JP2635105B2 - Catalyst for partial oxidation of hydrocarbons - Google Patents

Catalyst for partial oxidation of hydrocarbons

Info

Publication number
JP2635105B2
JP2635105B2 JP63150133A JP15013388A JP2635105B2 JP 2635105 B2 JP2635105 B2 JP 2635105B2 JP 63150133 A JP63150133 A JP 63150133A JP 15013388 A JP15013388 A JP 15013388A JP 2635105 B2 JP2635105 B2 JP 2635105B2
Authority
JP
Japan
Prior art keywords
catalyst
partial oxidation
present
gas
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63150133A
Other languages
Japanese (ja)
Other versions
JPH01317539A (en
Inventor
清高 植原
真一 松永
秀昭 村木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYATARAA KOGYO KK
Toyota Central R&D Labs Inc
Original Assignee
KYATARAA KOGYO KK
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYATARAA KOGYO KK, Toyota Central R&D Labs Inc filed Critical KYATARAA KOGYO KK
Priority to JP63150133A priority Critical patent/JP2635105B2/en
Publication of JPH01317539A publication Critical patent/JPH01317539A/en
Application granted granted Critical
Publication of JP2635105B2 publication Critical patent/JP2635105B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ブタン等の炭化水素を水素,一酸化炭素に
部分酸化するための触媒に関する。
Description: TECHNICAL FIELD The present invention relates to a catalyst for partially oxidizing hydrocarbons such as butane to hydrogen and carbon monoxide.

〔従来の技術〕[Conventional technology]

ギヤ,ベアリング等の鋼製部品の表面硬化法として、
近年ガス浸炭法による硬化法が広く行なわれている。
As a method of hardening steel parts such as gears and bearings,
In recent years, a hardening method by a gas carburizing method has been widely performed.

この表面硬化法は、約900℃の浸炭炉中に被処理材と
しての鋼製品を配置するとともに、この中へ水素と、一
酸化炭素とを含有する浸炭用ガスを導入し、鋼製部分の
表面部分に炭素を固溶したオーステナイトの硬い層を形
成させる方法である。しかして、上記の浸炭用ガスは、
一般に、メタン,エタン,プロパン,ブタン,天然ガス
等の炭化水素と空気とを、ムライト,アルミナ,マグネ
シア担体等の担体にNi,Co,Baを担持させた触媒の存在下
に、部分酸化反応させて製造している(特開昭58−2097
46号公報、特開昭60−212229号公報等参照)。
In this surface hardening method, a steel product as a material to be treated is placed in a carburizing furnace at about 900 ° C., and a carburizing gas containing hydrogen and carbon monoxide is introduced into the steel product to form a steel part. This is a method of forming a hard layer of austenite in which carbon is dissolved in the surface portion. Thus, the above carburizing gas is
In general, hydrocarbons such as methane, ethane, propane, butane, and natural gas and air are subjected to a partial oxidation reaction in the presence of a catalyst in which Ni, Co, and Ba are supported on a carrier such as mullite, alumina, and magnesia. (JP-A-58-2097)
No. 46, JP-A-60-212229, etc.).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前記の触媒のうちのNi触媒を用いた部分酸化反応は、
ガス変成炉において、1100〜1200℃という高温下におい
て行なうので、ガス変成炉の操作、耐久性に問題があ
る。また、浸炭炉の温度は、前記のように約900℃であ
るので、1100〜1200℃の高温下で発生させたガスを約90
0℃の温度まで冷却して使用に供せねばならず、熱エネ
ルギーの面においても問題がある。さらに、Ni触媒の存
在下における反応を、900℃〜1000℃という低温下にお
こなうと、触媒上に炭素が析出したり、活性が低下し、
所望の浸炭用ガスを製造することができない。
Partial oxidation reaction using Ni catalyst among the above catalysts,
Since the gas shift furnace is performed at a high temperature of 1100 to 1200 ° C., there is a problem in the operation and durability of the gas shift furnace. Further, since the temperature of the carburizing furnace is about 900 ° C. as described above, the gas generated at a high temperature of 1100 to 1200 ° C. is about 90 ° C.
It must be cooled to a temperature of 0 ° C. before use, and there is a problem in terms of thermal energy. Furthermore, when the reaction in the presence of the Ni catalyst is performed at a low temperature of 900 ° C. to 1000 ° C., carbon is deposited on the catalyst or the activity is reduced,
The desired carburizing gas cannot be produced.

また、Co、Ba触媒を用いた部分酸化反応は、この反応
を1000℃以下で行なうが、ガスの発生量を多く採取しよ
うとすると、反応に必要な熱エネルギーが確保できなく
なり、触媒上に炭素が析出したり、崩壊したり活性が低
下して、所望の浸炭用ガスを得ることができない。
In addition, the partial oxidation reaction using a Co or Ba catalyst is carried out at a temperature of 1000 ° C. or lower.However, if a large amount of gas is generated, the heat energy required for the reaction cannot be secured, and the carbon Precipitates, disintegrates, or reduces the activity, making it impossible to obtain a desired carburizing gas.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、かかる従来技術の問題点を解決し、1000℃
以下の低温で、かつガス発生量の大少にかかわりなく効
率よく炭化水素を部分酸化し得る触媒を提供するもので
ある。しかして、本発明の炭化水素の部分酸化用触媒
は、MgAl2O4スピネルが70モル%以上と、Al2O3および/
またはMgOが30モル%以下とから成る担体に、該担体に
対して0.05〜12重量%のZrと2〜12重量%のNiおよび/
またはCoとを担持させてなるものである。
The present invention solves the above-mentioned problems of the prior art, and is 1000 ° C.
An object of the present invention is to provide a catalyst capable of efficiently partially oxidizing hydrocarbons at the following low temperature and regardless of the amount of generated gas. Thus, the catalyst for partial oxidation of hydrocarbons of the present invention has a MgAl 2 O 4 spinel content of 70 mol% or more, Al 2 O 3 and / or
Alternatively, a carrier composed of 30 mol% or less of MgO is added to the carrier by 0.05 to 12% by weight of Zr and 2 to 12% by weight of Ni and / or
Alternatively, it is made to carry Co.

本発明における担体は、MgAl2O4スピネルが70モル%
以上と、Al2O3および/またはMgOが30モル%以下とから
なる。Al2O3および/またはMgOが30モル%をこえる場
合、スピネルの存在による効果を達成できず、触媒活性
が低下し、触媒上に炭素が析出する恐れがあるので、Al
2O3および/またはMgOは30モル%以下である必要があ
る。なお、Al2O3,MgOが全く存在しない場合でも上記の
効果を達成することができる。また、上記担体の平均細
孔径は0.01〜4μmであることが好ましい。
The support in the present invention is composed of 70 mol% of MgAl 2 O 4 spinel.
As described above, the content of Al 2 O 3 and / or MgO is 30 mol% or less. If the content of Al 2 O 3 and / or MgO exceeds 30 mol%, the effect of the presence of spinel cannot be achieved, the catalytic activity decreases, and carbon may be deposited on the catalyst.
2 O 3 and / or MgO must be at most 30 mol%. Note that the above effects can be achieved even when Al 2 O 3 and MgO are not present at all. Further, it is preferable that the average pore diameter of the carrier is 0.01 to 4 μm.

上記担体に対して0.05〜12重量%のZrと2〜12重量%
のNiおよび/またはCoとを担持するが、上記の下限より
も少量であると触媒活性が低く、一方、上記の上限より
多量であると、それに見合うだけの活性の向上がみられ
ず経済的に不利である。
0.05 to 12% by weight of Zr and 2 to 12% by weight based on the above carrier
Ni and / or Co are supported, but if the amount is less than the above lower limit, the catalytic activity is low, while if the amount is more than the above upper limit, the activity is not improved to the extent that it is economical. Disadvantageous.

〔作用〕[Action]

本発明の構成をとることにより、本発明の炭化水素の
部分酸化用触媒は、1000℃以下の低温下で使用しても触
媒表面に炭素が析出して触媒の活性が低下することがな
く、耐久性においてもすぐれたものとなる。
By adopting the configuration of the present invention, the catalyst for partial oxidation of hydrocarbons of the present invention does not reduce the activity of the catalyst by depositing carbon on the catalyst surface even when used at a low temperature of 1000 ° C or less, It is also excellent in durability.

また、本発明の触媒は、その担体としてのアルミナマ
グネシアスピネルを含有しているので機械的強度も高い
ものとなる。また、本発明の触媒は、一般のアルミナ担
体の場合のように、アルミナの結晶構造の変化を生ずる
ことがなく、該変化に伴う表面積の減少,強度の低下が
ない。したがって、本発明の触媒は触媒活性の低下がな
く、すぐれた耐久性を発揮する。
Further, the catalyst of the present invention has high mechanical strength because it contains alumina magnesia spinel as its carrier. Further, the catalyst of the present invention does not cause a change in the crystal structure of alumina, unlike a general alumina carrier, and does not cause a decrease in surface area and a decrease in strength due to the change. Therefore, the catalyst of the present invention does not decrease in catalytic activity and exhibits excellent durability.

〔実施例〕〔Example〕

平均粒径0.7μのγ−アルミナ粉末と平均粒径4.5μ以
下のマグネシア粉末とを第1表に示す割合(モル%)で
混合し、直径約3mmの球状ペレットに成形した。つぎ
に、このペレットを1320℃で6時間焼成し、多孔質の担
体を得た。
Γ-alumina powder having an average particle size of 0.7 μm and magnesia powder having an average particle size of 4.5 μm or less were mixed at the ratio (mol%) shown in Table 1 to form spherical pellets having a diameter of about 3 mm. Next, the pellet was fired at 1320 ° C. for 6 hours to obtain a porous carrier.

この担体を、所定濃度の硝酸ニッケルおよび/または
硝酸コバルト水溶液に浸漬し、110℃で6時間乾燥さ
せ、さらに空気中600℃で3時間焼成して担体上にニッ
ケルを担持した。つぎに、所定濃度の硝酸ジルコニウム
水溶液に上記のニッケルおよび/またはコバルト担持担
体を浸漬し、上記と同様にしてジルコニウムを担持し、
本発明の触媒を調製した。以上の方法で第2表に示す触
媒を調製した。
This carrier was immersed in an aqueous solution of nickel nitrate and / or cobalt nitrate at a predetermined concentration, dried at 110 ° C. for 6 hours, and further baked in air at 600 ° C. for 3 hours to support nickel on the carrier. Next, the nickel and / or cobalt supporting carrier is immersed in an aqueous solution of zirconium nitrate having a predetermined concentration, and zirconium is supported in the same manner as described above.
The catalyst of the present invention was prepared. In the manner described above, the catalysts shown in Table 2 were prepared.

また、比較のために、上記の触媒調製条件のうち、Zr
とCoまたはNiとを担持しなかった触媒(S1およびS2)、
NiとCoとを担持しなかった触媒(S3)および担体として
α−アルミナ(担体No.C1)を用いた触媒(S4および
S5)についても調製し、これらについても第2表に示し
た。
For comparison, Zr among the above catalyst preparation conditions was used.
Catalysts not carrying and Co or Ni (S 1 and S 2 ),
A catalyst not supporting Ni and Co (S 3 ) and a catalyst using α-alumina (support No. C 1 ) as a support (S 4 and
S 5 ) was also prepared and these are also shown in Table 2.

つぎに、触媒の活性を評価するために、上記の触媒を
石英反応管に充填し、その周囲に電気炉を配し、ブタン
の部分酸化反応をおこなった。反応にあたっては、ブタ
ンガスおよび空気の混合ガスを用い、ブタンガスおよび
空気を空間速度12000/時および24000/時で夫々反応管内
に送入した。ここに空気量としては、ブタンを一酸化炭
素と水素とに酸化するのに要する量(理論空気量)の1.
025倍を用いた。また、反応温度は930℃に設定した。
Next, in order to evaluate the activity of the catalyst, the above catalyst was filled in a quartz reaction tube, an electric furnace was placed around the tube, and a partial oxidation reaction of butane was performed. In the reaction, a mixed gas of butane gas and air was used, and butane gas and air were fed into the reaction tube at a space velocity of 12000 / hour and 24000 / hour, respectively. Here, the amount of air is 1. of the amount required to oxidize butane to carbon monoxide and hydrogen (theoretical air amount).
025 times was used. The reaction temperature was set at 930 ° C.

反応終了後、ガスクロマトグラフィーにより、生成ガ
ス中の水素(H2)、一酸化炭素(CO)、メタン(C
H4)、二酸化炭素(CO2)、酸素(O2)および窒素
(N2)を測定した。その結果、第2表に示すいずれの触
媒(No.1〜15およびS1〜S5)を用いた場合も、生成ガス
中には、H229〜30容量%、CO23〜24容量%、O20.39〜0.
41%およびN246〜48容量%が含まれていたが、CH4とCO2
とについては、触媒毎に異なる値を示した。この触媒毎
に異なる生成ガス中のCH4とCO2の量につき第3表に示し
た。第3表に示すCH4とCO2の値が部分酸化反応における
各触媒の部分酸化能力を示す。すなわち、第3表におい
て、CH4とCO2の量が少ないほど、触媒の部分酸化能力が
高いことを示している。その理由は、活性能力が低い触
媒は、ブタンが熱分解してしまうのでCH4とCO2の量が多
くなるからである。
After completion of the reaction, hydrogen (H 2 ), carbon monoxide (CO), methane (C
H 4 ), carbon dioxide (CO 2 ), oxygen (O 2 ) and nitrogen (N 2 ) were measured. As a result, when any of the catalysts (Nos. 1 to 15 and S 1 to S 5 ) shown in Table 2 was used, 29 to 30% by volume of H 2 , 23 to 24% by volume of CO, O 2 0.39-0.
41% and N 2 46 to 48% by volume was included but, CH 4 and CO 2
Regarding and, different values were shown for each catalyst. Table 3 shows the amounts of CH 4 and CO 2 in the product gas which differ for each catalyst. The values of CH 4 and CO 2 shown in Table 3 indicate the partial oxidation ability of each catalyst in the partial oxidation reaction. That is, Table 3 shows that the smaller the amount of CH 4 and CO 2 , the higher the partial oxidation ability of the catalyst. The reason is that a catalyst having a low activity capacity has a large amount of CH 4 and CO 2 because butane is thermally decomposed.

第3表に示す結果から明らかのように、本発明の実施
例にかかる触媒(No.1〜15)は、いずれもCH4生成量が
極く微量でCO2の生成量も少く、優れた活性を有するこ
とがわかった。また、本発明の触媒は、その後数時間上
記反応に供したが、活性には殆んど変化がなかった。さ
らに、本発明の触媒は、上記に示すような低温反応にお
いても、触媒上への炭素析出がみられなかった。
As is clear from the results shown in Table 3, all of the catalysts (Nos. 1 to 15) according to the examples of the present invention had an extremely small amount of CH 4 production, a small amount of CO 2 production, and were excellent. Was found to have activity. Further, the catalyst of the present invention was subjected to the above reaction for several hours thereafter, but the activity was hardly changed. Further, the catalyst of the present invention did not show carbon deposition on the catalyst even in the low-temperature reaction as described above.

これに対して、S1およびS2(比較例)の触媒は、Zr化
合物が存在していないので、空間速度が増加すると、反
応が十分におこなわれず、したがってCH4とCOの生成量
が多く、部分酸化活性が低いことがわかった。また、S3
(比較例)の触媒は、Zr化合物とMgAl2O4スピネルが共
存しているものの、Ni化合物もしくはCo化合物が存在し
ていないので活性が低かった。さらに、S4およびS5(比
較例)の触媒は、MgAl2O4スピネルが存在していないた
めに活性が低かった。
On the other hand, the catalysts of S 1 and S 2 (Comparative Example) do not react sufficiently when the space velocity is increased because the Zr compound is not present, so that the amounts of generated CH 4 and CO are large. It was found that the partial oxidation activity was low. Also, S 3
The catalyst of Comparative Example had a low activity because the Zr compound and MgAl 2 O 4 spinel coexisted, but no Ni compound or Co compound was present. Furthermore, the catalysts of S 4 and S 5 (Comparative Example) had low activity due to the absence of MgAl 2 O 4 spinel.

上記に述べたように、本発明の触媒を用いた場合には
CH4の副生量が極めて少い。したがって、本発明の触媒
は特にCH4の量の極力少いことが要求される浸炭用ガス
製造用の触媒として優れていることが判明した。
As described above, when the catalyst of the present invention is used,
CH 4 by-product is extremely small. Therefore, it has been found that the catalyst of the present invention is particularly excellent as a catalyst for producing a carburizing gas which requires a minimum amount of CH 4 .

なお、他の比較例として、ムライト(Al4Si2O13)の
担体に7.7%のNiを担持した従来のニッケル触媒を用い
て上記と同様の条件で部分酸化反応をおこなった。その
結果、生成ガス中のCH4およびCO2の量は、夫々1.97容量
%および0.49容量%を極めて多く、また、触媒表面に炭
素が析出し、触媒の活性および耐久性の何れも悪かっ
た。
As another comparative example, a partial oxidation reaction was carried out under the same conditions as above using a conventional nickel catalyst having 7.7% Ni supported on a mullite (Al 4 Si 2 O 13 ) carrier. As a result, the amounts of CH 4 and CO 2 in the produced gas were extremely large at 1.97% by volume and 0.49% by volume, respectively, and carbon was deposited on the catalyst surface, and both the activity and durability of the catalyst were poor.

〔発明の効果〕 本発明は、メタン、エタン、プロパン、ブタン、天然
ガス等の炭化水素を、1000℃以下の低温で、かつガス発
生量の大小にかかわりなく、効率よく水素,一酸化炭素
に部分酸化することができる触媒を提供し得るものであ
る。
[Effect of the Invention] The present invention efficiently converts hydrocarbons such as methane, ethane, propane, butane, and natural gas into hydrogen and carbon monoxide at a low temperature of 1000 ° C or less and regardless of the amount of generated gas. It is possible to provide a catalyst that can be partially oxidized.

また、本発明の触媒は、前記のような浸炭用ガスの製
造用として特に優れているが、これのみに限定されるこ
となく、金属粉末焼結時に用いる還元性雰囲気ガス,内
燃機関用燃料ガス等の製造に用いてもすぐれた効果を発
揮することができる。
Further, the catalyst of the present invention is particularly excellent for producing the carburizing gas as described above, but is not limited thereto. Excellent effects can be exhibited even when used in the production of such as.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村木 秀昭 愛知県愛知郡長久手町大字長湫字横道41 番地の1 株式会社豊田中央研究所内 (56)参考文献 特開 昭63−74902(JP,A) 特開 昭60−212229(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor: Hideaki Muraki 41-1 Ochimichi, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. (56) References JP-A-60-212229 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】MgAl2O4スピネルが70モル%以上と、Al2O3
および/またはMgOが30モル%以下とから成る担体に、
該担体に対して0.05〜12重量%のZrと2〜12重量%のNi
および/またはCoとを担持させてなる炭化水素の部分酸
化用触媒。
(1) When the content of MgAl 2 O 4 spinel is 70 mol% or more, Al 2 O 3
And / or a carrier comprising 30 mol% or less of MgO,
0.05 to 12% by weight of Zr and 2 to 12% by weight of Ni
And / or a catalyst for partially oxidizing hydrocarbons carrying Co.
JP63150133A 1988-06-20 1988-06-20 Catalyst for partial oxidation of hydrocarbons Expired - Lifetime JP2635105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63150133A JP2635105B2 (en) 1988-06-20 1988-06-20 Catalyst for partial oxidation of hydrocarbons

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63150133A JP2635105B2 (en) 1988-06-20 1988-06-20 Catalyst for partial oxidation of hydrocarbons

Publications (2)

Publication Number Publication Date
JPH01317539A JPH01317539A (en) 1989-12-22
JP2635105B2 true JP2635105B2 (en) 1997-07-30

Family

ID=15490206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63150133A Expired - Lifetime JP2635105B2 (en) 1988-06-20 1988-06-20 Catalyst for partial oxidation of hydrocarbons

Country Status (1)

Country Link
JP (1) JP2635105B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170335A (en) * 2011-12-26 2013-06-26 韩国化学研究院 Effective carbon dioxide conversion catalyst and preparing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06198168A (en) * 1992-11-10 1994-07-19 Sumitomo Chem Co Ltd Catalyst for aldol condensation dehydration, its production, and production of aldol condensation dehydrate
CN103386307B (en) * 2012-05-08 2015-05-20 中国科学院过程工程研究所 Preparation method for Ni-Mg/Al2O3 catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170335A (en) * 2011-12-26 2013-06-26 韩国化学研究院 Effective carbon dioxide conversion catalyst and preparing method thereof

Also Published As

Publication number Publication date
JPH01317539A (en) 1989-12-22

Similar Documents

Publication Publication Date Title
JP4216067B2 (en) How to generate a gas rich in hydrogen
JP4317706B2 (en) Metal catalyst and method for preparing and using the same
JP3329839B2 (en) Catalyst for steam reforming of hydrocarbons
WO2003078309A1 (en) Controlled-pore catalyst structures and process for producing synthesis gas
JPH01272534A (en) Production of monoolefin by catalytic oxydehydrogenation of gaseous paraffinic hydrocarbon having two or more carbon atoms
JPH0510133B2 (en)
JP2013255911A (en) Catalyst for producing synthesis gas and production method of synthesis gas
GB2048102A (en) Catalyst for steam reforming of hydrocarbons
JP2002535119A (en) Catalyst carrier supporting nickel, ruthenium and lanthanum
JP2635105B2 (en) Catalyst for partial oxidation of hydrocarbons
JPS63248444A (en) Steam reforming and/or partial oxidation catalyst for hydrocarbon
JPS6012132A (en) Heat resistant catalyst and use thereof
JPH0459052A (en) Catalyst for steam reforming
JPH05168924A (en) Steam reforming catalyst
JPS6128451A (en) Catalyst for steam reforming of hydrocarbon
JP2003519106A (en) Olefin production method
US11691128B2 (en) Thermally stable monolith catalysts for methane reforming and preparing method of the same
JPH0510132B2 (en)
JPS58207946A (en) Catalyst for partial oxidation of hydrocarbon and its manufacture
JPS6035176B2 (en) Steam reforming catalyst and its manufacturing method
JPH0566883B2 (en)
Li et al. CO 2 reforming of methane over zirconia-supported nickel catalysts, I. Catalytic specificity
RU2191625C1 (en) Chromium-containing catalyst and method of its production (versions)
JPS6114861B2 (en)
JPH03106445A (en) Catalyst for preparing ammonia

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12