JPH0510132B2 - - Google Patents

Info

Publication number
JPH0510132B2
JPH0510132B2 JP59070609A JP7060984A JPH0510132B2 JP H0510132 B2 JPH0510132 B2 JP H0510132B2 JP 59070609 A JP59070609 A JP 59070609A JP 7060984 A JP7060984 A JP 7060984A JP H0510132 B2 JPH0510132 B2 JP H0510132B2
Authority
JP
Japan
Prior art keywords
catalyst
carrier
mgo
amount
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59070609A
Other languages
Japanese (ja)
Other versions
JPS60212229A (en
Inventor
Yoshasu Fujitani
Hideaki Muraki
Makoto Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP59070609A priority Critical patent/JPS60212229A/en
Publication of JPS60212229A publication Critical patent/JPS60212229A/en
Publication of JPH0510132B2 publication Critical patent/JPH0510132B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ブタン等の炭化水素を水素、一酸化
炭素に部分酸化するための触媒に関する。 ギヤー等の鋼製部分の表面硬化法として、近年
ガス浸炭法が広く行なわれている。この表面硬化
法は、約900℃の浸炭炉中に被処理材としての鋼
製品を配置すると共に、この中へ水素と一酸化炭
素とを含有する浸炭用ガスを導入し、鋼製部品の
表面部分に炭素を固溶したオーステナイトの硬い
層を形成させる方法である。しかして、上記浸炭
用ガスは、一般にブタン、天然ガス等の炭化水素
と空気とをニツケル触媒下に反応させて製造して
いる。 しかしながら、この方法は1100〜1200℃という
高温下において行なうため、ガス発生炉の操作、
耐久性に問題がある。また、浸炭炉の温度は上記
のごとく900℃程度であるため、上記高温下で発
生した高温のガスはこれを冷却して使用に供さね
ばならず、熱エネルギーの面においても問題があ
る。更に、上記ニツケル触媒下の反応を900〜
1000℃という低温下で行なう場合には、触媒上に
炭素が析出したり、活性が低下し、所望する浸炭
用ガスを得ることが出来ない。 本発明は、かかる問題点を克服すべくなされた
もので、1000℃以下という低温においても効率良
く炭化水素を部分酸化することができる触媒を提
供しようとするものである。 即ち、本発明の炭化水素の部分酸化用触媒は、
アルミナ・マグネシアスピネルと30モル%以下の
アルミナ、マグネシアの一方または双方とから成
り、平均孔径が0.01〜2μの多孔質体である担体
に、ニツケルあるいはコバルトの一方または双方
を担持して成ることを特徴とするものである。 本発明によれば、天然ガス、メタン、エタン、
プロパン、ブタン等の炭化水素を、1000℃以下と
いう低温において、効率良く水素、一酸化炭素に
部分酸化することができる触媒を提供することが
できる。また、この触媒はかかる低温下で使用し
ても、触媒表面に炭素が析出せず、耐久性にも優
れている。また、この触媒は前記のごとき浸炭用
ガスの製造に限らず、金属粉末焼結時に用いる還
元性雰囲気ガス、内燃機関用燃料ガス等の製造に
用いることが出来る。 また、本発明にかかる触媒は、その担体として
のアルミナ・マグネシアスピネルを含有している
ため、機械的強度も高い。また一般のアルミナ担
体の場合のように、アルミナの結晶構造の変化を
生ぜず、該変化に伴なう表面積の減少、強度の低
下がなく、触媒活性の耐久性に優れた効果を発揮
する。 本発明において担体は、アルミナ・マグネシア
(MgAl2O4)スピネルとアルミナ(Al2O3)、マグ
ネシア(MgO)の一方または双方とから成る。
しかして、該担体中におけるMgAl2O4スピネル
は70モル%以上を占め、一方、Al2O3とMgOの一
方または双方は担体中に30モル%以下において存
在することが必要である。Al2O3とMgOの合計量
が30モル%を越える場合には、前記のごとき、ス
ピネルの存在による効果を達成できず、触媒活性
が低下し、触媒上に炭素が析出するおそれがあ
る。なお、Al2O3およびMgOがほとんど存在しな
い場合であつても上記効果を達成することができ
る。 また、上記担体は、その平均孔径が0.01〜2μの
多孔質体である。かかる範囲の多孔質体は、本発
明の触媒の活性をより一層向上させることができ
る。 なお、上記担体に担持するニツケルあるいはコ
バルトの一方または双方は、触媒成分として働く
ものである。しかして、担体に対する触媒成分の
全担持量は2〜12重量%(以下wt%とする)の
範囲とすることが好ましい。該担持量が2wt%よ
り少ない場合浄化活性が低くなり、また12wt%
を越える場合担持量に見合うだけの活性の向上が
見られない。 次に、本発明の触媒を調製する方法について説
明する。まず、前記のごとき担体としての多孔質
体を製造する方法としては、Al2O3粉末とMgO粉
末との混合粉末の成形体を加熱して、両者を反応
させ焼成する方法がある。 上記において、混合粉末の成形体は1000〜1600
℃の範囲において加熱焼成する。1000℃よりも低
い温度では焼成で十分でないと共にMgAl2O4
ピネルの生成量が少なく、担体の強度が弱い。ま
た、1600℃より高くなると、MgAl2O4スピネル
の粒子が成長しすぎて細孔容積量が減少してしま
う。この場合、1200〜1600℃の範囲において焼成
するときには、より優れた耐熱性、強度を有する
担体を得ることができる。 上記のスピネルは、Al2O3とMgOとが等モル量
反応して生成するのであるから、混合粉末中に
Al2O3あるいはMgOを等モル量より過剰に配合し
ておくことにより、Al2O3あるいはMgOを加熱焼
結後の担体中に残存させることができる。また、
Al2O3およびMgOを未反応のまま残存させること
により、担体中にAl2O3およびMgOの双方を含有
させることができる。なお、Al2O3とMgOとの等
モル量は、重量比で示すとMgOに対するAl2O3
(Al2O3/MgO)の量が2.5重量倍の場合に相当す
る。 上記に関して具体例を示せば、第1表の担体No.
1に示すように、α−Al2O3粉末42モル%とMgO
粉末58モル%の混合粉末を焼結することにより、
α−Al2O3はMgOと完全に反応し、過剰のMgO
が担体中に残存する。しかして、担体中には
MgAl2O4スピネル72モル%、MgO28モル%を占
めるようになる。 また、平均孔径が0.01〜2μの多孔質体を得るた
めには、Al2O3粉末として0.01〜2μの平均粒径を
有するものを用いる。ここに「粒径」とは重量平
均粒径を意味する。また、上記Al2O3はα(アル
フア)−Al2O3の他の、γ(ガンマ)−Al2O3等の
Al2O3も使用することができる。Al2O3粉末と混
合するMgO粉末は、焼結多孔質体中においてAl2
O3粉末の最適な接合剤とも言うべきもので、そ
の粒径は特に限定するものではないが、Al2O3
末とほぼ均等に混合し合い、Al2O3とスピネルを
形成すると共に得られる担体の孔径をほぼ均一な
ものとするためには、0.1〜500μの粒径のものを
用いるのが好ましい。 次に、前記混合粉末の焼成に当つては、上記混
合粉末に少量のデキストリン等の有機糊を添加、
混合し、これらの混合物を錠剤成形機等により所
望の大きさに成形し、これを電気炉等により焼成
する。 なお、前記混合粉末の成形は、粒状、柱状、ハ
ニカム状等所望の形状に行なう。 上記担体に前記の触媒成分たるニツケルあるい
はコバルトの一方または双方を担持させるに当つ
ては、通常の触媒成分の担持の場合と同様に行な
い、例えば、硝酸ニツケル、硫酸ニツケル、塩化
ニツケル、硝酸コバルト、硫酸コバルト、塩化コ
バルト等の触媒成分を形成するための原料の溶液
中に、上記担体を浸漬し、乾燥、焼成する。 以下、本発明の実施例を説明する。 実施例 平均粒径1μのα−アルミナ(Al2O3)粉末と、
平均粒径1μのマグネシア(MgO)粉末とを第1
表に示すような割合(モル%)で混合し、これに
少量の水を加えて十分に混合して、マルメライザ
−(錠剤成形機)により、約3mmの直径を有する
球状ペレツトに成形した。次に、上記ペレツトを
電気乾燥器に入れ、1350℃で加熱、焼結し、担体
としての多孔質体(担体No.1〜6)を作製した。 また、比較のため、Al2O3とMgOとの合計量が
30モル%を越えて含有している比較用多孔質焼結
体(担体No.C1,C2)も上記と同様にして作製し
た。また、上記α−Al2O3の代わりに平均細孔径
100Åのγ−Al2O3を使用し、それ以外は上記と
同様にして比較用多孔質焼結体(担体No.C4)を
作製した。さらに、上記平均粒径1μのα−Al2O3
の代わりに平均粒径10μのα−Al2O3を使用し、
それ以外は上記と同様にして比較用多孔質焼結体
(担体No.C5)も作製した。 第1表に、これら担体についてMgAl2O4スピ
ネルとAl2O3,MgOとの比率等の性質を示し、更
に比較触媒を作製するための市販のα−Al2O3
性質についても示した。なお、同表において、細
孔容積は担体1g当りの細孔の容量(cm3)を、
BET表面積とは担体1g当りの窒素吸着量より
求めた表面積(m2)をいう。 次に、所定濃度の硝酸ニツケルの水溶液、硝酸
コバルトの水溶液あるいはそれらの混合水溶液に
上記担体を浸漬し、乾燥後、600℃、空気中で3
時間焼成し、第2表に示すような担持割合でニツ
ケルあるいはコバルトの一方または双方を担持さ
せて、本発明にかかる触媒(触媒No.1〜15)を調
製した。 また、比較のため、比較用担体(担体No.C1,
C2,C4,C5)およびα−Al2O3担体(担体No.C3)
についても、上記と同様に、第2表に示すような
担持割合で比較用触媒(触媒No.S1〜S8)を調製
した。
The present invention relates to a catalyst for partially oxidizing hydrocarbons such as butane to hydrogen and carbon monoxide. In recent years, gas carburizing has been widely used as a surface hardening method for steel parts such as gears. In this surface hardening method, the steel product to be treated is placed in a carburizing furnace at approximately 900°C, and a carburizing gas containing hydrogen and carbon monoxide is introduced into the carburizing furnace. This method forms a hard layer of austenite containing carbon as a solid solution. The carburizing gas is generally produced by reacting a hydrocarbon such as butane or natural gas with air under a nickel catalyst. However, since this method is carried out at a high temperature of 1100 to 1200°C, the operation of the gas generator,
There is a problem with durability. Furthermore, since the temperature of the carburizing furnace is about 900° C. as mentioned above, the high-temperature gas generated at the above-mentioned high temperature must be cooled before use, which also poses a problem in terms of thermal energy. Furthermore, the reaction under the above-mentioned nickel catalyst was carried out at 900~
If the process is carried out at a low temperature of 1000°C, carbon may be deposited on the catalyst or the activity may be reduced, making it impossible to obtain the desired carburizing gas. The present invention was made to overcome these problems, and aims to provide a catalyst that can efficiently partially oxidize hydrocarbons even at low temperatures of 1000° C. or lower. That is, the catalyst for partial oxidation of hydrocarbons of the present invention is
A porous carrier consisting of alumina/magnesia spinel and 30 mol% or less of alumina and/or magnesia and having an average pore diameter of 0.01 to 2μ supports one or both of nickel and cobalt. This is a characteristic feature. According to the invention, natural gas, methane, ethane,
It is possible to provide a catalyst that can efficiently partially oxidize hydrocarbons such as propane and butane to hydrogen and carbon monoxide at a low temperature of 1000° C. or lower. Furthermore, even when this catalyst is used at such low temperatures, no carbon is deposited on the catalyst surface, and it has excellent durability. In addition, this catalyst can be used not only for producing carburizing gas as described above, but also for producing reducing atmosphere gas used in metal powder sintering, fuel gas for internal combustion engines, and the like. Furthermore, since the catalyst according to the present invention contains alumina/magnesia spinel as a carrier, it also has high mechanical strength. Furthermore, unlike in the case of general alumina carriers, the crystal structure of alumina does not change, and there is no decrease in surface area or strength due to such changes, and it exhibits an excellent effect on the durability of catalytic activity. In the present invention, the carrier is composed of an alumina-magnesia (MgAl 2 O 4 ) spinel and one or both of alumina (Al 2 O 3 ) and magnesia (MgO).
Therefore, MgAl 2 O 4 spinel in the carrier should account for 70 mol % or more, while one or both of Al 2 O 3 and MgO should be present in the carrier in an amount of 30 mol % or less. If the total amount of Al 2 O 3 and MgO exceeds 30 mol %, the above-mentioned effects due to the presence of spinel cannot be achieved, the catalyst activity decreases, and there is a risk that carbon may be deposited on the catalyst. Note that the above effect can be achieved even when almost no Al 2 O 3 and MgO are present. Further, the above-mentioned carrier is a porous material having an average pore diameter of 0.01 to 2μ. A porous body within this range can further improve the activity of the catalyst of the present invention. Incidentally, one or both of nickel and cobalt supported on the above-mentioned carrier functions as a catalyst component. Therefore, the total amount of catalyst components supported on the carrier is preferably in the range of 2 to 12% by weight (hereinafter referred to as wt%). If the supported amount is less than 2wt%, the purification activity will be low;
If the amount exceeds the amount supported, the activity cannot be improved commensurately with the amount supported. Next, a method for preparing the catalyst of the present invention will be explained. First, as a method for producing a porous body as a carrier as described above, there is a method of heating a molded body of a mixed powder of Al 2 O 3 powder and MgO powder to cause the two to react and sinter. In the above, the molded body of mixed powder is 1000 to 1600
Heat and bake in the range of ℃. At temperatures lower than 1000°C, the calcination is not sufficient, the amount of MgAl 2 O 4 spinel produced is small, and the strength of the carrier is weak. Furthermore, when the temperature is higher than 1600°C, MgAl 2 O 4 spinel particles grow too much and the pore volume decreases. In this case, when firing in the range of 1200 to 1600°C, a carrier having better heat resistance and strength can be obtained. The above spinel is produced by the reaction of equimolar amounts of Al 2 O 3 and MgO, so it is
By blending Al 2 O 3 or MgO in excess of equimolar amounts, Al 2 O 3 or MgO can remain in the carrier after heating and sintering. Also,
By leaving Al 2 O 3 and MgO unreacted, both Al 2 O 3 and MgO can be contained in the carrier. In addition, the equimolar amount of Al 2 O 3 and MgO is expressed as a weight ratio of Al 2 O 3 to MgO.
This corresponds to a case where the amount of (Al 2 O 3 /MgO) is 2.5 times the weight. To give a specific example regarding the above, carrier No. 1 in Table 1.
As shown in Figure 1, 42 mol% of α-Al 2 O 3 powder and MgO
By sintering a mixed powder of 58 mol% powder,
α-Al 2 O 3 completely reacts with MgO and excess MgO
remains in the carrier. However, in the carrier
MgAl2O4 spinel accounts for 72 mol%, MgO28 mol%. Moreover, in order to obtain a porous body with an average pore size of 0.01 to 2μ, an Al 2 O 3 powder having an average particle size of 0.01 to 2μ is used. The term "particle size" used herein means the weight average particle size. In addition, the above Al 2 O 3 is not limited to α (alpha)-Al 2 O 3 , γ (gamma)-Al 2 O 3 , etc.
Al 2 O 3 can also be used. MgO powder mixed with Al 2 O 3 powder is mixed with Al 2 O 3 powder in the sintered porous body.
It can be said to be the optimal binder for O 3 powder, and its particle size is not particularly limited, but it mixes almost evenly with Al 2 O 3 powder, forms spinel with Al 2 O 3 , and improves the yield. In order to make the pore size of the carrier substantially uniform, it is preferable to use particles with a particle size of 0.1 to 500μ. Next, when firing the mixed powder, a small amount of organic glue such as dextrin is added to the mixed powder,
The mixture is then molded into a desired size using a tablet molding machine or the like, and then fired using an electric furnace or the like. The mixed powder is shaped into a desired shape such as granules, columns, or honeycombs. When supporting one or both of the catalyst components nickel and cobalt on the above-mentioned carrier, it is carried out in the same manner as in the case of supporting ordinary catalyst components, such as nickel nitrate, nickel sulfate, nickel chloride, cobalt nitrate, The support is immersed in a solution of raw materials for forming catalyst components such as cobalt sulfate and cobalt chloride, dried, and fired. Examples of the present invention will be described below. Example α-alumina (Al 2 O 3 ) powder with an average particle size of 1μ,
First, magnesia (MgO) powder with an average particle size of 1μ
The mixture was mixed in the proportions (mol %) shown in the table, a small amount of water was added thereto, the mixture was thoroughly mixed, and the mixture was molded into spherical pellets having a diameter of about 3 mm using a marmerizer (tablet molding machine). Next, the pellets were placed in an electric dryer and heated and sintered at 1350°C to produce porous bodies (carriers Nos. 1 to 6) as carriers. Also, for comparison, the total amount of Al 2 O 3 and MgO is
Comparative porous sintered bodies containing more than 30 mol % (carrier Nos. C1 and C2) were also produced in the same manner as above. Also, instead of the above α-Al 2 O 3 , the average pore diameter
A comparative porous sintered body (carrier No. C4) was produced in the same manner as above except that 100 Å of γ-Al 2 O 3 was used. Furthermore, α-Al 2 O 3 with the above average particle size of 1μ
Using α-Al 2 O 3 with an average particle size of 10μ instead of
A porous sintered body for comparison (carrier No. C5) was also produced in the same manner as above. Table 1 shows the properties of these supports, such as the ratio of MgAl 2 O 4 spinel to Al 2 O 3 and MgO, and also shows the properties of commercially available α-Al 2 O 3 for making comparative catalysts. Ta. In addition, in the same table, the pore volume is the pore volume (cm 3 ) per 1 g of carrier,
BET surface area refers to the surface area (m 2 ) determined from the amount of nitrogen adsorbed per gram of carrier. Next, the above carrier is immersed in an aqueous solution of nickel nitrate, an aqueous solution of cobalt nitrate, or a mixed aqueous solution thereof at a predetermined concentration, and after drying, it is heated at 600°C in air for 30 minutes.
Catalysts according to the present invention (catalysts Nos. 1 to 15) were prepared by calcining for hours and supporting one or both of nickel and cobalt at the loading ratios shown in Table 2. For comparison, comparative carriers (carrier No. C1,
C2, C4, C5) and α-Al 2 O 3 carrier (Support No. C3)
Comparative catalysts (catalyst Nos. S1 to S8) were also prepared in the same manner as above, with the loading ratios shown in Table 2.

【表】【table】

【表】 これら触媒における、担体の種類、担体に対す
るニツケル、コバルトの担持量(wt%)を第2
表に示す。 次に、触媒の活性評価テストについて述べる。
このテストに当つては、活性評価の前に、炭素に
対する耐久性を見るため、先ず触媒上に炭素を析
出させ、加熱した後それを除去し、その後本来の
部分酸化反応試験を行なつた。即ち、予め上記触
媒を空間速度(SV)=600hr-1のブタンガス流中
に930℃で2時間保持し、炭素析出をさせた。そ
して冷却後、空気中1100℃で5時間保持し、炭素
質を除去した。その後、触媒を石英反応管に充填
し、その周囲に電気炉を配し、部分酸化反応を行
なつた。反応に当つては、ブタン(C4H10)ガス
と空気との混合ガスを、SV=12000hr-1で反応管
内に送入した。ここに、空気量は、ブタンを一酸
化炭素と水素とに酸化するに要する量(理論空気
量)の1.025倍を用いた。また、反応時間は930℃
とした。しかして、ガスクロマトグラフイ−によ
り、生成ガス中の、水素(H2)、一酸化炭素
(CO)、メタン(CH4)、二酸化炭素(CO2)、酸
素(O2)、窒素(N2)を測定した。 その結果、上記いずれの触媒(触媒No.1〜15,
S1〜S6)を用いた場合も、生成ガス中にはH229
〜30%(容量比)、CO23〜24%,O20.39〜0.41
%,N246〜48%が含まれていたが、CH4とCO2
については触媒毎に異なる値を示した。 上記反応における各触媒の部分酸化能力を示す
ため、生成ガス中のCH4とCO2の量につき第3表
に示す。 第3表において、CH4,CO2の量が少ないほ
ど、触媒の部分酸化能力が高いことを示してい
る。即ち、活生能力が低い触媒はブタンが熱分解
してしまうので、CH4とCO2の量が多いのであ
る。 第3表より明らかなごとく、本発明にかかる触
媒(触媒No.1〜15)は、いずれもCH4生成量が極
く微量で、CO2の生成量も少なく、優れた活性を
有することがわかる。また、この触媒はその後数
時間上記反応に供したが、上記活性はほとんど
[Table] In these catalysts, the type of carrier and the amount of nickel and cobalt supported on the carrier (wt%) are
Shown in the table. Next, a catalyst activity evaluation test will be described.
In this test, in order to check the durability against carbon before evaluating the activity, carbon was first deposited on the catalyst, removed after heating, and then the original partial oxidation reaction test was performed. That is, the catalyst was previously held at 930° C. for 2 hours in a butane gas flow with a space velocity (SV) of 600 hr −1 to cause carbon precipitation. After cooling, it was held in air at 1100°C for 5 hours to remove carbonaceous matter. Thereafter, a quartz reaction tube was filled with the catalyst, an electric furnace was placed around it, and a partial oxidation reaction was carried out. For the reaction, a mixed gas of butane (C 4 H 10 ) gas and air was fed into the reaction tube at SV=12000 hr -1 . Here, the amount of air used was 1.025 times the amount (theoretical air amount) required to oxidize butane to carbon monoxide and hydrogen. Also, the reaction time is 930℃
And so. By gas chromatography, hydrogen (H 2 ), carbon monoxide (CO), methane (CH 4 ), carbon dioxide (CO 2 ), oxygen (O 2 ), nitrogen (N 2 ) was measured. As a result, any of the above catalysts (catalyst Nos. 1 to 15,
S1 to S6), there is also H 2 29 in the generated gas.
~30% (capacity ratio), CO23~24%, O2 0.39~0.41
%, N2 contained 46-48%, CH4 and CO2
Different catalysts showed different values. In order to show the partial oxidation ability of each catalyst in the above reaction, Table 3 shows the amounts of CH 4 and CO 2 in the produced gas. Table 3 shows that the smaller the amount of CH 4 and CO 2 , the higher the partial oxidation ability of the catalyst. In other words, a catalyst with low activity capacity thermally decomposes butane, resulting in a large amount of CH 4 and CO 2 . As is clear from Table 3, the catalysts according to the present invention (catalyst Nos. 1 to 15) all produce extremely small amounts of CH 4 and little CO 2 , and have excellent activity. Recognize. Moreover, this catalyst was then subjected to the above reaction for several hours, but the above activity was almost negligible.

【表】【table】

【表】【table】

【表】【table】

【表】 変わらなかつた。また、本発明にかかる触媒は
上記の低温反応においても触媒上への炭素析出は
見られなかつた。 これに対し、Al2O3,MgOを30モル%よりも多
く有する担体、α−Al2O3のみから成る担体、あ
るいは平均細孔径が0.01〜2μの範囲をはずれる担
体を使用する比較用触媒(触媒No.S1〜S8)は、
CH4,CO2の生成量が多く、活性が低いことが分
る。 また、第3表において、本発明触媒を用いた場
合はCH4の副生量が極めて少ない。前記した浸炭
用ガスは、CH4の量を出来るだけ少ないものとし
たいため、本発明触媒は特に浸炭用ガス製造用の
触媒としても優れていることが分る。 なお、他の比較例として、ムライト(Al4Si2
O13)の担体に7.7%のニツケルを担持した従来の
ニツケル触媒を用い、上記と同様の条件で部分酸
化反応を行なつた。その結果、生成ガス中の
CH4,CO2は1.97%、0.49%と非常に多く、また
触媒表面に炭素が析出し、活性及び耐久性とも悪
かつた。
[Table] No change. Further, with the catalyst according to the present invention, no carbon deposition was observed on the catalyst even in the above-mentioned low temperature reaction. On the other hand, comparative catalysts using a carrier having more than 30 mol% of Al 2 O 3 , MgO, a carrier consisting only of α-Al 2 O 3 , or a carrier with an average pore diameter outside the range of 0.01 to 2 μ (Catalyst No.S1 to S8) are
It can be seen that the amount of CH 4 and CO 2 produced is large and the activity is low. Furthermore, in Table 3, when the catalyst of the present invention was used, the amount of CH 4 by-product was extremely small. Since it is desired that the amount of CH 4 in the carburizing gas described above be as small as possible, the catalyst of the present invention is found to be particularly excellent as a catalyst for producing carburizing gas. In addition, as another comparative example, mullite (Al 4 Si 2
A partial oxidation reaction was carried out under the same conditions as above using a conventional nickel catalyst in which 7.7% nickel was supported on an O 13 ) carrier. As a result,
CH 4 and CO 2 were extremely high at 1.97% and 0.49%, and carbon was deposited on the catalyst surface, resulting in poor activity and durability.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミナ・マグネシアスピネルと30モル%以
下のアルミナ、マグネシアの一方または双方とか
ら成り、平均孔径が0.01〜2μの多孔質体である担
体に、ニツケルあるいはコバルトの一方または双
方を担持して成ることを特徴とする炭化水素の部
分酸化用触媒。
1 A porous carrier consisting of alumina/magnesia spinel and 30 mol% or less of alumina and/or magnesia and having an average pore diameter of 0.01 to 2μ, supporting one or both of nickel and cobalt. A catalyst for partial oxidation of hydrocarbons, characterized by:
JP59070609A 1984-04-09 1984-04-09 Catalyst for partial oxidation of hydrocarbon Granted JPS60212229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59070609A JPS60212229A (en) 1984-04-09 1984-04-09 Catalyst for partial oxidation of hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59070609A JPS60212229A (en) 1984-04-09 1984-04-09 Catalyst for partial oxidation of hydrocarbon

Publications (2)

Publication Number Publication Date
JPS60212229A JPS60212229A (en) 1985-10-24
JPH0510132B2 true JPH0510132B2 (en) 1993-02-08

Family

ID=13436498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59070609A Granted JPS60212229A (en) 1984-04-09 1984-04-09 Catalyst for partial oxidation of hydrocarbon

Country Status (1)

Country Link
JP (1) JPS60212229A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158101A (en) * 1985-12-06 1987-07-14 Toyota Central Res & Dev Lab Inc Production of gas for heat-treatment
JP5446060B2 (en) * 2006-06-09 2014-03-19 戸田工業株式会社 Porous material for honeycomb, porous material mixture, suspension for supporting honeycomb, catalyst body, and method for producing mixed reaction gas using the catalyst body
CN101837304B (en) * 2010-04-29 2011-12-28 清华大学 Carrier for preparing syngas Ni-based catalyst through methane partial oxidation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202050A (en) * 1982-05-20 1983-11-25 Matsushita Electric Ind Co Ltd Catalyst body for reforming hydrocarbon

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202050A (en) * 1982-05-20 1983-11-25 Matsushita Electric Ind Co Ltd Catalyst body for reforming hydrocarbon

Also Published As

Publication number Publication date
JPS60212229A (en) 1985-10-24

Similar Documents

Publication Publication Date Title
US4906176A (en) High temperature stable catalyst, process for preparing same, and process for conducting chemical reaction using same
JPS5815013B2 (en) Steam reforming catalyst and its manufacturing method
US4239656A (en) Catalyst for purifying exhaust gases and carrier for the catalyst
JP4317706B2 (en) Metal catalyst and method for preparing and using the same
AU2003252771B2 (en) A hydrocarbon-reforming catalyst and a method of manufacturing thereof
US4285837A (en) Catalyst for steam reforming of hydrocarbons
JPH0642945B2 (en) Catalyst carrier and catalyst for treating exhaust gas of internal combustion engine and method for producing the same
JPH0510133B2 (en)
EP1732688A1 (en) Nickel supported on titanium stabilized promoted calcium aluminate carrier
US4906603A (en) Catalyst for the steam reforming of hydrocarbons
JPS592537B2 (en) Carbon monoxide conversion catalyst and method for producing the catalyst
KR101432621B1 (en) Reforming catalyst for manufacturing synthesis gas, method for manufacturing synthesis gas using the same, and reactor for manufacturing synthesis gas
KR20010101612A (en) Catalyst Carrier Carrying Nickel Ruthenium and Lanthanum
CN102614903A (en) Monolithic catalyst and use of the monolithic catalyst in natural gas reforming for synthesis gas preparation
CN106994346B (en) The preparation method of load type metal Co catalysts
JPH0510132B2 (en)
JPS63248444A (en) Steam reforming and/or partial oxidation catalyst for hydrocarbon
JPS5822252B2 (en) Steam reforming catalyst for hydrocarbons
JP2635105B2 (en) Catalyst for partial oxidation of hydrocarbons
JPS6035176B2 (en) Steam reforming catalyst and its manufacturing method
JPS6114861B2 (en)
JPS58207946A (en) Catalyst for partial oxidation of hydrocarbon and its manufacture
JPH0566883B2 (en)
JP4013689B2 (en) Hydrocarbon reforming catalyst, hydrocarbon cracking apparatus, and fuel cell reformer
JPS581627B2 (en) Catalyst for exhaust gas purification