JP2938245B2 - Starting the fuel reformer - Google Patents

Starting the fuel reformer

Info

Publication number
JP2938245B2
JP2938245B2 JP28522791A JP28522791A JP2938245B2 JP 2938245 B2 JP2938245 B2 JP 2938245B2 JP 28522791 A JP28522791 A JP 28522791A JP 28522791 A JP28522791 A JP 28522791A JP 2938245 B2 JP2938245 B2 JP 2938245B2
Authority
JP
Japan
Prior art keywords
tube
reforming
combustion
fuel
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28522791A
Other languages
Japanese (ja)
Other versions
JPH05115770A (en
Inventor
元一 池田
信弘 岩佐
弘正 吉田
功夫 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
Fuji Electric Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP28522791A priority Critical patent/JP2938245B2/en
Publication of JPH05115770A publication Critical patent/JPH05115770A/en
Application granted granted Critical
Publication of JP2938245B2 publication Critical patent/JP2938245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、炭化水素系の原燃料を
水素に富むガスに改質する燃料電池用燃料改質器の起動
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for starting a fuel reformer for a fuel cell, which reforms a hydrocarbon-based raw fuel into a hydrogen-rich gas.

【0002】[0002]

【従来の技術】燃料電池発電システムは、比較的小型で
も効率が高く、NOX ,SOX の発生がほとんど無い。
また補機類を除けば回転機器がないため低騒音で振動も
少なく、環境適応性に優れているため無公害の発電シス
テムとして最近注目を集めている。燃料電池発電システ
ムは、燃料改質器、燃料電池本体、及び各補機により構
成されている。燃料電池本体は供給される燃料と空気と
により電池反応を起こして発電する。この際燃料電池本
体に供給される燃料は燃料改質器にて天然ガス等の炭化
水素系あるいはメタノール等のアルコール系の原燃料を
改質触媒の下で水素に富むガスに改質した改質ガスが使
用される。
A fuel cell power generation system is relatively compact and high efficiency, NO X, there is almost no occurrence of SO X.
Except for auxiliary equipment, there is no rotating equipment, so there is no noise and little vibration, and because of its excellent environmental adaptability, it has recently attracted attention as a pollution-free power generation system. The fuel cell power generation system includes a fuel reformer, a fuel cell main body, and respective accessories. The fuel cell body generates a battery reaction by the supplied fuel and air to cause a cell reaction. At this time, the fuel supplied to the fuel cell body is reformed by reforming a hydrocarbon-based raw fuel such as natural gas or an alcohol-based raw fuel such as methanol by a fuel reformer into a hydrogen-rich gas under a reforming catalyst. Gas is used.

【0003】上記の燃料改質器において改質触媒からな
る触媒層では、原燃料がメタンの場合には、下記の式
(1)(2)の反応がNi系などに代表される改質触媒
の下で反応温度600〜900℃にて行われる。 CH4 +H 2O→CO+3H2 △H=−49.3kcal────(1) CH4 +H 2O→CO2 +H2 △H= 9.8kcal────(2) 上記(1),(2)式をトータルした CH4 +2H 2O→CO2 +4H2 △H=−39.5kcal────(3) 上記のようにメタンからなる改質原料ガスを改質する燃
料改質器の触媒層における水蒸気改質反応は、吸熱反応
であり外部からの熱の供給が必要となる。
In the catalyst layer made of a reforming catalyst in the above-described fuel reformer, when the raw fuel is methane, the reaction represented by the following formulas (1) and (2) is performed by a reforming catalyst typified by Ni system or the like. At a reaction temperature of 600 to 900 ° C. CH 4 + H 2 O → CO + 3H 2 ΔH = −49.3 kcal──── (1) CH 4 + H 2 O → CO 2 + H 2 ΔH = 9.8 kcal──── (2) The above (1), Formula (2): CH 4 + 2H 2 O → CO 2 + 4H 2 ΔH = −39.5 kcal──── (3) Fuel reformer for reforming the reforming raw material gas composed of methane as described above The steam reforming reaction in the catalyst layer is an endothermic reaction and requires external heat supply.

【0004】したがって上記の水蒸気改質反応を行なわ
せる場合、改質原料ガスを触媒層を内蔵する反応管に通
流し、この反応管を加熱して触媒層に熱を供給してい
る。
Therefore, when the above-mentioned steam reforming reaction is carried out, the reforming raw material gas is passed through a reaction tube containing a catalyst layer, and the reaction tube is heated to supply heat to the catalyst layer.

【0005】上記の反応管として従来単管式,二重管式
及び円筒式のものが知られている。図5は単管式の反応
管であり、反応管1を単管2と、この中に改質触媒3が
充填されてなる触媒層4とから構成し、単管2の周囲か
ら加熱して触媒層4を通流する改質原料ガスを水素に富
むガスに改質する。
Conventionally, single-tube, double-tube and cylindrical reactors are known as the above-mentioned reaction tubes. FIG. 5 shows a single tube type reaction tube. The reaction tube 1 is composed of a single tube 2 and a catalyst layer 4 in which a reforming catalyst 3 is filled. The reforming raw material gas flowing through the catalyst layer 4 is reformed into a hydrogen-rich gas.

【0006】図6は二重管式の反応管であり、反応管6
を内管7と、これを囲む容器状の外管8と、内管7と外
管8との間に改質触媒3が充填されてなる触媒層4とか
ら構成し、外管8の周囲から反応管6を加熱し、内管7
と外管8との間の触媒層4に改質原料ガスを通流して水
素に富むガスに改質し、この改質ガスを内管7内を通し
て外部に送出する。
FIG. 6 shows a double tube type reaction tube.
Is composed of an inner tube 7, a container-shaped outer tube 8 surrounding the inner tube 7, and a catalyst layer 4 in which the reforming catalyst 3 is filled between the inner tube 7 and the outer tube 8. The reaction tube 6 is heated from
The reforming raw material gas is passed through the catalyst layer 4 between the inner tube 8 and the outer tube 8 to reform the gas into a gas rich in hydrogen, and the reformed gas is sent out through the inner tube 7 to the outside.

【0007】上記の単管式及び二重管式の反応管1,6
を有する燃料改質器の起動時、反応管1,6をそれぞれ
その外周囲から加熱して水蒸気改質反応に適する温度ま
で昇温した後、改質原料ガスを反応管1,6に流入して
水素に富むガスに改質している。
The above-mentioned single-tube and double-tube reaction tubes 1, 6
When the fuel reformer having the above is started, the reaction tubes 1 and 6 are heated from the outer periphery thereof to a temperature suitable for the steam reforming reaction, and then the reforming raw material gas flows into the reaction tubes 1 and 6. To a gas rich in hydrogen.

【0008】ところで、このような反応管1,6を有す
る燃料改質器では反応管1,6は外周囲から加熱するの
で、単管2,外管8が熱膨脹し、このため反応管内の触
媒層4には加圧力が加わることがなく、したがって改質
触媒が圧壊するということはない。しかしながらオンサ
イト用の燃料電池発電装置では反応管内の触媒層の厚さ
を薄くして伝熱を良くしているが、改質触媒が後述する
理由により圧壊しやすい円筒式の反応管を有する燃料改
質器が使用される。
In a fuel reformer having such reaction tubes 1 and 6, since the reaction tubes 1 and 6 are heated from the outside, the single tube 2 and the outer tube 8 are thermally expanded, so that the catalyst in the reaction tube is heated. No pressure is applied to the layer 4, so that the reforming catalyst does not collapse. However, in the on-site fuel cell power generator, the thickness of the catalyst layer in the reaction tube is reduced to improve the heat transfer, but the fuel having the cylindrical reaction tube in which the reforming catalyst is easily crushed for the reason described later. A reformer is used.

【0009】図7は円筒式の反応管を備えた燃料改質器
の断面図である。図において炉容器10は上部中央にバ
ーナタイル11に囲まれたバーナ12と、側壁上部にバ
ーナ12からの燃料が燃焼して生じる燃焼ガスを排出す
る排ガス出口13とを備え、さらに反応管21を有する
改質管14を内蔵している。
FIG. 7 is a sectional view of a fuel reformer having a cylindrical reaction tube. In the figure, a furnace vessel 10 is provided with a burner 12 surrounded by a burner tile 11 in the upper center, and an exhaust gas outlet 13 for discharging combustion gas generated by burning fuel from the burner 12 in an upper side wall. Built-in reforming tube 14 having

【0010】改質管14はバーナ12がその内側に臨む
内管15と、これを囲む外囲管16と、この下部開口部
を閉鎖する底板17と、内管15と外囲管16との間に
底板17から離して介挿される外管18とから構成さ
れ、内管15と外管18との間の環状空間には改質触媒
19が充填されてなる触媒層20を内蔵して反応管21
が形成されている。なお、外管18と外囲管16との間
は改質原料ガスが流れる改質原料ガス通路22を形成し
ている。
The reforming pipe 14 includes an inner pipe 15 in which the burner 12 faces the inside, an outer pipe 16 surrounding the inner pipe 15, a bottom plate 17 for closing the lower opening, and the inner pipe 15 and the outer pipe 16. An outer tube 18 is interposed between the inner tube 15 and the outer tube 18, and a catalyst layer 20 filled with a reforming catalyst 19 is built in the annular space between the inner tube 15 and the outer tube 18. Tube 21
Are formed. In addition, a reforming material gas passage 22 through which the reforming material gas flows is formed between the outer tube 18 and the outer tube 16.

【0011】改質管14の外管18と外囲管16との上
部開口は炉容器10の上部に設けられた改質原料ガスマ
ニホールド23に連通し、改質原料ガスマニホールド2
3は改質原料ガスが流入する改質原料ガス入口24を備
えている。また内管15と外管18との上部開口は炉容
器10の上部に設けられた改質ガスマニホールド25に
連通し、改質ガスマニホールド25は改質ガスを外部に
送出する改質ガス出口26を備えている。
The upper openings of the outer pipe 18 and the outer pipe 16 of the reforming pipe 14 communicate with a reforming raw material gas manifold 23 provided at an upper part of the furnace vessel 10.
Reference numeral 3 denotes a reforming material gas inlet 24 into which the reforming material gas flows. The upper openings of the inner pipe 15 and the outer pipe 18 communicate with a reformed gas manifold 25 provided at the upper part of the furnace vessel 10, and the reformed gas manifold 25 has a reformed gas outlet 26 for sending the reformed gas to the outside. It has.

【0012】なお、内管15の内側は燃焼室27を形成
し、外囲管16と炉容器10との間は燃焼ガス通路28
を形成している。
A combustion chamber 27 is formed inside the inner tube 15, and a combustion gas passage 28 is provided between the outer tube 16 and the furnace vessel 10.
Is formed.

【0013】このような構成により、バーナ12からの
燃料を燃焼させると燃焼ガスは矢印のように内管15の
内側面に沿って燃焼室27を下方に流れ、改質管14の
下端部で折返して外囲管16の外側面に沿って燃焼ガス
通路28を流れて反応管21を有する改質管24を加熱
した後、排ガス出口13から外部に排出される。
With such a configuration, when the fuel from the burner 12 is burned, the combustion gas flows downward through the combustion chamber 27 along the inner surface of the inner pipe 15 as indicated by the arrow, and at the lower end of the reforming pipe 14. After being turned back and flowing through the combustion gas passage 28 along the outer surface of the surrounding tube 16 to heat the reforming tube 24 having the reaction tube 21, the gas is discharged from the exhaust gas outlet 13 to the outside.

【0014】一方、改質原料ガスは、改質原料ガス入口
24から改質原料ガスマニホールド23を経て改質原料
ガス通路22を下方に流れ、その下端部で触媒層20に
流入する。そして改質原料ガスは燃焼ガスにより加熱さ
れた触媒層20を下方から上方に向かって流れ、触媒作
用の下に水素に富むガスに水蒸気改質されて改質ガスマ
ニホールド25を経て改質ガス出口26から燃料電池に
送出される。
On the other hand, the reforming raw material gas flows downward through the reforming raw material gas passage 22 through the reforming raw material gas inlet 23 through the reforming raw material gas inlet 24, and flows into the catalyst layer 20 at the lower end thereof. Then, the reforming raw material gas flows upward from below in the catalyst layer 20 heated by the combustion gas, and is steam-reformed into a hydrogen-rich gas under the catalytic action, passes through the reforming gas manifold 25, and exits from the reforming gas outlet. 26 to the fuel cell.

【0015】なお、燃料改質器を冷機から起動するとき
にはつぎのようにして行われる。バーナ12からの所定
量の燃料を燃焼室27にて燃焼させる。この際生じた燃
焼ガスは燃焼室27から燃焼ガス通路28に流れる。こ
の燃焼ガスにより改質管14を加熱し、触媒層20を内
蔵する反応管21の温度を改質に適する温度である75
0℃まで昇温する。昇温終了後改質原料ガスを改質原料
ガス入口24から改質原料ガス通路22を経て反応管2
1の触媒層20に通流させて改質を開始する。
When the fuel reformer is started from a cold state, the operation is performed as follows. A predetermined amount of fuel from the burner 12 is burned in the combustion chamber 27. The combustion gas generated at this time flows from the combustion chamber 27 to the combustion gas passage 28. The reforming tube 14 is heated by the combustion gas, and the temperature of the reaction tube 21 containing the catalyst layer 20 is set to a temperature suitable for reforming.
Heat to 0 ° C. After the temperature rise, the reforming raw material gas is supplied from the reforming raw material gas inlet 24 through the reforming raw material gas passage 22 to the reaction tube 2.
The reforming is started by flowing through the first catalyst layer 20.

【0016】[0016]

【発明が解決しようとする課題】上記のようにオンサイ
ト用燃料電池発電装置に使用される円筒式の燃料改質器
では単管式,二重管式のものと異なり、改質触媒の圧壊
という問題が生じる。以下この問題について説明する。
As described above, the cylindrical fuel reformer used in the on-site fuel cell power generator differs from the single-tube and double-tube fuel reformers in that the reforming catalyst is crushed. The problem arises. Hereinafter, this problem will be described.

【0017】上記のオンサイト用燃料電池発電装置の燃
料改質器では頻繁に起動停止が繰返されるヒートサイク
ルの結果、反応管は膨脹収縮を繰返す。この際燃料改質
器の起動時にはバーナ12からの燃料が内管15の内側
からなる燃焼室27で燃焼し、この燃焼により生じた燃
焼ガスは燃焼室27から燃焼ガス通路28を流れて改質
管14を加熱するので、内管15の方が外管18や外囲
管16より高温になる。この結果、起動毎に内管15の
円周方向の熱膨脹が外管18のそれより大きいため、触
媒層空間の間隙は減少する。この間隙の減少により触媒
層20には圧縮力が加わり、改質触媒は圧壊する。図8
はこのような圧壊を起こす圧縮力を発生させる改質管1
4の内管15と外囲管16との温度差による間隙の減
少、すなわち変位量と改質触媒の壊れる割合を示す。
In the above-described fuel reformer of the on-site fuel cell power generator, the reaction tube repeatedly expands and contracts as a result of a heat cycle in which starting and stopping are frequently repeated. At this time, when the fuel reformer is started, the fuel from the burner 12 burns in the combustion chamber 27 formed inside the inner pipe 15, and the combustion gas generated by this combustion flows from the combustion chamber 27 through the combustion gas passage 28 to reform. Since the tube 14 is heated, the temperature of the inner tube 15 becomes higher than that of the outer tube 18 and the outer tube 16. As a result, the gap in the catalyst layer space is reduced since the thermal expansion of the inner tube 15 in the circumferential direction is larger than that of the outer tube 18 at every startup. Due to the decrease in the gap, a compressive force is applied to the catalyst layer 20, and the reforming catalyst is crushed. FIG.
Is a reforming pipe 1 that generates a compressive force that causes such crushing.
4 shows the decrease in the gap due to the temperature difference between the inner pipe 15 and the outer pipe 16, that is, the displacement amount and the rate at which the reforming catalyst is broken.

【0018】起動停止のヒートサイクルの際生じる改質
管14の内管15と外囲管16との変位量は、バーナ直
下で内管15と外囲管16との温度差が400℃に達す
る場合約1mmである。ここで、外管18の温度は外囲管
16の温度とほぼ同じなので、内管15と外管18との
間の触媒層空間の間隙も減少し、この減少により触媒層
20に圧縮力が加わり、この圧縮力により改質触媒は図
8により約15(wt%)圧壊することが理解される。
The amount of displacement between the inner pipe 15 and the outer pipe 16 of the reforming pipe 14 caused during the heat cycle of the start and stop is such that the temperature difference between the inner pipe 15 and the outer pipe 16 reaches 400 ° C. immediately below the burner. In this case, it is about 1 mm. Here, since the temperature of the outer tube 18 is almost the same as the temperature of the outer tube 16, the gap in the catalyst layer space between the inner tube 15 and the outer tube 18 also decreases. In addition, it is understood from FIG. 8 that the reforming catalyst collapses by about 15 (wt%) due to this compressive force.

【0019】なお、燃料改質器にAE(Acoustic Emiss
ion)センサを取付けて燃料改質器の冷機からの起動時
生じる改質触媒の割れを音響的に測定した結果を図9に
示す。図から改質触媒の割れは、燃料改質器の起動時間
の初期20分で全体の約80%が起こっていることが理
解される。
Note that an AE (Acoustic Emiss
FIG. 9 shows the result of acoustically measuring the cracking of the reforming catalyst that occurs when the fuel reformer is started from the cold with the ion) sensor attached. It is understood from the figure that about 80% of the cracks in the reforming catalyst occurred in the initial 20 minutes of the start-up time of the fuel reformer.

【0020】このような改質触媒の圧壊により改質触媒
は粉化し、この結果、流体抵抗が増加し、燃料改質器の
運転ができなくなるという問題がある。
[0020] The pressure crush of the reforming catalyst causes the reforming catalyst to be powdered. As a result, there is a problem that the fluid resistance increases and the fuel reformer cannot be operated.

【0021】本発明の目的は、円筒式の反応管を有する
燃料改質器の起動時、反応管に充填された改質触媒の圧
壊を減少することのできる燃料改質器の起動方法を提供
することである。
An object of the present invention is to provide a method of starting a fuel reformer which can reduce the crush of a reforming catalyst filled in a reaction tube when the fuel reformer having a cylindrical reaction tube is started. It is to be.

【0022】[0022]

【課題を解決するための手段】上記課題を解決するため
に、本発明によれば内管と、これを囲む外管とを有し、
内管と外管との間に改質触媒が充填されてなる触媒層を
内蔵する反応管と、内管の内側の一方の端部に設けられ
るバーナとを備え、バーナからの燃料が内管の内側で燃
焼した熱媒体により反応管を加熱して触媒層を通流する
炭化水素系の原燃料を水素に富むガスに改質する燃料改
質器において、バーナによる燃焼量を燃焼開始から起動
時間経過に伴って順次増加して反応管の温度を改質に適
する温度まで昇温させるものとする。
In order to solve the above-mentioned problems, according to the present invention, there is provided an inner tube and an outer tube surrounding the inner tube,
A reaction tube containing a catalyst layer filled with a reforming catalyst between the inner tube and the outer tube; and a burner provided at one end inside the inner tube, and fuel from the burner is supplied to the inner tube. In the fuel reformer that heats the reaction tube with the heat medium burned inside the fuel tank and reforms the hydrocarbon-based raw fuel flowing through the catalyst layer into a hydrogen-rich gas, the amount of combustion by the burner is started from the start of combustion It is assumed that the temperature of the reaction tube is gradually increased as time elapses and the temperature of the reaction tube is raised to a temperature suitable for reforming.

【0023】なお、バーナによる燃焼量は燃焼開始から
階段状に順次増加させるものとする。
The amount of combustion by the burner is increased stepwise from the start of combustion.

【0024】[0024]

【作用】燃料改質器の起動時、内管と外管とからなり、
この内管と外管との間に改質触媒が充填された触媒層を
有する反応管を、内管の内側の一方の端部に設けられた
バーナからの燃料の燃焼による熱媒体により加熱して昇
温する際、バーナによる燃焼量を燃焼開始から起動時間
経過に伴って順次増加、この方法として階段状に順次増
加させることにより、内管と外管との温度差を小さくし
て円周方向の内管と外管との熱膨脹差を小さくする。こ
の結果内管と外管との間の間隙の減少の変位量を小さく
して、触媒層に加わる圧縮力を小さくして改質触媒の圧
壊を減少する。
[Function] When the fuel reformer is started, it consists of an inner pipe and an outer pipe,
A reaction tube having a catalyst layer filled with a reforming catalyst between the inner tube and the outer tube is heated by a heat medium by burning fuel from a burner provided at one end inside the inner tube. When the temperature rises, the amount of combustion by the burner increases gradually with the elapse of the startup time from the start of combustion.In this method, the temperature difference between the inner tube and the outer tube is reduced by increasing the temperature in a stepwise manner. The thermal expansion difference between the inner and outer tubes in each direction is reduced. As a result, the displacement of the decrease in the gap between the inner tube and the outer tube is reduced, the compressive force applied to the catalyst layer is reduced, and the crushing of the reforming catalyst is reduced.

【0025】[0025]

【実施例】以下図面に基づいて本発明の実施例について
説明する。図1は図7に示す燃料改質器の起動を、本発
明による起動方法と従来技術による起動方法により行な
ったときのバーナによる燃焼量と起動時間との関係を示
す図である。図1において本発明の起動方法による起動
時バーナ12による燃焼量は、従来のように起動時間中
燃焼量を一定Cにするのでなく、燃焼開始時は燃焼量を
従来の燃焼量より少なくし、起動時間の経過に伴って燃
焼量をA,B,C,Dのように階段状にして増加する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the relationship between the amount of combustion by a burner and the startup time when the startup of the fuel reformer shown in FIG. 7 is performed by the startup method according to the present invention and the startup method according to the prior art. In FIG. 1, the amount of combustion by the burner 12 at the time of starting according to the starting method of the present invention does not make the amount of combustion constant during the starting time as in the conventional case, but makes the amount of combustion smaller at the start of combustion than the conventional amount of combustion. As the start-up time elapses, the combustion amount increases stepwise as indicated by A, B, C, and D.

【0026】図2は本発明と従来技術とによる起動方法
に従って反応管を起動時昇温するときの反応管の内管ス
キン温度の昇温曲線図である。図において内管スキン温
度を改質に適する温度の750℃まで昇温する際、燃焼
量を階段状に増加させる本発明によるものは従来のもの
に比べて昇温速度は起動初期において小さく、起動後期
において大きくなっており、さらに前記改質に適する温
度に至る起動時間は本発明によるものは従来のものとほ
ぼ同じである。
FIG. 2 is a temperature rise curve of the inner tube skin temperature of the reaction tube when the temperature of the reaction tube is raised at the time of startup according to the startup method according to the present invention and the prior art. In the figure, when the inner tube skin temperature is raised to 750 ° C., which is a temperature suitable for reforming, the combustion rate is increased stepwise according to the present invention. The starting time to reach a temperature suitable for the reforming is larger in the latter stage, and the starting time according to the present invention is almost the same as the conventional one.

【0027】この際、本発明の起動方法による内管と外
囲管との温度は図3に示す昇温曲線となり、起動初期に
おける内管15と外囲管16との温度差△T1 は約30
0℃である。この温度差△T1 は図4に示す従来のバー
ナによる燃焼量を一定にして起動したときの内管15と
外囲管16との昇温曲線による起動初期における温度差
△T2 の約500℃に比べてかなり小さくなっている。
したがって触媒層20が内蔵される内管15と外管21
との温度差もこれに伴って従来のものより小さくなり、
この結果改質触媒の圧壊は減少する。
At this time, the temperature of the inner pipe and the outer pipe according to the starting method of the present invention is a temperature rising curve shown in FIG. 3, and the temperature difference ΔT 1 between the inner pipe 15 and the outer pipe 16 at the initial stage of the startup is About 30
0 ° C. This temperature difference ΔT 1 is about 500 of the temperature difference ΔT 2 in the initial stage of startup based on the temperature rise curve between the inner pipe 15 and the outer pipe 16 when the conventional burner shown in FIG. It is much smaller than ℃.
Therefore, the inner tube 15 and the outer tube 21 in which the catalyst layer 20 is built
The temperature difference with this also becomes smaller than the conventional one,
As a result, the collapse of the reforming catalyst is reduced.

【0028】上記のように本発明による起動方法を採用
した場合、AEセンサにより音響的に改質触媒の割れを
調査した処、図9に示すように改質触媒の割れが従来の
起動方法に比べてかなり少ないことが理解される。
When the starting method according to the present invention is employed as described above, cracks in the reforming catalyst are acoustically investigated by an AE sensor, and as shown in FIG. It is understood that it is considerably less than that.

【0029】[0029]

【発明の効果】以上の説明から明らかなように、本発明
によれば円筒式の反応管を有する燃料改質器の起動時、
バーナによる燃焼量を燃焼開始から順次増加、この方法
として階段状に順次増加させることにより、バーナから
の燃料の燃焼による熱媒体により加熱される反応管の内
管と外管との温度差は小さくなり、これに伴って内管と
外管との円周方向の熱膨脹差は小さくなるので、反応管
内の触媒層にかかる圧縮力も小さくなり、このため起動
停止のヒートサイクルによる改質触媒の圧壊を減少さ
せ、粉化による流体抵抗の増大を防ぐことができ、運転
を不能にすることがなくなる。
As is clear from the above description, according to the present invention, when the fuel reformer having the cylindrical reaction tube is started,
By gradually increasing the amount of combustion by the burner from the start of combustion, and gradually increasing it in a stepwise manner as a method, the temperature difference between the inner tube and the outer tube of the reaction tube heated by the heat medium due to the combustion of the fuel from the burner is reduced. As a result, the difference in thermal expansion between the inner tube and the outer tube in the circumferential direction becomes smaller, so that the compressive force applied to the catalyst layer in the reaction tube also becomes smaller. It is possible to prevent the increase of the fluid resistance due to the pulverization and prevent the operation from being disabled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による燃料改質器の起動方法を
採用したとき、及び従来の起動方法によるときの燃焼量
と起動時間との関係を示す図
FIG. 1 is a diagram showing a relationship between a combustion amount and a starting time when a starting method of a fuel reformer according to an embodiment of the present invention is adopted and when a conventional starting method is used.

【図2】図1の本発明及び従来の起動方法による反応管
スキン温度の昇温状態を示す昇温曲線図
FIG. 2 is a heating curve diagram showing a heating state of a reaction tube skin temperature according to the present invention and the conventional starting method of FIG. 1;

【図3】図1の本発明による燃料改質器の起動方法を採
用したときの反応管を有する改質管の内管と外囲管との
昇温状態を示す昇温曲線図
FIG. 3 is a heating curve diagram showing a heating state of an inner tube and an outer tube of a reforming tube having a reaction tube when the method of starting the fuel reformer according to the present invention of FIG. 1 is employed.

【図4】従来の燃料改質器の起動方法による反応管を有
する改質管の内管と外囲管との昇温状態を示す昇温曲線
FIG. 4 is a heating curve diagram showing a heating state of an inner tube and an outer tube of a reforming tube having a reaction tube by a conventional method of starting a fuel reformer.

【図5】単管式の反応管の断面図FIG. 5 is a sectional view of a single tube type reaction tube.

【図6】二重管式の反応管の断面図FIG. 6 is a sectional view of a double tube type reaction tube.

【図7】円筒式の反応管を備えた燃料改質器の断面図FIG. 7 is a cross-sectional view of a fuel reformer having a cylindrical reaction tube.

【図8】図7の燃料改質器の反応管を有する改質管の内
管と外囲管との温度差及びこれに対応する変位量と壊れ
る触媒の割合との関係を示す図
8 is a diagram showing a temperature difference between an inner tube and an outer tube of a reforming tube having a reaction tube of the fuel reformer of FIG. 7, and a relationship between a displacement amount corresponding thereto and a ratio of a broken catalyst.

【図9】従来と本発明とによる燃料改質器の起動方法を
採用したときのAEセンサで計測した触媒の割れ回数と
起動時間との関係を示す図
FIG. 9 is a diagram showing the relationship between the number of cracks of the catalyst measured by the AE sensor and the start-up time when the start-up method of the fuel reformer according to the related art and the present invention is adopted.

【符号の説明】[Explanation of symbols]

12 バーナ 15 内管 16 外囲管 18 外管 19 改質触媒 20 触媒層 12 Burner 15 Inner tube 16 Outer tube 18 Outer tube 19 Reforming catalyst 20 Catalyst layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 池田 元一 神奈川県逗子市久木2−6,B9 (72)発明者 岩佐 信弘 大阪府岸和田市葛城町910−55 (72)発明者 吉田 弘正 愛知県名古屋市西区押切一丁目9番6号 (72)発明者 中川 功夫 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特開 平1−242136(JP,A) 特開 昭62−106834(JP,A) 実開 平3−245833(JP,U) (58)調査した分野(Int.Cl.6,DB名) B01J 8/06 C01B 3/38 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Motoichi Ikeda 2-6, B9, Kuki, Zushi City, Kanagawa Prefecture (72) Inventor Nobuhiro Iwasa 910-55, Katsuragicho, Kishiwada City, Osaka (72) Inventor Hiromasa Yoshida Aichi Prefecture 1-9-6 Oshikiri, Nishi-ku, Nagoya-shi (72) Inventor Isao Nakagawa 1-1, Tanabe-shinda, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (56) References JP-A-62-106834 (JP, A) JP-A-3-245833 (JP, U) (58) Fields investigated (Int. Cl. 6 , DB name) B01J 8/06 C01B 3/38

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内管と、これを囲む外管とを有し、内管と
外管との間に改質触媒が充填されてなる触媒層を内蔵す
る反応管と、内管の内側の一方の端部に設けられるバー
ナとを備え、バーナからの燃料が内管の内側で燃焼した
熱媒体により反応管を加熱して触媒層を通流する炭化水
素系の原燃料を水素に富むガスに改質する燃料改質器に
おいて、バーナによる燃焼量を燃焼開始から起動時間経
過に伴って順次増加して反応管の温度を改質に適する温
度に昇温させることを特徴とする燃料改質器の起動方
法。
1. A reaction tube having an inner tube and an outer tube surrounding the inner tube, and a reaction tube containing a catalyst layer filled with a reforming catalyst between the inner tube and the outer tube; A burner provided at one end, wherein the fuel from the burner heats the reaction tube with a heat medium burned inside the inner tube to flow the hydrocarbon-based raw fuel flowing through the catalyst layer into a hydrogen-rich gas. In the fuel reformer, the amount of combustion by the burner is gradually increased with the elapse of the start time from the start of combustion to raise the temperature of the reaction tube to a temperature suitable for reforming. How to start the vessel.
【請求項2】請求項1記載の燃料改質器の起動方法にお
いて、バーナによる燃焼量は燃焼開始から階段状に順次
増加させることを特徴とする燃料改質器の起動方法。
2. The starting method of a fuel reformer according to claim 1, wherein the amount of combustion by the burner is increased stepwise from the start of combustion.
JP28522791A 1991-10-31 1991-10-31 Starting the fuel reformer Expired - Lifetime JP2938245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28522791A JP2938245B2 (en) 1991-10-31 1991-10-31 Starting the fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28522791A JP2938245B2 (en) 1991-10-31 1991-10-31 Starting the fuel reformer

Publications (2)

Publication Number Publication Date
JPH05115770A JPH05115770A (en) 1993-05-14
JP2938245B2 true JP2938245B2 (en) 1999-08-23

Family

ID=17688754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28522791A Expired - Lifetime JP2938245B2 (en) 1991-10-31 1991-10-31 Starting the fuel reformer

Country Status (1)

Country Link
JP (1) JP2938245B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4363002B2 (en) * 2002-04-18 2009-11-11 日産自動車株式会社 Fuel reforming system and its warm-up device
JP4973080B2 (en) * 2006-09-13 2012-07-11 富士電機株式会社 How to start the reformer
JP5433892B2 (en) * 2007-12-20 2014-03-05 コスモ石油株式会社 Startup method for stationary hydrogen generator reformer

Also Published As

Publication number Publication date
JPH05115770A (en) 1993-05-14

Similar Documents

Publication Publication Date Title
JP5785659B2 (en) Laminated hydrocarbon reformer using microchannel heater
CN100446324C (en) Reformer of fuel cell system
JP4492882B2 (en) Hydrogen generating apparatus with double burner and driving method
KR101870026B1 (en) Reactor reforming for liquid hydrocarbon fuel
JP2938245B2 (en) Starting the fuel reformer
JP3903710B2 (en) Fuel reformer and polymer electrolyte fuel cell power generator using the same
JP4599618B2 (en) Thermosyphon reactor and hydrogen generator equipped with the same
JP2004323353A (en) Single tube cylindrical reformer and operating method therefor
JP3364069B2 (en) Solid oxide fuel cell module
JP2003321206A (en) Single tubular cylinder type reforming apparatus
JPH05303972A (en) Fuel reformer
JP2001151501A (en) Reforming device
JP2008147026A (en) Solid oxide fuel cell
JP4486832B2 (en) Steam reforming system
JP5244488B2 (en) Fuel cell reformer
JPH1143303A (en) Reforming unit
JP4147521B2 (en) Self-oxidation internal heating type reforming method and apparatus
JP2998217B2 (en) Fuel reformer
JP2550716B2 (en) Fuel reformer
JPS62106834A (en) Reaction tube of reformer
JPH05301701A (en) Device for reforming fuel
JP2738988B2 (en) Fuel reformer
JP3819625B2 (en) Fuel reformer
JP2712766B2 (en) Fuel reformer
JP2005263618A (en) Fuel reformer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100611

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100611

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110611

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120611

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 13