JPH01168332A - Apparatus for reforming fuel - Google Patents

Apparatus for reforming fuel

Info

Publication number
JPH01168332A
JPH01168332A JP62327044A JP32704487A JPH01168332A JP H01168332 A JPH01168332 A JP H01168332A JP 62327044 A JP62327044 A JP 62327044A JP 32704487 A JP32704487 A JP 32704487A JP H01168332 A JPH01168332 A JP H01168332A
Authority
JP
Japan
Prior art keywords
reforming
layer
reforming catalyst
inner cylinder
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62327044A
Other languages
Japanese (ja)
Inventor
▲お▼畑 勲
Isao Obata
Yumito Kondo
近藤 弓人
Yoshiaki Amano
天野 義明
Akio Hanzawa
半澤 晨夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62327044A priority Critical patent/JPH01168332A/en
Publication of JPH01168332A publication Critical patent/JPH01168332A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/0271Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a spiral shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To ensure the retention of sufficient quantity of catalyst and improve reaction performance using a small apparatus, by providing an inner cylinder concentrically within an outer cylinder, dividing the space between said cylinders by a helical plate, and disposing helical heating layers and reforming catalyst layers alternately, each of them being located adjacent to each other. CONSTITUTION:An inner cylinder 10 is provided concentrically in an outer cylinder 11, wherein helical heating layers 2 and helical reforming catalyst layers 1 are formed, the layers being located alternately adjacent to each other, by dividing the space between the cylinders 11 and 10 by a plurality of helical plates 12. The reforming catalyst layers 1 are loaded with reforming catralysts 3 to steam-reform the raw material to be reformed, while a means 6 for supplying the raw material to be reformed from the outside and a means 8 for delivering reformed gas are connected to said layer 1. Means 7a, 7b, 9 for supplying and discharging heat medium of high temperature are connected to the heating layers 2. Consequently, ineffective spaces in the reforming apparatus are eliminated, increasing thereby the area of heat-transfer surfaces between the heating layers and the reforming catalyst layers, further ensuring the retention of sufficient quantities of catalysts, leading to a small apparatus having high reaction performance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルコール類や炭化水素系燃料を水蒸気改質
して水素を生成する燃料改質装置に係り特に、燃料電池
システム及び水素製造装置に好適な燃料改質装置に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fuel reformer that generates hydrogen by steam reforming alcohol or hydrocarbon fuel, and particularly relates to a fuel cell system and a hydrogen production device. The present invention relates to a fuel reformer suitable for.

〔従来の技術〕[Conventional technology]

従来の改質装置は、特開昭53−78983号公報に示
される様に、反応部には円筒状の反応管を使用し、改質
触媒をその反応管内部に充填したものとなっている。さ
らに、改質触媒を効率よく加熱するため反応管内部にス
ペーサを設けて環状□触媒層として伝熱特性の改善を図
っていた。また、反応管を加熱するための伝熱部におい
ては、熱源となる燃焼ガスを発生するバーナ燃焼室と燃
焼ガスからの熱伝達を促進するため、燃焼ガス流路に伝
熱粒子を充填した伝熱層を設けている。また、燃焼室空
間と伝熱層のガス流路空間を要し、特に伝熱層のガス流
路空間では反応管の円柱配列の間隙となるため1反応管
配列の間隔に比較してデッドスペースとなる空間が大き
くなる。
As shown in Japanese Unexamined Patent Publication No. 53-78983, conventional reforming equipment uses a cylindrical reaction tube for the reaction section, and a reforming catalyst is packed inside the reaction tube. . Furthermore, in order to efficiently heat the reforming catalyst, a spacer was provided inside the reaction tube to form an annular □ catalyst layer to improve heat transfer characteristics. In addition, in the heat transfer section for heating the reaction tube, in order to promote heat transfer from the burner combustion chamber that generates combustion gas as a heat source and the combustion gas, the combustion gas flow path is filled with heat transfer particles. A heat layer is provided. In addition, the combustion chamber space and the gas flow path space of the heat transfer layer are required, and especially in the gas flow path space of the heat transfer layer, there is a gap between the columnar arrays of reaction tubes, so there is a dead space compared to the spacing between one reaction tube array. The space becomes larger.

このような従来の反応管タイプの燃料改質装置ではこれ
らの余剰空間が必然的に必要なものであると考えられて
いた。
In such conventional reaction tube type fuel reformers, it was thought that these extra spaces were necessarily necessary.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術による反応管タイプの燃料改質装置では1
反応管外に余剰空間を設け、加熱流体の流速増加による
熱伝達の促進や改質触媒層厚さの縮少により改WM媒を
均一加熱するようにしていた。このため、改質装置の小
型・高性能化に対して反応管外の余剰空間を無くする構
造については考慮されておらず、小型化のためには従来
閘造を相似的に縮少することにとどまっていた。また、
反応管タイプの改質装置では1反応管の伝熱面積をあま
り大きくとれないため触媒充填量も大きくできなかった
。特に、触媒量に対する原料の処理量を大きく取れない
メタノール改質では、炭化水素の改質に比較して同じ処
理量の場合多くの触媒、を必要とするから改質装置を大
形化する必要があった。また、改質触媒層最下部の改質
触媒には上層部の触媒の重量が直接作用するため破損す
ることもあった。このように、従来のメタノール改質に
おける改質装置では、多数の反応管を必要とし余剰空間
も大きくなって改質装置が大形化するなどの問題があっ
た。
In the reaction tube type fuel reformer according to the above conventional technology, 1
An extra space was provided outside the reaction tube to uniformly heat the modified WM medium by promoting heat transfer by increasing the flow rate of the heating fluid and by reducing the thickness of the reforming catalyst layer. For this reason, in order to improve the size and performance of the reformer, no consideration has been given to a structure that eliminates the surplus space outside the reaction tube, and in order to make the reformer smaller, it is necessary to reduce the size of the conventional lock structure. It stayed in. Also,
In a reaction tube type reformer, the heat transfer area of one reaction tube cannot be made very large, so the amount of catalyst packed cannot be increased. In particular, in methanol reforming, where the throughput of feedstock cannot be large relative to the amount of catalyst, a larger amount of catalyst is required for the same throughput than in hydrocarbon reforming, so the reformer needs to be larger. was there. In addition, the weight of the catalyst in the upper layer directly acts on the reforming catalyst at the bottom of the reforming catalyst layer, so that it may be damaged. As described above, the conventional reforming apparatus for methanol reforming requires a large number of reaction tubes and has a large surplus space, resulting in an increase in the size of the reforming apparatus.

本発明の目的は、余剰空間を不要にし、伝熱面精を増加
できるようにして触媒量を十分に確保し。
An object of the present invention is to eliminate the need for surplus space, increase heat transfer surface quality, and secure a sufficient amount of catalyst.

小型で反応性能の高い燃料改質装置を得ることにある6 〔問題点を解決するための手段〕 本発明の特徴は、外筒と、この外筒内に同心的に設けら
れた内筒とを設け、前記外筒と内筒との間に形成された
空間を複数のらせん板で仕切ることによりらせん状の加
熱層とらせん状の改質触媒層とを隣接して形成し、前記
改質触媒層には改質原料を水蒸気改質するための改質触
媒を充填し、改質触媒層には外部から改質原料を供給す
る手段と改質されたガスを取出す手段を接続し、かつ前
記加熱層には高温の熱媒体を供給及び排出する手段を接
続したことにある。
[Means for solving the problem] The present invention is characterized by an outer cylinder, an inner cylinder provided concentrically within the outer cylinder, and A spiral heating layer and a spiral reforming catalyst layer are formed adjacent to each other by partitioning the space formed between the outer cylinder and the inner cylinder with a plurality of spiral plates. The catalyst bed is filled with a reforming catalyst for steam reforming the reforming raw material, and the reforming catalyst bed is connected to a means for supplying the reforming raw material from the outside and a means for taking out the reformed gas, and A means for supplying and discharging a high temperature heat medium is connected to the heating layer.

〔作用〕[Effect]

本発明では外筒と内筒との間の空間をらせん板で仕切り
、らせん状の加熱層と改質触媒層とを隣接配置している
ので、デシ1ヘスペースなどの余分な空間を設ける必要
がな(、伝熱面積も十分にとることかできる。また、加
熱層の熱を直接改質触媒層に伝達できるから熱損失も少
なくできる。さらに、らせん板により触媒を保持してい
るので。
In the present invention, the space between the outer cylinder and the inner cylinder is partitioned by a spiral plate, and the spiral heating layer and reforming catalyst layer are arranged adjacent to each other, so there is no need to provide extra space such as a decimal space. (A sufficient heat transfer area can be provided. Also, heat loss can be reduced because the heat from the heating layer can be directly transferred to the reforming catalyst layer. Furthermore, the catalyst is held by a spiral plate.

下部に充填した触媒に作用する荷重を軽減でき、触媒の
破損を防止できる。
The load acting on the catalyst packed in the lower part can be reduced and damage to the catalyst can be prevented.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第2図により説明
する6外筒11の内側には内筒1oが同心に設けられて
おり、外筒11と内筒10との間には偶数個のらせん板
12を配置して、このらせん板12及び前記外筒1】、
内fFli i Oによりらせん状の空間が形成されて
いる。このらせん状の空間部分には改質触媒3を一空間
おきに充填し改質触媒層1としている。この改質触媒層
1の両側に形成されているらせん状空間及び内筒】0の
内部は高温ガス流路を流す加熱層2となっており、この
加熱層2には高温ガスから改質触媒層1への伝熱促進を
図るため、耐熱性のアルミナ球である伝熱粒子5を充填
している。また、熱源として必要な熱量を発生させるた
め、加熱層2への燃料及び空気の入ロアa、7bには第
2図に示すように燃焼触媒4を充填している。内筒10
内の燃焼触媒4及び伝熱粒子5はセラミック製のハニカ
ム状支持板1;3により保持されている。メタノールな
どの原料は原料人口6を通って改質触媒W11に供給さ
れる。改質触媒層1に入った原料はらせん板12及び内
筒10を介して加熱層2を通過する高温ガスから熱を受
け、改質反応の進行と共に水素リッチな改質ガスとなる
。生成した改質ガスは改質ガス出口8から外部へ取り出
される。一方、改質ガスの加熱源となる高温ガスは、加
熱層2の燃料及び空気入ロアa、7b側に充填した燃焼
触媒4で燃料を燃やすことにより得られる。発生した高
温燃焼ガスは内筒10内を通って上昇し、内筒10の上
部において回りに配置したらせん状の加熱層2に導かれ
る。内筒10及び加熱層2では。
Hereinafter, one embodiment of the present invention will be explained with reference to FIGS. 1 and 2.6 An inner cylinder 1o is provided concentrically inside an outer cylinder 11, and between the outer cylinder 11 and the inner cylinder 10, An even number of spiral plates 12 are arranged, and the spiral plates 12 and the outer cylinder 1],
A spiral space is formed by the inner fFli i O. This spiral space is filled with reforming catalysts 3 every other space to form a reforming catalyst layer 1. The inside of the spiral space and inner cylinder formed on both sides of this reforming catalyst layer 1 is a heating layer 2 through which a high-temperature gas flow path flows, and this heating layer 2 is filled with a reforming catalyst from high-temperature gas. In order to promote heat transfer to layer 1, heat transfer particles 5, which are heat-resistant alumina spheres, are filled. In addition, in order to generate the amount of heat required as a heat source, the lowers a and 7b, which supply fuel and air to the heating layer 2, are filled with a combustion catalyst 4, as shown in FIG. Inner cylinder 10
The combustion catalyst 4 and heat transfer particles 5 inside are held by ceramic honeycomb support plates 1; 3. Raw materials such as methanol are supplied to the reforming catalyst W11 through the raw material port 6. The raw material that has entered the reforming catalyst layer 1 receives heat from the high temperature gas passing through the heating layer 2 via the spiral plate 12 and the inner cylinder 10, and as the reforming reaction progresses, it becomes a hydrogen-rich reformed gas. The generated reformed gas is taken out from the reformed gas outlet 8. On the other hand, high-temperature gas serving as a heating source for the reformed gas is obtained by burning the fuel in the heating layer 2 and the combustion catalyst 4 filled in the air-filled lowers a and 7b. The generated high-temperature combustion gas rises through the inner cylinder 10 and is guided to a spiral heating layer 2 disposed around the upper part of the inner cylinder 10. In the inner cylinder 10 and the heating layer 2.

高温ガスのもつ熱がらせん板12及び内筒10壁を通し
て改質触媒層1に与えられる。これは、伝熱粒子5の存
在により、対流、伝導及びふく射の伝熱形態が有効に作
用して行なわれる。改質触媒層1を加熱した高温ガスは
温度が降ドし、排ガスとして排気室9から排気される。
The heat of the high-temperature gas is applied to the reforming catalyst layer 1 through the spiral plate 12 and the wall of the inner cylinder 10. This is achieved by the effective action of convection, conduction, and radiation heat transfer due to the presence of the heat transfer particles 5. The temperature of the high-temperature gas that has heated the reforming catalyst layer 1 drops, and it is exhausted from the exhaust chamber 9 as exhaust gas.

上述した本実施例では、75Nms/h  の水素生成
を行う燃料改質装置の場合、従来のものでは、高さが2
 、6 m 、径が0.7mの大きさになるのに対し1
本実施例の場合、高さは1.5  m、径は0.45m
  となり、体積にして約1/4の小型化が可能となる
。また、総括熱伝達率では、従来的50kcaQ/m”
h’Cから、本実施例では約110kcaQ/m2h’
Cと2倍以上の熱伝達率を得ることができ、高効率を達
成できる6 第3図は、改質ガスを自己熱交させる場合の本発明の他
の実施側を示したものである。この実施例は先の一実施
例と同様に改質触媒層1と加熱層2をらせん板12で区
切りそれぞれ隣接して配置している。改質触媒層1には
改質触媒3が充填され、これらはらせん状通路の最下部
でセラミック製ハニカム板により支持されている。改質
原料は原料人口6より供給され各改質触媒WJ1に分配
され、各改質触媒層1を通過して水素リッチガスに改質
される。生成された水素リッチな改質ガスはそのらせん
状通路上部から内筒10の上部に集められ、内筒10内
を下方に流れる。この時内筒10を介して改質触媒層1
と熱交換し、その後改質ガスは内筒10下部の改質ガス
出口8から外部へ取り出される。一方、この実施例にお
ける加熱層2は、燃焼触媒4の層及び伝熱粒子5の層よ
り構成されており、燃焼触媒層は加熱層2における燃料
・空気入口部7側に設けている。燃焼触媒4としては、
例えばパラジウムなどを担持した粒状触媒を使用し、伝
熱粒子5としてはアルミナ粒子などの耐熱性材料を使用
する。燃料・空気入口部7かららせん状の加熱層2の下
部に供給された燃料は、燃焼触媒4の層で触媒燃焼し高
温燃焼ガスとなり、らせん状の加熱層2を上昇して隣接
するらせん状の改質触媒層1を加熱する。この実施例で
も先の実施例と同様に伝熱粒子5の存在により、対流、
伝導・ふく射の伝熱形態が有効に作用して行なわれる。
In this embodiment described above, in the case of a fuel reformer that generates hydrogen at 75 Nms/h, the height of the conventional one is 2.
, 6 m, and the diameter is 0.7 m, whereas 1
In the case of this example, the height is 1.5 m and the diameter is 0.45 m.
Therefore, it is possible to reduce the size by about 1/4 in terms of volume. In addition, the overall heat transfer coefficient is 50kcaQ/m”
h'C, approximately 110 kcaQ/m2h' in this example
It is possible to obtain a heat transfer coefficient more than twice that of C and achieve high efficiency.6 FIG. 3 shows another embodiment of the present invention in which the reformed gas is subjected to self-heat exchange. In this embodiment, like the previous embodiment, the reforming catalyst layer 1 and the heating layer 2 are separated by a spiral plate 12 and arranged adjacent to each other. The reforming catalyst layer 1 is filled with reforming catalysts 3, which are supported by a ceramic honeycomb plate at the lowest part of the spiral passage. The reforming raw material is supplied from the raw material population 6, distributed to each reforming catalyst WJ1, passes through each reforming catalyst layer 1, and is reformed into hydrogen-rich gas. The generated hydrogen-rich reformed gas is collected in the upper part of the inner cylinder 10 from the upper part of the spiral passage, and flows downward in the inner cylinder 10. At this time, the reforming catalyst layer 1 is
After that, the reformed gas is taken out from the reformed gas outlet 8 at the bottom of the inner cylinder 10. On the other hand, the heating layer 2 in this embodiment is composed of a layer of combustion catalyst 4 and a layer of heat transfer particles 5, and the combustion catalyst layer is provided on the fuel/air inlet section 7 side of the heating layer 2. As the combustion catalyst 4,
For example, a granular catalyst supporting palladium or the like is used, and the heat transfer particles 5 are made of a heat-resistant material such as alumina particles. The fuel supplied from the fuel/air inlet 7 to the lower part of the spiral heating layer 2 is catalytically combusted in the layer of the combustion catalyst 4 and becomes high-temperature combustion gas, which ascends the spiral heating layer 2 to the adjacent spiral. The reforming catalyst layer 1 is heated. In this example, as in the previous example, due to the presence of heat transfer particles 5, convection,
This is achieved through the effective use of conduction and radiation heat transfer methods.

燃焼ガスは、改質触媒層1を加熱しながららせん状の加
熱層2の上部に達し排ガスとして外筒11の上部に形成
された排ガスヘッダに集められ、排気管9から外部へ排
気される。本実施例によっても前述した実施例と同様の
効果があり、従来の反応管型改質装置に対して大幅な小
型化が実現できる。また、触媒燃焼により加熱層内で直
接高温熱源を作るようにしたので、別途燃焼器を設ける
必要がなく、装置の簡略化にも効果がある。
The combustion gas reaches the top of the spiral heating layer 2 while heating the reforming catalyst layer 1, is collected as exhaust gas in an exhaust gas header formed at the top of the outer cylinder 11, and is exhausted to the outside from the exhaust pipe 9. This embodiment also has the same effects as the above-mentioned embodiments, and can be significantly downsized compared to the conventional reaction tube type reformer. Furthermore, since a high-temperature heat source is created directly within the heating layer through catalytic combustion, there is no need to provide a separate combustor, which is effective in simplifying the device.

本発明の更に他の実施例を第4図に示す。この実施例は
、アルコール類を原料とする高純度水素製装置や燃料電
池発電システムの燃料改質装置に特に有効である。アル
コール類を原料とする装置は、燃料改質装置の前に蒸発
器を設ける必要があるが、本実施例では燃料改質装置の
内部に蒸発器を備えるようにしたものである。この燃料
改質装置は前記第1の実施例と同様に、内筒10と外筒
11の間をらせん状の隔壁(らせん板)12で区切った
らせん状の空間を形成し、改質触媒層1と加熱層2を隣
接して交互に配置している。また、改質触媒層1の下部
には蒸発層13を備えている。
Still another embodiment of the invention is shown in FIG. This embodiment is particularly effective for high-purity hydrogen production equipment using alcohol as a raw material and fuel reforming equipment for fuel cell power generation systems. An apparatus using alcohol as a raw material requires an evaporator to be provided in front of the fuel reformer, but in this embodiment, the evaporator is provided inside the fuel reformer. Similar to the first embodiment, this fuel reformer has a spiral space separated by a spiral partition wall (spiral plate) 12 between an inner cylinder 10 and an outer cylinder 11, and a reforming catalyst layer. 1 and heating layers 2 are alternately arranged adjacent to each other. Further, an evaporation layer 13 is provided below the reforming catalyst layer 1.

蒸発層13には熱伝達率を向上させるために伝熱粒子5
としてアルミナ粒子を充填している。伝熱粒子5はらせ
ん状の改質触媒層1の下部に設けたハニカム製支持板で
支持されている。原料人口6から供給された原料は蒸発
層13を通過するとき蒸発、過熱され改質触媒Pylt
に供給される。ここで、本実施例の適用が最も有効だと
思われるメタノール改質装置を例にどり説明する。メタ
ノールと水の混合原料を原料入口6から供給する。原料
は蒸発層13で加熱層2からの伝熱により蒸発し。
Heat transfer particles 5 are provided in the evaporation layer 13 to improve the heat transfer coefficient.
It is filled with alumina particles. The heat transfer particles 5 are supported by a honeycomb support plate provided at the bottom of the spiral reforming catalyst layer 1. When the raw material supplied from the raw material population 6 passes through the evaporation layer 13, it is evaporated and superheated to the reforming catalyst Pylt.
is supplied to Here, a methanol reformer to which this embodiment is considered to be most effective will be explained as an example. A mixed raw material of methanol and water is supplied from the raw material inlet 6. The raw material is evaporated in the evaporation layer 13 by heat transfer from the heating layer 2.

過熱される。内f?itoの下部には第2図と同様に加
熱層2の下部に触媒燃焼部4が設けられており、この触
媒燃焼部4では800℃〜1000℃の高温燃焼ガスが
発生している。蒸発層13は触媒燃焼部4に対し内筒1
oを介して近接して設けられているが、蒸発層13内に
は液体原料が供給されるため壁温があまり高くならず、
熱による内筒10の破壊を防止できる。また、メタノー
ルは高温では熱分解が発生するが、内筒10及びらせん
板1.2の壁温はあまり高くならないから、メタノール
の熱分解を防止できる。さらに、メタノールの改質触媒
3は耐熱温度が350℃〜400℃と低いため、従来は
ダウサム等の熱媒油により改質触媒3を加熱していたが
、本実施例においては改質触媒層1人口位置に相当する
加熱層2を通過する燃焼ガスは500℃〜550℃と蒸
発層13に熱をイイわれで下がっているから、熱媒油に
よる加熱をしなくても触媒破損の心配がなく、熱媒油を
加熱するための熱媒炉も不用である。
overheated. Inner f? A catalytic combustion section 4 is provided below the heating layer 2 in the same manner as in FIG. 2, and a high temperature combustion gas of 800 DEG C. to 1000 DEG C. is generated in this catalytic combustion section 4. The evaporation layer 13 is located between the inner cylinder 1 and the catalytic combustion section 4.
Although the evaporation layer 13 is provided close to the evaporation layer 13 via the
Breakage of the inner cylinder 10 due to heat can be prevented. Further, although methanol undergoes thermal decomposition at high temperatures, the wall temperatures of the inner cylinder 10 and the spiral plate 1.2 do not become too high, so that thermal decomposition of methanol can be prevented. Furthermore, since the methanol reforming catalyst 3 has a low heat resistance temperature of 350°C to 400°C, the reforming catalyst 3 was conventionally heated with heat transfer oil such as Dowsum, but in this example, the reforming catalyst layer The combustion gas passing through the heating layer 2, which corresponds to one population position, has a temperature of 500°C to 550°C, which is cooled by the evaporation layer 13, so there is no need to worry about catalyst damage even without heating with heat transfer oil. There is no need for a heat transfer furnace to heat the heat transfer oil.

以上説明したように、本実施例では、直接加熱してもメ
タノールの熱分解、改質触媒の熱破損等を防止できるか
ら、従来の熱媒油を用いた方法に比較し装置の簡略化を
図ることができ、装置の小型・コンパクト化が可能とな
る一7 次に第5図、第6図により本発明の更に他の実施例を示
す、第5図は、らせん状板12に板側12aを配置した
もの、第6図は、らせん状板12に突起12bを備えた
ものである。これらの実施例によれば伝熱効率を更に向
上させることができる。
As explained above, in this example, thermal decomposition of methanol and thermal damage to the reforming catalyst can be prevented even with direct heating, so the equipment can be simplified compared to the conventional method using heat transfer oil. 5 and 6 show still another embodiment of the present invention. In FIG. 5, the spiral plate 12 is 6, the spiral plate 12 is provided with protrusions 12b. According to these examples, the heat transfer efficiency can be further improved.

上記実施例ではいずれも改質触媒をらせん状板12によ
ってささえているので、触媒の自重による下層の触媒の
破損を防止することができる。
In all of the above embodiments, since the reforming catalyst is supported by the spiral plate 12, damage to the lower catalyst due to the weight of the catalyst can be prevented.

なお、上記実施例では燃焼触媒を使用しているが、他の
プロセス等から高温ガスが容易に入手できる場合は、燃
焼触媒を利用しない伝熱粒子の加熱層とすることもでき
る。
Although a combustion catalyst is used in the above embodiment, if high-temperature gas is easily obtained from other processes, a heating layer of heat transfer particles may be used without using a combustion catalyst.

上述した本発明の実施例によれば、改質触媒層及び加熱
層をらせん状板で区切ったらせん形状としたことにより
、無駄な空間がなくなり、必要触媒量に対する伝熱面積
の確保は改質装置の高さまたは径を変えることにより可
能である。また、加熱源と受熱源である加熱層と改質触
媒層とは隣接して配置されるので良好な伝熱機能が得ら
れ、かつデッドスペースが出来ないため、大幅に小型化
できる。改質装置の容量の大型化に対しては装置を相似
的に拡大すればよい。また、燃焼ガスの流路面積や改質
触媒層の長さを適切に設定できるため、熱伝達率の向上
や触媒反応に必要な距離の確保を容易に達成できる。さ
らに、本実施例によれば、らせん板により、触媒の自重
を支えることができるので、触媒の破損を防ぎ、長寿命
化を図ることもできる。加熱層には燃焼触媒を充填して
いるので、燃料等を供給するだけで触媒燃焼による高温
ガスを発生させることができ、従来のように燃焼器を別
設置する必要がなく、しかも発生した高温ガスの熱を直
接改質触媒層に伝達できるから熱損失も少なくできる。
According to the embodiment of the present invention described above, by forming the reforming catalyst layer and the heating layer into a spiral shape separated by spiral plates, there is no wasted space, and the heat transfer area for the required amount of catalyst can be secured by reforming. This is possible by changing the height or diameter of the device. Further, since the heating layer, which is a heating source and a heat receiving source, and the reforming catalyst layer are arranged adjacent to each other, a good heat transfer function can be obtained, and since no dead space is created, the size can be significantly reduced. In order to increase the capacity of the reformer, it is sufficient to expand the device in a similar manner. Furthermore, since the flow path area of the combustion gas and the length of the reforming catalyst layer can be appropriately set, it is possible to easily improve the heat transfer coefficient and secure the distance necessary for the catalytic reaction. Further, according to this embodiment, since the spiral plate can support the weight of the catalyst, damage to the catalyst can be prevented and the life of the catalyst can be extended. Since the heating layer is filled with a combustion catalyst, high-temperature gas can be generated by catalytic combustion just by supplying fuel, etc., and there is no need to install a separate combustor as in the past, and the high-temperature gas generated can be generated by simply supplying fuel etc. Since the heat of the gas can be directly transferred to the reforming catalyst layer, heat loss can also be reduced.

さらに、内筒内に高温ガスまたは改質ガスを通し、内筒
内から改質触媒層を加熱するようにしているから、熱損
失を低減することができる。このように、本実施例によ
れば、小形・コンパクトで高効率の燃料改質装置が得ら
れる。
Furthermore, since the reforming catalyst layer is heated from within the inner cylinder by passing high-temperature gas or reformed gas into the inner cylinder, heat loss can be reduced. Thus, according to this embodiment, a small, compact, and highly efficient fuel reformer can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように1本発明は、外筒内に同心に内筒を設
け、その外筒と内筒との間の空間をらせん板により仕切
り、らせん状の加熱層と改質触媒層とを隣接配置するよ
うにしたがら、改質装置内に無駄な空間がなくなり、加
熱層から改質触媒層への伝熱面積を増加でき、触媒量も
十分に確保できる。したがって、小形で高い伝熱性能が
得られ、反応性能の高い燃料改質装置が得られる。さら
に、本発明によれば、らせん板により触媒の自重を支え
ることができるので、改質触媒層下部の触媒の破損を防
止でき、触媒の長寿命化が図れる効果もある。
As described above, the present invention provides an inner cylinder concentrically within an outer cylinder, partitions the space between the outer cylinder and the inner cylinder with a spiral plate, and connects a spiral heating layer and a reforming catalyst layer. By arranging them adjacent to each other, there is no wasted space in the reformer, the heat transfer area from the heating layer to the reforming catalyst layer can be increased, and a sufficient amount of catalyst can be secured. Therefore, it is possible to obtain a fuel reformer that is small in size, has high heat transfer performance, and has high reaction performance. Further, according to the present invention, since the weight of the catalyst can be supported by the spiral plate, damage to the catalyst at the lower part of the reforming catalyst layer can be prevented, and the life of the catalyst can be extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を一部破断して示す斜視図、
第2図は第1図に示す装置の内筒ド部の構造を説明する
断面図、第3図及び第4図はそれぞれ本発明の他の実施
例を一部破断して示す斜視図、第5図及び第6図はそれ
ぞれ本発明の更に他の実施例を示すらせん板の部分の斜
視図である。 1・・・改質触媒層、2・・・加熱層、3・・・改質触
媒、4・・・燃焼触媒、5・・・伝熱粒子、6・・・原
料入口、7・・・燃料・空気入口、7a・・・燃料入0
.7b・・・空気人口、8・・・改質ガス出口、9・・
・燃焼ガス出口、10・・・内筒、11・・・外筒、1
2・・・らせん板、12a・・・第 1  囲 /3 ハニカー大°灸拝扱 ■ 3 図 ス?烹゛)尤η′ス ♂ 7 客〆料空気入口 寮 4 図 猶5図 ¥J6 図 12b  γb
FIG. 1 is a partially cutaway perspective view of an embodiment of the present invention;
FIG. 2 is a sectional view illustrating the structure of the inner cylinder portion of the device shown in FIG. 5 and 6 are perspective views of portions of a spiral plate showing still other embodiments of the present invention, respectively. DESCRIPTION OF SYMBOLS 1... Reforming catalyst layer, 2... Heating layer, 3... Reforming catalyst, 4... Combustion catalyst, 5... Heat transfer particles, 6... Raw material inlet, 7... Fuel/air inlet, 7a...Fuel inlet 0
.. 7b...Air population, 8...Reformed gas outlet, 9...
・Combustion gas outlet, 10...Inner cylinder, 11...Outer cylinder, 1
2...Spiral board, 12a...1st circle/3 Honeyker large degree moxibustion treatment■ 3 Diagram?烃゛)尤η′ス♂ 7 Passenger air entrance dormitory 4 Figure 5 Figure ¥J6 Figure 12b γb

Claims (1)

【特許請求の範囲】 1、外筒と、この外筒内に同心的に設けられた内筒とを
設け、前記外筒と内筒との間に形成された空間を複数の
らせん板で仕切ることによりらせん状の加熱層とらせん
状の改質触媒層とを隣接して形成し、前記改質触媒層に
は改質原料を水蒸気改質するための改質触媒を充填し、
改質触媒層には外部から改質原料を供給する手段と改質
されたガスを取出す手段を接続し、かつ前記加熱層には
高温の熱媒体を供給及び排出する手段を接続したことを
特徴とする燃料改質装置。 2、特許請求の範囲第1項において、加熱層に伝熱粒子
を充填したことを特徴とする燃料改質装置。 3、特許請求の範囲第2項において、内筒内部も加熱層
とし、該内筒内部に伝熱粒子を充填したことを特徴とす
る燃料改質装置。 4、特許請求の範囲第1項において、加熱層の最上流部
に燃焼触媒を充填し、燃料を触媒燃焼させることを特徴
とする燃料改質装置。 5、特許請求の範囲第1項において、らせん状の改質触
媒層の下流側と内筒の一端側を連通させ、改質触媒層か
らの改質ガスを内筒内を通した後外部へ排出するように
構成したことを特徴とする燃料改質装置。 6、特許請求の範囲第1項において、改質触媒層の最上
流部に伝熱粒子を充填した層を設け、この伝熱粒子の層
で改質原料を蒸発させるようにしたことを特徴とする燃
料改質装置。 7、特許請求の範囲第1項において、らせん状に板列ま
たは突起を形成したことを特徴とする燃料改質装置。
[Claims] 1. An outer cylinder and an inner cylinder provided concentrically within the outer cylinder are provided, and a space formed between the outer cylinder and the inner cylinder is partitioned by a plurality of spiral plates. By forming a spiral heating layer and a spiral reforming catalyst layer adjacent to each other, the reforming catalyst layer is filled with a reforming catalyst for steam reforming the reforming raw material,
A means for supplying a reforming raw material from the outside and a means for taking out reformed gas are connected to the reforming catalyst layer, and a means for supplying and discharging a high temperature heat medium is connected to the heating layer. Fuel reformer. 2. A fuel reformer according to claim 1, characterized in that the heating layer is filled with heat transfer particles. 3. A fuel reforming device according to claim 2, characterized in that the inside of the inner cylinder is also a heating layer, and the inside of the inner cylinder is filled with heat transfer particles. 4. A fuel reforming device according to claim 1, characterized in that a combustion catalyst is filled in the most upstream part of the heating layer to catalytically combust the fuel. 5. In claim 1, the downstream side of the spiral reforming catalyst layer and one end side of the inner cylinder are communicated, and the reformed gas from the reforming catalyst layer is passed through the inner cylinder and then to the outside. A fuel reformer characterized in that it is configured to discharge. 6. Claim 1 is characterized in that a layer filled with heat transfer particles is provided at the most upstream part of the reforming catalyst layer, and the reforming raw material is evaporated in this layer of heat transfer particles. fuel reformer. 7. A fuel reforming device according to claim 1, characterized in that plate rows or protrusions are formed in a spiral shape.
JP62327044A 1987-12-25 1987-12-25 Apparatus for reforming fuel Pending JPH01168332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62327044A JPH01168332A (en) 1987-12-25 1987-12-25 Apparatus for reforming fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62327044A JPH01168332A (en) 1987-12-25 1987-12-25 Apparatus for reforming fuel

Publications (1)

Publication Number Publication Date
JPH01168332A true JPH01168332A (en) 1989-07-03

Family

ID=18194683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62327044A Pending JPH01168332A (en) 1987-12-25 1987-12-25 Apparatus for reforming fuel

Country Status (1)

Country Link
JP (1) JPH01168332A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002034383A1 (en) * 2000-10-27 2002-05-02 Uop Llc Process and apparatus using plate arrangement for reactant heating and preheating
JP2005158501A (en) * 2003-11-26 2005-06-16 Ebara Ballard Corp Catalyst combustion device and fuel cell cogeneration system
EP3128165A1 (en) * 2015-08-06 2017-02-08 Airbus DS GmbH Catalyst chamber with a catalyst bed embedded therein for a monopropellant thruster of a rocket engine
JP2022112890A (en) * 2021-01-22 2022-08-03 本田技研工業株式会社 Fuel reforming device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106401A (en) * 1984-10-30 1986-05-24 Fuji Electric Co Ltd Reforming apparatus
JPS62106834A (en) * 1985-11-01 1987-05-18 Hitachi Ltd Reaction tube of reformer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106401A (en) * 1984-10-30 1986-05-24 Fuji Electric Co Ltd Reforming apparatus
JPS62106834A (en) * 1985-11-01 1987-05-18 Hitachi Ltd Reaction tube of reformer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002034383A1 (en) * 2000-10-27 2002-05-02 Uop Llc Process and apparatus using plate arrangement for reactant heating and preheating
AU2001212349B2 (en) * 2000-10-27 2007-01-04 Uop Llc Process and apparatus using plate arrangement for reactant heating and preheating
JP2005158501A (en) * 2003-11-26 2005-06-16 Ebara Ballard Corp Catalyst combustion device and fuel cell cogeneration system
EP3128165A1 (en) * 2015-08-06 2017-02-08 Airbus DS GmbH Catalyst chamber with a catalyst bed embedded therein for a monopropellant thruster of a rocket engine
US20170037814A1 (en) * 2015-08-06 2017-02-09 Airbus Ds Gmbh Catalyst chamber with a catalyst bed embedded therein for a monopropellant thruster of a rocket engine
US11248563B2 (en) 2015-08-06 2022-02-15 Arianegroup Gmbh Catalyst chamber with a catalyst bed embedded therein for a monopropellant thruster of a rocket engine
JP2022112890A (en) * 2021-01-22 2022-08-03 本田技研工業株式会社 Fuel reforming device

Similar Documents

Publication Publication Date Title
US4098588A (en) Multi-tube catalytic reaction apparatus
US4098589A (en) Catalytic reaction apparatus
CN1914118B (en) Modifier
CA2337824C (en) Radial flow reactor
US4909809A (en) Apparatus for the production of gas
JP2644922B2 (en) Module isothermal reactor
US5753194A (en) Two-stage reforming of methanol
US20070000172A1 (en) Compact reforming reactor
EP0197880B1 (en) Radiating sleeve for catalytic reaction apparatus
JPH0692242B2 (en) Fuel reformer
JPH01168332A (en) Apparatus for reforming fuel
EP1860064B1 (en) Fuel modification apparatus
JPH10502213A (en) Furnace for fuel cell power plant
JP2646101B2 (en) Fuel reformer
GB1564993A (en) Multi-tube catalytic reaction apparatus
JPS63201001A (en) Fuel reforming apparatus
JPH0271834A (en) Steam reforming device
JP2601707B2 (en) Catalytic reactor
JPH01208303A (en) Fuel reformer
JPH0679664B2 (en) Fuel reformer
JPS647119B2 (en)
JPS6227305A (en) Plate type reformer
JP2819049B2 (en) Steam reformer
JPH0124534B2 (en)
JPH01242136A (en) Endothermic reactor