JPS6183602A - Reforming apparatus - Google Patents
Reforming apparatusInfo
- Publication number
- JPS6183602A JPS6183602A JP59204923A JP20492384A JPS6183602A JP S6183602 A JPS6183602 A JP S6183602A JP 59204923 A JP59204923 A JP 59204923A JP 20492384 A JP20492384 A JP 20492384A JP S6183602 A JPS6183602 A JP S6183602A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst layer
- reforming
- tube
- inner tube
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
- H01M8/0631—Reactor construction specially adapted for combination reactor/fuel cell
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/06—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
- B01J8/062—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Fuel Cell (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は一般的なガス改質器あるいはガスとガスとの熱
交換器の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in general gas reformers or gas-to-gas heat exchangers.
[発明の技術的背景とその問題点1
一般に使用されているガス改質器の構造につき第3図を
参照して説明する。図においてガス改質器1は、バーナ
2へ燃焼ガスと燃焼空気とを送り込んで燃焼v3におい
て燃焼させ、燃焼により生じた加熱流体は加熱流路4を
通り排ガス出口5より外部に排出される。この燃焼熱に
より、改質器1の内部に設けた複数の改質管6を加熱す
る。[Technical background of the invention and its problems 1 The structure of a commonly used gas reformer will be explained with reference to FIG. 3. In the figure, a gas reformer 1 sends combustion gas and combustion air to a burner 2 and burns them in a combustion v3, and the heated fluid generated by the combustion passes through a heating flow path 4 and is discharged to the outside from an exhaust gas outlet 5. This combustion heat heats the plurality of reforming tubes 6 provided inside the reformer 1.
一方改質管の内部には、上記燃焼ガス加熱流路4とは完
全に隔離して改質ガスの流路が設けられる。改質ガス人
ロアから流入した改質ガスは、改質管6の内壁に設けら
れ他方目皿(以下、下部目皿と称する)18により支え
られた触媒層8の内部を流れて上昇し、上端で逆向きに
方向転換して触媒N8とセンタプラグ9との間に構成さ
れるリターンバス10を流れて改質ガス出口11から流
出する。そしてこの間に、改質ガス例えばメタンと水蒸
気とが水素と炭酸ガスに改質される如く改質される。な
お、改質管6は改質器1の内部に1本のみの場合もある
が、一般には第3図に示す如く複数本設けられる。On the other hand, inside the reforming tube, a reformed gas flow path is provided completely isolated from the combustion gas heating flow path 4. The reformed gas flowing from the reformed gas lower part flows inside the catalyst layer 8 provided on the inner wall of the reforming tube 6 and supported by the other perforated plate (hereinafter referred to as lower perforated plate) 18, and rises. The reformed gas changes direction at the upper end, flows through a return bus 10 formed between the catalyst N8 and the center plug 9, and flows out from the reformed gas outlet 11. During this time, the reformed gas, such as methane and steam, is reformed into hydrogen and carbon dioxide gas. Although there may be only one reforming pipe 6 inside the reformer 1, generally a plurality of reforming pipes 6 are provided as shown in FIG.
第4図は、第3図により概要を説明した触媒層8の燃焼
至側の部分を拡大して示した詳細断面図である。図にお
いて、改質管6は鏡板12と溶接線13により溶接して
作られている。この改質管6は既に第3図で説明したよ
うに、その上部の燃焼至3に近い部分は高温になるので
、断熱材で作られたキャップ14が鏡板12の上にかぶ
せられる。また溶接線13に欠陥が生じ易いので、この
部分に温度測定素子15を設けて温度を測定する。FIG. 4 is a detailed cross-sectional view showing an enlarged portion of the catalyst layer 8 on the combustion side, which is outlined in FIG. 3. In the figure, the reforming tube 6 is made by welding an end plate 12 and a welding line 13. As already explained in FIG. 3, the upper part of the reforming tube 6 near the combustion chamber 3 becomes high in temperature, so a cap 14 made of a heat insulating material is placed over the end plate 12. Furthermore, since defects are likely to occur in the weld line 13, a temperature measuring element 15 is provided at this portion to measure the temperature.
改質ガスは触媒層8の中を上昇し、触媒層上端16を通
って一方目皿(以下、上部目皿と称する)17の上端で
逆転しプラグガイド19により形成されるリターンバス
10を通って下降し流出する。The reformed gas rises in the catalyst layer 8, passes through the upper end 16 of the catalyst layer, reverses itself at the upper end of one perforated plate (hereinafter referred to as upper perforated plate) 17, and passes through the return bus 10 formed by the plug guide 19. It descends and flows out.
上部目皿17は、断熱材で作られた多孔板である。The upper perforated plate 17 is a perforated plate made of a heat insulating material.
この上部目皿17は、本来は触媒層上端16で触媒粒子
の浮き上がりを防止するために設けられるものであるが
、実際には下記のような理由により触媒層上端16と上
部目皿17との間に寸法1の空隙ができてしまう。This upper perforated plate 17 is originally provided to prevent catalyst particles from floating at the upper end 16 of the catalyst layer, but in reality, the upper perforated plate 17 and the upper end 16 of the catalyst layer are A gap of size 1 is created between them.
即ち第1の理由は、一般に改質反応中には改質管6が熱
膨張により伸びるのに対し、反応触媒の熱膨張係数は改
質管6のそれに比べて小さいためである。また第2の理
由は、触媒層8は下部目皿18(第3図)により支えら
れているが、改質管6の内径が熱により膨張するのみな
らず、更に触媒層内管20の外径も膨張することから、
この間の容積が増加する分だけ触媒層上端16が下がる
ことになる。また触媒粒子の充填時には、改質管6を上
下逆さまにして管に振動を与えながら充填するが、十分
に充填できず改質反応のため高温に上げ下げする運転を
しているうちに、触媒層上端16は沈下して上部目皿1
7との間に寸法1の空間ができてしまう。このような状
態になると、改質管6の溶接線13が触媒層上端16よ
り上部に出ることになるので、その結果溶接線13の温
度と触媒層8の温度とに大きな差が現われるようになる
。このような理由から、温度測定素子15によって溶接
線13の温度を監視しながら改質運転を行なうが、空間
ができてしまうと触媒層上端16の温度はそれ捏上がら
ず改質効率が悪くなる。That is, the first reason is that the reforming tube 6 generally expands due to thermal expansion during the reforming reaction, but the thermal expansion coefficient of the reaction catalyst is smaller than that of the reforming tube 6. The second reason is that although the catalyst layer 8 is supported by the lower perforated plate 18 (FIG. 3), not only the inner diameter of the reforming tube 6 expands due to heat, but also the outer diameter of the catalyst layer inner tube 20 expands due to heat. Since the diameter also expands,
The upper end 16 of the catalyst layer is lowered by an amount corresponding to the increase in volume during this period. In addition, when filling the catalyst particles, the reforming tube 6 is turned upside down and filled while vibrating the tube. The upper end 16 sinks to form the upper perforated plate 1.
7, a space of dimension 1 is created between the two. In such a state, the weld line 13 of the reforming tube 6 will come out above the upper end 16 of the catalyst layer, and as a result, a large difference will appear between the temperature of the weld line 13 and the temperature of the catalyst layer 8. Become. For this reason, the reforming operation is performed while monitoring the temperature of the weld line 13 with the temperature measuring element 15, but if a space is created, the temperature at the upper end 16 of the catalyst layer will not increase and the reforming efficiency will deteriorate. .
以上の関係を更に詳細に説明すると、改質管6の内部が
改質ガスの流れだけの場合には、改質管6の内部に触媒
が充填されている場合に比べると、その壁面から内部改
質ガスへの熱伝達率が非常に悪くなるので、改質管6の
溶接部の内部に触媒がない場合には、溶接線13の温度
と改質ガスの出口の温度とに大きな差が現われてしまう
。また、常温で十分触媒層8と接触するように改質管6
の溶接線13を設けても、改質管6の上端が約1000
℃という高温になることにより、改質管6の長さが約2
mある場合、20〜30mmはど改質管6が熱膨張して
触媒層8より上部に突き出てしまう。To explain the above relationship in more detail, when the inside of the reforming tube 6 is filled only with the flow of reformed gas, compared to the case where the inside of the reforming tube 6 is filled with a catalyst, the inside of the reforming tube 6 is Since the heat transfer coefficient to the reformed gas becomes extremely poor, if there is no catalyst inside the welded part of the reforming tube 6, there will be a large difference between the temperature at the weld line 13 and the temperature at the outlet of the reformed gas. It will appear. In addition, the reforming pipe 6 is made to sufficiently contact the catalyst layer 8 at room temperature.
Even if the welding line 13 is provided, the upper end of the reforming tube 6 will be approximately
Due to the high temperature of ℃, the length of the reforming tube 6 is approximately 2
m, the reformer tube 6 will thermally expand by 20 to 30 mm and protrude above the catalyst layer 8.
[発明の目的コ
本発明は上記のような問題を解決するために成されたも
ので、その目的は長期使用による改質触媒層の沈下を防
止しかつ改質管の温度変化による熱!!脹に追従して穫
めて効率の良い改質を行なうことが可能な改質装置を提
供することにある。[Purpose of the Invention] The present invention was made to solve the above-mentioned problems, and its purpose is to prevent the reforming catalyst layer from sinking due to long-term use, and to prevent heat generation due to temperature changes in the reforming tube. ! It is an object of the present invention to provide a reforming device that can perform efficient reforming by following the expansion.
[発明の概要]
上記目的を達成するために本発明では、触媒層内管の外
側に一方目皿と他方目皿間に挟んだ状態で支持された触
媒層が形成されその水平断面が環状をなし改質ガスの往
路となる流路が、上記触媒層内管の内側にその水平断面
が環状をなし改質ガスの復路となる流路が夫々形成され
、外部からの加熱により上記往路にてガスの改質を行な
う改質管を内蔵して成る改質器において、上記−万目皿
を固定すると共に上記触媒層内管と他方目皿とを一体に
構成してガスの流路の長手方向に移動可能とし、かつ上
記触媒層内管とその反対方向に位置する固定部との間に
コイルバネや皿バネ等の弾性体を縮設して、他方目皿を
常に上方に弾性体で押し上げて触媒層一端と一方目皿と
の間に空隙が発生しないようにしたことを特徴とする。[Summary of the Invention] In order to achieve the above object, in the present invention, a catalyst layer supported by being sandwiched between one perforated plate and the other perforated plate is formed on the outside of the catalyst layer inner tube, and the horizontal cross section thereof has an annular shape. None A flow path that serves as an outbound path for the reformed gas is formed inside the catalyst layer inner tube, and a flow path that has an annular horizontal cross section and serves as a return path for the reformed gas, and is heated from the outside to In a reformer having a built-in reforming tube for reforming gas, the above-mentioned perforated plate is fixed, and the catalyst layer inner tube and the other perforated plate are integrally constituted so that the longitudinal direction of the gas flow path is fixed. An elastic body such as a coil spring or a disc spring is compressed between the catalyst layer inner tube and a fixed part located in the opposite direction, so that the other perforated plate is constantly pushed upward by the elastic body. The present invention is characterized in that no gap is generated between one end of the catalyst layer and the first plate.
[発明の実施例] 以下、本発明を図面に示す一実施例について説明する。[Embodiments of the invention] An embodiment of the present invention shown in the drawings will be described below.
第1図は、本発明による改質装置の構成例を断面図にて
示したものであり、第3図および第4図と同一部分には
同一符号を付して示している。なお図では、1本の改質
管6についてその上端側および下端側部分の構成を示し
ている。FIG. 1 is a sectional view showing an example of the structure of a reforming apparatus according to the present invention, and the same parts as in FIGS. 3 and 4 are denoted by the same reference numerals. Note that the figure shows the configuration of the upper end and lower end portions of one reforming tube 6.
図において、改質管6の内部は短寸の上部触媒層内管2
1と上部目皿17とを一体に成形し、鏡板12の内壁に
ストッパーとしての複数個の突起部22を設けて上部目
皿17が移動しないように固定する。また、上記上部触
媒層内管21の内側にはこれより長寸の下部触媒層内管
23を挿入した状態で設け、僅かな隙間を介して同心軸
上を摺動可能にしている。さらに、上記下部触媒層内管
23の内側にはその内周面の上、中、下の3箇所に等配
のプラグガイド19を介してセンタプラグ9を挿入し、
改質ガスの復路となるリターンバス10を形成している
。そして、上記下部触媒層内管23はその下端部側を底
板24を介してセンタプラグ9と接続固定し、さらにガ
ス改質器1容器に固定された仕切板25に取付けられた
改質ガス流出管26に接続している。さらにまた上記仕
切板25の上面側には、水平断面が改質ガス流出管26
を中心として環状をなす突起部27を設け、かつ当該突
起部27内側の底板24と仕切板25との間には、弾性
体としてのインコネル、ハステロイ等の耐熱材からなる
コイルバネ28を改質ガス流出管26と同心に縮設して
、上記下部触媒層内管23を常に上方にコイルバネ28
で押し上げるようにしている。一方、上記下部触媒層内
管23の下端部の外壁29には複数本の目皿支持リブ3
0を溶接することで下部目皿18を一体に構成し、かつ
改質管6.上部触媒層内管21.上部目皿17.下部触
媒層内管23および下部目皿18で囲まれた加熱流路4
には、触媒粒子を充填して触媒層8を形成している。ま
た、上記センタプラグ9の下端部分には周方向にある間
隔で複数個の貫通孔31を設けて、上記リターンバス1
0と改質ガス流出管26とを連通するようにしている。In the figure, the inside of the reforming tube 6 is a short upper catalyst layer inner tube 2.
1 and an upper perforation plate 17 are integrally molded, and a plurality of protrusions 22 as stoppers are provided on the inner wall of the end plate 12 to fix the upper perforation plate 17 so that it does not move. Further, a lower catalyst layer inner tube 23, which is longer than the upper catalyst layer inner tube 21, is inserted inside the upper catalyst layer inner tube 21 so that it can slide on a concentric axis through a small gap. Furthermore, the center plug 9 is inserted into the inner side of the lower catalyst layer inner tube 23 at three locations on the inner circumferential surface thereof, at the top, middle, and bottom, through equally spaced plug guides 19.
A return bus 10 is formed as a return path for the reformed gas. The lower end of the lower catalyst layer inner tube 23 is connected and fixed to the center plug 9 via the bottom plate 24, and the reformed gas flows out through a partition plate 25 fixed to the gas reformer 1 container. It is connected to pipe 26. Furthermore, on the upper surface side of the partition plate 25, the horizontal cross section is a reformed gas outlet pipe 26.
An annular protrusion 27 is provided with the protrusion 27 at the center, and between the bottom plate 24 and the partition plate 25 inside the protrusion 27, a coil spring 28 made of a heat-resistant material such as Inconel or Hastelloy as an elastic body is installed with a modified gas. A coil spring 28 is installed concentrically with the outflow pipe 26 to keep the lower catalyst layer inner pipe 23 upward.
I'm trying to push it up. On the other hand, a plurality of perforated plate support ribs 3 are provided on the outer wall 29 at the lower end of the lower catalyst layer inner tube 23.
The lower perforated plate 18 is integrally constructed by welding the reforming pipe 6. Upper catalyst layer inner tube 21. Upper perforation plate 17. Heating channel 4 surrounded by lower catalyst layer inner tube 23 and lower perforated plate 18
is filled with catalyst particles to form a catalyst layer 8. Further, a plurality of through holes 31 are provided at a certain interval in the circumferential direction in the lower end portion of the center plug 9, so that the return bus 1
0 and the reformed gas outflow pipe 26 are communicated with each other.
さらに、上記仕切板25の上部側は改質前のガスであり
下部は改質完了されたガスであることから、仕切板25
と改質ガス流出管26との間はベローズ32により隔離
している。Furthermore, since the upper side of the partition plate 25 is the gas before reforming and the lower part is the gas that has been reformed, the partition plate 25
and the reformed gas outlet pipe 26 are isolated by a bellows 32.
かかる改質装置においては、上部目皿17を固定すると
共に下部触媒層内管20と下部目皿18とを一体に構成
して上下方向に移動可能とし、かつ上記下部触媒層内管
20とその下方に位置する固定部である仕切り板25と
の間にコイルバネ28を縮設するようにしたので、下部
目皿18は下部触媒層内管20と共に常に上方にコイル
バネ28の弾性力で押し上げられることにより、改質管
6の触媒層8が装置の長時間にわたる運転に伴って改質
管6が熱膨張してもこれに追従することが可能であり、
触媒層8が沈下しても第4図に示したように高温側の上
部目皿17と触媒層8との間に空隙が発生するようなこ
とがなくなり、もって前)ホしたような問題をなくして
極めて効率の良い改質を行なうことが可能となる。また
この場合、下部口I[n18はそれ自体をコイルバネで
押し上げる場合に比べて、より小さな押し上げ力で触媒
層8を押し上げることが可能であることから、コイルバ
ネ28としては比較的径の細いものを使用することがで
き極めて経済的である。In such a reformer, the upper perforated plate 17 is fixed, and the lower catalyst layer inner tube 20 and the lower perforated plate 18 are integrally configured to be movable in the vertical direction, and the lower catalyst layer inner tube 20 and the lower catalyst layer inner tube 20 and Since the coil spring 28 is compressed between the partition plate 25 which is a fixed part located below, the lower perforated plate 18 is always pushed upward together with the lower catalyst layer inner tube 20 by the elastic force of the coil spring 28. This allows the catalyst layer 8 of the reforming tube 6 to follow thermal expansion of the reforming tube 6 due to long-term operation of the device.
Even if the catalyst layer 8 sinks, as shown in FIG. 4, a gap will not be generated between the upper perforated plate 17 on the high temperature side and the catalyst layer 8, and the problem described above) will be avoided. Without this, it becomes possible to carry out extremely efficient reforming. In this case, the lower opening I [n18 can push up the catalyst layer 8 with a smaller pushing force than when pushing up itself with a coil spring, so the coil spring 28 should have a relatively small diameter. It is extremely economical to use.
第2図は、バネによる押上げ力がどの程度必要かを算出
して示したものである。ここで、押上げを行なわない場
合にどの程度の力が触媒層8の下端にかかるかというこ
とは、周知の文献(三輪茂雄著「粉体工学通論」 (日
刊工業新聞社昭和56年2月発行))にもJansse
nの式として示されている。これは、触媒とそれが収容
されている管の内面との摩擦力が動くので、その自重よ
り少ない力で全体を支持することができる。しかし、逆
に押上げる場合には摩擦力に打勝つだけの押上げ力が必
要である。FIG. 2 shows the calculated amount of push-up force required by the spring. Here, how much force is applied to the lower end of the catalyst layer 8 when no push-up is performed is known in the well-known literature ("General Theory of Powder Engineering" by Shigeo Miwa, published by Nikkan Kogyo Shimbun, February 1982). Published)) also Jansse
It is shown as a formula for n. This is because the frictional force between the catalyst and the inner surface of the tube in which it is housed moves, so the whole can be supported with less force than its own weight. However, when pushing up, on the other hand, a pushing force sufficient to overcome the frictional force is required.
第2図は、種々の場合のバネによる押上げ力を比較した
ものであり、横軸は押上げ力Fの大きさを曲線Aの場合
の静止支持力FSに対する比F/Fsで示し、縦軸は触
媒層8の高さhを同じく改質管6の内径Doに対する比
h/Doで示している。すなわち、触媒層8の高ざhが
高くなればなる程それを持上げるための力Fとしては大
きい力が必要であることを示している。図において、曲
線Aは改質管を二重管にせず円筒形の触媒層の場合の静
止支持力、曲線Bは同曲線Aの場合の触媒層持上げ力で
ある。しかし、これを触媒層内側に入れると押上げる力
は変わり、下部目皿18だけを押し上げた場合は曲線C
のような莫大な力が必要になるが、本実施例のコイルバ
ネ28による場合は触媒層内管23も同時に持ち上げる
ことから、曲線りの如く少ない力でよいことになる。Figure 2 compares the push-up force by the spring in various cases. The axis also indicates the height h of the catalyst layer 8 as a ratio h/Do to the inner diameter Do of the reforming tube 6. In other words, the higher the height h of the catalyst layer 8, the greater the force F required to lift it. In the figure, curve A is the static support force in the case of a cylindrical catalyst layer without using a double reforming tube, and curve B is the lifting force of the catalyst layer in the case of curve A. However, when this is put inside the catalyst layer, the pushing force changes, and when only the lower perforated plate 18 is pushed up, the curve C
However, if the coil spring 28 of this embodiment is used, the catalyst layer inner tube 23 is also lifted at the same time, so a small amount of force is required for the curve.
尚、上記実施例では改質管6を複数本設けた場合を述べ
たが、これに限らず一本のみ設ける場合においても本発
明を同様に適用することができるものである。In the above embodiment, a case where a plurality of reforming pipes 6 are provided is described, but the present invention is not limited to this, and the present invention can be similarly applied to a case where only one reforming pipe is provided.
また、上記実施例では弾性体としてコイルバネを用いた
が、これに代えて皿バネを用いるようにしても同様に実
施することができるものである。Furthermore, although a coil spring is used as the elastic body in the above embodiment, the same effect can be achieved by using a disc spring instead.
[発明の効果]
以上説明したように本発明によれば、上部目皿を固定す
ると共に触媒層内管と下部目皿とを一体に構成して上下
方向に移動可能とし、かつ上記触媒層内管とその下方に
位置する固定部との間に弾性体を縮設するようにしたの
で、長期使用による改質触媒層の沈下を防止しかつ改質
管の温度変化による熱膨張に追従して極めて効率の良い
改質を行なうことが可能な信頼性の高い改質装置が提供
できる。[Effects of the Invention] As explained above, according to the present invention, the upper perforated plate is fixed, and the catalyst layer inner tube and the lower perforated plate are integrally configured to be movable in the vertical direction. An elastic body is installed between the tube and the fixed part located below it to prevent the reforming catalyst layer from sinking due to long-term use and to follow the thermal expansion caused by temperature changes in the reformer tube. A highly reliable reforming device capable of extremely efficient reforming can be provided.
第1図は本発明の一実施例を示す断面図、第2図は同実
施例の作用効果を説明するための特性図、第3図は従来
の改質装置の構成例を示す断面図、第4図は第3図の改
質管上部の詳細を示す断面図である。
1・・・改質器、1a・・・改質器容器、2・・・バー
ナ、3・・・燃焼至、4・・・加熱流路、4a・・・伝
熱充填層、5・・・排ガス出口、6・・・改質管、7・
・・改質ガス入口、8・・・触媒層、9・・・センタプ
ラグ、10・・・リターンパス、11・・・改質ガス出
口、12・・・鏡板、13・・・溶接線、14・・・キ
ャップ、15・・・温度測定素子、16・・・触媒上端
、17.18・・・目皿、19・・・プラグガイド、2
0・・・下部触媒層内管、21・・・上部触媒層内管、
22・・・突起部、23・・・下部触媒層内管、24・
・・底板、25・・・仕切板、26・・・改質ガス流出
管、27・・・突起部、28・・・コイルバネ、29・
・・外壁、30・・・目皿支持リブ、31・・・貫通孔
、32・・・ベローズ。FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 is a characteristic diagram for explaining the effects of the embodiment, and FIG. 3 is a sectional view showing an example of the configuration of a conventional reforming device. FIG. 4 is a sectional view showing details of the upper part of the reforming tube in FIG. 3. DESCRIPTION OF SYMBOLS 1... Reformer, 1a... Reformer container, 2... Burner, 3... Combustion, 4... Heating channel, 4a... Heat transfer packed bed, 5...・Exhaust gas outlet, 6... Reforming pipe, 7.
... Reformed gas inlet, 8... Catalyst layer, 9... Center plug, 10... Return path, 11... Reformed gas outlet, 12... End plate, 13... Welding line, 14... Cap, 15... Temperature measuring element, 16... Catalyst upper end, 17.18... Perforated plate, 19... Plug guide, 2
0... Lower catalyst layer inner tube, 21... Upper catalyst layer inner tube,
22... Protrusion, 23... Lower catalyst layer inner tube, 24...
... Bottom plate, 25 ... Partition plate, 26 ... Reformed gas outflow pipe, 27 ... Projection, 28 ... Coil spring, 29.
...Outer wall, 30...Perforated plate support rib, 31...Through hole, 32...Bellows.
Claims (2)
だ状態で支持された触媒層が形成されその水平断面が環
状をなし改質ガスの往路となる流路が、前記触媒層内管
の内側にその水平断面が環状をなし改質ガスの復路とな
る流路が夫々形成され、外部からの加熱により前記往路
にてガスの改質を行なう改質管を内蔵して成る改質器に
おいて、前記一方目皿を固定すると共に前記触媒層内管
と他方目皿とを一体に構成してガス流路の長手方向に移
動可能とし、かつ前記触媒層内管とその反対方向に位置
する固定部との間に弾性体を縮設して成ることを特徴と
する改質装置。(1) A catalyst layer supported by being sandwiched between one eyelet plate and the other eyelet plate is formed on the outside of the catalyst layer inner tube, and the horizontal cross section thereof is annular, and the flow path that serves as the outgoing path of the reformed gas is formed as described above. A flow path whose horizontal cross section is annular and serves as a return path for the reformed gas is formed inside the catalyst layer inner tube, and a reforming tube is built in to reform the gas in the outgoing path by heating from the outside. In the reformer, the one eyelet plate is fixed, the catalyst layer inner tube and the other eyelet plate are integrally configured to be movable in the longitudinal direction of the gas flow path, and the catalyst layer inner tube and the other eyeglass plate are configured integrally, and A reforming device characterized in that an elastic body is compressed between a fixed part located in a direction.
ることを特徴とする特許請求の範囲第(1)項記載の改
質装置。(2) The reforming device according to claim (1), wherein a coil spring or a disc spring is used as the elastic body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59204923A JPS6183602A (en) | 1984-09-29 | 1984-09-29 | Reforming apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59204923A JPS6183602A (en) | 1984-09-29 | 1984-09-29 | Reforming apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6183602A true JPS6183602A (en) | 1986-04-28 |
Family
ID=16498603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59204923A Pending JPS6183602A (en) | 1984-09-29 | 1984-09-29 | Reforming apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6183602A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0339251A2 (en) * | 1988-04-23 | 1989-11-02 | Uhde GmbH | Device for receiving catalysts, especially when producing synthesis gas |
JPH0450101A (en) * | 1990-06-18 | 1992-02-19 | Fuji Electric Co Ltd | Fuel reformer |
JP2002529895A (en) * | 1998-11-10 | 2002-09-10 | インターナショナル フュエル セルズ,エルエルシー | Hydrocarbon fuel gas reformer for fuel cell power equipment |
JP2015105168A (en) * | 2013-11-29 | 2015-06-08 | 株式会社モリタホールディングス | Garbage collector |
RU2636507C1 (en) * | 2016-11-24 | 2017-11-23 | Олег Петрович Андреев | Shell-tube catalytic reactor |
-
1984
- 1984-09-29 JP JP59204923A patent/JPS6183602A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0339251A2 (en) * | 1988-04-23 | 1989-11-02 | Uhde GmbH | Device for receiving catalysts, especially when producing synthesis gas |
JPH0450101A (en) * | 1990-06-18 | 1992-02-19 | Fuji Electric Co Ltd | Fuel reformer |
JP2002529895A (en) * | 1998-11-10 | 2002-09-10 | インターナショナル フュエル セルズ,エルエルシー | Hydrocarbon fuel gas reformer for fuel cell power equipment |
JP2015105168A (en) * | 2013-11-29 | 2015-06-08 | 株式会社モリタホールディングス | Garbage collector |
RU2636507C1 (en) * | 2016-11-24 | 2017-11-23 | Олег Петрович Андреев | Shell-tube catalytic reactor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4736298B2 (en) | Partial oxidation reformer | |
JP5185493B2 (en) | Fuel conversion reactor | |
JP4477432B2 (en) | Reformer | |
US4504447A (en) | Slab reformer | |
US5254318A (en) | Lined reformer tubes for high pressure reformer reactors | |
JP2714242B2 (en) | Gas reformer | |
JPS6183602A (en) | Reforming apparatus | |
JP2018065736A (en) | Fuel reforming device | |
GB2201903A (en) | Apparatus and process suitable for producing hydrogen | |
JPS6146235A (en) | Reforming apparatus | |
JPH08165103A (en) | Converter | |
JP4069621B2 (en) | Reformer | |
JPH08301602A (en) | Fuel reformer | |
JP4316975B2 (en) | Reformer | |
JPH03238037A (en) | Fuel reforming apparatus | |
JPH0679664B2 (en) | Fuel reformer | |
JP4657351B2 (en) | Reformer | |
JP2938245B2 (en) | Starting the fuel reformer | |
JPH07291602A (en) | Reforming device | |
JPH0429858Y2 (en) | ||
US2127529A (en) | Converter having heat exchange members or wells for recording elements | |
JPH07257901A (en) | Heat exchanger-type reformer | |
JP2000169105A (en) | Reformer | |
JPH05186201A (en) | Fuel reformer | |
JP3938995B2 (en) | Reformer |