JP2008272614A - Co removing catalyst, fuel reforming apparatus, fuel cell system and co removing method - Google Patents

Co removing catalyst, fuel reforming apparatus, fuel cell system and co removing method Download PDF

Info

Publication number
JP2008272614A
JP2008272614A JP2007115996A JP2007115996A JP2008272614A JP 2008272614 A JP2008272614 A JP 2008272614A JP 2007115996 A JP2007115996 A JP 2007115996A JP 2007115996 A JP2007115996 A JP 2007115996A JP 2008272614 A JP2008272614 A JP 2008272614A
Authority
JP
Japan
Prior art keywords
catalyst
copper
oxide
removal
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007115996A
Other languages
Japanese (ja)
Inventor
Satonobu Yasutake
聡信 安武
Masanao Yonemura
将直 米村
Shigeru Nojima
野島  繁
Yasutake Teraoka
靖剛 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Mitsubishi Heavy Industries Ltd
Original Assignee
Kyushu University NUC
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Mitsubishi Heavy Industries Ltd filed Critical Kyushu University NUC
Priority to JP2007115996A priority Critical patent/JP2008272614A/en
Publication of JP2008272614A publication Critical patent/JP2008272614A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a CO removing catalyst of a low cost having a high CO removing performance, a fuel reforming apparatus, a fuel cell system and a CO removing device. <P>SOLUTION: In the CO removing catalyst 10A, a copper based catalyst 11 with a diameter of 20 μm and a noble metal based catalyst 14 with a diameter of 20 μm prepared by carrying a noble metal 13 such as Pt on a carrier of an oxide 12 are mixed mechanically in a power state so that a catalyst-distance between the copper based catalyst 11 and the noble metal based catalyst 14 may be maintained properly. Thereby, only a reaction of removing CO can be effectively proceeded to obtain high activity in a wide range of temperature with another reaction such as the oxidation of hydrogen suppressed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、CO除去性能が向上するCO除去触媒、燃料改質装置、燃料電池システム及びCO除去方法に関する。   The present invention relates to a CO removal catalyst, a fuel reformer, a fuel cell system, and a CO removal method with improved CO removal performance.

近年、固体高分子型燃料電池(PEFC)は低公害であり、さらに熱効率が高いため自動車用電源や分散電源等の幅広い分野での動力源としての適用が期待されている。この燃料電池システムは、炭化水素系燃料(都市ガス、メタン、プロバン、灯油、ジメチルエーテル等)を改質器によって改質することにより水素(H2)を製造する。しかし改質器によって改質される改質ガス中には、水素(H2)の他に一酸化炭素(CO)及び二酸化炭素(CO2)をも含んでおり、一酸化炭素(CO)によって燃料電池の電極触媒として主に用いられる白金が被毒される。そのため、CO除去装置に設けているCO除去触媒により一酸化炭素(CO)の酸化反応を行うことにより、得られるガス中に含まれる一酸化炭素(CO)の濃度を低減する方法がとられている。 In recent years, polymer electrolyte fuel cells (PEFC) have low pollution and high thermal efficiency, so that they are expected to be applied as power sources in a wide range of fields such as automobile power supplies and distributed power supplies. This fuel cell system produces hydrogen (H 2 ) by reforming a hydrocarbon-based fuel (city gas, methane, provan, kerosene, dimethyl ether, etc.) with a reformer. However, the reformed gas reformed by the reformer contains carbon monoxide (CO) and carbon dioxide (CO 2 ) in addition to hydrogen (H 2 ), and the carbon monoxide (CO) Platinum, which is mainly used as an electrode catalyst for fuel cells, is poisoned. Therefore, a method of reducing the concentration of carbon monoxide (CO) contained in the resulting gas by performing an oxidation reaction of carbon monoxide (CO) with a CO removal catalyst provided in the CO removal apparatus is taken. Yes.

また、固体高分子型燃料電池の電極が被毒しないようにするためには、一酸化炭素(CO)の濃度を50ppm以下好ましくは20ppm以下、更には10ppm以下にまで安定的に低減させる必要があるため、CO除去触媒には高い選択性と反応性が要求されている。   In order to prevent poisoning of the polymer electrolyte fuel cell electrode, it is necessary to stably reduce the concentration of carbon monoxide (CO) to 50 ppm or less, preferably 20 ppm or less, and further 10 ppm or less. Therefore, high selectivity and reactivity are required for the CO removal catalyst.

図9は、従来から用いられている貴金属系触媒と、銅系触媒と、銅系触媒と貴金属系触媒とを分割配置した触媒との温度とCO濃度との関係を示す関係図である。
図9に示すように、例えば白金(Pt)等の貴金属を用いた貴金属系触媒では、銅系触媒又は銅系触媒と貴金属系触媒とを分別配置した触媒に比べて広い温度範囲で高い活性を示し、触媒層の温度(℃)が例えば80〜160℃の範囲で一酸化炭素(CO)の濃度を例えば10ppm以下にまで安定的に低減させることができる。そのため、従来ではCO除去触媒として白金(Pt)等の貴金属を用いた貴金属系触媒が用いられていた(特許文献1)。
FIG. 9 is a relational diagram showing the relationship between the temperature and CO concentration of a noble metal catalyst, a copper catalyst, and a catalyst in which the copper catalyst and the noble metal catalyst are separately arranged.
As shown in FIG. 9, for example, a noble metal catalyst using a noble metal such as platinum (Pt) has a high activity in a wide temperature range compared to a copper catalyst or a catalyst in which a copper catalyst and a noble metal catalyst are separately arranged. As shown, the concentration of carbon monoxide (CO) can be stably reduced to 10 ppm or less, for example, when the temperature (° C.) of the catalyst layer is in the range of 80 to 160 ° C., for example. Therefore, a noble metal catalyst using a noble metal such as platinum (Pt) has been conventionally used as a CO removal catalyst (Patent Document 1).

また、貴金属系触媒に代替する触媒として銅系触媒と貴金属系触媒とを分別配置する手法が特願2005−173567号において提案されており、高価な貴金属の使用量を低減することによりコストの低減を図ると共に、一酸化炭素(CO)の濃度を所定の基準値以下にする触媒を用いることが提案されている。   In addition, Japanese Patent Application No. 2005-173567 proposes a method of separating and arranging a copper-based catalyst and a noble metal-based catalyst as a catalyst that replaces the noble metal-based catalyst, thereby reducing costs by reducing the amount of expensive noble metal used. In addition, it has been proposed to use a catalyst that reduces the concentration of carbon monoxide (CO) to a predetermined reference value or less.

特開2002−273223号公報JP 2002-273223 A

しかしながら、白金(Pt)、ルテニウム(Ru)等の貴金属を用いた貴金属系触媒は高価であるためコストが高くなり、固体高分子型燃料電池(PEFC)システムにこれら貴金属系触媒を用いると、固体高分子型燃料電池(PEFC)システムのコストダウンを図ることが困難である、という問題がある。   However, since noble metal catalysts using noble metals such as platinum (Pt) and ruthenium (Ru) are expensive, the cost becomes high. When these noble metal catalysts are used in a polymer electrolyte fuel cell (PEFC) system, There is a problem that it is difficult to reduce the cost of the polymer fuel cell (PEFC) system.

また、CO除去触媒に貴金属系触媒に代えてCuを触媒成分とするCu系触媒の卑金属触媒は低コストではあるが、一酸化炭素(CO)濃度を十分低くするほどの高い選択性と反応性を有していないためCO除去触媒として用いることが困難である、という問題がある。   In addition, the base metal catalyst of the Cu-based catalyst that uses Cu as the catalyst component in place of the noble metal-based catalyst as the CO removal catalyst is low in cost, but has high selectivity and reactivity that sufficiently reduce the carbon monoxide (CO) concentration. Therefore, it is difficult to use as a CO removal catalyst.

また、CO除去触媒に貴金属系触媒に代えて銅系触媒と貴金属系触媒とを分割配置した触媒は、触媒層の温度(℃)が例えば100〜110℃の狭い範囲でしか一酸化炭素(CO)の濃度を例えば10ppm以下に低減させることができず、貴金属系触媒に比べて所定の基準値以下に一酸化炭素(CO)濃度をする温度領域が狭い、という問題がある。   In addition, a catalyst in which a copper catalyst and a noble metal catalyst are dividedly arranged in place of a noble metal catalyst as a CO removal catalyst is a carbon monoxide (CO) only when the temperature (° C.) of the catalyst layer is, for example, a narrow range of 100 to 110 ° C. ) Cannot be reduced to, for example, 10 ppm or less, and there is a problem that the temperature range in which the carbon monoxide (CO) concentration is below a predetermined reference value is narrower than that of a noble metal catalyst.

また、前記CO除去触媒では、改質ガスと共に空気を吹き込むことによって、下記式(I)のように一酸化炭素(CO)の酸化反応を進行させる。
また、同時に一酸化炭素(CO)が水素(H2)と反応することによって、下記式(II)のように一酸化炭素(CO)のメタン化(CH4)反応を進行させる。
CO+1/2O2 → CO2 ・・・(I)
CO+3H2 → CH4+H2O ・・・(II)
Moreover, in the said CO removal catalyst, the oxidation reaction of carbon monoxide (CO) is advanced like Formula (I) below by blowing air together with the reformed gas.
At the same time, carbon monoxide (CO) reacts with hydrogen (H 2 ) to advance the methanation (CH 4 ) reaction of carbon monoxide (CO) as shown in the following formula (II).
CO + 1 / 2O 2 → CO 2 (I)
CO + 3H 2 → CH 4 + H 2 O (II)

上記式(I)のような一酸化炭素(CO)の酸化反応及び上記式(II)のような一酸化炭素(CO)のメタン化(CH4)反応は、発熱反応であり温度制御が困難であるため、DSS(daily start up and shut down)運転を想定した場合、前記CO除去触媒は温度環境に対して鋭敏であるため、触媒層温度の昇降温を伴うような非定常状態での利便性は十分ではない、という問題がある。 The oxidation reaction of carbon monoxide (CO) as in the above formula (I) and the methanation (CH 4 ) reaction of carbon monoxide (CO) as in the above formula (II) are exothermic reactions, and temperature control is difficult. Therefore, assuming a daily start up and shut down (DSS) operation, the CO removal catalyst is sensitive to the temperature environment, so it is convenient in an unsteady state that involves raising and lowering the temperature of the catalyst layer. There is a problem that sex is not enough.

本発明は、前記問題に鑑み、低コスト、かつ高いCO除去性能を有するCO除去触媒、燃料改質装置、燃料電池システム及びCO除去方法を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a CO removal catalyst, a fuel reformer, a fuel cell system, and a CO removal method having low cost and high CO removal performance.

上述した課題を解決するための本発明の第1の発明は、ガス中の一酸化炭素を選択的に酸化除去するCO除去触媒であって、少なくとも一種類以上の銅系触媒又は貴金属系触媒の何れかを粉末状態で機械的に混合して組み合わせてなることを特徴とするCO除去触媒にある。   A first invention of the present invention for solving the above-mentioned problem is a CO removal catalyst that selectively oxidizes and removes carbon monoxide in a gas, comprising at least one copper-based catalyst or noble metal-based catalyst. One of these is a CO removal catalyst characterized in that any one of them is mechanically mixed and combined in a powder state.

第2の発明は、第1の発明において、前記貴金属系触媒の貴金属の重量比が、触媒の全重量の0.05%以下であることを特徴とするCO除去触媒にある。   A second invention is the CO removal catalyst according to the first invention, wherein the weight ratio of the noble metal in the noble metal catalyst is 0.05% or less of the total weight of the catalyst.

第3の発明は、第1又は第2の発明において、前記銅系触媒が、金属銅又は酸化銅からなる活性成分と、前記活性成分を担持してなり、酸化アルミニウム、酸化セリウム、酸化ジルコニウム、酸化亜鉛、酸化鉛、酸化マンガン、酸化ニッケル、酸化チタン、酸化鉄、酸化バナジウム、酸化コバルト、酸化クロム、メタルシリケートの少なくとも一種以上の酸化物からなる担体とからなることを特徴とするCO除去触媒にある。   A third invention is the first or second invention, wherein the copper-based catalyst carries an active component composed of metallic copper or copper oxide and the active component, and includes aluminum oxide, cerium oxide, zirconium oxide, CO removal catalyst characterized by comprising a support comprising at least one oxide of zinc oxide, lead oxide, manganese oxide, nickel oxide, titanium oxide, iron oxide, vanadium oxide, cobalt oxide, chromium oxide, and metal silicate It is in.

第4の発明は、第1乃至第3の何れか一つの発明において、前記銅系触媒が、前記銅又は前記酸化銅を活性成分とするペロブスカイト型複合酸化物であることを特徴とするCO除去触媒にある。   A fourth invention is the CO removal according to any one of the first to third inventions, wherein the copper-based catalyst is a perovskite complex oxide containing the copper or the copper oxide as an active component. In the catalyst.

第5の発明は、第1乃至第4の発明の何れか一つのCO除去触媒が、DSS耐久性を有することを特徴とするCO除去触媒にある。   According to a fifth invention, there is provided a CO removal catalyst characterized in that the CO removal catalyst according to any one of the first to fourth inventions has DSS durability.

第6の発明は、燃料電池用の炭化水素系の原燃料を改質ガスに改質する燃料改質触媒装置と、前記燃料改質触媒装置で発生した一酸化炭素を変成するCO変成装置と、残留する一酸化炭素を第1乃至第5の発明の何れか一つのCO除去触媒により除去して燃料ガスとするCO除去装置とからなることを特徴とする燃料改質装置にある。   According to a sixth aspect of the present invention, there is provided a fuel reforming catalyst device for reforming a hydrocarbon-based raw fuel for a fuel cell into a reformed gas, a CO converting device for transforming carbon monoxide generated in the fuel reforming catalyst device, The fuel reforming apparatus comprises a CO removing device that removes residual carbon monoxide with the CO removing catalyst according to any one of the first to fifth inventions to form a fuel gas.

第7の発明は、第6の発明の燃料改質装置と、一酸化炭素の変成されたガスを用いて発電する燃料電池とからなることを特徴とする燃料電池の燃料電池システムにある。   According to a seventh aspect of the present invention, there is provided a fuel cell system for a fuel cell comprising the fuel reformer of the sixth aspect of the present invention and a fuel cell that generates electric power using a gas converted from carbon monoxide.

第8の発明は、燃料電池用の炭化水素系の原燃料を改質した改質ガスに残留する一酸化炭素の除去を行うに際し、CO除去触媒として少なくとも一種類以上の銅系触媒又は貴金属系触媒の何れかを混合してなる触媒を用いて、改質ガスに残留する一酸化炭素の除去を行うことを特徴とするCO除去方法にある。   When removing carbon monoxide remaining in the reformed gas obtained by reforming a hydrocarbon-based raw fuel for a fuel cell, the eighth invention provides at least one copper-based catalyst or noble metal-based catalyst as a CO removal catalyst. A CO removal method is characterized in that carbon monoxide remaining in the reformed gas is removed using a catalyst obtained by mixing any of the catalysts.

第9の発明は、第8の発明において、前記貴金属系触媒の貴金属の重量比を全触媒の重量の0.05%以下とすることを特徴とするCO除去方法にある。   A ninth invention is the CO removal method according to the eighth invention, wherein a weight ratio of the noble metal of the noble metal catalyst is 0.05% or less of a weight of the whole catalyst.

第10の発明は、第8又は第9の発明において、前記銅系触媒が、金属銅又は酸化銅からなる活性成分と、前記活性成分を担持してなり、酸化アルミニウム、酸化セリウム、酸化ジルコニウム、酸化亜鉛、酸化鉛、酸化マンガン、酸化ニッケル、酸化チタン、酸化鉄、酸化バナジウム、酸化コバルト、酸化クロム、メタルシリケートの少なくとも一種以上の酸化物からなる担体とからなることを特徴とするCO除去方法にある。   A tenth invention is the eighth or ninth invention, wherein the copper-based catalyst carries an active component composed of metallic copper or copper oxide and the active component, and comprises aluminum oxide, cerium oxide, zirconium oxide, A CO removal method comprising: a carrier comprising at least one oxide of zinc oxide, lead oxide, manganese oxide, nickel oxide, titanium oxide, iron oxide, vanadium oxide, cobalt oxide, chromium oxide, and metal silicate. It is in.

第11の発明は、第8乃至第10の何れか一つの発明において、前記銅系触媒が、前記銅又は前記酸化銅を活性成分とするペロブスカイト型複合酸化物であることを特徴とするCO除去方法にある。   An eleventh invention is the CO removal according to any one of the eighth to tenth inventions, wherein the copper-based catalyst is a perovskite complex oxide containing copper or the copper oxide as an active component. Is in the way.

本発明によれば、少なくとも一種類以上の銅系触媒又は貴金属系触媒の何れかを混合して組み合わせてなる触媒を用いることにより、触媒活性及び耐熱性を向上させることができるため、低コスト、かつCO除去性能を向上させることができる。   According to the present invention, the catalyst activity and the heat resistance can be improved by using a catalyst obtained by mixing and combining at least one or more kinds of copper-based catalyst or noble metal-based catalyst. And CO removal performance can be improved.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施形態及び実施例によりこの発明が限定されるものではない。また、下記実施形態及び実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment and an Example. In addition, constituent elements in the following embodiments and examples include those that can be easily assumed by those skilled in the art or those that are substantially the same.

[第一の実施形態]
本実施形態に係るCO除去触媒は、ガス中の一酸化炭素を選択的に酸化除去するCO除去触媒であって、一種類の銅系触媒と貴金属系触媒とを混合して組み合わせてなるものである。
[First embodiment]
The CO removal catalyst according to the present embodiment is a CO removal catalyst that selectively oxidizes and removes carbon monoxide in a gas, and is a mixture of a single type of copper catalyst and a noble metal catalyst. is there.

図1は、前記銅系触媒と前記貴金属系触媒とを粉末状態で機械的に混合してなるCO除去触媒の状態を示す概略構成図である。
図1に示すように、本実施形態に係るCO除去触媒10Aは、例えば直径が20μmの銅系触媒11と、酸化物12の担体に例えばPt等の貴金属13を担持させた直径が20μmの貴金属系触媒14とを粉末状態で機械的に混合させることにより、前記銅系触媒11と前記貴金属系触媒14との間の触媒間距離を適度に保つようにすることができる。
FIG. 1 is a schematic configuration diagram showing a state of a CO removal catalyst obtained by mechanically mixing the copper catalyst and the noble metal catalyst in a powder state.
As shown in FIG. 1, a CO removal catalyst 10A according to this embodiment includes a copper catalyst 11 having a diameter of 20 μm, for example, and a noble metal having a diameter of 20 μm in which a noble metal 13 such as Pt is supported on an oxide 12 carrier. The inter-catalyst distance between the copper catalyst 11 and the noble metal catalyst 14 can be kept moderate by mechanically mixing the system catalyst 14 in a powder state.

ここで、例えば前記銅系触媒11と前記貴金属13とを混合する方法として、従来のように前記銅系触媒11を白金(Pt)塩溶液に含浸させる方法により調製した前記銅系触媒11と白金(Pt)等の前記貴金属13とを混合した触媒では、図2に示すように、例えば前記銅系触媒11の上に前記貴金属13が密着した触媒を形成することになる。この時、前記銅系触媒11と前記貴金属13との距離が近いと下記式(III)のように水素の酸化を進行させてしまう場合がある。
2+1/2O2 → H2O ・・・(III)
Here, for example, as a method of mixing the copper-based catalyst 11 and the noble metal 13, the copper-based catalyst 11 and platinum prepared by a conventional method of impregnating the copper-based catalyst 11 with a platinum (Pt) salt solution. In the catalyst in which the noble metal 13 such as (Pt) is mixed, as shown in FIG. 2, for example, a catalyst in which the noble metal 13 is in close contact with the copper-based catalyst 11 is formed. At this time, if the distance between the copper-based catalyst 11 and the noble metal 13 is short, the oxidation of hydrogen may progress as shown in the following formula (III).
H 2 + 1 / 2O 2 → H 2 O (III)

これに対し、図1に示すような前記銅系触媒11と前記貴金属系触媒14とを機械的に混合してなるCO除去触媒10Aは、前記銅系触媒11と前記貴金属系触媒14との間の触媒間距離を適度に保つようにすることにより、下記式(IV)のように一酸化炭素(CO)の酸化を優先的に進行させることができる。
CO+1/2O2 → CO2 ・・・(IV)
On the other hand, a CO removal catalyst 10A formed by mechanically mixing the copper catalyst 11 and the noble metal catalyst 14 as shown in FIG. 1 is between the copper catalyst 11 and the noble metal catalyst 14. By keeping the inter-catalyst distance moderately, the oxidation of carbon monoxide (CO) can be preferentially advanced as shown in the following formula (IV).
CO + 1 / 2O 2 → CO 2 (IV)

図3は、本実施形態に係るCO除去触媒10Aの温度とCO濃度との関係を示す関係図である。
図3に示すように、前記銅系触媒11と前記貴金属系触媒14とを粉末状態で機械的に混合することにより、図9に示す前記銅系触媒の極小除去ピーク温度と前記貴金属系触媒14の極小除去ピーク温度とは異なる極小除去ピーク温度を有するようになる。
FIG. 3 is a relationship diagram showing the relationship between the temperature of the CO removal catalyst 10A according to this embodiment and the CO concentration.
As shown in FIG. 3, the copper-based catalyst 11 and the noble metal-based catalyst 14 are mechanically mixed in a powder state, whereby the minimum removal peak temperature of the copper-based catalyst and the noble metal-based catalyst 14 shown in FIG. It has a minimum removal peak temperature different from the minimum removal peak temperature.

また、前記銅系触媒11と前記貴金属系触媒14とを粉末状態で機械的に混合してなるCO除去触媒10Aは、単に前記銅系触媒11と前記貴金属系触媒14と分別配置した触媒よりも広い温度範囲でCO濃度(ppm)が例えば10ppm以下になっていることから、本実施形態に係るCO除去触媒10Aの活性が向上してCO除去性能が向上していることが確認できる。   Further, the CO removal catalyst 10A obtained by mechanically mixing the copper-based catalyst 11 and the noble metal-based catalyst 14 in a powder state is simply more than the catalyst in which the copper-based catalyst 11 and the noble metal-based catalyst 14 are separately disposed. Since the CO concentration (ppm) is, for example, 10 ppm or less over a wide temperature range, it can be confirmed that the activity of the CO removal catalyst 10A according to this embodiment is improved and the CO removal performance is improved.

よって、前記銅系触媒11と前記貴金属系触媒14とを粉末状態で機械的に混合することにより、前記貴金属系触媒14に近い高い活性を得ることができるため、所定の基準値(例えば10ppm)以下に一酸化炭素(CO)の濃度(ppm)を抑えることができる。   Therefore, since the copper-based catalyst 11 and the noble metal-based catalyst 14 are mechanically mixed in a powder state, a high activity close to that of the noble metal-based catalyst 14 can be obtained. Therefore, a predetermined reference value (for example, 10 ppm) The concentration (ppm) of carbon monoxide (CO) can be suppressed below.

また、前記銅系触媒11と前記貴金属系触媒14とを粉末状態で機械的に混合することにより、広い温度範囲で高い活性を示す所定の基準値(例えば10ppm)以下に一酸化炭素(CO)の濃度(ppm)を抑えることができるため、DSS運転を想定した場合、触媒層温度の昇降温を伴うような非定常状態の場合でも安定して所定の基準値(例えば10ppm)以下に一酸化炭素(CO)の濃度(ppm)を抑えることができる。
即ち、本発明で、DSS耐久性を有するCO除去触媒とは、触媒層温度の昇降温を伴うような非定常状態でもCO除去性能を有するCO変成触媒のことをいう。
Further, by mechanically mixing the copper-based catalyst 11 and the noble metal-based catalyst 14 in a powder state, the carbon monoxide (CO) is reduced to a predetermined reference value (for example, 10 ppm) or less that exhibits high activity in a wide temperature range. Since the concentration (ppm) of the catalyst can be suppressed, when DSS operation is assumed, even in an unsteady state that involves raising and lowering the temperature of the catalyst layer, it is stably oxidized to a predetermined reference value (for example, 10 ppm) or less. The concentration (ppm) of carbon (CO) can be suppressed.
In other words, in the present invention, the CO removal catalyst having DSS durability refers to a CO shift catalyst having CO removal performance even in an unsteady state in which the temperature of the catalyst layer is raised or lowered.

ここで、DSS運転とは、電力消費のほとんどない夜間は停止して早朝に起動するような、通常一日一回起動停止する運転方法を指すものであるが、特に一日一回起動停止に限定されるものではなく、頻繁に起動停止する運転または適宜起動停止する方法も含まれ、いずれの場合にも有効である。   Here, DSS operation refers to an operation method that normally starts and stops once a day, such as stopping at night when there is little power consumption and starting in the early morning. The present invention is not limited, and includes an operation that frequently starts and stops and a method that appropriately starts and stops, and is effective in either case.

このように、前記銅系触媒11と前記貴金属系触媒14とを粉末状態で機械的に混合することにより、単に前記銅系触媒11と前記貴金属系触媒14とを分別配置してだけでは得られない前記銅系触媒11と前記貴金属系触媒14とによる相乗効果を得ることができる。   As described above, the copper-based catalyst 11 and the noble metal-based catalyst 14 are mechanically mixed in a powder state, so that the copper-based catalyst 11 and the noble metal-based catalyst 14 are simply separated and arranged. A synergistic effect of the copper-based catalyst 11 and the noble metal-based catalyst 14 can be obtained.

これにより、前記銅系触媒11と前記貴金属系触媒14とを機械的に混合してなるCO除去触媒10Aは、前記銅系触媒11と前記貴金属系触媒14との間の触媒間距離を適度に保つようにすることができるため、水素の酸化のような他の反応を抑制して一酸化炭素(CO)の除去の反応のみを効果的に進行させることができ、広い温度範囲で高い活性を得ることができる。   Thereby, the CO removal catalyst 10A obtained by mechanically mixing the copper catalyst 11 and the noble metal catalyst 14 has an appropriate inter-catalyst distance between the copper catalyst 11 and the noble metal catalyst 14. Therefore, only the carbon monoxide (CO) removal reaction can proceed effectively by suppressing other reactions such as hydrogen oxidation, and high activity can be achieved over a wide temperature range. Obtainable.

また、本実施形態では、前記貴金属系触媒の貴金属の重量比は、触媒の全重量の0.05%以下とするのが好ましい。これは、0.05%を超えると触媒のコストが高くなり、一方、小さすぎると触媒活性が低下し、共に好ましくないからである。   Moreover, in this embodiment, it is preferable that the weight ratio of the noble metal of the noble metal catalyst is 0.05% or less of the total weight of the catalyst. This is because if it exceeds 0.05%, the cost of the catalyst becomes high, while if it is too small, the catalytic activity is lowered and both are not preferable.

よって、本実施形態に係るCO除去触媒10Aは、貴金属の含有量を大幅に低減しているため、CO除去触媒のコスト低減を図ることができる。   Therefore, since the CO removal catalyst 10A according to the present embodiment greatly reduces the content of the noble metal, the cost of the CO removal catalyst can be reduced.

また、本実施形態では、前記銅系触媒と前記貴金属系触媒とを粉末状態で機械的に混合してなるCO除去触媒を用いているが、本発明はこれに限定されるものではなく、例えば少なくとも一種類以上の銅系触媒又は貴金属系触媒の何れかを混合して組み合わせるようにしても良い。   Further, in this embodiment, a CO removal catalyst obtained by mechanically mixing the copper-based catalyst and the noble metal-based catalyst in a powder state is used. However, the present invention is not limited to this, for example, Any one of at least one copper-based catalyst or noble metal-based catalyst may be mixed and combined.

また、前記銅系触媒11は、金属銅又は酸化銅からなる活性成分と、前記活性成分を担持してなり、酸化アルミニウム、酸化セリウム、酸化ジルコニウム、酸化亜鉛、酸化鉛、酸化マンガン、酸化ニッケル、酸化チタン、酸化鉄、酸化バナジウム、酸化コバルト、酸化クロム、メタルシリケートの少なくとも一種以上の酸化物からなる担体とからなる触媒を言う。   The copper catalyst 11 carries an active component composed of metallic copper or copper oxide and the active component, and includes aluminum oxide, cerium oxide, zirconium oxide, zinc oxide, lead oxide, manganese oxide, nickel oxide, This refers to a catalyst comprising a carrier comprising at least one oxide of titanium oxide, iron oxide, vanadium oxide, cobalt oxide, chromium oxide, and metal silicate.

また、前記銅系触媒11としては、前記銅又は前記酸化銅を活性成分とするペロブスカイト型複合酸化物としても良い。   The copper-based catalyst 11 may be a perovskite complex oxide containing copper or the copper oxide as an active component.

前記銅系触媒としてペロブスカイト型複合酸化物を用いることにより、銅がペロブスカイト結晶構造体中に取り込まれ、一酸化炭素(CO)の除去中においても還元されることがなく、安定して一酸化炭素(CO)の除去を行うことができる。また、ペロブスカイト結晶構造中に活性種を安定担持しているため、触媒の寿命を長寿命とすることができる。   By using a perovskite-type composite oxide as the copper-based catalyst, copper is taken into the perovskite crystal structure and is not reduced even during the removal of carbon monoxide (CO), so that carbon monoxide is stably present. (CO) can be removed. In addition, since the active species is stably supported in the perovskite crystal structure, the life of the catalyst can be extended.

また、貴金属13とは、金、白金、ルテニウム、パラジウム、ロジウムの何れか一種又はこれらの混合物をいう。   The noble metal 13 is any one of gold, platinum, ruthenium, palladium and rhodium or a mixture thereof.

また、前記貴金属系触媒14を担持する担体としては、例えばアルミナ、ジルコニア、シリカ等の耐熱性の担体が好ましい。さらに、例えばアルミナ−シリカ、アルミナ−ジルコニア等の複合酸化物としてもよい。   Further, as the carrier for supporting the noble metal catalyst 14, a heat-resistant carrier such as alumina, zirconia, or silica is preferable. Furthermore, for example, a composite oxide such as alumina-silica or alumina-zirconia may be used.

また、本実施形態に係るCO除去触媒は、燃料電池のDSS運転におけるCO除去触媒に用いることができるが、本発明はこれに限定されるものではなく、例えば頻繁に起動停止する運転又は適宜起動停止する運転等にも用いることができる。   Further, the CO removal catalyst according to the present embodiment can be used as a CO removal catalyst in the DSS operation of the fuel cell, but the present invention is not limited to this, for example, an operation that frequently starts and stops or an appropriate start-up. It can also be used for operation that stops.

[第二の実施形態]
本発明に係るCO除去触媒は、ガス中の一酸化炭素を選択的に酸化除去するCO除去触媒であって、二種類の銅系触媒を粉末状態で機械的に混合して組み合わせてなるものである。
[Second Embodiment]
The CO removal catalyst according to the present invention is a CO removal catalyst that selectively oxidizes and removes carbon monoxide in a gas, and is formed by mechanically mixing two types of copper-based catalysts in a powder state. is there.

図4は、本実施形態に係るCO除去触媒の温度とCO濃度との関係を示す関係図である。
図4に示すように、本実施形態に係るCO除去触媒10Bは、ペロブスカイト型複合酸化物11−1と前記担体に前記銅を担持してなる銅系触媒11−2との二種類の銅系触媒11を粉末状態で機械的に混合してなる触媒である。本実施形態に係るCO除去触媒10Bのように、前記ペロブスカイト型複合酸化物11−1と前記銅系触媒11−2との二種類の銅系触媒11を粉末状態で機械的に混合することにより、図9に示す銅系触媒のみからなる触媒よりも触媒の活性を向上させることができるため、一酸化炭素(CO)濃度を低減させることができる。
FIG. 4 is a relationship diagram showing the relationship between the temperature and the CO concentration of the CO removal catalyst according to this embodiment.
As shown in FIG. 4, the CO removal catalyst 10B according to this embodiment includes two types of copper-based catalysts, a perovskite-type composite oxide 11-1 and a copper-based catalyst 11-2 formed by supporting the copper on the support. It is a catalyst formed by mechanically mixing the catalyst 11 in a powder state. By mechanically mixing two kinds of copper-based catalysts 11 of the perovskite-type composite oxide 11-1 and the copper-based catalyst 11-2 in a powder state like the CO removal catalyst 10B according to the present embodiment. Since the activity of the catalyst can be improved as compared with the catalyst consisting only of the copper-based catalyst shown in FIG. 9, the carbon monoxide (CO) concentration can be reduced.

また、本実施形態に係るCO除去触媒10Bは、前記銅系触媒11と前記貴金属系触媒14とを機械的に粉末状態で混合してなる触媒や前記貴金属系触媒14のように一酸化炭素(CO)濃度を基準値(例えば10ppm)以下に低減することができる。   Further, the CO removal catalyst 10B according to the present embodiment includes carbon monoxide (such as a catalyst obtained by mechanically mixing the copper catalyst 11 and the noble metal catalyst 14 in a powder state or the noble metal catalyst 14). The CO) concentration can be reduced to a reference value (for example, 10 ppm) or less.

よって、前記ペロブスカイト型複合酸化物11−1と前記銅系触媒11−2との二種類の銅系触媒11を粉末状態で機械的に混合することにより、前記ペロブスカイト型複合酸化物11−1と前記銅系触媒11−2との二種類の銅系触媒による相乗効果を得ることができるため、一種類の銅系触媒のみからなる触媒よりも触媒の活性を向上させることができる。   Therefore, the perovskite-type composite oxide 11-1 and the copper-type catalyst 11-2 are mechanically mixed in a powder state to form the perovskite-type composite oxide 11-1 and the copper-based catalyst 11-2. Since the synergistic effect by two types of copper catalysts with the copper catalyst 11-2 can be obtained, the activity of the catalyst can be improved as compared with a catalyst consisting of only one type of copper catalyst.

[第三の実施形態]
本発明の第三の実施形態にかかる燃料改質装置について、図5を参照して説明する。
図5は、本実施形態において用いられる前記燃料改質装置の構成を示す概略図である。 図5に示すように、本実施形態に係る燃料改質装置20は、燃料電池用の炭化水素系の原燃料21を改質ガス22に改質する燃料改質触媒装置23と、前記燃料改質触媒装置23で発生した一酸化炭素(CO)を変成するCO変成装置24と、残留する一酸化炭素(CO)を本発明に係るCO除去触媒10により除去して燃料ガス25とするCO除去装置26とからなるものである。
[Third embodiment]
A fuel reformer according to a third embodiment of the present invention will be described with reference to FIG.
FIG. 5 is a schematic diagram showing the configuration of the fuel reformer used in the present embodiment. As shown in FIG. 5, the fuel reformer 20 according to this embodiment includes a fuel reforming catalyst device 23 that reforms a hydrocarbon-based raw fuel 21 for a fuel cell into a reformed gas 22, and the fuel reformer. CO conversion device 24 that converts carbon monoxide (CO) generated in the carbonaceous catalyst device 23, and CO removal catalyst 10 according to the present invention to remove residual carbon monoxide (CO) to form a fuel gas 25 And the device 26.

本発明にかかる燃料改質装置20は、例えば原燃料21として都市ガス(メタン主成分)又はLPG(プロパン主成分)を原料とする場合には、先ず、臭い成分である硫黄分(S分)を除去する。   When the fuel reformer 20 according to the present invention uses, for example, city gas (main component of methane) or LPG (main component of propane) as the raw fuel 21, a sulfur component (S component) that is an odor component is firstly used. Remove.

次いで、約700℃程度にて前記燃料改質触媒装置23の改質触媒によって、下記式(V)の反応を生じさせて水素含有の前記改質ガス22を得る。
CH4+H2O→CO+3H2 又は C38+3H2O→3CO+7H2 ・・・(V)
Next, the reformed catalyst of the fuel reforming catalyst device 23 is caused to react by the following formula (V) at about 700 ° C. to obtain the reformed gas 22 containing hydrogen.
CH 4 + H 2 O → CO + 3H 2 or C 3 H 8 + 3H 2 O → 3CO + 7H 2 (V)

このようにして得た前記改質ガス22は多量の一酸化炭素(CO)を含み、この一酸化炭素(CO)は燃料電池の電極を阻害する被毒物質として作用する。そこで、後段の前記CO変成装置24において、約200〜450℃にてシフト反応を生じさせて、一酸化炭素(CO)を二酸化炭素(CO2)に変換する。 The reformed gas 22 thus obtained contains a large amount of carbon monoxide (CO), and this carbon monoxide (CO) acts as a poisoning substance that inhibits the electrode of the fuel cell. Therefore, a shift reaction is caused at about 200 to 450 ° C. in the subsequent CO conversion device 24 to convert carbon monoxide (CO) to carbon dioxide (CO 2 ).

前記CO変成装置24を経た前記改質ガス22からは一酸化炭素(CO)が通常3000〜4000ppm程度にまで減少、除去されているが、燃料電池本体に導入する前記燃料ガス25は、通常50ppm以下好ましくは20ppm以下のCO濃度であることが必要であり、このままの一酸化炭素(CO)濃度では電池が被毒してしまう。そこで、本発明にかかるCO除去触媒10を有する前記CO除去装置26を前記CO変成装置24の後流に設けることにより、更なる一酸化炭素(CO)の除去を行う。   Carbon monoxide (CO) is usually reduced and removed to about 3000 to 4000 ppm from the reformed gas 22 that has passed through the CO converter 24, but the fuel gas 25 introduced into the fuel cell body is usually 50 ppm. In the following, it is necessary that the CO concentration is preferably 20 ppm or less. If the carbon monoxide (CO) concentration is kept as it is, the battery is poisoned. Therefore, the carbon removal device 26 having the CO removal catalyst 10 according to the present invention is provided in the downstream of the CO conversion device 24 to further remove carbon monoxide (CO).

この前記CO除去装置26では、ガス中の3000〜4000ppmの一酸化炭素(CO)について、更なる低減を目的に触媒反応を行わせる。これにより一酸化炭素(CO)濃度が低減され、一酸化炭素(CO)濃度は10〜50ppm程度あるいは10ppm以下にまで減少させる。   In the CO removing device 26, 3000 to 4000 ppm of carbon monoxide (CO) in the gas is subjected to a catalytic reaction for further reduction. Thereby, the carbon monoxide (CO) concentration is reduced, and the carbon monoxide (CO) concentration is reduced to about 10 to 50 ppm or 10 ppm or less.

本発明の第三の実施形態による燃料改質装置は、少なくとも一種類以上の銅系触媒又は貴金属系触媒の何れかを混合して組み合わせてなるCO除去触媒を用いることにより、CO除去性能を向上させると共に、CO除去温度範囲を拡大させることができるという利点が得られる。   The fuel reforming apparatus according to the third embodiment of the present invention improves CO removal performance by using a CO removal catalyst that is a mixture of at least one copper catalyst or noble metal catalyst. And an advantage that the CO removal temperature range can be expanded.

[第四の実施形態]
次に、本発明の燃料改質装置を用いた燃料電池システムについて、図6を参照して説明する。
図6は、PEFC型燃料電池システムを示す概念図である。燃料改質装置の構成は、本発明の第3の実施形態による燃料改質装置と同様であるため、ここでは説明は省略する。
[Fourth embodiment]
Next, a fuel cell system using the fuel reformer of the present invention will be described with reference to FIG.
FIG. 6 is a conceptual diagram showing a PEFC type fuel cell system. Since the configuration of the fuel reformer is the same as that of the fuel reformer according to the third embodiment of the present invention, the description thereof is omitted here.

図6に示すように、実施形態に係るPEFC型燃料電池の発電システム(PEFC発電システム)1000は、燃料ガス1001を供給する燃料極1002−1と、空気1003を供給する空気極1002−2と、冷媒1004を供給して作動時の電気化学反応に伴う発生熱を除去する冷却部1002−3とからなる燃料電池1002と、燃料極1002−1に供給する燃料ガス1001を原燃料1005から改質する燃料改質装置1006とを具備してなり、燃料極1002−1に供給した燃料により発電されて、燃料電池1002から直流電力1020を得ている。この発電システム1000は、図示しない制御システムにより、燃料電池の起動、発電、停止及び警報・保護を全自動で行うようにしている。   As shown in FIG. 6, a power generation system (PEFC power generation system) 1000 for a PEFC type fuel cell according to the embodiment includes a fuel electrode 1002-1 that supplies a fuel gas 1001, and an air electrode 1002-2 that supplies air 1003. The fuel cell 1002 including the cooling unit 1002-3 that supplies the refrigerant 1004 and removes the heat generated by the electrochemical reaction during operation, and the fuel gas 1001 supplied to the fuel electrode 1002-1 are modified from the raw fuel 1005. And a fuel reformer 1006 for generating the electric power, and the electric power is generated by the fuel supplied to the fuel electrode 1002-1 to obtain the DC power 1020 from the fuel cell 1002. This power generation system 1000 is configured to fully automatically start, generate, stop, and alarm / protect a fuel cell by a control system (not shown).

前記改質装置による原燃料1005としては、例えば都市ガス、LPGガス又は灯油等を用いており、硫化物の除去に脱硫装置1007を設置している。   As the raw fuel 1005 by the reformer, for example, city gas, LPG gas, kerosene, or the like is used, and a desulfurizer 1007 is installed for removing sulfides.

前記原燃料1005は、燃料改質装置1006にて改質される。ここで、前記原燃料1005の改質は、主として、燃料改質装置1006の燃料改質触媒装置1006−1Aの改質触媒(図示せず)における水蒸気改質反応によって行われる。即ち、原燃料1005と水蒸気1009とを混合して改質触媒層に流通させ、改質器バーナ1006−1Bを用いて、例えば700〜800℃の温度で水蒸気改質反応(例えば都市ガスを用いる場合にはCH4+H2O→CO+3H2)を起こさせることにより行われる。前記改質触媒としては、例えばRu/Al23等を例示することができるが、これに限定されるものではない。また、改質された改質ガス1008は、その後CO変成装置1006−2と前述したCO除去装置1006−3とを通過して、燃料ガス1001としている。前記CO除去装置1006−3における前記CO除去触媒としては、少なくとも一種類以上の銅系触媒又は貴金属系触媒の何れかを混合して組み合わせてなる触媒等を例示することができる。 The raw fuel 1005 is reformed by a fuel reformer 1006. Here, the reforming of the raw fuel 1005 is mainly performed by a steam reforming reaction in a reforming catalyst (not shown) of the fuel reforming catalyst device 1006-1A of the fuel reforming device 1006. That is, the raw fuel 1005 and the steam 1009 are mixed and circulated through the reforming catalyst layer, and the steam reforming reaction (for example, city gas is used) at a temperature of, for example, 700 to 800 ° C. using the reformer burner 1006-1B. In some cases, CH 4 + H 2 O → CO + 3H 2 ) is caused. Examples of the reforming catalyst include Ru / Al 2 O 3, but are not limited thereto. The reformed reformed gas 1008 then passes through the CO conversion device 1006-2 and the above-described CO removal device 1006-3 to become the fuel gas 1001. Examples of the CO removal catalyst in the CO removal apparatus 1006-3 include a catalyst obtained by mixing and combining at least one of a copper catalyst and a noble metal catalyst.

また、前記冷媒1004の冷却ラインL1には、例えば水又は空気等を熱交する放熱部1010が設けられており、燃料電池発電における発熱の際に放熱するようにしている。また、本システムでは、前記放熱部1010等のように、前記燃料電池反応に付随して発生する熱を利用して各種の熱源とするようにしている。   The cooling line L1 of the refrigerant 1004 is provided with a heat radiating portion 1010 that exchanges heat, for example, water or air, and radiates heat when heat is generated in the fuel cell power generation. Further, in the present system, various heat sources such as the heat radiating portion 1010 are used by utilizing heat generated accompanying the fuel cell reaction.

図6のシステムにおいて、燃料電池発電の起動時の際には、改質器バーナ1006−1Bに原燃料1005を供給して燃料改質触媒装置1006−1Aを昇温させて、水蒸気改質に適した所定の温度条件とした後、原燃料1005を供給して改質ガス1008とする。その後、得られた改質ガス1008はCO変成装置1006−2及びCO除去装置1006−3を経て、COが除去された燃料ガス1001とされ、燃料極1002−1に供給され、発電が開始される。前記燃料極1002−1からの排出ガスは、未反応ガスを利用するために、改質器バーナ1006−1Bに送られここで燃焼される。   In the system of FIG. 6, when fuel cell power generation is started, the raw fuel 1005 is supplied to the reformer burner 1006-1B to raise the temperature of the fuel reforming catalyst device 1006-1A to perform steam reforming. After setting to a suitable predetermined temperature condition, the raw fuel 1005 is supplied to obtain the reformed gas 1008. Thereafter, the obtained reformed gas 1008 is converted into a fuel gas 1001 from which CO has been removed through a CO conversion device 1006-2 and a CO removal device 1006-3, and is supplied to the fuel electrode 1002-1 to start power generation. The The exhaust gas from the fuel electrode 1002-1 is sent to the reformer burner 1006-1B and burned there to use unreacted gas.

本PEFC型燃料電池の発電システムは、前記CO除去装置1006−3に前記CO除去触媒として、少なくとも一種類以上の銅系触媒又は貴金属系触媒の何れかを混合して組み合わせてなる触媒等を用いるため、安価でしかも長期間に亙ってCO除去ができるので、COが低減された燃料ガスを安定して得ることができ、長期間に亙って安定且つ信頼性の高い燃料電池システムを提供することができる。   In the power generation system of the present PEFC type fuel cell, the CO removal device 1006-3 uses, as the CO removal catalyst, a catalyst or the like obtained by mixing and combining at least one kind of copper catalyst or noble metal catalyst. Therefore, CO can be removed at low cost over a long period of time, so that a fuel gas with reduced CO can be stably obtained, and a fuel cell system that is stable and reliable over a long period of time is provided. can do.

以下、本発明の効果を示す実施例について説明するが、本発明はこれに限定されるものではない。   Examples illustrating the effects of the present invention will be described below, but the present invention is not limited thereto.

[触媒の調製方法]
まず、本実施例において用いられる銅系触媒粉末と貴金属系触媒粉末の調製方法について説明する。
その後、前記銅系触媒粉末と前記貴金属系触媒粉末とを混合して調整した触媒1乃至触媒5を用いた実施例1−1〜1−5と、前記貴金属系触媒粉末のみからなる比較触媒1を用いた比較例1−1及び前記銅系触媒粉末のみからなる比較触媒2を用いた比較例1−2の評価結果について説明する。
[Method for preparing catalyst]
First, a method for preparing the copper-based catalyst powder and the noble metal-based catalyst powder used in this example will be described.
Thereafter, Examples 1-1 to 1-5 using the catalysts 1 to 5 prepared by mixing the copper-based catalyst powder and the noble metal-based catalyst powder, and the comparative catalyst 1 including only the noble metal-based catalyst powder. Evaluation results of Comparative Example 1-1 using Comparative Example 1-1 using Comparative Example 2 and Comparative Catalyst 2 consisting only of the copper-based catalyst powder will be described.

本実施例において用いられる銅系触媒粉末の調製方法について説明する。
まず、磁性皿中で比表面積140m2/gの酸化セレン(CeO2)の粉末90g(0.52mol)を500ccの蒸留水に分散し、スラリー化した。これに硝酸銅・三水和物(Cu(NO3)2・3H2O)を37.9gとり、蒸留水100ccに溶解した液を入れ、攪拌しながら120℃のプレートで水分を除去した。乾燥後は乳鉢で塊状に粉砕し、大気中で300℃、3時間焼成することにより、触媒1に用いる銅を23mol%担持した酸化セレン(23mol%Cu/CeO2)の触媒粉末を得た。また、この触媒粉末は、比較触媒2においても用いた。
A method for preparing the copper-based catalyst powder used in this example will be described.
First, 90 g (0.52 mol) of selenium oxide (CeO 2 ) powder having a specific surface area of 140 m 2 / g in a magnetic dish was dispersed in 500 cc of distilled water to form a slurry. To this, 37.9 g of copper nitrate trihydrate (Cu (NO 3 ) 2 .3H 2 O) was taken, a solution dissolved in 100 cc of distilled water was added, and water was removed with a 120 ° C. plate while stirring. After drying, the mixture was pulverized into a lump in a mortar and calcined in the atmosphere at 300 ° C. for 3 hours to obtain a catalyst powder of selenium oxide (23 mol% Cu / CeO 2 ) carrying 23 mol% of copper used in the catalyst 1. This catalyst powder was also used in Comparative Catalyst 2.

触媒1に用いる銅を23mol%担持した酸化セレン(23mol%Cu/CeO2)の触媒粉末の調製の際に用いた酸化セレン(CeO2)の代わりにγ―アルミナ(γ−Al23)の粉末85gを用い、硝酸銅・三水和物(Cu(NO3)2・3H2O)を57gに変えた。その他の触媒粉末の調整方法は、上述の触媒1に用いる銅を23mol%担持した酸化セレン(Cu/CeO2)の触媒粉末の調製方法と同様に行い、触媒2に用いる銅を23mol%担持したγ―アルミナ(23mol%Cu/γ−Al23)の触媒粉末を得た。 Γ-alumina (γ-Al 2 O 3 ) instead of selenium oxide (CeO 2 ) used in the preparation of catalyst powder of selenium oxide (23 mol% Cu / CeO 2 ) carrying 23 mol% of copper used in catalyst 1 The copper nitrate trihydrate (Cu (NO 3 ) 2 .3H 2 O) was changed to 57 g. Other catalyst powder preparation methods were carried out in the same manner as the method for preparing the catalyst powder of selenium oxide (Cu / CeO 2 ) supporting 23 mol% of copper used for the catalyst 1 described above, and supporting 23 mol% of copper used for the catalyst 2. A catalyst powder of γ-alumina (23 mol% Cu / γ-Al 2 O 3 ) was obtained.

磁性皿中で、硝酸ランタン・六水和物、硝酸マンガン(Mn(NO32)及び硝酸銅(Cu(NO3)2)を理想比(化学量論比)で秤量し、蒸留水にて溶解した後、200℃のプレートにて強熱して蒸発乾固させた。乾燥後は乳鉢で塊状に粉砕し、大気中で850℃、3時間焼成することにより、触媒3〜5に用いる銅を担持したペロブスカイト型複合酸化物(LaMn0.8Cu0.23、CuMn24、LaCuO4)の触媒粉末を得た。 In a magnetic dish, weigh lanthanum nitrate hexahydrate, manganese nitrate (Mn (NO 3 ) 2 ), and copper nitrate (Cu (NO 3 ) 2 ) in an ideal ratio (stoichiometric ratio) and add to distilled water. After dissolution, the mixture was ignited on a 200 ° C. plate and evaporated to dryness. After drying, the mixture is pulverized into a lump in a mortar and baked in the atmosphere at 850 ° C. for 3 hours, so that the perovskite complex oxide (LaMn 0.8 Cu 0.2 O 3 , CuMn 2 O 4) supporting copper used for the catalysts 3 to 5 , LaCuO 4 ) catalyst powder was obtained.

次に、本実施例において用いられる貴金属系触媒の触媒粉末の調製方法について説明する。
磁性皿中で蒸留水350ccに、α―アルミナ(α−Al23)の粉末95gと所定のmol比となるように秤量した塩化白金酸溶液(H2(PtCl6)・6H2O)を混合しながら120℃のプレートで水分を除去した。乾燥後、乳鉢で塊状に粉砕し、大気中で500℃、3時間焼成することにより触媒1に用いる白金を1mol%担持したα―アルミナ(1mol%Pt/α−Al23)の触媒粉末を得た。また、この触媒粉末は、比較触媒1においても用いた。
Next, a method for preparing a catalyst powder of a noble metal catalyst used in this example will be described.
Chloroplatinic acid solution (H 2 (PtCl 6 ) · 6H 2 O) weighed to a predetermined molar ratio with 95 g of α-alumina (α-Al 2 O 3 ) powder in 350 cc of distilled water in a magnetic dish The water was removed with a 120 ° C. plate while mixing. After drying, the catalyst powder of α-alumina (1 mol% Pt / α-Al 2 O 3 ) supporting 1 mol% of platinum used in the catalyst 1 by pulverizing into a lump in a mortar and firing in the atmosphere at 500 ° C. for 3 hours. Got. This catalyst powder was also used in Comparative Catalyst 1.

触媒1に用いる白金を1mol%担持したα―アルミナ(1mol%Pt/α−Al23)の触媒粉末の調製の際に用いたα―アルミナ(α―Al23)の代わりにγ―アルミナ(γ−Al23)を用い、塩化白金酸溶液(H2(PtCl6)・6H2O)の代わりに硝酸ルテニウム溶液に変えた。その他の触媒粉末の調整方法は、全て上述の触媒1に用いる白金を1mol%担持したα―アルミナ(1mol%Pt/α−Al23)の触媒粉末の調製方法と同様に行い、触媒2に用いるルテニウムを2mol%担持したγ―アルミナ(2mol%Ru/γ−Al23)の触媒粉末を得た。 Instead of α-alumina (α-Al 2 O 3 ) used in the preparation of the catalyst powder of α-alumina (1 mol% Pt / α-Al 2 O 3 ) supporting 1 mol% of platinum used in catalyst 1, -Alumina (γ-Al 2 O 3 ) was used and changed to a ruthenium nitrate solution instead of the chloroplatinic acid solution (H 2 (PtCl 6 ) · 6H 2 O). The other catalyst powders were prepared in the same manner as in the preparation of the catalyst powder of α-alumina (1 mol% Pt / α-Al 2 O 3 ) carrying 1 mol% of platinum used in the catalyst 1 described above. Catalyst powder of γ-alumina (2 mol% Ru / γ-Al 2 O 3 ) carrying 2 mol% of ruthenium used in the above was obtained.

また、触媒3に用いる白金を0.5mol%及びルテニウムを1mol%担持したγ―アルミナ(0.5mol%Pt+1mol%Ru/γ−Al23)の触媒粉末の調整方法についても、全て上述の触媒1に用いる白金を1mol%担持したα―アルミナ(1mol%Pt/α−Al23)の触媒粉末及び触媒2に用いるルテニウムを2mol%担持したγ―アルミナ(2mol%Ru/γ−Al23)の触媒粉末の調製方法と同様に行い、触媒3に用いる白金を0.5mol%及びルテニウムを1mol%担持したγ―アルミナ(0.5mol%Pt+1mol%Ru/γ−Al23)の触媒粉末を得た。 Further, the method for preparing the catalyst powder of γ-alumina (0.5 mol% Pt + 1 mol% Ru / γ-Al 2 O 3 ) supporting 0.5 mol% of platinum and 1 mol% of ruthenium used for the catalyst 3 is all described above. Catalyst powder of α-alumina (1 mol% Pt / α-Al 2 O 3 ) supporting 1 mol% of platinum used for catalyst 1 and γ-alumina (2 mol% Ru / γ-Al) supporting 2 mol% of ruthenium used for catalyst 2 2 O 3 ) in the same manner as the catalyst powder preparation method, and γ-alumina (0.5 mol% Pt + 1 mol% Ru / γ-Al 2 O 3) supporting 0.5 mol% of platinum and 1 mol% of ruthenium used for the catalyst 3 ) Catalyst powder was obtained.

また、触媒4に用いる白金を0.5mol%担持したα―アルミナ(0.5mol%Pt/α−Al23)の触媒粉末の調整方法についても、触媒2に用いるルテニウムを2mol%担持したγ―アルミナ(2mol%Ru/γ−Al23)の触媒粉末の調製方法と同様に行い、触媒4に用いる白金を0.5mol%担持したα―アルミナ(0.5mol%Pt/α−Al23)の触媒粉末を得た。 Further, with respect to a method for preparing a catalyst powder of α-alumina (0.5 mol% Pt / α-Al 2 O 3 ) carrying 0.5 mol% of platinum used for the catalyst 4, 2 mol% of ruthenium used for the catalyst 2 was carried. α-alumina (0.5 mol% Pt / α-) carrying 0.5 mol% of platinum used in the catalyst 4 was prepared in the same manner as the preparation method of the catalyst powder of γ-alumina (2 mol% Ru / γ-Al 2 O 3 ). A catalyst powder of Al 2 O 3 ) was obtained.

また、触媒5に用いるルテニウムを1mol%担持したγ―アルミナ(1mol%Ru/γ−Al23)の触媒粉末の調整方法についても、触媒1に用いる白金を1mol%担持したα―アルミナ(Pt/α−Al23)の触媒粉末の調製方法と同様に行い、触媒5に用いるルテニウムを1mol%担持したγ―アルミナ(1mol%Ru/γ―Al23)の触媒粉末を得た。 In addition, as a method for preparing a catalyst powder of γ-alumina (1 mol% Ru / γ-Al 2 O 3 ) supporting 1 mol% of ruthenium used for the catalyst 5, α-alumina supporting 1 mol% of platinum used for the catalyst 1 ( The catalyst powder of γ-alumina (1 mol% Ru / γ-Al 2 O 3 ) carrying 1 mol% of ruthenium used for the catalyst 5 is obtained in the same manner as the preparation method of the catalyst powder of Pt / α-Al 2 O 3 ). It was.

前記銅系触媒粉末と前記貴金属系触媒粉末とを混合して調整した触媒1は、銅を23mol%担持した酸化セレン(23mol%Cu/CeO2)の触媒粉末と、白金を1mol%担持したα―アルミナ(1mol%Pt/α−Al23)の触媒粉末とを混合してなる触媒である。
このときの前記貴金属系触媒粉末の白金の重量比が、触媒の全重量の0.05%とした。
Catalyst 1 prepared by mixing the copper-based catalyst powder and the noble metal-based catalyst powder is a catalyst powder of selenium oxide (23 mol% Cu / CeO 2 ) supporting 23 mol% of copper, and α supporting 1 mol% of platinum. A catalyst obtained by mixing alumina (1 mol% Pt / α-Al 2 O 3 ) catalyst powder.
The platinum weight ratio of the noble metal catalyst powder at this time was 0.05% of the total weight of the catalyst.

また、前記銅系触媒粉末と前記貴金属系触媒粉末とを混合して調整した触媒2は、銅を23mol%担持したγ―アルミナ(23mol%Cu/γ−Al23)の触媒粉末と、ルテニウムを2mol%担持したγ―アルミナ(2mol%Ru/γ−Al23)の触媒粉末とを混合してなる触媒である。
このときの前記貴金属系触媒粉末のルテニウムの重量比が、触媒の全重量の0.03%とした。
The catalyst 2 prepared by mixing the copper-based catalyst powder and the noble metal-based catalyst powder is a catalyst powder of γ-alumina (23 mol% Cu / γ-Al 2 O 3 ) supporting 23 mol% of copper, This is a catalyst obtained by mixing a catalyst powder of γ-alumina (2 mol% Ru / γ-Al 2 O 3 ) carrying 2 mol% of ruthenium.
At this time, the weight ratio of ruthenium in the noble metal catalyst powder was 0.03% of the total weight of the catalyst.

前記銅系触媒粉末と前記貴金属系触媒粉末とを混合して調整した触媒3は、銅を担持したペロブスカイト型複合酸化物(LaMn0.8Cu0.23)と、白金を0.5mol%及びルテニウムを1mol%担持したγ―アルミナ(0.5mol%Pt+1mol%Ru/γ−Al23)の触媒粉末とを混合してなる触媒である。
このときの前記貴金属系触媒粉末の白金とルテニウムとの重量比が、触媒の全重量の0.02%とした。
Catalyst 3 prepared by mixing the copper-based catalyst powder and the noble metal-based catalyst powder is a perovskite complex oxide (LaMn 0.8 Cu 0.2 O 3 ) supporting copper, 0.5 mol% of platinum and ruthenium. It is a catalyst obtained by mixing 1 mol% of supported γ-alumina (0.5 mol% Pt + 1 mol% Ru / γ-Al 2 O 3 ) catalyst powder.
The weight ratio of platinum and ruthenium in the noble metal catalyst powder at this time was 0.02% of the total weight of the catalyst.

前記銅系触媒粉末と前記貴金属系触媒粉末とを混合して調整した触媒4は、銅を担持したペロブスカイト型複合酸化物(CuMn24)と、白金を0.5mol%担持したα―アルミナ(0.5mol%Pt/α−Al23)の触媒粉末とを混合してなる触媒である。
このときの前記貴金属系触媒粉末の白金の重量比が、触媒の全重量の0.05%とした。
The catalyst 4 prepared by mixing the copper-based catalyst powder and the noble metal-based catalyst powder is a perovskite-type composite oxide (CuMn 2 O 4 ) supporting copper and α-alumina supporting 0.5 mol% of platinum. It is a catalyst obtained by mixing (0.5 mol% Pt / α-Al 2 O 3 ) catalyst powder.
The platinum weight ratio of the noble metal catalyst powder at this time was 0.05% of the total weight of the catalyst.

前記銅系触媒粉末と前記貴金属系触媒粉末とを混合して調整した触媒5は、銅を担持したペロブスカイト型複合酸化物(LaCuO4)と、ルテニウムを1mol%担持したγ―アルミナ(1mol%Ru/γ―Al23)の触媒粉末とを混合してなる触媒である。
このときの前記貴金属系触媒粉末のルテニウムの重量比が、触媒の全重量の0.03(%)とした。
Catalyst 5 prepared by mixing the copper-based catalyst powder and the noble metal-based catalyst powder is a perovskite-type composite oxide (LaCuO 4 ) supporting copper and γ-alumina (1 mol% Ru supporting 1 mol% ruthenium). / Γ-Al 2 O 3 ) catalyst powder.
The weight ratio of ruthenium in the noble metal catalyst powder at this time was 0.03 (%) of the total weight of the catalyst.

また、前記貴金属系触媒粉末のみからなる比較触媒1は、白金を1mol%担持したα―アルミナ(1mol%Pt/α−AAl23)の触媒粉末のみからなる触媒である。
このときの前記貴金属系触媒粉末の白金の重量比が、触媒の全重量の1.0%とした。
The comparative catalyst 1 made of only the noble metal catalyst powder is a catalyst made of only α-alumina (1 mol% Pt / α-AAl 2 O 3 ) catalyst powder carrying 1 mol% of platinum.
At this time, the weight ratio of platinum in the noble metal catalyst powder was 1.0% of the total weight of the catalyst.

また、前記銅系触媒粉末のみからなる比較触媒2は、銅を23mol%担持した酸化セレン(23mol%Cu/CeO2)の触媒粉末のみからなる触媒である。 The comparative catalyst 2 composed only of the copper-based catalyst powder is a catalyst composed only of catalyst powder of selenium oxide (23 mol% Cu / CeO 2 ) carrying 23 mol% of copper.

触媒の混合方法については、前記の調整方法により得られた所定量の前記銅系触媒粉末と前記貴金属系触媒粉末とをメノウ乳鉢で混合し、それらを30tonプレス機で平均3mmの球状に加圧成型して機械的に混合して触媒を得た。   As for the catalyst mixing method, a predetermined amount of the copper-based catalyst powder and the noble metal-based catalyst powder obtained by the adjustment method described above are mixed in an agate mortar and pressed into a 3 mm average spherical shape with a 30-ton press. Molded and mechanically mixed to obtain a catalyst.

以上、前記のようにして調整した前記銅系触媒粉末と前記貴金属系触媒粉末とを混合して調整した触媒1乃至触媒5と、前記貴金属系触媒粉末のみからなる比較触媒1及び前記銅系触媒粉末のみからなる比較触媒2の触媒の組成をまとめた結果を下記表1に示す。   As described above, the catalyst 1 to the catalyst 5 prepared by mixing the copper-based catalyst powder prepared as described above and the noble metal-based catalyst powder, the comparative catalyst 1 including only the noble metal-based catalyst powder, and the copper-based catalyst. The results of summarizing the composition of the catalyst of Comparative Catalyst 2 consisting only of powder are shown in Table 1 below.

Figure 2008272614
Figure 2008272614

次に、本実施例における前記銅系触媒粉末と前記貴金属系触媒粉末とを混合して調整した触媒1乃至触媒5と、前記貴金属系触媒粉末のみからなる比較触媒1と、前記銅系触媒粉末のみからなる比較触媒2との触媒性能を評価した。   Next, the catalyst 1 to catalyst 5 prepared by mixing the copper-based catalyst powder and the noble metal-based catalyst powder in this example, the comparative catalyst 1 consisting of only the noble metal-based catalyst powder, and the copper-based catalyst powder The catalyst performance with the comparative catalyst 2 consisting only of was evaluated.

内径30mmの管型反応管に触媒を35cc充填し、触媒性能を評価した。触媒性能については、赤外線検出器型のCO濃度分析装置を用いて一酸化炭素(CO)濃度(ppm)の絶対値により評価した。ガス組成、流量は、マスフローコントローラで制御し、触媒層温度は電気炉で制御するようにした。   35 cc of catalyst was filled in a tubular reaction tube having an inner diameter of 30 mm, and the catalyst performance was evaluated. The catalyst performance was evaluated by the absolute value of the carbon monoxide (CO) concentration (ppm) using an infrared detector type CO concentration analyzer. The gas composition and flow rate were controlled by a mass flow controller, and the catalyst layer temperature was controlled by an electric furnace.

[反応条件]
前記銅系触媒粉末と前記貴金属系触媒粉末とを混合して調整した触媒1乃至触媒5、前記貴金属系触媒粉末のみからなる比較触媒1及び前記銅系触媒粉末のみからなる比較触媒2の検証に用いた反応条件として反応温度(℃)と、圧力(MPa)と、GHSV(Gas Hourly Space Velocity)(h-1)と、ガス組成(vol%−DRY)と、触媒層に供給する酸素(O2)を含むガスの酸素(O2)に対する一酸化炭素(CO)の比(O2/CO)とを下記表2に示す。
[Reaction conditions]
For verification of catalyst 1 to catalyst 5 prepared by mixing the copper-based catalyst powder and the noble metal-based catalyst powder, the comparative catalyst 1 composed only of the noble metal-based catalyst powder, and the comparative catalyst 2 composed solely of the copper-based catalyst powder. As reaction conditions used, reaction temperature (° C.), pressure (MPa), GHSV (Gas Hourly Space Velocity) (h −1 ), gas composition (vol% -DRY), oxygen supplied to the catalyst layer (O Table 2 below shows the ratio (O 2 / CO) of carbon monoxide (CO) to oxygen (O 2 ) in the gas containing 2 ).

Figure 2008272614
Figure 2008272614

[触媒性能]
前記銅系触媒粉末と前記貴金属系触媒粉末とを混合して調整した触媒1乃至触媒5を用いた実施例1−1〜1−5と、前記貴金属系触媒粉末のみからなる比較触媒1を用いた比較例1−1と、前記銅系触媒粉末のみからなる比較触媒2を用いた比較例1−2との触媒性能として、前記表2に示す条件で出口CO濃度(ppm)を測定して、触媒のCO除去性能を評価した。
また、反応温度(℃)は、100、120、150、170、200、230℃でそれぞれ行った。
尚、以下の実施例2においても同様に、出口CO濃度(ppm)を測定して、触媒のCO除去性能を評価した。
[Catalyst performance]
Examples 1-1 to 1-5 using the catalysts 1 to 5 prepared by mixing the copper-based catalyst powder and the noble metal-based catalyst powder and the comparative catalyst 1 including only the noble metal-based catalyst powder are used. As the catalyst performance of Comparative Example 1-1 and Comparative Example 1-2 using Comparative Catalyst 2 made of only the copper-based catalyst powder, the outlet CO concentration (ppm) was measured under the conditions shown in Table 2 above. The CO removal performance of the catalyst was evaluated.
The reaction temperature (° C.) was 100, 120, 150, 170, 200, and 230 ° C., respectively.
In Example 2 below, similarly, the outlet CO concentration (ppm) was measured to evaluate the CO removal performance of the catalyst.

前記銅系触媒粉末と前記貴金属系触媒粉末とを混合して調整した触媒1乃至触媒5を用いた実施例1−1〜1−5と、前記貴金属系触媒粉末のみからなる比較触媒1を用いた比較例1−1と、前記銅系触媒粉末のみからなる比較触媒2を用いた比較例1−2との出口CO濃度(ppm)を下記表3に示す。
また、前記銅系触媒粉末と前記貴金属系触媒粉末とを混合して調整した触媒1乃至触媒5を用いた実施例1−1〜1−5と、前記貴金属系触媒粉末のみからなる比較触媒1を用いた比較例1−1と、前記銅系触媒粉末のみからなる比較触媒2を用いた比較例1−2との触媒層温度と出口CO濃度との関係を図7に示す。
Examples 1-1 to 1-5 using the catalysts 1 to 5 prepared by mixing the copper-based catalyst powder and the noble metal-based catalyst powder and the comparative catalyst 1 including only the noble metal-based catalyst powder are used. Table 3 below shows the outlet CO concentration (ppm) of Comparative Example 1-1 and Comparative Example 1-2 using Comparative Catalyst 2 made of only the copper-based catalyst powder.
Further, Examples 1-1 to 1-5 using the catalysts 1 to 5 prepared by mixing the copper-based catalyst powder and the noble metal-based catalyst powder, and the comparative catalyst 1 including only the noble metal-based catalyst powder. FIG. 7 shows the relationship between the catalyst layer temperature and the outlet CO concentration in Comparative Example 1-1 using NO and Comparative Example 1-2 using Comparative Catalyst 2 made of only the copper-based catalyst powder.

Figure 2008272614
Figure 2008272614

表3より、前記銅系触媒粉末と前記貴金属系触媒粉末とを混合して調整した触媒1乃至触媒5を用いた実施例1−1〜1−5は、反応温度が150〜230℃の範囲で出口CO濃度(ppm)がほとんど150ppm以下になっており、安定して一酸化炭素(CO)の除去ができることが確認された。   From Table 3, Examples 1-1 to 1-5 using Catalyst 1 to Catalyst 5 prepared by mixing the copper-based catalyst powder and the noble metal-based catalyst powder have a reaction temperature in the range of 150 to 230 ° C. And the outlet CO concentration (ppm) was almost 150 ppm or less, and it was confirmed that carbon monoxide (CO) could be removed stably.

一方、前記貴金属系触媒粉末のみからなる比較触媒1を用いた比較例1−1では、反応温度が150〜200℃くらいの範囲までは出口CO濃度(ppm)が150(ppm)以下で安定しているが、反応温度が230℃になると出口CO濃度(ppm)が360(ppm)と急激に高い値となり、高温では安定して一酸化炭素(CO)の除去ができないことが確認された。   On the other hand, in Comparative Example 1-1 using the comparative catalyst 1 composed only of the noble metal catalyst powder, the outlet CO concentration (ppm) is stable at 150 (ppm) or less until the reaction temperature is in the range of about 150 to 200 ° C. However, when the reaction temperature reached 230 ° C., the outlet CO concentration (ppm) rapidly increased to 360 (ppm), and it was confirmed that carbon monoxide (CO) could not be removed stably at high temperatures.

また、前記銅系触媒粉末のみからなる比較触媒2を用いた比較例1−2では、反応温度が150〜230℃の範囲では出口CO濃度(ppm)が150(ppm)以上と非常に高い値となり、安定して一酸化炭素(CO)の除去ができないことが確認された。   Moreover, in Comparative Example 1-2 using the comparative catalyst 2 consisting only of the copper-based catalyst powder, the outlet CO concentration (ppm) is 150 (ppm) or more, which is a very high value when the reaction temperature is in the range of 150 to 230 ° C. Thus, it was confirmed that carbon monoxide (CO) could not be removed stably.

よって、前記銅系触媒粉末と前記貴金属系触媒粉末とを機械的に混合して調整した触媒を用いることにより、広い温度範囲で触媒層が安定して高い活性を示し、出口CO濃度(ppm)を非常に低くすることができることが確認できた。   Therefore, by using a catalyst prepared by mechanically mixing the copper-based catalyst powder and the noble metal-based catalyst powder, the catalyst layer stably exhibits high activity in a wide temperature range, and the outlet CO concentration (ppm) It was confirmed that it can be made very low.

本実施例において用いられる二種類の銅系触媒粉末の調製方法は、前記銅系触媒粉末と同様であるため、説明は省略する。
また、前記二種類の銅系触媒粉末のうち、一方の触媒粉末を銅系触媒粉末Aとし、他方の触媒粉末を銅系触媒粉末Bとした。
The method for preparing the two types of copper-based catalyst powders used in this example is the same as that of the copper-based catalyst powder, and thus the description thereof is omitted.
Of the two types of copper catalyst powders, one catalyst powder was a copper catalyst powder A and the other catalyst powder was a copper catalyst powder B.

前記二種類の銅系触媒粉末を混合して調整した触媒6は、銅を23mol%担持した酸化セレン(23mol%Cu/CeO2)の銅系触媒粉末Aと、銅を23mol%担持したγ―アルミナ(23mol%Cu/γ−Al23)の銅系触媒粉末Bとを混合してなる触媒である。
このときの前記銅系触媒粉末Aの成分比率(重量%)は50%とした。
The catalyst 6 prepared by mixing the two kinds of copper catalyst powders was prepared by mixing a copper catalyst powder A of selenium oxide (23 mol% Cu / CeO 2 ) supporting 23 mol% of copper and a γ− catalyst supporting 23 mol% of copper. A catalyst obtained by mixing copper catalyst powder B of alumina (23 mol% Cu / γ-Al 2 O 3 ).
The component ratio (% by weight) of the copper-based catalyst powder A at this time was 50%.

また、前記二種類の銅系触媒粉末を混合して調整した触媒7は、銅を23mol%担持したγ―アルミナ(23mol%Cu/γ−Al23)の銅系触媒粉末Aと、銅を担持したペロブスカイト型複合酸化物(LaMn0.8Cu0.23)の銅系触媒粉末Bとを混合してなる触媒である。
このときの前記銅系触媒粉末Aの成分比率(重量%)は80%とした。
The catalyst 7 prepared by mixing the two types of copper catalyst powders was a copper catalyst powder A of γ-alumina (23 mol% Cu / γ-Al 2 O 3 ) carrying 23 mol% of copper, and copper. Is a catalyst obtained by mixing a copper-based catalyst powder B of a perovskite complex oxide (LaMn 0.8 Cu 0.2 O 3 ) supporting bismuth.
The component ratio (% by weight) of the copper-based catalyst powder A at this time was 80%.

前記二種類の銅系触媒粉末を混合して調整した触媒8は、銅を担持したペロブスカイト型複合酸化物(LaMn0.8Cu0.23)の銅系触媒粉末Aと、銅を23mol%担持した酸化セレン(23mol%Cu/CeO2)の銅系触媒粉末Bとを混合してなる触媒である。
このときの前記銅系触媒粉末Aの成分比率(重量%)は30%とした。
The catalyst 8 prepared by mixing the two types of copper catalyst powders is a perovskite-type composite oxide (LaMn 0.8 Cu 0.2 O 3 ) copper catalyst powder A supporting copper and an oxidation catalyst supporting 23 mol% of copper. It is a catalyst formed by mixing selenium (23 mol% Cu / CeO 2 ) copper-based catalyst powder B.
The component ratio (% by weight) of the copper-based catalyst powder A at this time was 30%.

前記二種類の銅系触媒粉末を混合して調整した触媒9は、銅を担持したペロブスカイト型複合酸化物(CuMn24)の銅系触媒粉末Aと、銅を23mol%担持した酸化セレン(23mol%Cu/CeO2)の銅系触媒粉末Bとを混合してなる触媒である。
このときの前記銅系触媒粉末Aの成分比率(重量%)は50%とした。
The catalyst 9 prepared by mixing the two types of copper catalyst powders was a perovskite-type composite oxide (CuMn 2 O 4 ) copper catalyst powder A supporting copper and selenium oxide supporting 23 mol% of copper ( 23 mol% Cu / CeO 2 ) copper-based catalyst powder B.
The component ratio (% by weight) of the copper-based catalyst powder A at this time was 50%.

前記二種類の銅系触媒粉末を混合して調整した触媒10は、銅を担持したペロブスカイト型複合酸化物(LaCuO4)の銅系触媒粉末Aと、銅を23mol%担持したγ―アルミナ(23mol%Cu/γ−Al23)の銅系触媒粉末Bとを混合してなる触媒である。
このときの前記銅系触媒粉末Aの成分比率(重量%)は20%とした。
The catalyst 10 prepared by mixing the two types of copper-based catalyst powders was a copper-supported perovskite-type composite oxide (LaCuO 4 ) -supported copper-based catalyst powder A, and γ-alumina (23 mol) supporting 23 mol% of copper. % Cu / γ-Al 2 O 3 ) copper-based catalyst powder B.
The component ratio (% by weight) of the copper-based catalyst powder A at this time was 20%.

また、前記銅系触媒粉末のみからなる比較触媒3は、銅を23mol%担持したγ―アルミナ(23mol%Cu/γ−Al23)の銅系触媒粉末Aのみからなる触媒である。このときの前記銅系触媒粉末Aの成分比率(重量%)は100%とした。
また、前記銅系触媒粉末のみからなる比較触媒4は、銅を担持したペロブスカイト型複合酸化物(LaMn0.8Cu0.23)の銅系触媒粉末Bのみからなる触媒である。
このときの前記銅系触媒粉末Aの成分比率(重量%)は100%とした。
The comparative catalyst 3 composed only of the copper-based catalyst powder is a catalyst composed only of the copper-based catalyst powder A of γ-alumina (23 mol% Cu / γ-Al 2 O 3 ) supporting 23 mol% of copper. The component ratio (% by weight) of the copper-based catalyst powder A at this time was 100%.
The comparative catalyst 4 made of only the copper-based catalyst powder is a catalyst made of only the copper-based catalyst powder B of a perovskite complex oxide (LaMn 0.8 Cu 0.2 O 3 ) supporting copper.
The component ratio (% by weight) of the copper-based catalyst powder A at this time was 100%.

触媒の混合方法については、前記の実施例1の場合と同様であるため、説明は省略する。   The method for mixing the catalyst is the same as in the case of Example 1 described above, and thus the description thereof is omitted.

以上、前記のようにして調整した前記二種類の銅系触媒粉末を混合して調整した触媒5乃至触媒10、前記銅系触媒粉末Aのみからなる比較触媒3及び比較触媒4の触媒の組成と、前記銅系触媒粉末Aの成分比率(重量%)とをまとめた結果を下記表4に示す。   As described above, the catalyst compositions of the catalyst 5 to the catalyst 10 prepared by mixing the two types of copper catalyst powders prepared as described above, the comparative catalyst 3 composed of only the copper catalyst powder A, and the catalyst of the comparative catalyst 4 The results of summarizing the component ratio (% by weight) of the copper-based catalyst powder A are shown in Table 4 below.

Figure 2008272614
Figure 2008272614

次に、本実施例における前記二種類の銅系触媒粉末を混合して調整した触媒5乃至触媒10と、前記銅系触媒粉末Aのみからなる比較触媒3及び比較触媒4との触媒性能として、前記表2に示す条件で出口CO濃度(ppm)を測定して、触媒のCO除去性能を評価した。   Next, as catalyst performances of the catalyst 5 to the catalyst 10 prepared by mixing the two types of copper catalyst powders in this example and the comparative catalyst 3 and the comparative catalyst 4 made of only the copper catalyst powder A, The outlet CO concentration (ppm) was measured under the conditions shown in Table 2 above, and the CO removal performance of the catalyst was evaluated.

触媒性能の評価方法及び反応条件については、前記の実施例1の場合と同様であるため、説明は省略する。   Since the evaluation method of the catalyst performance and the reaction conditions are the same as in the case of Example 1, the description is omitted.

前記二種類の銅系触媒粉末を混合して調整した触媒5乃至触媒10を用いた実施例2−1〜2−5及び前記銅系触媒粉末Aのみからなる比較触媒3及び比較触媒4を用いた比較例2−1及び比較例2−2の出口CO濃度(ppm)を下記表5に示す。
また、前記二種類の銅系触媒粉末を混合して調整した触媒5乃至触媒10を用いた実施例2−1〜2−5と、前記銅系触媒粉末Aのみからなる比較触媒3及び比較触媒4を用いた比較例2−1と比較例2−2との触媒層温度と出口CO濃度との関係を図8に示す。
Examples 2-1 to 2-5 using the catalyst 5 to the catalyst 10 prepared by mixing the two types of copper catalyst powders and the comparative catalyst 3 and the comparative catalyst 4 made of only the copper catalyst powder A were used. Table 5 below shows the outlet CO concentrations (ppm) of Comparative Examples 2-1 and 2-2.
Further, Examples 2-1 to 2-5 using the catalysts 5 to 10 prepared by mixing the two kinds of copper-based catalyst powders, and the comparative catalyst 3 and the comparative catalyst composed of only the copper-based catalyst powder A FIG. 8 shows the relationship between the catalyst layer temperature and the outlet CO concentration in Comparative Example 2-1 and Comparative Example 2-2 using 4.

Figure 2008272614
Figure 2008272614

表5より、前記二種類の銅系触媒粉末を混合して調整した触媒5乃至触媒10を用いた実施例2−1〜2−5は、反応温度が170〜230℃の範囲で出口CO濃度(ppm)がほとんど150ppm以下になっており、安定して一酸化炭素(CO)の除去ができることが確認された。   From Table 5, Examples 2-1 to 2-5 using the catalysts 5 to 10 prepared by mixing the two types of copper-based catalyst powders had an outlet CO concentration within the reaction temperature range of 170 to 230 ° C. (Ppm) was almost 150 ppm or less, and it was confirmed that carbon monoxide (CO) can be removed stably.

一方、前記銅系触媒粉末のみからなる比較触媒3及び比較触媒4を用いた比較例2−1及び比較例2−2では、反応温度(℃)が150〜230℃の範囲では出口CO濃度(ppm)が150ppm以上と非常に高い値となり、安定して一酸化炭素(CO)の除去ができないことが確認された。   On the other hand, in Comparative Example 2-1 and Comparative Example 2-2 using Comparative Catalyst 3 and Comparative Catalyst 4 made of only the copper-based catalyst powder, the outlet CO concentration (in the range of 150 to 230 ° C.) ppm) was a very high value of 150 ppm or more, and it was confirmed that carbon monoxide (CO) could not be removed stably.

よって、前記二種類の銅系触媒粉末を混合して調整した触媒を用いることにより、触媒層が高温でも安定して高い活性を示し、出口CO濃度(ppm)を非常に低くすることができることが確認できた。   Therefore, by using a catalyst prepared by mixing the two types of copper-based catalyst powders, the catalyst layer can stably exhibit high activity even at high temperatures, and the outlet CO concentration (ppm) can be very low. It could be confirmed.

以上のように、本発明に係るCO除去触媒は、少なくとも一種類以上の銅系触媒又は貴金属系触媒の何れかを混合して組み合わせてなる触媒を用いることにより、高いCO除去性能を有することができるので、貴金属の量を抑えながら高いCO除去性能を維持でき、安定してCO除去反応を進行させることができるため、燃料改質装置のCO除去触媒に用いるのに適している。   As described above, the CO removal catalyst according to the present invention has a high CO removal performance by using a catalyst obtained by mixing and combining at least one kind of copper catalyst or noble metal catalyst. Therefore, high CO removal performance can be maintained while suppressing the amount of noble metal, and the CO removal reaction can proceed stably, which is suitable for use as a CO removal catalyst in a fuel reformer.

第一の実施形態に係る銅系触媒と貴金属系触媒とを粉末状態で混合してなるCO除去触媒の状態を示す概略構成図である。It is a schematic block diagram which shows the state of the CO removal catalyst formed by mixing the copper catalyst and noble metal catalyst which concern on 1st embodiment in a powder state. 銅系触媒と貴金属とが密着している状態を示す概略構成図である。It is a schematic block diagram which shows the state which the copper-type catalyst and the noble metal are closely_contact | adhered. 第一の実施形態に係るCO除去触媒の温度とCO濃度との関係を示す関係図である。It is a relationship figure which shows the relationship between the temperature of CO removal catalyst which concerns on 1st embodiment, and CO concentration. 第二の実施形態に係るCO除去触媒の温度とCO濃度との関係を示す関係図である。It is a relationship figure which shows the relationship between the temperature and CO density | concentration of the CO removal catalyst which concerns on 2nd embodiment. 第三の実施形態に係る燃料改質装置の構成を示す概略図である。It is the schematic which shows the structure of the fuel reformer which concerns on 3rd embodiment. PEFC型燃料電池システムを示す概念図である。It is a conceptual diagram which shows a PEFC type fuel cell system. 実施例1−1〜1−5と比較例1−1と比較例1−2との触媒層温度と出口CO濃度との関係を表した図である。It is a figure showing the relationship between the catalyst layer temperature and exit CO density | concentration of Examples 1-1 to 1-5, Comparative Example 1-1, and Comparative Example 1-2. 実施例2−1〜2−5と比較例2−1と比較例2−2との触媒層温度と出口CO濃度との関係を表した図である。It is the figure showing the relationship between the catalyst layer temperature and exit CO density | concentration of Examples 2-1 to 2-5, Comparative Example 2-1, and Comparative Example 2-2. 従来から用いられている貴金属系触媒、銅系触媒、銅系触媒と貴金属系触媒とを分割配置した触媒の温度とCO濃度との関係を示す関係図である。It is a relationship figure which shows the relationship between the temperature and CO density | concentration of the catalyst which divided and arrange | positioned the noble metal catalyst conventionally used, the copper catalyst, and the copper catalyst and the noble metal catalyst.

符号の説明Explanation of symbols

10 CO除去触媒
11 銅系触媒
12 酸化物
13 貴金属
14 貴金属系触媒
20 燃料改質装置
21 原燃料
22 改質ガス
23 燃料改質触媒装置
24 CO変成装置
25 燃料ガス
26 CO除去装置
DESCRIPTION OF SYMBOLS 10 CO removal catalyst 11 Copper catalyst 12 Oxide 13 Precious metal 14 Precious metal catalyst 20 Fuel reformer 21 Raw fuel 22 Reformed gas 23 Fuel reformer catalyst device 24 CO shift device 25 Fuel gas 26 CO remover

Claims (11)

ガス中の一酸化炭素を選択的に酸化除去するCO除去触媒であって、
少なくとも一種類以上の銅系触媒又は貴金属系触媒の何れかを粉末状態で機械的に混合して組み合わせてなることを特徴とするCO除去触媒。
A CO removal catalyst for selectively oxidizing and removing carbon monoxide in a gas,
A CO removal catalyst comprising: at least one kind of copper-based catalyst or noble metal-based catalyst mixed in a powder state and combined.
請求項1において、
前記貴金属系触媒の貴金属の重量比が、触媒の全重量の0.05%以下であることを特徴とするCO除去触媒。
In claim 1,
A CO removal catalyst, wherein a weight ratio of the precious metal of the precious metal catalyst is 0.05% or less of the total weight of the catalyst.
請求項1又は2において、
前記銅系触媒が、
金属銅又は酸化銅からなる活性成分と、
前記活性成分を担持してなり、酸化アルミニウム、酸化セリウム、酸化ジルコニウム、酸化亜鉛、酸化鉛、酸化マンガン、酸化ニッケル、酸化チタン、酸化鉄、酸化バナジウム、酸化コバルト、酸化クロム、メタルシリケートの少なくとも一種以上の酸化物からなる担体とからなることを特徴とするCO除去触媒。
In claim 1 or 2,
The copper catalyst is
An active ingredient comprising metallic copper or copper oxide;
The active ingredient is supported and is at least one of aluminum oxide, cerium oxide, zirconium oxide, zinc oxide, lead oxide, manganese oxide, nickel oxide, titanium oxide, iron oxide, vanadium oxide, cobalt oxide, chromium oxide, and metal silicate. A CO removal catalyst comprising a carrier comprising the above oxide.
請求項1乃至3の何れか一つにおいて、
前記銅系触媒が、前記銅又は前記酸化銅を活性成分とするペロブスカイト型複合酸化物であることを特徴とするCO除去触媒。
In any one of Claims 1 thru | or 3,
A CO removal catalyst, wherein the copper-based catalyst is a perovskite complex oxide containing copper or the copper oxide as an active component.
請求項1乃至4の何れか一つのCO除去触媒が、DSS耐久性を有することを特徴とするCO除去触媒。   5. The CO removal catalyst according to claim 1, wherein the CO removal catalyst has DSS durability. 燃料電池用の炭化水素系の原燃料を改質ガスに改質する燃料改質触媒装置と、
前記燃料改質触媒装置で発生した一酸化炭素を変成するCO変成装置と、
残留する一酸化炭素を請求項1乃至5の何れか一つのCO除去触媒により除去して燃料ガスとするCO除去装置とからなることを特徴とする燃料改質装置。
A fuel reforming catalyst device for reforming hydrocarbon-based raw fuel for fuel cells into reformed gas;
A CO conversion device for converting carbon monoxide generated in the fuel reforming catalyst device;
A fuel reformer comprising: a CO removal device that removes residual carbon monoxide with the CO removal catalyst according to any one of claims 1 to 5 to obtain fuel gas.
請求項6の燃料改質装置と、一酸化炭素の変成されたガスを用いて発電する燃料電池とからなることを特徴とする燃料電池システム。   7. A fuel cell system comprising: the fuel reformer according to claim 6; and a fuel cell that generates electric power using a gas converted from carbon monoxide. 燃料電池用の炭化水素系の原燃料を改質した改質ガスに残留する一酸化炭素の除去を行うに際し、CO除去触媒として少なくとも一種類以上の銅系触媒又は貴金属系触媒の何れかを混合してなる触媒を用いて、改質ガスに残留する一酸化炭素の除去を行うことを特徴とするCO除去方法。   When removing carbon monoxide remaining in the reformed gas obtained by reforming hydrocarbon-based raw fuel for fuel cells, at least one copper-based catalyst or noble metal-based catalyst is mixed as a CO removal catalyst A CO removal method characterized in that carbon monoxide remaining in the reformed gas is removed using the catalyst formed. 請求項8において、
前記貴金属系触媒の貴金属の重量比を全触媒の重量の0.05%以下とすることを特徴とするCO除去方法。
In claim 8,
A method for removing CO, wherein a weight ratio of the precious metal of the precious metal catalyst is 0.05% or less of the weight of the total catalyst.
請求項8又は9において、
前記銅系触媒が、
金属銅又は酸化銅からなる活性成分と、
前記活性成分を担持してなり、酸化アルミニウム、酸化セリウム、酸化ジルコニウム、酸化亜鉛、酸化鉛、酸化マンガン、酸化ニッケル、酸化チタン、酸化鉄、酸化バナジウム、酸化コバルト、酸化クロム、メタルシリケートの少なくとも一種以上の酸化物からなる担体とからなることを特徴とするCO除去方法。
In claim 8 or 9,
The copper catalyst is
An active ingredient comprising metallic copper or copper oxide;
The active ingredient is supported and is at least one of aluminum oxide, cerium oxide, zirconium oxide, zinc oxide, lead oxide, manganese oxide, nickel oxide, titanium oxide, iron oxide, vanadium oxide, cobalt oxide, chromium oxide, and metal silicate. A CO removal method comprising a carrier comprising the above oxide.
請求項8乃至10の何れか一つにおいて、
前記銅系触媒が、前記銅又は前記酸化銅を活性成分とするペロブスカイト型複合酸化物であることを特徴とするCO除去方法。
In any one of claims 8 to 10,
The method for removing CO, wherein the copper-based catalyst is a perovskite complex oxide containing the copper or the copper oxide as an active component.
JP2007115996A 2007-04-25 2007-04-25 Co removing catalyst, fuel reforming apparatus, fuel cell system and co removing method Pending JP2008272614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007115996A JP2008272614A (en) 2007-04-25 2007-04-25 Co removing catalyst, fuel reforming apparatus, fuel cell system and co removing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007115996A JP2008272614A (en) 2007-04-25 2007-04-25 Co removing catalyst, fuel reforming apparatus, fuel cell system and co removing method

Publications (1)

Publication Number Publication Date
JP2008272614A true JP2008272614A (en) 2008-11-13

Family

ID=40051283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007115996A Pending JP2008272614A (en) 2007-04-25 2007-04-25 Co removing catalyst, fuel reforming apparatus, fuel cell system and co removing method

Country Status (1)

Country Link
JP (1) JP2008272614A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132895A1 (en) 2012-03-05 2013-09-12 トヨタ自動車株式会社 Oxidation catalyst and exhaust gas purification method using same
JP2016068039A (en) * 2014-09-30 2016-05-09 ダイハツ工業株式会社 Exhaust gas purification catalyst
JP2016068038A (en) * 2014-09-30 2016-05-09 ダイハツ工業株式会社 Exhaust gas purification catalyst
JPWO2017038397A1 (en) * 2015-08-31 2018-06-21 日立化成株式会社 Exhaust gas treatment device and gas trapping material deterioration state estimation method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107315A (en) * 1988-10-18 1990-04-19 Babcock Hitachi Kk Exhaust gas clean up catalyst and method for cleaning up exhaust gas
JPH09266005A (en) * 1996-03-29 1997-10-07 Toshiba Corp Solid high polymer fuel cell system
JPH11165070A (en) * 1997-12-02 1999-06-22 Nissan Motor Co Ltd Selective oxidation catalyst for co in gaseous hydrogen its production and removing method of co in gaseous hydrogen
JP2005034682A (en) * 2003-07-15 2005-02-10 Mitsubishi Heavy Ind Ltd Co modification catalyst and its production method
JP2005131584A (en) * 2003-10-31 2005-05-26 Ebara Corp Processing method and apparatus of gas containing co and h2
JP2006116372A (en) * 2004-10-19 2006-05-11 Seimi Chem Co Ltd Carbon monoxide selective oxidation catalyst
JP2006181482A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Carbon monoxide selective oxidation catalyst and its manufacturing method
JP2006341206A (en) * 2005-06-09 2006-12-21 Nissan Motor Co Ltd Carbon monoxide selective oxidation catalyst and its manufacturing method
JP2006346535A (en) * 2005-06-14 2006-12-28 Mitsubishi Heavy Ind Ltd Co removal catalyst and fuel cell system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02107315A (en) * 1988-10-18 1990-04-19 Babcock Hitachi Kk Exhaust gas clean up catalyst and method for cleaning up exhaust gas
JPH09266005A (en) * 1996-03-29 1997-10-07 Toshiba Corp Solid high polymer fuel cell system
JPH11165070A (en) * 1997-12-02 1999-06-22 Nissan Motor Co Ltd Selective oxidation catalyst for co in gaseous hydrogen its production and removing method of co in gaseous hydrogen
JP2005034682A (en) * 2003-07-15 2005-02-10 Mitsubishi Heavy Ind Ltd Co modification catalyst and its production method
JP2005131584A (en) * 2003-10-31 2005-05-26 Ebara Corp Processing method and apparatus of gas containing co and h2
JP2006116372A (en) * 2004-10-19 2006-05-11 Seimi Chem Co Ltd Carbon monoxide selective oxidation catalyst
JP2006181482A (en) * 2004-12-27 2006-07-13 Nissan Motor Co Ltd Carbon monoxide selective oxidation catalyst and its manufacturing method
JP2006341206A (en) * 2005-06-09 2006-12-21 Nissan Motor Co Ltd Carbon monoxide selective oxidation catalyst and its manufacturing method
JP2006346535A (en) * 2005-06-14 2006-12-28 Mitsubishi Heavy Ind Ltd Co removal catalyst and fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132895A1 (en) 2012-03-05 2013-09-12 トヨタ自動車株式会社 Oxidation catalyst and exhaust gas purification method using same
JP2016068039A (en) * 2014-09-30 2016-05-09 ダイハツ工業株式会社 Exhaust gas purification catalyst
JP2016068038A (en) * 2014-09-30 2016-05-09 ダイハツ工業株式会社 Exhaust gas purification catalyst
JPWO2017038397A1 (en) * 2015-08-31 2018-06-21 日立化成株式会社 Exhaust gas treatment device and gas trapping material deterioration state estimation method

Similar Documents

Publication Publication Date Title
Luengnaruemitchai et al. Selective catalytic oxidation of CO in the presence of H2 over gold catalyst
US8043530B2 (en) Fuel reformer catalyst
JP3759406B2 (en) Methanol reforming catalyst, methanol reforming apparatus and methanol reforming method
JP3743995B2 (en) Methanol reforming catalyst
EP1256545A1 (en) Apparatus for forming hydrogen
CA2446245A1 (en) Shift conversion on having improved catalyst composition
JP2008149313A (en) Catalyst for fuel reforming reaction and method for manufacturing hydrogen using the same
JP2001322803A (en) Conversion method of carbon monoxide in a gaseous mixture containing hydrogen and catalyst therefor
TW200846281A (en) Reforming catalyst for oxygen-containing hydrocarbon, method for producing hydrogen or synthetic gas using the same, and fuel cell system
TWI294413B (en) Method for converting co and hydrogen into methane and water
US20070140953A1 (en) Process conditions for Pt-Re bimetallic water gas shift catalysts
JP2007000703A (en) Reforming catalyst, method of manufacturing reforming catalyst and fuel cell system
WO2010117990A2 (en) Self sustained electrochemical promotion catalysts
JP2008272614A (en) Co removing catalyst, fuel reforming apparatus, fuel cell system and co removing method
JP2006239551A (en) Co methanizing catalyst, co removing catalyst device and fuel cell system
JP2012061398A (en) Catalyst for producing hydrogen, method for manufacturing the catalyst, and method for producing hydrogen by using the catalyst
JP2005066516A (en) Catalyst for reforming dimethyl ether and synthesizing method therefor
JP2006346535A (en) Co removal catalyst and fuel cell system
JP2005238025A (en) Fuel reforming catalyst and fuel reforming system using the same
JP2005034682A (en) Co modification catalyst and its production method
JP2006341206A (en) Carbon monoxide selective oxidation catalyst and its manufacturing method
JP2006252929A (en) Co modification catalyst for dss operating fuel cell, its manufacturing method, and fuel cell system
WO2005061108A1 (en) A water gas shift catalyst on a lanthanum-doped anatase titanium dioxide support for fuel cells application
JP2006008434A (en) Hydrogen generating unit, fuel cell electricity generating system, and hydrogen generating method
JP4663095B2 (en) Hydrogen purification equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205