化物
を還元除去することを特徴とする。
In order to achieve the above object, the method for catalytic reduction of nitrogen oxides according to the present invention comprises adding alcohols as a reducing agent to exhaust gas and bringing the reducing agent into contact with a catalyst. Thus, the nitrogen oxide in the exhaust gas is reduced and removed.

【0007】本発明におけるアルコール類としては、脂
肪族系アルコール、芳香族系アルコールなど、特に制限
されない。好適なアルコール類としては、エタノール、
プロパノール、イソプロパノール、n−ブチルアルコー
ル、イソブチルアルコール、t−−ブチルアルコール、
アリルアルコール等の常温では液体であって、反応温度
では気体である低級アルコールが挙げられる。輸送、貯
蔵、取扱が容易だからである。
The alcohols in the present invention are not particularly limited, such as aliphatic alcohols and aromatic alcohols. Suitable alcohols include ethanol,
Propanol, isopropanol, n-butyl alcohol, isobutyl alcohol, t-butyl alcohol,
Lower alcohols such as allyl alcohol which are liquid at room temperature and gaseous at the reaction temperature are mentioned. This is because they are easy to transport, store and handle.

【0008】アルコール類の好適な添加量は、使用する
アルコール類の種類によって異なるが、排気ガス中に含
有される窒素酸化物に対して0.1〜10倍(モル比)
の量が好適であり、1〜5倍の量がより好適である。
0.1倍未満であると充分な触媒活性を得ることができ
ず、また10倍を越えると未反応のアルコールまたは部
分酸化生成物の排出量が多くなるためこれらを処理する
ための後処理が必要となるので、ともに好ましくない。
本発明における触媒としては、次の(1)〜(11)に示す
ものが例示される。
The suitable addition amount of alcohols varies depending on the kind of alcohols used, but is 0.1 to 10 times (molar ratio) with respect to nitrogen oxides contained in the exhaust gas.
Is preferable, and an amount of 1 to 5 times is more preferable.
If it is less than 0.1 times, sufficient catalytic activity cannot be obtained, and if it exceeds 10 times, the amount of unreacted alcohol or partial oxidation product is increased, so post-treatment for treating them is required. Both are not preferable because they are required.
Examples of the catalyst in the present invention include those shown in the following (1) to (11).

【0009】(1) 下記組成式で表されるゼオライト
中のイオンMの一部または全部を、Ti4+、Zr4+およ
びSn4+からなる群より選ばれた金属イオンでイオン交
換してなるゼオライトに、Ru、Rh、Ag、Pdおよ
びPtからなる群より選ばれた少なくとも一種の金属お
よび/またはその金属酸化物を担持させてなる窒素酸化
物接触還元用触媒。 MA [(AlO2)X (SiO2)Y ] ・ZH2 O 〔式中、イオンMはアルカリ金属イオン、アルカリ土類
金属イオンまたは水素イオン、nA=X(n:イオンM
の価数)、Y/X≧5である。〕
(1) A part or all of the ions M in the zeolite represented by the following composition formula are ion-exchanged with a metal ion selected from the group consisting of Ti 4+ , Zr 4+ and Sn 4+. A catalyst for catalytic reduction of nitrogen oxides, which comprises supporting at least one metal selected from the group consisting of Ru, Rh, Ag, Pd, and Pt and / or a metal oxide thereof on the following zeolite. M A [(AlO 2 ) X (SiO 2 ) Y ] .ZH 2 O [In the formula, the ion M is an alkali metal ion, an alkaline earth metal ion or a hydrogen ion, nA = X (n: ion M
Valence of Y) and Y / X ≧ 5. ]

【0010】(2) 下記組成式で表されるゼオライト
または該ゼオライト中のイオンMの一部または全部を、
Ti4+、Zr4+およびSn4+からなる群より選ばれた金
属イオンでイオン交換してなるゼオライトの細孔内に、
TiO2 、ZrO2 およびSnO2 からなる群より選ば
れた少なくとも一種の金属酸化物を担持させてなるゼオ
ライトに、Ru、Rh、Ag、PdおよびPtからなる
群より選ばれた少なくとも一種の金属および/またはそ
の金属酸化物を担持させてなる窒素酸化物接触還元用触
媒。 MA [(AlO2)X (SiO2)Y ] ・ZH2 O 〔式中、Mはアルカリ金属イオン、アルカリ土類金属イ
オンおよび水素イオンからなる群より選ばれたイオン、
nA=X(n:イオンMの価数)、Y/X≧5であ
る。〕
(2) The zeolite represented by the following composition formula or a part or all of the ion M in the zeolite,
In the pores of the zeolite formed by ion exchange with a metal ion selected from the group consisting of Ti 4+ , Zr 4+ and Sn 4+ ,
At least one metal selected from the group consisting of Ru, Rh, Ag, Pd, and Pt is added to a zeolite supporting at least one metal oxide selected from the group consisting of TiO 2 , ZrO 2, and SnO 2. / Or a catalyst for catalytic reduction of nitrogen oxides, which carries the metal oxide thereof. M A [(AlO 2 ) X (SiO 2 ) Y ] .ZH 2 O [In the formula, M is an ion selected from the group consisting of alkali metal ions, alkaline earth metal ions and hydrogen ions,
nA = X (n: valence of the ion M), Y / X ≧ 5. ]

【0011】(3) TiO2 と、Al2 3 、SiO
2 、ZrO2 からなる群より選ばれた少なくとも一種の
金属酸化物と、Ru、Rh、Pd、Ag、Ptからなる
群より選ばれた少なくとも一種の金属および/またはそ
の金属酸化物とからなる窒素酸化物接触還元用触媒。
(3) TiO 2 , Al 2 O 3 and SiO
Nitrogen consisting of at least one metal oxide selected from the group consisting of 2 , and ZrO 2, and at least one metal selected from the group consisting of Ru, Rh, Pd, Ag, and Pt and / or its metal oxide. Oxide catalytic reduction catalyst.

【0012】(4) TiO2 に、Pd、Ru、Rh、
AgおよびPtからなる群より選ばれた少なくとも一種
の金属および/またはその金属酸化物を担持させてなる
窒素酸化物接触還元用触媒。
(4) TiO 2 with Pd, Ru, Rh,
A catalyst for catalytic reduction of nitrogen oxides, which carries at least one metal selected from the group consisting of Ag and Pt and / or a metal oxide thereof.

【0013】(5) TiO2 、Al2 3 、ZrO2
およびSiO2 からなる群より選ばれた少なくとも一種
の金属酸化物と、希土類の酸化物と、Ru、Rh、P
d、AgおよびPtからなる群より選ばれた少なくとも
一種の金属および/またはその金属酸化物とからなる窒
素酸化物接触還元用触媒。
(5) TiO 2 , Al 2 O 3 , ZrO 2
And at least one metal oxide selected from the group consisting of SiO 2 and a rare earth oxide, Ru, Rh, P
A catalyst for catalytic reduction of nitrogen oxides comprising at least one metal selected from the group consisting of d, Ag and Pt and / or its metal oxide.

【0014】(6) 下記一般式で表されるペロブスカ
イト型複合酸化物からなる窒素酸化物接触還元用触媒。 Lax Sr(1-X) Y B'(1-Y) 3 〔式中、BはMnまたはCo;B'はCo、Fe、N
i、CuまたはCr;0≦X≦1、0≦Y≦1であ
る。〕
(6) A catalyst for catalytic reduction of nitrogen oxides comprising a perovskite type complex oxide represented by the following general formula. La x Sr (1-X) B Y B '(1-Y) O 3 wherein, B is Mn or Co; B' is Co, Fe, N
i, Cu or Cr; 0 ≦ X ≦ 1, 0 ≦ Y ≦ 1. ]

【0015】(7) 下記一般式で表されるペロブスカ
イト型複合酸化物に、Pt、Rh、Pd、Ru、および
Agからなる群より選ばれた少なくとも一種の金属およ
び/またはその金属酸化物を担持させてなる窒素酸化物
接触還元用触媒。 Lax Sr(1-X) Y B'(1-Y) 3 〔式中、BはMnまたはCo;B'はCo、Fe、N
i、CuまたはCr;0≦X≦1、0≦Y≦1であ
る。〕
(7) At least one metal selected from the group consisting of Pt, Rh, Pd, Ru, and Ag and / or its metal oxide is supported on the perovskite type composite oxide represented by the following general formula. A catalyst for catalytic reduction of nitrogen oxides. La x Sr (1-X) B Y B '(1-Y) O 3 wherein, B is Mn or Co; B' is Co, Fe, N
i, Cu or Cr; 0 ≦ X ≦ 1, 0 ≦ Y ≦ 1. ]

【0016】(8) 下記組成式で表されるゼオライト
中のイオンMの一部または全部を、Ti4+、Zr4+およ
びSn4+からなる群より選ばれた金属イオンでイオン交
換してなるゼオライトに、V、Cr、Mn、Fe、C
o、Ni、Cu、Zn、Nb、MoおよびWからなる群
より選ばれた少なくとも一種の金属の酸化物を担持させ
てなる窒素酸化物接触還元用触媒。 MA [(AlO2)X (SiO2)Y ] ・ZH2 O 〔式中、イオンMはアルカリ金属イオン、アルカリ土類
金属イオンまたは水素イオン、nA=X(n:イオンM
の価数)、Y/X≧5である。〕
(8) Part or all of the ions M in the zeolite represented by the following composition formula are ion-exchanged with a metal ion selected from the group consisting of Ti 4+ , Zr 4+ and Sn 4+. , Zeolite, V, Cr, Mn, Fe, C
A catalyst for catalytic reduction of nitrogen oxides, which carries an oxide of at least one metal selected from the group consisting of o, Ni, Cu, Zn, Nb, Mo and W. M A [(AlO 2 ) X (SiO 2 ) Y ] .ZH 2 O [In the formula, the ion M is an alkali metal ion, an alkaline earth metal ion or a hydrogen ion, nA = X (n: ion M
Valence of Y) and Y / X ≧ 5. ]

【0017】(9) 下記組成式で表されるゼオライト
または該ゼオライト中のイオンMの一部または全部を、
Ti4+、Zr4+およびSn4+からなる群より選ばれた金
属イオンでイオン交換してなるゼオライトに、Ti
2 、ZrO2 およびSnO2 からなる群より選ばれた
少なくとも一種の金属酸化物を担持させてなるゼオライ
トに、V、Cr、Mn、Fe、Co、Ni、Cu、Z
n、Nb、MoおよびWからなる群より選ばれた少なく
とも一種の金属の酸化物を担持させてなる窒素酸化物接
触還元用触媒。 MA [(AlO2)X (SiO2)Y ] ・ZH2 O 〔式中、Mはアルカリ金属イオン、アルカリ土類金属イ
オンおよび水素イオンからなる群より選ばれたイオン、
nA=X(n:イオンMの価数)、Y/X≧5であ
る。〕
(9) The zeolite represented by the following composition formula or a part or all of the ions M in the zeolite are
Zeolite formed by ion exchange with a metal ion selected from the group consisting of Ti 4+ , Zr 4+ and Sn 4+ is added to Ti
V, Cr, Mn, Fe, Co, Ni, Cu, Z are added to a zeolite supporting at least one metal oxide selected from the group consisting of O 2 , ZrO 2 and SnO 2.
A catalyst for catalytic reduction of nitrogen oxides, which carries an oxide of at least one metal selected from the group consisting of n, Nb, Mo and W. M A [(AlO 2 ) X (SiO 2 ) Y ] .ZH 2 O [In the formula, M is an ion selected from the group consisting of alkali metal ions, alkaline earth metal ions and hydrogen ions,
nA = X (n: valence of the ion M), Y / X ≧ 5. ]

【0018】(10) TiO2 と、Al2 3 、Si
2 、ZrO2 からなる群より選ばれた少なくとも一種
の金属酸化物と、V、Cr、Mn、Fe、Co、Ni、
Cu、Zn、Nb、MoおよびWからなる群より選ばれ
た少なくとも一種の金属の酸化物とからなる窒素酸化物
接触還元用触媒。
(10) TiO 2 , Al 2 O 3 and Si
At least one metal oxide selected from the group consisting of O 2 and ZrO 2 , and V, Cr, Mn, Fe, Co, Ni,
A catalyst for catalytic reduction of nitrogen oxides, which comprises an oxide of at least one metal selected from the group consisting of Cu, Zn, Nb, Mo and W.

【0019】(11) 下記組成式で表されるゼオライ
ト中のアルカリ金属イオンMの一部または全部を、アル
カリ土類金属イオンでイオン交換してなるゼオライト
に、Mn、Fe、Co、NiおよびCuからなる群より
選ばれた少なくとも一種の金属の酸化物を担持させてな
る窒素酸化物接触還元用触媒。 MX [(AlO2)X (SiO2)Y ] ・ZH2
(11) Mn, Fe, Co, Ni and Cu are added to a zeolite obtained by ion-exchanging a part or all of alkali metal ions M in the zeolite represented by the following composition formula with alkaline earth metal ions. A catalyst for catalytic reduction of nitrogen oxides, which carries an oxide of at least one metal selected from the group consisting of: M X [(AlO 2 ) X (SiO 2 ) Y ] .ZH 2 O

【0020】本発明方法において、窒素酸化物接触還元
用触媒が窒素酸化物に対して良好な還元活性を示す好適
な還元温度は、使用するアルコール類および触媒の種類
により異なるが通常100〜800°Cである。この温
度領域においては、500〜50000程度の空間速度
(SV)で排気ガスを通流させることが好ましい。より
好適な使用温度領域は300〜600°Cである。
In the method of the present invention, the suitable reduction temperature at which the catalyst for catalytic reduction of nitrogen oxides exhibits good reduction activity for nitrogen oxides varies depending on the alcohols and the type of catalyst used, but is usually 100 to 800 °. It is C. In this temperature range, it is preferable to let the exhaust gas flow at a space velocity (SV) of about 500 to 50,000. A more preferable operating temperature range is 300 to 600 ° C.

【0021】[0021]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。 (1)触媒の調製
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible. (1) Preparation of catalyst

【0022】(製造例1)組成式:NaX 〔 (AlO2)
X ・(SiO2 Y 〕・ZH2 Oで表されるナトリウム
型モルデナイトの市販品(日本化学社製、商品名「NM
−100P」、Y/X=8)100gを0.025モル
/リットルのTiCl4 水溶液1リットルに浸漬し、2
4時間攪拌してNaをTiでイオン交換した後、ろ別、
水洗してゼオライトのケーキを得た。次いで、このケー
キを乾燥した後、650°Cで4時間焼成した。得られ
たゼオライト中のTiの量はTiO2 として0.4重量
%であった。このゼオライトを、Pt担持後のゼオライ
ト中のPtの重量分率が1重量%になる量のPtを含有
するH2 PtCl6 の水溶液1リットルに浸漬し、攪拌
しながら理論量の1.2倍のヒドラジンを加えてH2
tCl6 を還元した後、ろ別、水洗、乾燥してPtを担
持した触媒1を得た。
(Production Example 1) Compositional formula: Na X [(AlO 2 ).
X. (SiO 2 ) Y ] .ZH 2 O A commercial product of sodium-type mordenite (manufactured by Nippon Kagaku Co., Ltd., trade name “NM
-100P ", Y / X = 8) 100 g was immersed in 1 liter of 0.025 mol / liter TiCl 4 aqueous solution, and 2
After stirring for 4 hours to ion exchange Na with Ti, filtration was performed,
It was washed with water to obtain a cake of zeolite. Then, after drying this cake, it baked at 650 degreeC for 4 hours. The amount of Ti in the obtained zeolite was 0.4% by weight as TiO 2 . This zeolite was immersed in 1 liter of an aqueous solution of H 2 PtCl 6 containing Pt in an amount such that the weight fraction of Pt in the zeolite after supporting Pt was 1% by weight, and 1.2 times the theoretical amount with stirring. H 2 P by adding hydrazine
After reducing tCl 6 , it was filtered, washed with water, and dried to obtain a Pt-supported catalyst 1.

【0023】(製造例2)組成式:HX 〔 (AlO2)X
・(SiO2 Y 〕・ZH2 Oで表される水素型モルデ
ナイトの市販品(日本化学社製、商品名「HM−100
P」、Y/X=12)100gを0.025モル/リッ
トルのZrOCl2 水溶液1リットルに浸漬し、24時
間攪拌してNaをZrでイオン交換した後、過剰のZr
をアンモニア水で中和してZrO2 として2重量%担持
させた。次いで、このケーキを乾燥した後、650°C
で4時間焼成した。このゼオライトを、Pd担持後のゼ
オライト中のPdの重量分率が1重量%になる量のPd
を含有するPdCl2 の水溶液1リットルに浸漬し、攪
拌しながら理論量の1.2倍のヒドラジンを加えてPd
Cl2 を還元した後、ろ別、水洗、乾燥してPdを担持
した触媒2を得た。
(Production Example 2) Compositional formula: H X [(AlO 2 ) X
· (SiO 2) Y] · ZH 2 hydrogen form mordenite represented by O of commercially available (Nippon Chemical Co., Ltd., trade name "HM-100
P ", Y / X = 12) 100 g was immersed in 1 liter of 0.025 mol / liter ZrOCl 2 aqueous solution and stirred for 24 hours to ion exchange Na with Zr.
Was neutralized with aqueous ammonia to support 2% by weight of ZrO 2 . Then, after drying this cake, 650 ° C
It was baked for 4 hours. This zeolite is mixed with Pd in such an amount that the weight fraction of Pd in the zeolite after supporting Pd is 1% by weight.
It is immersed in 1 liter of an aqueous solution of PdCl 2 containing Pd, and 1.2 times the theoretical amount of hydrazine is added with stirring to add PdCl 2.
After reducing Cl 2 , it was filtered, washed with water and dried to obtain a Pd-supported catalyst 2.

【0024】(製造例3)製造例1においてTiCl4
に代えてSnCl4 を用いたこと以外は製造例1と同様
にして触媒3を得た。
(Production Example 3) In Production Example 1, TiCl 4
A catalyst 3 was obtained in the same manner as in Production Example 1 except that SnCl 4 was used instead of.

【0025】(製造例4)製造例2においてZrOCl
2 に代えてTiOSO4 を用いたこと以外は製造例2と
同様にして触媒4を得た。
Production Example 4 ZrOCl in Production Example 2
A catalyst 4 was obtained in the same manner as in Production Example 2 except that TiOSO 4 was used instead of 2 .

【0026】(製造例5)製造例1においてH2 PtC
6 水溶液に代えてRuCl4 、5H2 Oの水溶液を用
いたこと以外は製造例1と同様にして触媒5を得た。
Production Example 5 H 2 PtC in Production Example 1
A catalyst 5 was obtained in the same manner as in Production Example 1, except that an aqueous solution of RuCl 4 , 5H 2 O was used instead of the aqueous solution of 16 .

【0027】(製造例6)硫酸チタン、硝酸アルミニウ
ムを各々酸化物基準で90g、9g秤量し、これを1リ
ットルのイオン交換水に溶解した。この水溶液中に、充
分攪拌を行いながら、アンモニアを吹き込みpH7.0
となるまで添加し中和反応を終了した(中和時間1時
間)。その後、30分間熟成した後、ろ過、水洗し、1
00°Cにて18時間乾燥した後、500°Cにて3時
間焼成した。この焼成物をRh担持後の触媒中のRhの
重量分率が0.5重量%になる量のRhを含有するRh
Cl3・3H2 Oの水溶液1リットルに浸漬し、攪拌し
ながら理論量の1.2倍の水素化ホウ酸ナトリウムを加
えてRhCl3 を還元した後、ろ別、水洗、乾燥してR
hを担持した触媒6を得た。
(Production Example 6) 90 g and 9 g of titanium sulfate and aluminum nitrate, respectively, were weighed on the basis of oxides and dissolved in 1 liter of ion-exchanged water. Ammonia was blown into this aqueous solution with sufficient stirring to bring the pH to 7.0.
The neutralization reaction was completed by adding until the reaction time reached (neutralization time 1 hour). Then, after aging for 30 minutes, filtration, washing with water, 1
After drying at 00 ° C for 18 hours, it was baked at 500 ° C for 3 hours. This calcined product contains Rh in an amount such that the weight fraction of Rh in the catalyst after supporting Rh is 0.5% by weight.
Immerse in 1 liter of an aqueous solution of Cl 3 .3H 2 O, add 1.2 times the stoichiometric amount of sodium borohydride to reduce RhCl 3 with stirring, then filter, wash with water and dry R
A catalyst 6 carrying h was obtained.

【0028】(製造例7)硝酸アルミニウムおよびオキ
シ塩化ジルコニウムを各々酸化物基準で50g、50g
秤量し、これを1リットルのイオン交換水に溶解した。
この水溶液中に、充分攪拌を行いながらアンモニアを吹
き込みpH7.0として中和反応を終了した(中和時間
1時間)。その後、30分間熟成した後、ろ過、水洗
し、100°Cにて18時間乾燥した後、600°Cに
て3時間焼成した。この焼成物50gとTiO2 50g
をAg担持後の触媒中のAgの重量分率が2重量%にな
る量のAgを含有するAgNO3 の水溶液1リットルに
浸漬し、攪拌しながら理論量の1.2倍ヒドラジンを加
えてAgNO3 を還元した後、ろ別、水洗、乾燥してA
gを担持した触媒7を得た。
(Production Example 7) Aluminum nitrate and zirconium oxychloride were added in amounts of 50 g and 50 g, respectively, based on the oxide.
It was weighed and dissolved in 1 liter of ion-exchanged water.
Ammonia was blown into this aqueous solution with sufficient stirring to adjust the pH to 7.0 to complete the neutralization reaction (neutralization time 1 hour). Then, the mixture was aged for 30 minutes, filtered, washed with water, dried at 100 ° C for 18 hours, and then baked at 600 ° C for 3 hours. 50g of this baked product and 50g of TiO 2
Was immersed in 1 liter of an aqueous solution of AgNO 3 containing Ag in an amount such that the weight fraction of Ag in the catalyst after supporting Ag was 2% by weight, and 1.2 times the theoretical amount of hydrazine was added with stirring to add AgNO 3. After reducing 3 , A is separated by filtration, washed with water and dried.
A catalyst 7 carrying g was obtained.

【0029】(製造例8)日産化学社製スノーテックス
Oとメタチタン酸ゾル(メタチタン酸を硝酸により解膠
したもの)とを酸化物換算で各々50g、50g秤量
し、充分混合した後、100°Cにて18時間乾燥し、
次いで700°Cにて3時間焼成した。この焼成物をP
d担持後の重量分率が1重量%になる量のPdを含有す
るPdCl2の水溶液1リットルに浸漬し、攪拌しなが
ら理論量の1.2倍のヒドラジンを加えてPdCl2
還元した後、ろ別、水洗、乾燥してPdを担持した触媒
8を得た。
(Production Example 8) Snowtex O (manufactured by Nissan Chemical Industries, Ltd.) and metatitanic acid sol (metatitanic acid deflocculated with nitric acid) were weighed in amounts of 50 g and 50 g, respectively, in terms of oxide, and after thorough mixing, 100 ° Dried at C for 18 hours,
Then, it was baked at 700 ° C. for 3 hours. This baked product is P
After dipped in 1 liter of an aqueous solution of PdCl 2 containing Pd in an amount such that the weight fraction after loading d is 1% by weight, 1.2 times the theoretical amount of hydrazine was added with stirring to reduce PdCl 2. The catalyst 8 carrying Pd was obtained by filtering, washing with water and drying.

【0030】(製造例9)500g/リットルのチタニ
ル硫酸(TiOSO4 )を、オートクレーブ内で、12
0°Cにて1時間加熱加水分解してメタチタン酸を生成
せしめ、これを濾過し、イオン交換水にて充分に洗浄
し、100°Cにて18時間乾燥し、さらに500°C
にて3時間焼成して、硫酸根を8.5%含有する比表面
積114m2/gのアナターゼ型酸化チタンを得た。こ
の酸化チタンを、Pt担持後の触媒中のPtの重量分率
が1重量%になる量のPtを含有するH2 PtCl6
水溶液1リットルに浸漬し、攪拌しながら理論量の1.
2倍のヒドラジンを加えてH2 PtCl6 を還元した
後、ろ別、水洗、乾燥してPtを担持した触媒9を得
た。
(Production Example 9) 500 g / l of titanyl sulfuric acid (TiOSO 4 ) was added to the autoclave in an amount of 12
It is hydrolyzed by heating at 0 ° C for 1 hour to produce metatitanic acid, which is filtered, thoroughly washed with ion-exchanged water, dried at 100 ° C for 18 hours, and further 500 ° C.
By firing for 3 hours, anatase type titanium oxide containing 8.5% of sulfate group and having a specific surface area of 114 m 2 / g was obtained. This titanium oxide was immersed in 1 liter of an aqueous solution of H 2 PtCl 6 containing Pt in an amount such that the weight fraction of Pt in the catalyst after supporting Pt was 1% by weight, and the theoretical amount of 1.
After adding 2 times hydrazine to reduce H 2 PtCl 6 , it was filtered, washed with water, and dried to obtain Pt-supported catalyst 9.

【0031】(製造例10)500g/リットルのチタ
ニル硫酸(TiOSO4 )を、アンモニア水で常温で中
和し、これを濾過し、イオン交換水で充分に洗浄し、1
00°Cにて18時間乾燥し、さらに500°Cにて3
時間焼成して、硫酸根を0.21%含有する比表面積8
5m2 /gのアナターゼ型酸化チタンを得た。この酸化
チタンを、Rh担持後の触媒中のRhの重量分率が3重
量%になる量のRhを含有するRhCl3 の水溶液1リ
ットルに浸漬し、攪拌しながら理論量の1.2倍のヒド
ラジンを加えてRhCl3 を還元した後、ろ別、水洗、
乾燥してRhを担持した触媒10を得た。
(Production Example 10) 500 g / liter of titanyl sulfuric acid (TiOSO 4 ) was neutralized with aqueous ammonia at room temperature, filtered, and thoroughly washed with ion-exchanged water.
Dry at 00 ° C for 18 hours and then at 500 ° C for 3 hours
Specific surface area containing 0.21% of sulfate radical after firing for 8 hours
5 m 2 / g of anatase type titanium oxide was obtained. This titanium oxide was immersed in 1 liter of an aqueous solution of RhCl 3 containing Rh in an amount such that the weight fraction of Rh in the catalyst after supporting Rh was 3% by weight, and 1.2 times the theoretical amount with stirring. After adding hydrazine to reduce RhCl 3 , it is filtered, washed with water,
After drying, a catalyst 10 supporting Rh was obtained.

【0032】(製造例11)ビーカーに、CeO2 換算
で1gとなる量の硝酸セリウムを秤量して入れ、これに
水1リットルおよびTiO2 100gを加えて、充分に
攪拌混合して水溶液とした。次いで、この水溶液に、ア
ンモニアを沈澱剤として加えて沈澱物を生成させ、該沈
澱物をろ別、水洗、乾燥した後、500°Cにて3時間
焼成して焼成物を得た。このようにして得た焼成物50
gを、担持後のPdの重量分率が1重量%となる量のP
dCl2 水溶液1リットルに入れて、充分に攪拌混合し
た後、理論量の1.2倍のヒドラジンを還元剤として加
えてPdCl2 を還元した後、ろ別、水洗、乾燥してP
dを担持した触媒11を得た。
(Production Example 11) 1 g of cerium nitrate in terms of CeO 2 was weighed and put in a beaker, 1 liter of water and 100 g of TiO 2 were added, and the mixture was sufficiently stirred and mixed to obtain an aqueous solution. . Next, ammonia was added to this aqueous solution as a precipitating agent to form a precipitate, which was filtered, washed with water, dried, and then calcined at 500 ° C for 3 hours to obtain a calcined product. Fired product 50 thus obtained
g of Pd in an amount such that the weight fraction of Pd after loading becomes 1% by weight.
Put in 1 liter of dCl 2 aqueous solution, stir and mix thoroughly, add 1.2 times the theoretical amount of hydrazine as a reducing agent to reduce PdCl 2 , and then filter, wash and dry P
A catalyst 11 carrying d was obtained.

【0033】(製造例12)ビーカーに、Tb4 7
算で5gとなる量の硝酸テレビウムを秤量して入れ、こ
れに水1リットルおよびSiO2 100gを加えて、充
分に攪拌混合して水溶液とした。次いで、この水溶液
に、アンモニアを沈澱剤として加えて沈澱物を生成さ
せ、該沈澱物をろ別、水洗、乾燥した後、500°Cに
て3時間焼成して焼成物を得た。このようにして得た焼
成物50gを、担持後のRuの重量分率が3重量%とな
る量のRuCl3 水溶液1リットルに入れて、充分に攪
拌混合した後、理論量の1.2倍のヒドラジンを還元剤
として加えてRuCl3 を還元した後、ろ別、水洗、乾
燥してRuを担持した触媒12を得た。
(Production Example 12) A beaker was weighed with terbium nitrate in an amount of 5 g in terms of Tb 4 O 7 , 1 liter of water and 100 g of SiO 2 were added thereto, and the mixture was sufficiently stirred and mixed to prepare an aqueous solution. And Next, ammonia was added to this aqueous solution as a precipitating agent to form a precipitate, which was filtered, washed with water, dried, and then calcined at 500 ° C for 3 hours to obtain a calcined product. 50 g of the calcined material thus obtained was placed in 1 liter of an aqueous RuCl 3 solution in an amount such that the weight fraction of Ru after loading was 3% by weight, and sufficiently stirred and mixed, and then 1.2 times the theoretical amount. Was added as a reducing agent to reduce RuCl 3 and then filtered, washed with water and dried to obtain a catalyst 12 carrying Ru.

【0034】(製造例13)Sm2 3 10gとAl2
3 100gを乳鉢で充分に混合した後、500°Cに
て3時間焼成して焼成物を得た。このようにして得た焼
成物50gを、担持後のPtの重量分率が0.5重量%
となる量のH2 PtCl6 水溶液1リットルに入れて、
充分に攪拌混合した後、理論量の1.2倍のヒドラジン
を還元剤として加えてH2 PtCl6 を還元した後、ろ
別、水洗、乾燥して触媒13を得た。
(Production Example 13) 10 g of Sm 2 O 3 and Al 2
After thoroughly mixing 100 g of O 3 in a mortar, the product was baked at 500 ° C. for 3 hours to obtain a baked product. The weight fraction of Pt after supporting 50 g of the fired product thus obtained was 0.5% by weight.
In 1 liter of H 2 PtCl 6 aqueous solution
After thoroughly stirring and mixing, 1.2 times the theoretical amount of hydrazine was added as a reducing agent to reduce H 2 PtCl 6 , followed by filtration, washing with water and drying to obtain a catalyst 13.

【0035】(製造例14)ビーカーに、Pr6 11
算で5gとなる量の硝酸プラセオジムとZrO2 換算で
100gとなる量の酸塩化ジルコニウムを秤量して入
れ、これに水1リットルを加え充分に攪拌混合して水溶
液とした。次いで、この水溶液に、アンモニアを沈澱剤
として加えて沈澱させ、該沈澱物をろ別、水洗、乾燥し
た後、500°Cにて3時間焼成して焼成物を得た。こ
のようにして得た焼成物50gを、担持後のAgの重量
分率が10重量%となる量のAgNO3 水溶液1リット
ルに入れて、充分に攪拌混合した後、理論量の1.2倍
のヒドラジンを還元剤として加えてAgNO3 を還元し
た後、ろ別、水洗、乾燥して触媒14を得た。
(Production Example 14) Praseodymium nitrate in an amount of 5 g in terms of Pr 6 O 11 and zirconium oxychloride in an amount of 100 in terms of ZrO 2 were weighed into a beaker, and 1 liter of water was added thereto. The mixture was thoroughly mixed with stirring to give an aqueous solution. Next, ammonia was added to this aqueous solution as a precipitant to cause precipitation, and the precipitate was filtered, washed with water, dried, and then calcined at 500 ° C. for 3 hours to obtain a calcined product. 50 g of the calcined material thus obtained was placed in 1 liter of an aqueous AgNO 3 solution in an amount such that the weight fraction of Ag after loading was 10% by weight, and sufficiently stirred and mixed, and then 1.2 times the theoretical amount. Was added as a reducing agent to reduce AgNO 3 , and then filtered, washed with water and dried to obtain a catalyst 14.

【0036】(製造例15)SiO2 50gとAl2
3 50gを乳鉢で充分に混合した後、700°Cで3時
間焼成して焼成物を得た。この焼成物を、硝酸ネオジウ
ム水溶液に10分間浸漬した後過剰の水分を取り除いて
乾燥した。この操作を担持後のNd2 3 の重量分率が
5重量%になるまで繰り返した後、500°Cで3時間
焼成した。この焼成物50gを、担持後のRhの重量分
率が2重量%となるRhCl3 水溶液1リットルに入れ
て、充分に攪拌混合した後、理論量の1.2倍のヒドラ
ジンを還元剤として加えてRhCl3 を還元した後、ろ
別、水洗、乾燥して触媒15を得た。
(Production Example 15) 50 g of SiO 2 and Al 2 O
After thorough mixing the 3 50 g in a mortar to obtain a calcined product was fired for 3 hours at 700 ° C. The fired product was immersed in an aqueous solution of neodymium nitrate for 10 minutes, and then excess water was removed to dry the product. This operation was repeated until the weight fraction of Nd 2 O 3 after loading reached 5% by weight, and then firing was carried out at 500 ° C. for 3 hours. 50 g of the calcined product was placed in 1 liter of an aqueous solution of RhCl 3 having a weight fraction of Rh after loading of 2% by weight, thoroughly mixed with stirring, and 1.2 times the theoretical amount of hydrazine was added as a reducing agent. Then, RhCl 3 was reduced to obtain a catalyst 15 by filtration, washing with water and drying.

【0037】(製造例16)ビーカーに、La(NO3)
3 ・6H2 Oを69.3g、Sr(NO3)2 を50.8
g、Mn(NO3)2 ・6H2 Oを91.9g、Fe(N
3)3 ・9H2 Oを32.3gおよび水を1リットル入
れて攪拌し、水溶液とした。この水溶液中のLa、S
r、Mn、Feの原子比は、4:6:8:2である。こ
の溶液に、沈澱剤として250g/リットルの炭酸ナト
リウム水溶液を溶液のpHが8になるまで添加して沈澱
物を生成させた。生成した沈澱物を充分に水洗した後、
110°Cにて乾燥し、次いで800°Cにて3時間焼
成して触媒16を得た。
(Production Example 16) La (NO 3 ) was added to a beaker.
3 · 6H 2 O and 69.3 g, Sr a (NO 3) 2 50.8
g, Mn (NO 3) 2 · 6H 2 O and 91.9 g, Fe (N
O 3) 3 · 9H 2 O-placed 32.3g and 1 liter of water with stirring, into an aqueous solution. La and S in this aqueous solution
The atomic ratio of r, Mn, and Fe is 4: 6: 8: 2. A 250 g / liter aqueous solution of sodium carbonate as a precipitant was added to this solution until the pH of the solution reached 8, thereby forming a precipitate. After thoroughly washing the formed precipitate with water,
It was dried at 110 ° C and then calcined at 800 ° C for 3 hours to obtain a catalyst 16.

【0038】(製造例17)ビーカーに、La(NO3)
3 ・6H2 Oを129.9g、Sr(NO3)2 を42.
3g、Co(NO3)2 ・6H2 Oを116.4g、Mn
(NO3)2 ・6H2Oを28.7gおよび水を1リット
ル入れて攪拌し、水溶液とした。この水溶液をZrO2
粉に含浸させた後、余剰の水溶液を取り除き乾燥した。
この操作を3回繰り返した後、800°Cで3時間焼成
して触媒17を得た。
(Production Example 17) La (NO 3 ) was added to a beaker.
3 · 6H 2 O and 129.9 g, Sr a (NO 3) 2 42.
3g, Co (NO 3) 2 · 6H 2 O and 116.4 g, Mn
(NO 3) the 2 · 6H 2 O and stirred into 1 liter of 28.7g and water, and an aqueous solution. This aqueous solution was added to ZrO 2
After impregnating the powder, the excess aqueous solution was removed and dried.
After repeating this operation 3 times, it baked at 800 degreeC for 3 hours, and the catalyst 17 was obtained.

【0039】(製造例18)ビーカーに、La(NO3)
3 ・6H2 Oを14.7g、Sr(NO3)2 を1.8
g、Co(NO3)2 ・6H2 Oを12.4gおよび水を
1リットル入れて攪拌し、水溶液とした。この水溶液中
のLa、Sr、Coの原子比は、8:2:10である。
次いで、この溶液中に、TiO2 粉100gを混合した
後、沈澱剤として250g/リットルの炭酸ナトリウム
水溶液を溶液のpHが8になるまで添加して、沈澱物を
生成させた。生成した沈澱物を充分に水洗した後、11
0°Cで乾燥し、800°Cで3時間焼成した。得られ
た焼成物をRh担持後の触媒中のRhの重量分率が1重
量%とになる量のRhを含有するRhCl3 水溶液に浸
漬し、攪拌しながら理論量の1.2倍のヒドラジンを加
えてRhCl3 を還元した後、ろ別、水洗、乾燥してR
hを担持した触媒18を得た。
(Production Example 18) La (NO 3 ) was added to a beaker.
3 · 6H 2 O and 14.7 g, Sr a (NO 3) 2 1.8
g, 12.4 g of Co (NO 3 ) 2 .6H 2 O and 1 liter of water were added and stirred to obtain an aqueous solution. The atomic ratio of La, Sr, and Co in this aqueous solution is 8: 2: 10.
Next, 100 g of TiO 2 powder was mixed into this solution, and then 250 g / liter of an aqueous sodium carbonate solution was added as a precipitating agent until the pH of the solution reached 8, thereby forming a precipitate. After washing the formed precipitate thoroughly with water, 11
It was dried at 0 ° C and calcined at 800 ° C for 3 hours. The obtained calcined product was immersed in an RhCl 3 aqueous solution containing Rh in an amount such that the weight fraction of Rh in the catalyst after supporting Rh was 1% by weight, and 1.2 times the theoretical amount of hydrazine while stirring. Is added to reduce RhCl 3 , then filtered, washed with water and dried to obtain RhCl 3.
A catalyst 18 carrying h was obtained.

【0040】(製造例19)製造例1で得たゼオライト
50gを15.2g/リットルの硝酸銅 (II) 水溶液5
00ミリリットルに入れて充分に攪拌混合した後、これ
に水酸化ナトリウム水溶液を液のpHが8になるまで加
えて沈澱物を生成させた。この沈澱物をろ別、水洗、乾
燥した後500°Cで3時間焼成して触媒19を得た。
(Production Example 19) 50 g of the zeolite obtained in Production Example 1 was mixed with an aqueous solution of 15.2 g / liter of copper (II) nitrate 5
The mixture was placed in 00 ml and sufficiently stirred and mixed, and an aqueous sodium hydroxide solution was added thereto until the pH of the solution reached 8, to form a precipitate. The precipitate was filtered, washed with water, dried and then calcined at 500 ° C. for 3 hours to obtain a catalyst 19.

【0041】(製造例20)製造例2で得たゼオライト
50gを18.2g/リットルの硝酸コバルト水溶液5
00ミリリットルに入れて充分に攪拌した後、製造例1
9と同様にして触媒20を得た。
(Production Example 20) 50 g of the zeolite obtained in Production Example 2 was mixed with an aqueous solution of cobalt nitrate 5 at 18.2 g / liter.
After putting in 00 ml and stirring sufficiently, Production Example 1
A catalyst 20 was obtained in the same manner as in 9.

【0042】(製造例21)製造例3で得たゼオライト
50gを18.2g/リットルの硝酸マンガン水溶液5
00ミリリットルに入れて充分に攪拌した後、製造例1
9と同様にして触媒21を得た。
(Production Example 21) 50 g of the zeolite obtained in Production Example 3 was mixed with an aqueous solution of manganese nitrate 5 at 18.2 g / liter.
After putting in 00 ml and stirring sufficiently, Production Example 1
A catalyst 21 was obtained in the same manner as in 9.

【0043】(製造例22)製造例4で得たゼオライト
50gをV25換算で142g/リットルのシュウ酸バ
ナジルを含有する水溶液に浸漬し、過剰の水溶液を取り
除いた後、乾燥し、次いで500°Cで3時間焼成して
触媒22を得た。
[0043] After the (preparation 22) was dipped zeolite 50g obtained in Production Example 4 in an aqueous solution containing vanadyl oxalate of 142g / liter V 2 0 5 in terms to remove excess solution, dried, then The catalyst 22 was obtained by calcining at 500 ° C. for 3 hours.

【0044】(製造例23)製造例1で得たゼオライト
50gをMoO3 換算で142g/リットルのモリブデ
ン酸アンモニウム水溶液に浸漬し、その後、製造例22
と同様にして触媒23を得た。
(Production Example 23) 50 g of the zeolite obtained in Production Example 1 was immersed in an aqueous ammonium molybdate solution of 142 g / liter in terms of MoO 3 , and then Production Example 22.
A catalyst 23 was obtained in the same manner as in.

【0045】(製造例24)製造例6で得た焼成物50
gを15.7g/リットルの硝酸銅(II)水溶液500ミ
リリットルに入れて充分に攪拌混合した後、これに水酸
化ナトリウム水溶液を液のpHが8になるまで加えて沈
澱物を生成させた。この沈澱物をろ別、水洗、乾燥した
後500°Cで3時間焼成して触媒24を得た。
(Production Example 24) Fired product 50 obtained in Production Example 6
g was added to 500 ml of a 15.7 g / liter copper (II) nitrate aqueous solution and mixed thoroughly with stirring, and then an aqueous sodium hydroxide solution was added to this to form a precipitate. The precipitate was filtered, washed with water, dried and then calcined at 500 ° C. for 3 hours to obtain a catalyst 24.

【0046】(製造例25)製造例24において硝酸銅
に代えて36.6g/リットルの硝酸亜鉛水溶液を用い
たこと以外は製造例24と同様にして触媒25を得た。
Production Example 25 A catalyst 25 was obtained in the same manner as in Production Example 24 except that 36.6 g / liter zinc nitrate aqueous solution was used instead of copper nitrate in Production Example 24.

【0047】(製造例26)製造例7で得た焼成物50
gを5.1g/リットルの硝酸鉄(III) 水溶液500ミ
リリットルに入れて充分に攪拌混合した後、これに水酸
化ナトリウム水溶液を液のpHが8になるまで加えて沈
澱物を生成させた。次いで、この沈澱物をろ別、水洗、
乾燥した後500°Cで3時間焼成して触媒26を得
た。
(Production Example 26) Fired product 50 obtained in Production Example 7
g was added to 500 ml of a 5.1 g / liter iron (III) nitrate aqueous solution and thoroughly mixed by stirring, and then an aqueous sodium hydroxide solution was added to this to form a precipitate. Then, the precipitate is filtered off, washed with water,
After drying, it was calcined at 500 ° C. for 3 hours to obtain a catalyst 26.

【0048】(実施例27)実施例26において硝酸鉄
(III) に代えて39.5g/リットルの硝酸クロム水溶
液を用いたこと以外は実施例26と同様にして触媒27
を得た。
(Example 27) Iron nitrate in Example 26
A catalyst 27 was prepared in the same manner as in Example 26 except that 39.5 g / liter of an aqueous chromium nitrate solution was used instead of (III).
I got

【0049】(製造例28)製造例8で得た焼成物50
gを39.0g/リットルの硝酸ニッケル水溶液500
ミリリットルに入れて充分に攪拌混合した後、これに水
酸化ナトリウム水溶液を液のpHが8になるまで加えて
沈澱物を生成させた。この沈澱物をろ別、水洗、乾燥し
た後500°Cで3時間焼成して触媒28を得た。
(Production Example 28) Fired product 50 obtained in Production Example 8
500 g of nickel nitrate aqueous solution of 39.0 g / liter
The mixture was placed in a milliliter and sufficiently stirred and mixed, and then an aqueous sodium hydroxide solution was added thereto until the pH of the liquid became 8, to form a precipitate. The precipitate was filtered, washed with water, dried and then calcined at 500 ° C. for 3 hours to obtain a catalyst 28.

【0050】(製造例29)製造例28において硝酸ニ
ッケルに代えて20.2g/リットルのシュウ酸ニオブ
水溶液を用いたこと以外は製造例28と同様にして触媒
29を得た。
Production Example 29 A catalyst 29 was obtained in the same manner as in Production Example 28 except that 20.2 g / liter of niobium oxalate aqueous solution was used in place of nickel nitrate in Production Example 28.

【0051】(製造例30)ナトリウム型モルデナイト
の市販品(日本化学社製、商品名「NM−100P」)
100gを0.05モル/リットルのCaCl2 水溶液
1リットルに浸漬し、24時間攪拌してNaイオンをC
aイオンにイオン交換した後、ろ別、水洗してゼオライ
トのケーキを得た。次いでこのケーキを乾燥した後、6
50°Cで4時間焼成した。イオン交換率は70%であ
った。このゼオライト50gを15.2g/リットルの
硝酸銅(II)水溶液500ミリリットルに入れて、充分に
攪拌混合した後、これに水酸化ナトリウム水溶液を液の
pHが8になるまで加えて沈澱物を生成せしめ、次いで
この沈澱物を500°Cで3時間焼成して、触媒30を
得た。
(Production Example 30) Commercially available sodium mordenite (manufactured by Nippon Kagaku Co., Ltd., trade name "NM-100P")
100 g was immersed in 1 liter of 0.05 mol / liter CaCl 2 aqueous solution and stirred for 24 hours to remove Na ions
After ion-exchanged to a-ion, it was filtered and washed with water to obtain a cake of zeolite. Then the cake is dried and then 6
It was baked at 50 ° C for 4 hours. The ion exchange rate was 70%. 50 g of this zeolite was added to 500 ml of a 15.2 g / liter copper (II) nitrate aqueous solution, and after sufficiently stirring and mixing, an aqueous sodium hydroxide solution was added to this to form a precipitate by adjusting the pH of the solution to 8. Then, the precipitate was calcined at 500 ° C. for 3 hours to obtain catalyst 30.

【0052】(製造例31)カリウム型A型ゼオライト
の市販品(日本化学社製、商品名「KA−100P」)
100gを0.05モル/リットルのMgCl2 水溶液
1リットルに浸漬し、24時間攪拌してKイオンをMg
イオンにイオン交換した後、ろ別、水洗してゼオライト
のケーキを得た。次いでこのケーキを乾燥した後、65
0°Cで4時間焼成した。イオン交換率は64%であっ
た。このゼオライト50gを18.2g/リットルの硝
酸コバルト水溶液500ミリリットルに入れて、充分に
攪拌混合した後、これに水酸化ナトリウム水溶液を液の
pHが8になるまで加えて沈澱物を生成させ、この沈澱
物を500°Cで3時間焼成して、触媒31を得た。
(Production Example 31) Commercial product of potassium-type A zeolite (manufactured by Nippon Kagaku Co., Ltd., trade name "KA-100P")
100 g was immersed in 1 liter of 0.05 mol / liter MgCl 2 aqueous solution and stirred for 24 hours to remove K ions from Mg.
After ion exchange with ions, it was filtered and washed with water to obtain a cake of zeolite. Then after drying the cake, 65
Baking at 0 ° C for 4 hours. The ion exchange rate was 64%. 50 g of this zeolite was put in 500 ml of an aqueous 18.2 g / liter cobalt nitrate solution, and after thoroughly stirring and mixing, an aqueous sodium hydroxide solution was added to this to form a precipitate, and a precipitate was formed. The precipitate was calcined at 500 ° C. for 3 hours to obtain a catalyst 31.

【0053】(製造例32)ナトリウム型X型ゼオライ
トの市販品(日本化学社製、商品名「NX−100
P」)100gを0.05モル/リットルのSrCl2
水溶液1リットルに浸漬し、24時間攪拌してNaイオ
ンをSrイオンにイオン交換した後、ろ別、水洗してゼ
オライトのケーキを得た。次いで、このケーキを乾燥し
た後、650°Cで4時間焼成した。イオン交換率は7
5%であった。 このゼオライト50gを39.0g/
リットルの硝酸ニッケル水溶液500ミリリットルに入
れて、充分に攪拌混合した後、これに水酸化ナトリウム
水溶液を液のpHが8になるまで加えて沈澱物を生成さ
せた。 次いで、この沈澱物を500°Cで3時間焼成
して、触媒32を得た。
(Production Example 32) Commercially available sodium-type X-type zeolite (manufactured by Nippon Kagaku Co., Ltd., trade name "NX-100")
P ") 100 g with 0.05 mol / l of SrCl 2
It was immersed in 1 liter of an aqueous solution and stirred for 24 hours to exchange Na ions with Sr ions, then filtered and washed with water to obtain a zeolite cake. Then, after drying this cake, it baked at 650 degreeC for 4 hours. Ion exchange rate is 7
5%. 50 g of this zeolite is 39.0 g /
It was put in 500 ml of a nickel nitrate aqueous solution and sufficiently stirred and mixed, and then a sodium hydroxide aqueous solution was added thereto until a pH of the solution reached 8, to form a precipitate. Then, the precipitate was calcined at 500 ° C. for 3 hours to obtain a catalyst 32.

【0054】(製造例33)ビーカーにAl(NO3)3
・9H2 O を3.13gおよび水を100ミリリット
ル入れ、マグネチックスターラーで攪拌して溶解しなが
ら、臭化テトラプロピルアンモニウム7.98gと、シ
リカゾル水溶液(SiO2 :31重量%、Na2 O:
0.4重量%、Al2 3 :0.03重量%を含有する
水溶液)60gとを加えた。次いで、この溶液に、水酸
化ナトリウム3.12gを40ミリリットルの水に溶解
した水酸化ナトリウム水溶液を攪拌しながら徐々に加え
た。この混合液をオートクレーブに仕込み、160°C
で72時間、攪拌を加えて結晶化させた。この生成物を
固液分離した後、固形物を水洗、乾燥してZSM−5ゼ
オライトを得た。このZSM−5ゼオライトを、0.0
5モル/リットルのBaCl2 水溶液に入れて、24時
間攪拌して、NaイオンをBaイオンでイオン交換した
後、ろ別、水洗、乾燥し、次いで650°Cで4時間焼
成した。このゼオライト50gを25.3g/リットル
の硝酸鉄(III) 水溶液500ミリリットルに入れて、充
分に攪拌混合した後、これに水酸化ナトリウム水溶液を
液のpHが8になるまで加えて沈澱物を生成せしめ、次
いでこの沈澱物を500°Cで3時間焼成して、触媒3
3を得た。
(Production Example 33) Al (NO 3 ) 3 was added to a beaker.
3.13 g of 9H 2 O and 100 ml of water were put, and while stirring and dissolving with a magnetic stirrer, 7.98 g of tetrapropylammonium bromide and a silica sol aqueous solution (SiO 2 : 31% by weight, Na 2 O:
60 g of an aqueous solution containing 0.4% by weight and Al 2 O 3 : 0.03% by weight). Then, to this solution, an aqueous sodium hydroxide solution in which 3.12 g of sodium hydroxide was dissolved in 40 ml of water was gradually added while stirring. This mixed solution was charged into an autoclave at 160 ° C.
It was crystallized by stirring for 72 hours. After solid-liquid separation of this product, the solid was washed with water and dried to obtain ZSM-5 zeolite. This ZSM-5 zeolite was
The mixture was placed in a 5 mol / liter BaCl 2 aqueous solution, stirred for 24 hours, ion-exchanged for Na ions with Ba ions, filtered, washed with water, dried, and then calcined at 650 ° C. for 4 hours. 50 g of this zeolite was added to 500 ml of a 25.3 g / liter aqueous solution of iron (III) nitrate, thoroughly mixed with stirring, and an aqueous solution of sodium hydroxide was added to this to form a precipitate. Then, the precipitate was calcined at 500 ° C. for 3 hours to obtain the catalyst 3
3 was obtained.

【0055】(製造例34)製造例30において硝酸銅
(II)水溶液に代えて36.4g/リットルの硝酸マンガ
ンを用いたこと以外は製造例30と同様にして触媒34
を得た。
Production Example 34 Copper nitrate in Production Example 30
(II) A catalyst 34 was produced in the same manner as in Production Example 30 except that 36.4 g / liter of manganese nitrate was used instead of the aqueous solution.
I got

【0056】(製造例35)ビーカーにAl(NO3)3
・9H2 O を3.13gおよび水を100ミリリット
ル入れ、マグネチックスターラーで攪拌して溶解しなが
ら、臭化テトラプロピルアンモニウム7.98gと、シ
リカゾル水溶液(SiO2 :31重量%、Na2 O:
0.4重量%、Al2 3 :0.03重量%を含有する
水溶液)60gとを加えた。次いで、この溶液に、水酸
化ナトリウム3.12gを40ミリリットルの水に溶解
した水酸化ナトリウム水溶液を攪拌しながら徐々に加え
た。この混合液をオートクレーブに仕込み、160°C
で72時間、攪拌を加えて結晶化させた。この生成物を
固液分離した後、固形物を水洗、乾燥してZSM−5ゼ
オライト(SiO2 /Al2 3 =70)を得た。この
ZSM−5ゼオライトを、0.05モル/リットルの酢
酸銅の水溶液に入れて、24時間攪拌した後、遠心分離
した。上記操作を合計3回繰り返し行った後、純水で5
回水洗し、次いで110°Cで約12時間乾燥して触媒
35を得た。
(Production Example 35) Al (NO 3 ) 3 was added to a beaker.
3.13 g of 9H 2 O and 100 ml of water were put, and while stirring and dissolving with a magnetic stirrer, 7.98 g of tetrapropylammonium bromide and a silica sol aqueous solution (SiO 2 : 31% by weight, Na 2 O:
60 g of an aqueous solution containing 0.4% by weight and Al 2 O 3 : 0.03% by weight). Then, to this solution, an aqueous sodium hydroxide solution in which 3.12 g of sodium hydroxide was dissolved in 40 ml of water was gradually added while stirring. This mixed solution was charged into an autoclave at 160 ° C.
It was crystallized by stirring for 72 hours. After the product to solid-liquid separation to obtain water washing the solids, dried ZSM-5 zeolite (SiO 2 / Al 2 O 3 = 70). This ZSM-5 zeolite was put in an aqueous solution of 0.05 mol / liter of copper acetate, stirred for 24 hours, and then centrifuged. After repeating the above operation 3 times in total,
It was washed with water twice and then dried at 110 ° C. for about 12 hours to obtain a catalyst 35.

【0057】(製造例36)Al2 3 100gをPt
担持後の触媒中のPtの重量分率が1重量%となるよう
に調製したH2 PtCl6 水溶液中に浸漬し、過剰の水
分を取り除いた後、110°Cにて乾燥して触媒36を
得た。
(Production Example 36) 100 g of Al 2 O 3 was added to Pt.
The catalyst 36 was immersed in an H 2 PtCl 6 aqueous solution prepared so that the weight fraction of Pt in the loaded catalyst was 1% by weight, and after removing excess water, the catalyst 36 was dried at 110 ° C. Obtained.

【0058】(2)実施例1〜34 製造例1〜34で得た触媒1〜34について、下記の条
件で、ガス中の窒素酸化物の接触還元を行い、このとき
の窒素酸化物のN2 への転換率を、ガスクロマトグラフ
法によりN2 を定量して算出した。 (試験条件) (1)ガス組成 NO 1容量% O2 10容量% 還元剤 1容量% He 残部 (2)空間速度 1000 1/Hr (3)反応温度 300°C、400°C、500°C
または600°C 結果を表1および2に示す。
(2) Examples 1 to 34 Catalysts 1 to 34 obtained in Production Examples 1 to 34 were subjected to catalytic reduction of nitrogen oxides in gas under the following conditions. the conversion to 2, was calculated by quantifying the N 2 by gas chromatography. (Test conditions) (1) Gas composition NO 1% by volume O 2 10% by volume Reducing agent 1% by volume He balance (2) Space velocity 1000 1 / Hr (3) Reaction temperature 300 ° C, 400 ° C, 500 ° C
Or 600 ° C results are shown in Tables 1 and 2.

【0059】[0059]

【表1】 [Table 1]

【0060】[0060]

【表2】 (3)比較例1〜3[Table 2] (3) Comparative Examples 1 to 3

【0061】(比較例1)製造例35で得た触媒35を
用いて下記の試験条件により窒素酸化物含有ガスの窒素
酸化物接触分解を行い、窒素酸化物のN2 への転換率を
ガスクロマトグラフ法によりN2 を定量して算出した。 (試験条件) (1)ガス組成 NO 1容量% O2 10容量% He 残部 (2)空間速度 1000 1/Hr (3)反応温度 300°C、400°C、500°C
または600°C
(Comparative Example 1) Using the catalyst 35 obtained in Production Example 35, catalytic decomposition of nitrogen oxide-containing gas with nitrogen oxide was carried out under the following test conditions, and the conversion rate of nitrogen oxide to N 2 was measured by gas chromatography. N 2 was quantified and calculated by the Tograph method. (Test conditions) (1) Gas composition NO 1% by volume O 2 10% by volume He balance (2) Space velocity 1000 1 / Hr (3) Reaction temperature 300 ° C, 400 ° C, 500 ° C
Or 600 ° C

【0062】(比較例2)製造例36で得た触媒36を
用いて下記の試験条件により窒素酸化物含有ガスの窒素
酸化物接触還元を行い、窒素酸化物のN2 への転換率を
ガスクロマトグラフ法によりN2 を定量して算出した。 (試験条件) (1)ガス組成 NO 1容量% CO 1容量% O2 10容量% He 残部 (2)空間速度 1000 1/Hr (3)反応温度 300°C、400°C、500°C
または600°C
Comparative Example 2 Using the catalyst 36 obtained in Production Example 36, the nitrogen oxide-containing gas was subjected to catalytic reduction with nitrogen oxide under the following test conditions, and the conversion rate of nitrogen oxide to N 2 was measured by gas chromatography. N 2 was quantified and calculated by the Tograph method. (Test conditions) (1) Gas composition NO 1% by volume CO 1% by volume O 2 10% by volume He balance (2) Space velocity 1000 1 / Hr (3) Reaction temperature 300 ° C, 400 ° C, 500 ° C
Or 600 ° C

【0063】(比較例3)比較例2の試験条件において
COの代わりにH2 1容量%使用したこと以外は比較例
2と同様にして試験を行った。比較例1〜3の結果を表
3に示す。
Comparative Example 3 A test was conducted in the same manner as in Comparative Example 2 except that H 2 1% by volume was used instead of CO under the test conditions of Comparative Example 2. The results of Comparative Examples 1 to 3 are shown in Table 3.

【0064】[0064]

【表3】 表1〜3より、本発明に係るアルコール類を還元剤とし
て使用する方法(実施例1〜34)は、還元剤を使用す
ることなく触媒により直接分解する方法(比較例1)
や、還元剤としてCOやH2 を使用する方法(比較例2
および3)に比べて、窒素酸化物のN2 への転換率が極
めて高いことが分かる。
[Table 3] From Tables 1 to 3, the method of using alcohols according to the present invention as a reducing agent (Examples 1 to 34) is a method of directly decomposing with a catalyst without using a reducing agent (Comparative Example 1).
Alternatively, a method of using CO or H 2 as a reducing agent (Comparative Example 2
It can be seen that the conversion rate of nitrogen oxides into N 2 is extremely high as compared with 3) and 3).

【0065】[0065]

【発明の効果】以上、詳細に説明したように、本発明に
係るアルコール類を還元剤として使用する窒素酸化物の
接触還元方法は、排気ガス中の窒素酸化物を効率良く接
触還元することができるなど、本発明は優れた特有の効
果を奏する。
As described above in detail, the method for catalytic reduction of nitrogen oxides using alcohols as a reducing agent according to the present invention can efficiently catalytically reduce nitrogen oxides in exhaust gas. That is, the present invention has excellent unique effects.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/86 ZAB B01J 23/42 ZAB A 23/44 ZAB A 23/46 ZAB A 311 A 23/50 ZAB A 23/63 ZAB 23/84 ZAB A 23/889 23/89 ZAB A 29/14 ZAB A 29/18 ZAB A 29/22 ZAB A 29/24 ZAB A 29/26 ZAB A 29/46 ZAB A 29/76 ZAB A B01D 53/34 129 B 53/36 ZAB 102 C 102 H B01J 23/56 ZAB A 301 A 23/84 311 A (72)発明者 仲辻 忠夫 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社内 (72)発明者 清水 宏益 大阪府堺市戎島町5丁1番地 堺化学工業 株式会社内 (72)発明者 菅沼 藤夫 埼玉県北葛飾郡庄和町新宿新田228−16 (72)発明者 田畑 光紀 埼玉県幸手市権現堂1134−2 (72)発明者 浜田 秀昭 茨城県つくば市東1−1 工業技術院化学 技術研究所内 (72)発明者 伊藤 建彦 茨城県つくば市東1−1 工業技術院化学 技術研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01D 53/86 ZAB B01J 23/42 ZAB A 23/44 ZAB A 23/46 ZAB A 311 A 23 / 50 ZAB A 23/63 ZAB 23/84 ZAB A 23/889 23/89 ZAB A 29/14 ZAB A 29/18 ZAB A 29/22 ZAB A 29/24 ZAB A 29/26 ZAB A 29/46 ZAB A 29/76 ZAB A B01D 53/34 129 B 53/36 ZAB 102 C 102 H B01J 23/56 ZAB A 301 A 23/84 311 A (72) Inventor Tadao Nakatsuji 5-1, Kisoshima-cho, Sakai-shi, Osaka Sakai Chemical Industry Co., Ltd. (72) Inventor Hiromitsu Shimizu 5-1, Ebishima-cho, Sakai City, Osaka Prefecture Sakai Chemical Industry Co., Ltd. (72) Inventor Fujio Suganuma Showa, Kita Katsushika-gun, Saitama Prefecture Town Shinjuku Nitta 228-16 (72) Inventor Mitsunori Tabata 1134-2, Gongen-do, Satte City, Saitama Prefecture (72) Hideaki Hamada 1-1, East, Tsukuba City, Ibaraki Prefecture (72) Inventor, Ito Takehiko 1-1 East, Tsukuba, Ibaraki Prefectural Institute of Chemical Technology, Institute of Chemical Technology

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】排気ガス中の窒素酸化物を触媒の存在下で
還元剤により選択的に接触還元する方法において、前記
還元剤としてアルコール類を用いることを特徴とする窒
素酸化物の接触還元方法。
1. A catalytic reduction method for nitrogen oxides, wherein alcohols are used as the reducing agent in a method for selectively catalytically reducing nitrogen oxides in exhaust gas with a reducing agent in the presence of a catalyst. .
JP3043006A 1991-02-14 1991-02-14 Method for catalytically reducing nitrogen oxide Pending JPH08150324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3043006A JPH08150324A (en) 1991-02-14 1991-02-14 Method for catalytically reducing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3043006A JPH08150324A (en) 1991-02-14 1991-02-14 Method for catalytically reducing nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH08150324A true JPH08150324A (en) 1996-06-11

Family

ID=12651908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3043006A Pending JPH08150324A (en) 1991-02-14 1991-02-14 Method for catalytically reducing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH08150324A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254217A (en) * 2004-03-15 2005-09-22 National Institute Of Advanced Industrial & Technology Nitrogen oxide removing catalyst
JP2008161812A (en) * 2006-12-28 2008-07-17 Asahi Kasei Corp CATALYST FOR PURIFYING NOx OF AUTOMOTIVE EXHAUST GAS AND METHOD FOR TREATING NOx OF EXHAUST GAS
GB2455181A (en) * 2007-11-29 2009-06-03 Gen Electric Methods and systems for reducing the emissions from combustion gases
WO2014087910A1 (en) * 2012-12-03 2014-06-12 日立造船株式会社 Catalyst for combustion exhaust gas purification and denitration purification method using this catalyst
US9492814B2 (en) 2013-04-08 2016-11-15 Saudi Basic Industries Corporation Catalyst for conversion of propylene to product comprising a carboxylic acid moiety
JP2017192940A (en) * 2017-07-21 2017-10-26 三菱重工業株式会社 Catalyst for exhaust gas treatment, exhaust gas treatment device and manufacturing method of catalyst for exhaust gas treatment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812047A (en) * 1981-07-15 1983-01-24 Hitachi Ltd File transfer system
JPH02233124A (en) * 1989-03-03 1990-09-14 Hitachi Zosen Corp Removal of nitrogen oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812047A (en) * 1981-07-15 1983-01-24 Hitachi Ltd File transfer system
JPH02233124A (en) * 1989-03-03 1990-09-14 Hitachi Zosen Corp Removal of nitrogen oxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005254217A (en) * 2004-03-15 2005-09-22 National Institute Of Advanced Industrial & Technology Nitrogen oxide removing catalyst
JP2008161812A (en) * 2006-12-28 2008-07-17 Asahi Kasei Corp CATALYST FOR PURIFYING NOx OF AUTOMOTIVE EXHAUST GAS AND METHOD FOR TREATING NOx OF EXHAUST GAS
GB2455181A (en) * 2007-11-29 2009-06-03 Gen Electric Methods and systems for reducing the emissions from combustion gases
WO2014087910A1 (en) * 2012-12-03 2014-06-12 日立造船株式会社 Catalyst for combustion exhaust gas purification and denitration purification method using this catalyst
US9492814B2 (en) 2013-04-08 2016-11-15 Saudi Basic Industries Corporation Catalyst for conversion of propylene to product comprising a carboxylic acid moiety
JP2017192940A (en) * 2017-07-21 2017-10-26 三菱重工業株式会社 Catalyst for exhaust gas treatment, exhaust gas treatment device and manufacturing method of catalyst for exhaust gas treatment

Similar Documents

Publication Publication Date Title
US4221768A (en) Catalyst for purifying exhaust and waste gases
US8465714B2 (en) Catalyst promoters in vanadium-free mobile catalyst
RU2531195C2 (en) Catalytic composition for selective catalytic neutralisation of spent gases
US4952545A (en) Process for removing nitrogen oxides from exhaust gases
JP3262044B2 (en) Composite oxide carrier and composite oxide-containing catalyst
TWI432259B (en) Mobile denox catalyst
US7968492B2 (en) Layered catalyst to improve selectivity or activity of manganese containing vanadium-free mobile catalyst
JPH0549943A (en) Oxidizing catalyst
JPH0576762A (en) Catalyst for catalytic reduction of nitrogen oxide
JP2558568B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP2516516B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JPH08150324A (en) Method for catalytically reducing nitrogen oxide
JPH06315634A (en) Catalytic structure for nitrogen oxide catalytic reduction
JPH05245372A (en) Catalyst for catalytic reduction of nitrogen oxides
JPH0549931A (en) Catalyst for catalytic reduction of nitrogen oxide
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3095604B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent
JPH07328437A (en) Ammonia decomposition catalyst
JPS6245340A (en) Catalyst for reducing content of nitrogen oxide in combustion exhaust gas
JPH0824648A (en) Exhaust gas purifying catalyst and preparation of the sam
JP3984122B2 (en) NOx removal catalyst, NOx removal method and method
JPH02187130A (en) Method for nitrogen oxide removal
JPH05317650A (en) Catalyst for catalytic reduction of nitrogen oxide
JP2001113170A (en) Method for manufacturing for denitration catalyst
JP3322520B2 (en) Exhaust gas denitration catalyst