JPH03275501A - Fuel reformer - Google Patents

Fuel reformer

Info

Publication number
JPH03275501A
JPH03275501A JP2076204A JP7620490A JPH03275501A JP H03275501 A JPH03275501 A JP H03275501A JP 2076204 A JP2076204 A JP 2076204A JP 7620490 A JP7620490 A JP 7620490A JP H03275501 A JPH03275501 A JP H03275501A
Authority
JP
Japan
Prior art keywords
reforming
catalyst
catalyst layer
raw material
bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2076204A
Other languages
Japanese (ja)
Inventor
Toru Kiyota
透 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2076204A priority Critical patent/JPH03275501A/en
Publication of JPH03275501A publication Critical patent/JPH03275501A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent an increase in pressure drop when a raw material to be reformed flows through a catalyst bed by using a reforming tube in which a catalyst bed consisting of a reforming catalyst having a large grain diameter is provided at the lower part and a catalyst bed consisting of a reforming catalyst having a small grain diameter at the upper part to reform the raw material into a gas rich in hydrogen. CONSTITUTION:Two kinds of granular reforming catalysts having a different grain diameter are prepared, and the catalyst bed 21 consisting of a reforming catalyst 20 having a large grain diameter is provided at the lower part of a vertical reforming tube 1 and the catalyst bed 23 consisting of a reforming catalyst 22 having a small grain diameter at the upper part. The tube 1 is heated by the combustion gas of a burner 12, and the raw material to be reformed is introduced from the inlet 10, passed through the beds 23 and 21 and reformed into a gas rich in hydrogen. Consequently, even if the catalyst 22 is powdered, dropped and deposited on the bed 21 in the long run, the passage for the raw material is secured since the grain diameter of the catalyst 20 in the lower bed 21 and the free volume of the bed are large, and the pressure drop when the raw material flows through the bed is not increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、改質原料を改質触媒の下に水素に冨むガスに
改質する燃料改質器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel reformer for reforming a reforming raw material into a hydrogen-rich gas under a reforming catalyst.

〔従来の技術〕[Conventional technology]

燃料改質器は原燃料ガスに水蒸気を付加してなる改質原
料を粒状の改質触媒が充填された改質管に通流し、この
改質管を熱媒体により加熱して改質原料を水素に冨むガ
スに改質するものであり、第2図に示すものが知られて
いる。
In a fuel reformer, a reforming material made by adding water vapor to raw fuel gas is passed through a reforming tube filled with granular reforming catalyst, and the reforming tube is heated by a heat medium to convert the reforming material. It is used to reform gas into a gas rich in hydrogen, and the one shown in Fig. 2 is known.

第2図において改質管lは二重管構造であり、直立する
仕切円筒2の内外に設けられた内管3と外管4とが環状
の底板5で持続されて構成されている。なお仕切円筒2
は底板5から離して設けられている。
In FIG. 2, the reforming tube 1 has a double tube structure, and is composed of an inner tube 3 and an outer tube 4 provided inside and outside of an upright partition cylinder 2, which are supported by an annular bottom plate 5. Furthermore, partition cylinder 2
is provided apart from the bottom plate 5.

改質管1には均一な粒径の改質触媒6が充填されて円管
3と仕切円筒2との間及び仕切円筒2と外管4との間は
それぞれ内触媒層7と外触媒層8とを形成し、内触媒層
7と外触媒層8とは下端で接続し、連続した触媒層を形
成している。なおlOは内触媒層7に改質原料を供給す
る改質原料入口、11は外触媒層8から排出される改質
ガスを送出する改質ガス出口である。
The reforming tube 1 is filled with a reforming catalyst 6 having a uniform particle size, and an inner catalyst layer 7 and an outer catalyst layer are formed between the circular tube 3 and the partition cylinder 2 and between the partition cylinder 2 and the outer tube 4, respectively. 8, and the inner catalyst layer 7 and the outer catalyst layer 8 are connected at their lower ends to form a continuous catalyst layer. Note that lO is a reformed raw material inlet for supplying the reformed raw material to the inner catalyst layer 7, and 11 is a reformed gas outlet for delivering the reformed gas discharged from the outer catalyst layer 8.

改質管lの内管3の内部の上部にはバーナ12が設けら
れ、また改質管1の外管4を囲んで炉容器13が設けら
れ、その上部にバーナ12での燃焼により生じる燃焼ガ
スを排出する燃焼排ガス出口14が設けられている。
A burner 12 is provided inside the inner tube 3 of the reforming tube 1, and a furnace vessel 13 is provided surrounding the outer tube 4 of the reforming tube 1. A flue gas outlet 14 is provided for discharging the gas.

このような構造によりバーナ12で燃料、例えば燃料電
池から排出される残存水素を含むオフガスを燃焼空気と
混合して燃焼させると火炎や燃焼ガスが生じ、燃焼ガス
は矢印の方向に内管3内を流れ、さらに改質管1の下端
で折返して外管4と炉容器13との間を流れて改質管l
内の内触媒層7と外触媒層8とからなる触媒層を加熱し
た後、燃焼排ガス出口14から排出される。一方、改質
原料人口10から改質原料を流入させ内触媒層7ム二流
入させると、内触媒層7から外触媒層8に流れ、バーナ
12からの火炎や燃焼ガスにより加熱されて改質原料は
水素に冨むガスに改質され、この改質された改質ガスは
改質ガス出口桝から外部、例えば燃料電池に供給される
With this structure, when the burner 12 burns fuel, for example off-gas containing residual hydrogen discharged from a fuel cell, mixed with combustion air, a flame and combustion gas are generated, and the combustion gas flows into the inner pipe 3 in the direction of the arrow. , then turns back at the lower end of the reforming tube 1 and flows between the outer tube 4 and the furnace vessel 13 to form the reforming tube l.
After heating the catalyst layer consisting of the inner catalyst layer 7 and the outer catalyst layer 8, the combustion exhaust gas is discharged from the combustion exhaust gas outlet 14. On the other hand, when the reforming material flows in from the reforming material population 10 and flows into the inner catalyst layer 7, it flows from the inner catalyst layer 7 to the outer catalyst layer 8, is heated by the flame and combustion gas from the burner 12, and is reformed. The raw material is reformed into a gas rich in hydrogen, and the reformed gas is supplied to the outside, for example, a fuel cell, from a reformed gas outlet.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような改質管内の触媒層は一種類の粒径の改質触
媒で形成され、この触媒層に改質原料を通流し、触媒層
を熱媒体により加熱して改質反応を行なって改質原料を
水素に冨むガスに改質している。このような燃料改質器
の頻繁な起動、停止や負荷変動を伴う長時間の運転を行
なうと、触媒粒自身のヒートショックや触媒層を形成す
る金属材料からなる改質管の熱による膨張、収縮による
機械的作用により触媒粒の粉化が生じる。そして粉化し
たものが下方に落下して触媒層の下部に堆積し、このた
め触媒層の流体抵抗が増加する原因になっていた。この
触媒層の流体抵抗の増加は触媒層を流れる改質原料の圧
力損失が増加することであり、このため投入される改質
原料が減少し、必要な改質ガス量を確保できないという
問題がある。
The catalyst layer in the reforming tube as described above is formed of a reforming catalyst of one type of particle size, and the reforming raw material is passed through this catalyst layer, and the catalyst layer is heated by a heat medium to perform a reforming reaction. The raw material is reformed into hydrogen-rich gas. If such a fuel reformer is operated for a long period of time with frequent starting and stopping and load fluctuations, heat shock of the catalyst particles themselves, thermal expansion of the reforming tube made of the metal material that forms the catalyst layer, The mechanical action of shrinkage causes powdering of the catalyst particles. The powdered material then falls downward and accumulates at the bottom of the catalyst layer, causing an increase in the fluid resistance of the catalyst layer. This increase in fluid resistance in the catalyst layer means an increase in the pressure loss of the reforming material flowing through the catalyst bed, which results in a decrease in the amount of reforming material being input, leading to the problem of not being able to secure the required amount of reformed gas. be.

本発明の目的は、触媒層の改質触媒が粉化しても改質原
料が触媒層を流れる際の圧力損失の増加を防ぐことので
きる燃料改質器を提供することである。
An object of the present invention is to provide a fuel reformer that can prevent an increase in pressure loss when a reforming raw material flows through the catalyst layer even if the reforming catalyst in the catalyst layer is powdered.

(課題を解決するための手段〕 上記iiuを解決するために、本発明によれば粒状の改
質触媒が充填されてなる触媒層を有する直立する改質管
を熱媒体により加熱し、改質管を通流する改質原料を水
素に冨むガスに改質する燃料改質器において、異なる二
種類の粒径のうち、粒径の大きい改質触媒からなる触媒
層を下部に、方粒径の小さい改質触媒からなる触媒層を
上部に分割して改質管内に配設するものとする。
(Means for Solving the Problems) In order to solve the above-mentioned iiiu, according to the present invention, an upright reforming tube having a catalyst layer filled with a granular reforming catalyst is heated by a heating medium, In a fuel reformer that reforms the reforming raw material flowing through a pipe into gas rich in hydrogen, a catalyst layer consisting of a reforming catalyst with a larger particle size out of two different particle sizes is placed at the bottom, A catalyst layer consisting of a reforming catalyst with a small diameter is divided into an upper part and disposed inside the reforming tube.

(作 用) 改質管内の触媒層は粒径の大きい改質触媒からなる触媒
層を下部に、一方粒径の小さい改質触媒からなる触媒層
を上部に分割して形成している。
(Function) The catalyst layer in the reforming tube is divided into a lower catalyst layer consisting of a reforming catalyst with a large particle size, and an upper catalyst layer consisting of a reforming catalyst with a small particle size.

したがって改質触媒が粉化して、この粉化した改質触媒
が下方に落下して下部の触媒層に堆積しても下部の触媒
層の改質触媒は粒径が大きいので、改質触媒間の空隙率
が大きく、このため改質原料の流路となる空隙は確保さ
れ、改質原料が触媒層を流れる際の圧力損失の増加を防
ぐ。
Therefore, even if the reforming catalyst is powdered and this powdered reforming catalyst falls downward and deposits on the lower catalyst layer, the reforming catalyst in the lower catalyst layer has a large particle size, so there is no space between the reforming catalysts. The porosity of the catalyst layer is large, and therefore the voids that serve as flow paths for the reforming raw material are secured, thereby preventing an increase in pressure loss when the reforming raw material flows through the catalyst layer.

(実施例〕 以上図面に基づいて本発明の実施例について説明する。(Example〕 Embodiments of the present invention will be described above based on the drawings.

第1図は本発明の実施例による燃料改質器の断面図であ
る。なお、第1図において第2図の従来例と同一部品に
は同じ符号を付し、その説明を省略する。第1図におい
て第2図の従来例と異なって改質管lには異なる二種類
の粒径の改質触媒のうち、仕切板2の下端から下部に粒
径の大きい改質触媒20を充填して下部触媒層21を形
成し、上部C二粒径の小さい改質触媒22を充填してな
る上部触媒層23を形成している。なお、下部触媒層2
1と上部触媒層23とを分割するために仕切りとして粒
径の小さい改質触媒22が落ちない程度の孔を多数有す
るパンチングメタル24を挿入している。
FIG. 1 is a sectional view of a fuel reformer according to an embodiment of the present invention. In FIG. 1, parts that are the same as those in the conventional example shown in FIG. 2 are given the same reference numerals, and their explanations will be omitted. In FIG. 1, unlike the conventional example shown in FIG. 2, the reforming tube l is filled with a reforming catalyst 20 having a larger particle size from the lower end of the partition plate 2, out of two types of reforming catalysts with different particle sizes. Then, a lower catalyst layer 21 is formed, and an upper catalyst layer 23 is formed, which is filled with reforming catalyst 22 having a small particle size. Note that the lower catalyst layer 2
1 and the upper catalyst layer 23, a punching metal 24 having a large number of holes to prevent the reforming catalyst 22 having a small particle size from falling is inserted as a partition.

このような構造により、改質触媒が粉化して粉化した改
質触媒が下方に落下し、パンチングメタル24の孔を通
って下部触媒層21に堆積しても、下部触媒層21の改
質触媒20は粒径が大きいので空隙率が大きいため、改
質原料が通流する流路となる空隙は確保される。したが
って、改質原料が改質原料人口10から上部、下部触媒
層23.21とからなる触媒層を通流して改質ガスとな
って改質ガス出口11から排出するときの圧力損失の増
加を防ぐことができる。
With such a structure, even if the reforming catalyst is pulverized and the powdered reforming catalyst falls downward and is deposited on the lower catalyst layer 21 through the holes of the punching metal 24, the reforming of the lower catalyst layer 21 is prevented. Since the catalyst 20 has a large particle size and a large porosity, voids that serve as channels through which the reforming raw material flows are secured. Therefore, the pressure loss increases when the reformed raw material flows from the reformed raw material population 10 through the catalyst layer consisting of the upper and lower catalyst layers 23 and 21 to become reformed gas and is discharged from the reformed gas outlet 11. It can be prevented.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば改質管
内にその下部に粒径の大きい改質触媒からなる触媒層と
、この上部に粒径の小さい改質触媒からなる触媒層とを
分割して形成したことにより、燃料改質器の頻繁な起動
、停止や負荷変動を伴う長期運転により改質触媒が粉化
し、粉化した改質触媒は下方に落下して下部の触媒層に
堆積しても、この触媒層の改質触媒の粒径が大きく空隙
率が大きいため、原燃料ガスに水蒸気を付加してなる改
質原料が通流する流路は確保され、したがって改質原料
の触媒層を流れる圧力損失の増加を防止し、外部負荷が
要求する改質ガス量、例えば燃料電池の負荷が要求する
改質ガス量を住成できる。
As is clear from the above description, according to the present invention, a catalyst layer consisting of a reforming catalyst with a large particle size is provided in the lower part of the reforming tube, and a catalyst layer consisting of a reforming catalyst with a small particle size is provided in the upper part of the reforming tube. By forming the catalyst separately, the reforming catalyst becomes powdered due to long-term operation with frequent starting and stopping of the fuel reformer and load fluctuations, and the powdered reforming catalyst falls downward to the lower catalyst layer. Even if it accumulates, the particle size of the reforming catalyst in this catalyst layer is large and the porosity is large, so a flow path is secured through which the reforming material made by adding water vapor to the raw fuel gas flows, and therefore the reforming material The amount of reformed gas required by the external load, for example, the amount of reformed gas required by the load of the fuel cell, can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による燃料改質器の断面図、第
2図は従来の燃料改質器の断面図である。 1:改質管、20:粒径の大きい改質触媒、22:第1
FIG. 1 is a sectional view of a fuel reformer according to an embodiment of the present invention, and FIG. 2 is a sectional view of a conventional fuel reformer. 1: Reforming pipe, 20: Reforming catalyst with large particle size, 22: First
figure

Claims (1)

【特許請求の範囲】[Claims] 1)粒状の改質触媒が充填されてなる触媒層を有する直
立する改質管を熱媒体により加熱し、改質管を通流する
改質原料を水素に富むガスに改質する燃料改質器におい
て、異なる二種類の粒径のうち、粒径の大きい改質触媒
からなる触媒層を下部に、一方粒径の小さい改質触媒か
らなる触媒層を上部に分割して改質管内に配設したこと
を特徴とする燃料改質器。
1) Fuel reforming in which an upright reforming tube having a catalyst layer filled with granular reforming catalyst is heated by a heating medium to reform the reforming raw material flowing through the reforming tube into hydrogen-rich gas. In the reformer, the catalyst layer consisting of the reforming catalyst with the larger particle size is placed in the lower part of the two different particle sizes, and the catalyst layer consisting of the reforming catalyst with the smaller particle size is placed in the upper part. A fuel reformer characterized by:
JP2076204A 1990-03-26 1990-03-26 Fuel reformer Pending JPH03275501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2076204A JPH03275501A (en) 1990-03-26 1990-03-26 Fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2076204A JPH03275501A (en) 1990-03-26 1990-03-26 Fuel reformer

Publications (1)

Publication Number Publication Date
JPH03275501A true JPH03275501A (en) 1991-12-06

Family

ID=13598631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2076204A Pending JPH03275501A (en) 1990-03-26 1990-03-26 Fuel reformer

Country Status (1)

Country Link
JP (1) JPH03275501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054171A (en) * 2004-07-12 2006-02-23 Osaka Gas Co Ltd Solid oxide fuel cell system
KR20190025381A (en) * 2017-09-01 2019-03-11 엘지전자 주식회사 Fuel reforming divice

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054171A (en) * 2004-07-12 2006-02-23 Osaka Gas Co Ltd Solid oxide fuel cell system
KR20190025381A (en) * 2017-09-01 2019-03-11 엘지전자 주식회사 Fuel reforming divice

Similar Documents

Publication Publication Date Title
US7156886B2 (en) Reforming apparatus
US6517805B1 (en) Method and apparatus for producing hydrogen
US3531263A (en) Integrated reformer unit
US4932981A (en) Apparatus for the production of gas
KR100848047B1 (en) Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range
KR20010110296A (en) Hydrocarbon fuel gas reformer assembly for a fuel cell power plant
JP2006199509A (en) Reformer
JPS62167203A (en) Fuel reformer
JP2703831B2 (en) Fuel reformer
JPH03275501A (en) Fuel reformer
JPH08165103A (en) Converter
JPH0271834A (en) Steam reforming device
JP5145566B2 (en) Externally heated hydrogen production apparatus and fuel cell power generation system using the same
JP2998217B2 (en) Fuel reformer
JP2577037B2 (en) Two-stage catalytic combustion reformer
JP2567055B2 (en) Fuel reformer
JP2003183003A (en) Multi-tube reactor
JPH05305229A (en) Reformer
JP4574243B2 (en) Catalyst packing structure
JPS5978906A (en) Steam reforming furnace
JPS62108704A (en) Fuel reforming device for fuel cell
JPH01199640A (en) Fuel reformer
JPH05301701A (en) Device for reforming fuel
JPH03106434A (en) Fuel reforming apparatus
JPH03265502A (en) Fuel reformer