JPH03106434A - Fuel reforming apparatus - Google Patents

Fuel reforming apparatus

Info

Publication number
JPH03106434A
JPH03106434A JP24186189A JP24186189A JPH03106434A JP H03106434 A JPH03106434 A JP H03106434A JP 24186189 A JP24186189 A JP 24186189A JP 24186189 A JP24186189 A JP 24186189A JP H03106434 A JPH03106434 A JP H03106434A
Authority
JP
Japan
Prior art keywords
reforming catalyst
tube
reaction
reaction chamber
perforated plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24186189A
Other languages
Japanese (ja)
Inventor
Seiichi Otsu
大津 清一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24186189A priority Critical patent/JPH03106434A/en
Publication of JPH03106434A publication Critical patent/JPH03106434A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent that a space where no reforming catalyst is present is formed in a reaction chamber even when the volume of the reaction chamber expands during operation by thermal expansion by providing a pressing mechanism energizing an upper perforated plate toward the reforming catalyst in a reaction tube. CONSTITUTION:A burner 17 supplying combustion gas, a reaction tube 2 equipped with a cap 6, the reforming catalyst 5 received in the reaction chamber 3 formed between an outer tube 2a and the inner tube 2b, an upper perforated plate 4a and a lower perforated plate 4b are provided in a container 1. The raw material gas reformed by the heat exchange with the above-mentioned combustion gas in a process wherein the gas supplied into the container 1 from a supply port 9 to rise within the reaction chamber 3 is reversed at the upper end part in the reaction tube 2 to fall within the inner tube 2b and, during this time, the heat possessed by the falling gas is recovered by the raw material gas rising within the reaction chamber 3. The upper perforated plate 4a in the reaction tube 2 is pressed toward the reforming catalyst 5 by a pressing mechanism 20 consisting of racks 21, 23, a gear 22 and a support 24.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] (産業上の利用分野) 本発明は燃料改質装置に係り、特に燃料油、ナフサ、天
然ガス等の炭化水素と水蒸気との混合流体を改質触媒の
存在下で反応させ、水素、一酸化炭素、二酸化炭素、メ
タン、水蒸気等からなる混合気体に改質させる燃料改質
装置に関する。 (−従来の技術) 第5図は従来の二重管式の燃料改質装置を示している。 図において、1は断熱層を備える容器を示し、この容器
1内には反応管2が配置されている。この反応管2は外
管2aと内管2bを同心に配置した二重管であり、これ
ら外管2aと内管2bとの間には環状の反応室3が形成
されている。この反応室3内には改質触媒5が充填され
、この改質触媒5は上部が上部多孔板4aにて、下部が
下部多孔板4bにて支持されている。上部多孔板4aは
改質触媒5が上方に飛散しないように、下部多孔板4b
は改質触媒5が下方に落下しないように支持している。 また、反応管2の頂部には断熱キャップ6が取付けられ
高温の燃焼ガスから該反応管2の頭部を保護している。 さらに、外管2aの下端と容器1の内壁とは環状の上支
持板7aで結合される一方、内管2bの下端と容器1の
内壁とは環状の下支持板7bで結合され、これら上支持
板7aと下支持板7bとの間には原料ガス室8が形成さ
れている。この原料ガス室8は原料ガス供給口9に連通
している。 上支持板7aの上方側には燃焼ガス流通室10が形成さ
れ、この燃焼ガス流通室10はその下部において燃焼ガ
ス排出口11に連通している。また下支持板7bの下方
側には生成ガス流通室l2が形成され、この生成ガス流
通室l2は生成ガス排出口l3に連通している。また、
内管2bの内側には上端が閉じたプラグ管l5が同心に
配置されこのプラグ管15と内管2bとの間には環状の
再生室1Bが形成され、この再生室1Bは下部において
上記生成ガス流通室12に連通している。また、容器1
の上端にはバーナl7が取付けられ、このバーナl7に
は燃料供給口l8と空気供給口l9とが形成されている
。 このように構成された従来の燃料改質装置において、改
質のための原料ガスはガス供給口9から供給される。こ
の原料ガスは原料ガス室8を経て環状の反応室3内に入
り、ここを上昇し、反応管2内の上端部で反転し、再生
室1B内を降下し、そして、生成ガス流通室l2を経て
、生成ガス排出口l3から送出される。 ところで、反応室3には改質触媒5が充填されているの
で、原料ガスはここを上昇するうちに改質される。この
改質反応は、 C H4 + H2 0 = C O + 3 H3−
 49.27Kcal/gaol であり、これは吸熱反応である。この反応を右に促進さ
せるためには外部から熱を供給しなければならない。 この熱はバーナl7から燃焼ガス(点数て示す)として
供給される。燃料供給口18から燃料が供給され、空気
供給口l9から空気が供給され、これらはバーナl7で
混合燃焼される。そして、この燃焼ガスは燃焼ガス流通
室10に入り、ここを降下する。 この降下の途中で反応室3内を上昇する原料ガス(実線
で示す)と熱交換したあと、燃焼ガス排出口1lから排
出される。 (発明が解決しようとする課Wi) ところで、上述した従来の反応管2には、遠心鋳造によ
り製造された高ニッケル高クロム鋼の耐熱合金管が用い
られ、改質触媒5にはアルミナ等からなるセラミック基
材にニッケルを付与した粒子状のものが用いられている
。この反応管2の材質は改質触媒5の材質に比較して線
膨張率が大きく、熱が加えられている間、反応管2は径
方向および軸方向に伸びるのに対して、改質触媒5は殆
ど伸びない。 したがって、加熱の間、反応管2が伸びて反応室3の体
積が広がった分だけ、改質触媒5は該反応室3の下方領
域に沈下し、反応室3内には改質触媒5の存在しない空
間が生じる。この状態で燃料改質装置を運転すると、反
応室3内を上昇する原料ガスによって改質触媒5の流動
が起こる。改質触媒5が流動すると、改質触媒5の粒子
に割れ、粉化が発生する。 改質触媒5の粒子に割れ、粉化が発生すると、この触媒
の破片や粉が、生威ガス流に乗って生成ガス流通室l2
内に入り込み、その室壁に付着したり、装置外に排出さ
れたあと、下流の配管、弁機器等に付着したりして、故
障や異常を引き起こすという問題が生じる。 また、このような場合、上述した改質反応の逆反応であ
るメタネーション反応を引き起こす恐れがある。 C O + 3 H2 = C H4 + H2 0+
 49.27Kcal/gaol この反応が起きると、強度の発熱反応であることから温
度の異常上昇を来たすとともに、水素、一酸化炭素を消
費して、燃料改質装置の改質効率を低下させるという問
題が生じる。 そこで、本発明の目的は、上述した従来の技術が有する
問題点を解消し、運転中の熱膨張により反応室の体積が
広がっても、改質触媒の存在しない空間が該反応室内に
形成されないようにした燃料改質装置を堤供することに
ある。
[Object of the Invention] (Industrial Application Field) The present invention relates to a fuel reformer, and in particular to a fuel reformer that reacts a mixed fluid of hydrocarbons such as fuel oil, naphtha, and natural gas with steam in the presence of a reforming catalyst. , relates to a fuel reforming device for reforming a gas mixture consisting of hydrogen, carbon monoxide, carbon dioxide, methane, water vapor, etc. (-Prior Art) FIG. 5 shows a conventional double pipe type fuel reformer. In the figure, 1 indicates a container provided with a heat insulating layer, and a reaction tube 2 is disposed within this container 1. The reaction tube 2 is a double tube in which an outer tube 2a and an inner tube 2b are arranged concentrically, and an annular reaction chamber 3 is formed between the outer tube 2a and the inner tube 2b. The reaction chamber 3 is filled with a reforming catalyst 5, and the reforming catalyst 5 is supported at its upper part by an upper perforated plate 4a and by its lower part by a lower perforated plate 4b. The upper porous plate 4a is connected to the lower porous plate 4b to prevent the reforming catalyst 5 from scattering upward.
supports the reforming catalyst 5 so that it does not fall downward. Further, a heat insulating cap 6 is attached to the top of the reaction tube 2 to protect the head of the reaction tube 2 from high temperature combustion gas. Further, the lower end of the outer tube 2a and the inner wall of the container 1 are connected by an annular upper support plate 7a, while the lower end of the inner tube 2b and the inner wall of the container 1 are connected by an annular lower support plate 7b. A source gas chamber 8 is formed between the support plate 7a and the lower support plate 7b. This source gas chamber 8 communicates with a source gas supply port 9 . A combustion gas distribution chamber 10 is formed above the upper support plate 7a, and the combustion gas distribution chamber 10 communicates with a combustion gas discharge port 11 at its lower portion. Further, a generated gas distribution chamber l2 is formed on the lower side of the lower support plate 7b, and this generated gas distribution chamber l2 communicates with a generated gas discharge port l3. Also,
A plug pipe 15 with a closed upper end is arranged concentrically inside the inner pipe 2b, and an annular regeneration chamber 1B is formed between the plug pipe 15 and the inner pipe 2b. It communicates with the gas distribution chamber 12. Also, container 1
A burner l7 is attached to the upper end of the burner l7, and a fuel supply port l8 and an air supply port l9 are formed in the burner l7. In the conventional fuel reformer configured as described above, raw material gas for reforming is supplied from the gas supply port 9. This raw material gas enters the annular reaction chamber 3 through the raw material gas chamber 8, rises there, turns around at the upper end of the reaction tube 2, descends inside the regeneration chamber 1B, and then descends into the produced gas distribution chamber 12. The generated gas is then sent out from the generated gas outlet l3. By the way, since the reaction chamber 3 is filled with a reforming catalyst 5, the raw material gas is reformed while rising there. This reforming reaction is as follows: C H4 + H2 0 = C O + 3 H3-
49.27 Kcal/gaol, which is an endothermic reaction. To accelerate this reaction, heat must be supplied from the outside. This heat is supplied from burner 17 as combustion gas (indicated by points). Fuel is supplied from the fuel supply port 18 and air is supplied from the air supply port 19, and these are mixed and burned in the burner 17. Then, this combustion gas enters the combustion gas distribution chamber 10 and descends there. During this descent, after exchanging heat with the raw material gas (indicated by a solid line) rising in the reaction chamber 3, it is discharged from the combustion gas outlet 1l. (Problem to be solved by the invention Wi) By the way, the conventional reaction tube 2 described above uses a heat-resistant alloy tube made of high nickel, high chromium steel manufactured by centrifugal casting, and the reforming catalyst 5 is made of alumina or the like. Particulate materials are used in which nickel is added to a ceramic base material. The material of this reaction tube 2 has a higher coefficient of linear expansion than the material of the reforming catalyst 5, and while the reaction tube 2 extends in the radial and axial directions while heat is being applied, the reforming catalyst 5 hardly grows. Therefore, during heating, the reforming catalyst 5 sinks to the lower region of the reaction chamber 3 by the amount that the reaction tube 2 is extended and the volume of the reaction chamber 3 is expanded, and the reforming catalyst 5 is in the reaction chamber 3. A space that does not exist is created. When the fuel reformer is operated in this state, the reforming catalyst 5 flows due to the raw material gas rising in the reaction chamber 3. When the reforming catalyst 5 flows, the particles of the reforming catalyst 5 are broken and powdered. When the particles of the reforming catalyst 5 are broken and powdered, the fragments and powder of the catalyst are carried by the raw gas flow to the produced gas distribution chamber 12.
Problems arise in that they may enter the chamber and adhere to the walls of the chamber, or they may adhere to downstream piping, valve equipment, etc. after being discharged outside the device, causing malfunctions or abnormalities. Moreover, in such a case, there is a possibility that a methanation reaction, which is a reverse reaction of the above-mentioned reforming reaction, may occur. C O + 3 H2 = C H4 + H2 0+
49.27Kcal/gaol When this reaction occurs, it causes an abnormal rise in temperature as it is a strong exothermic reaction, and also consumes hydrogen and carbon monoxide, which reduces the reforming efficiency of the fuel reformer. occurs. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above-mentioned problems of the conventional technology, so that even if the volume of the reaction chamber expands due to thermal expansion during operation, a space in which the reforming catalyst does not exist will not be formed in the reaction chamber. The purpose of the present invention is to provide a fuel reformer that is constructed as follows.

【発明の構成] (課題を解決するための手段) 上記目的を達成するために、本発明は、中空の容器とこ
の容器内に燃焼ガスを供給するバーナと、上記容器内に
鉛直に配設されると共に外管と内管とを同心に配置して
二重管に構成されかつ頂部にキャップを備える反応管と
、上記外管と上記内管との間に形成された反応室と、こ
の反応室内に充填された改質触媒と、この改質触媒が上
方に飛散しないように支持する上部多孔板と、上記改質
触媒が下方に落下しないように支持する下部多孔板とを
備え、上記容器内に供給され上記反応室内を上昇する過
程で上記燃焼ガスとの熱交換により改質される原料ガス
を、上記反応管内の上端部にて反転させ、上記内管の内
部を降下する間にその保有する熱を、上記反応室内を上
昇する原料ガスへ回収させるようにした燃料改質装置に
おいて、反応管の内部に上部多孔板が改質触媒側に向け
て付勢する付勢機構を設けたことを特徴とするものであ
る。 (作 用) 本発明によれば、運転中に、熱膨張により反応室が広が
ったとしても、上部多孔板がそのぶんだけ付勢機構によ
って改質触媒側に向けて付勢されるので、これにより、
反応室が狭められ、反応室内に改質触媒の存在しない空
間が形成されるのを防止することができ、運転時に改質
触媒の流動が起こりうる流量のガスが流れても流動空間
が存在しないため改質触媒の流動は起こらず、触媒の割
れ、粉化が促進されることはなくなる。 (実施例) 以下、本発明による燃料改質装置の一実施例を5図と同
一部分に同一符号を付して示した第1図を参照して説明
する。 第1図において、1は断熱層を備える容器を示し、この
容器1内には反応管2が配置されているこの反応管2は
外管2aと内管2bを同心に配置した二重管であり、こ
れら外管2aと内管2bとの間には環状の反応室3が形
成されている。この反応室3には改質触媒5が充填され
、この改質触媒5は上部が上部多孔板4aにて、下部が
下部多孔板4bにて支持されている。上部多孔板4aは
改質触媒5が上方に飛散しないように、また下部多孔板
4bは改質触媒5が下方に落下しないように支持してい
る。 さらに、反応管2の頂部には断熱キャップ6が取付けら
れ、高温の燃焼ガスから該反応管2の頭部を保護してい
る。外管2aの下端と容器lの内壁とは環状の上支持板
7aで結合される一方、内管2bの下端と容器1の内壁
とは環状の下支持板7bで結合され、これら上支持板7
aと下支持板7bとの間には原料ガス室8が形成されて
いる。この原料ガス室8は原料ガス供給口9に連通して
いる。 上支持板7aの上方側には燃焼ガス流通室IOが形成さ
れ、この燃焼ガス流通室lOはその下部において燃焼ガ
ス排出口11に連通している。下支持板1bの下方側に
は生成ガス流通室12が形成され、この生成ガス流通室
l2は生成ガス排出口l3に連通している。以上の構成
は従来のものと同じである。 これらの構成に付加して、反応管2の内部には、上部多
孔板4aを燃料改質装置の各運転状態において改質触媒
5の側に付勢する付勢機構20が設けられている。この
付勢機構20は、反応管2の外管2aの内壁に固定され
たラック21,  これとかみ合う歯車22,上部多孔
板4aに鉛直に固定されたラック23及び前記歯車22
と内管2bとを連結するサポート24とから構或されて
いる。 第2図に本機構部分に関する拡大断面図を、第3図には
本機構を他の断面をとって表したものを示している。 この付勢機横20は、燃料改質装置の運転時に外管2a
と内管2bの温度差に起因する熱膨張差を利用したもの
で、作動原理は次の通りである。 燃料改質装置の運転時には反応管2の外管2aは内管2
bに対して常に高温となる。 この為、外管2aと内管2bが下端でのみ連結されてい
る反応管2は運転時に内管2bの先端と、これに対向す
る外管2aの内壁面との間にかムリの熱膨張差が生ずる
。 したがって、この熱膨張差によりラック2lは内管2b
に対して相対的に上方へ移動することになり、この移動
量を歯車22を介してラック23に伝達し、上部多孔板
4aを下方に移動させることになる。この時、熱膨張に
より反応室3の体積が広がり、その分だけ改質触媒5は
該反応室3の下方領域に沈下する。この時の改質触媒上
端面と付勢機構201;よる上部多孔板4aの各運転負
荷による移動状態を第4図に示す。 したがって、上記反応室3内には、改質触媒5の存在し
ない空間ができることはない。 ところで、加熱の間、反応管2が伸びて反応室3の体積
が広がった分だけ、改質触媒5は該反応室3の下方領域
に沈下し、反応室3内には改質触媒5の存在しない空間
が生じる。この状態で燃料改質装置を運転すると、反応
室3内を上昇する原料ガスの流量によっては改質触媒5
の流動が起こる。改質触媒5が流動すると改質触媒5の
粒子に割れ、粉化が発生する。改質触媒5の粒子に割れ
、粉化が発生するとこの触媒の破片や粉が生成ガス流に
乗って生成ガス流通室l2内に入り込み、その室壁に付
着したり、装置外に排出されたあと、下流の配管、弁機
器等に付着したりして、故障や異常を引き起こすという
問題が生じる。 しかして、本実施例によれば、運転中に、熱膨張により
反応室3が広がったとしても、その分だけ付勢機横20
が自動的に上部多孔板4bを押し下げるので、上記反応
室3内には改質触媒5の充填されムい空間ができること
はなく、よって反応室3内の改質触媒5が流動すること
はなく、改質触媒5の粒子に割れ、粉化が発生すること
はない。 したがって、再生室lB内に流入する原料ガス中に、改
質触媒5の破片や粉が混入することはなく、よって改質
触媒5の破片や粉が下流に流れ出ることはなく、これら
が生成ガス流通室l2の室壁に付着したり、装置外の下
流の配管、弁、機器類等に付着したりする等の弊害を防
止することができる。 【発明の効果】 以上の説明から明らかなように、本発明によれば、運転
中に、熱膨張により反応室が広がったとしても、その分
だけ付勢機構により反応室が狭められるよう構成されて
いるので、反応室内に改質触媒の充填されない空間が生
じる懸念がなく、よって反応室内で改質触媒の一部が流
動することもなく、改質触媒に割れ、粉化が発生する等
の不都合が生じるのが防止される。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a hollow container, a burner for supplying combustion gas into the container, and a burner arranged vertically in the container. a reaction tube formed into a double tube by arranging an outer tube and an inner tube concentrically and having a cap at the top; a reaction chamber formed between the outer tube and the inner tube; A reforming catalyst filled in a reaction chamber, an upper perforated plate that supports the reforming catalyst so that it does not scatter upward, and a lower perforated plate that supports the reforming catalyst so that it does not fall downward; The raw material gas, which is supplied into the container and reformed by heat exchange with the combustion gas in the process of rising inside the reaction chamber, is reversed at the upper end of the reaction tube, and while descending inside the inner tube. In a fuel reformer that recovers the retained heat to the raw material gas rising in the reaction chamber, an urging mechanism is provided inside the reaction tube to urge the upper perforated plate toward the reforming catalyst side. It is characterized by: (Function) According to the present invention, even if the reaction chamber expands due to thermal expansion during operation, the upper perforated plate is urged toward the reforming catalyst by that amount by the urging mechanism. According to
The reaction chamber is narrowed to prevent the formation of a space in which the reforming catalyst does not exist, and there is no flow space even if gas flows at a flow rate that would cause the reforming catalyst to flow during operation. Therefore, the reforming catalyst does not flow, and cracking and powdering of the catalyst are not promoted. (Embodiment) Hereinafter, an embodiment of a fuel reformer according to the present invention will be described with reference to FIG. 1, in which the same parts as in FIG. 5 are denoted by the same reference numerals. In FIG. 1, 1 indicates a container equipped with a heat insulating layer, and a reaction tube 2 is placed inside this container 1. This reaction tube 2 is a double tube in which an outer tube 2a and an inner tube 2b are arranged concentrically. An annular reaction chamber 3 is formed between the outer tube 2a and the inner tube 2b. This reaction chamber 3 is filled with a reforming catalyst 5, and the reforming catalyst 5 is supported at its upper part by an upper perforated plate 4a and by its lower part by a lower perforated plate 4b. The upper porous plate 4a supports the reforming catalyst 5 to prevent it from scattering upward, and the lower porous plate 4b supports the reforming catalyst 5 to prevent it from falling downward. Furthermore, a heat insulating cap 6 is attached to the top of the reaction tube 2 to protect the head of the reaction tube 2 from high temperature combustion gas. The lower end of the outer tube 2a and the inner wall of the container l are connected by an annular upper support plate 7a, while the lower end of the inner tube 2b and the inner wall of the container 1 are connected by an annular lower support plate 7b, and these upper support plates 7
A raw material gas chamber 8 is formed between a and the lower support plate 7b. This source gas chamber 8 communicates with a source gas supply port 9 . A combustion gas distribution chamber IO is formed above the upper support plate 7a, and this combustion gas distribution chamber IO communicates with the combustion gas discharge port 11 at its lower part. A generated gas distribution chamber 12 is formed on the lower side of the lower support plate 1b, and this generated gas distribution chamber 12 communicates with a generated gas outlet l3. The above configuration is the same as the conventional one. In addition to these configurations, a biasing mechanism 20 is provided inside the reaction tube 2 for biasing the upper porous plate 4a toward the reforming catalyst 5 in each operating state of the fuel reformer. This biasing mechanism 20 includes a rack 21 fixed to the inner wall of the outer tube 2a of the reaction tube 2, a gear 22 meshing with the rack 21, a rack 23 vertically fixed to the upper perforated plate 4a, and the gear 22.
and a support 24 connecting the inner tube 2b and the inner tube 2b. FIG. 2 shows an enlarged sectional view of this mechanism, and FIG. 3 shows another cross-sectional view of this mechanism. This biasing machine side 20 is connected to the outer pipe 2a during operation of the fuel reformer.
This utilizes the difference in thermal expansion caused by the temperature difference between the inner tube 2b and the inner tube 2b, and the operating principle is as follows. During operation of the fuel reformer, the outer tube 2a of the reaction tube 2 is connected to the inner tube 2.
The temperature is always high compared to b. For this reason, in the reaction tube 2 in which the outer tube 2a and the inner tube 2b are connected only at the lower end, there is a large amount of thermal expansion between the tip of the inner tube 2b and the opposing inner wall surface of the outer tube 2a during operation. It makes a difference. Therefore, due to this thermal expansion difference, the rack 2l is
This movement amount is transmitted to the rack 23 via the gear 22, and the upper perforated plate 4a is moved downward. At this time, the volume of the reaction chamber 3 expands due to thermal expansion, and the reforming catalyst 5 sinks to the lower region of the reaction chamber 3 by that amount. FIG. 4 shows the state of movement of the upper end surface of the reforming catalyst and the upper perforated plate 4a due to the urging mechanism 201 at this time under each operating load. Therefore, no space is created in the reaction chamber 3 where the reforming catalyst 5 is not present. By the way, during heating, the reaction tube 2 is extended and the volume of the reaction chamber 3 is expanded, so that the reforming catalyst 5 sinks to the lower region of the reaction chamber 3, and the reforming catalyst 5 is not in the reaction chamber 3. A space that does not exist is created. When the fuel reformer is operated in this state, depending on the flow rate of the raw material gas rising inside the reaction chamber 3, the reforming catalyst 5
flow occurs. When the reforming catalyst 5 flows, the particles of the reforming catalyst 5 are broken and pulverization occurs. When the reforming catalyst 5 is broken into particles and powdered, the fragments and powder of the catalyst enter the produced gas distribution chamber 12 along with the produced gas flow, adhere to the walls of the chamber, or are discharged outside the apparatus. Additionally, there is the problem that it may adhere to downstream piping, valve equipment, etc., causing breakdowns and abnormalities. According to this embodiment, even if the reaction chamber 3 expands due to thermal expansion during operation, the lateral 200 mm of the energizing device can be expanded by that amount.
automatically pushes down the upper porous plate 4b, so there is no space in the reaction chamber 3 that is filled with the reforming catalyst 5, and therefore the reforming catalyst 5 in the reaction chamber 3 does not flow. , the particles of the reforming catalyst 5 do not crack or become powder. Therefore, the fragments and powder of the reforming catalyst 5 will not be mixed into the raw material gas flowing into the regeneration chamber 1B, and therefore the fragments and powder of the reforming catalyst 5 will not flow downstream, and these will not be absorbed into the produced gas. It is possible to prevent harmful effects such as adhesion to the chamber wall of the circulation chamber l2 or adhesion to downstream piping, valves, equipment, etc. outside the apparatus. [Effects of the Invention] As is clear from the above description, according to the present invention, even if the reaction chamber expands due to thermal expansion during operation, the biasing mechanism is configured to narrow the reaction chamber by that amount. Therefore, there is no concern that there will be a space in the reaction chamber that is not filled with the reforming catalyst, and therefore a part of the reforming catalyst will not flow within the reaction chamber, resulting in cracks in the reforming catalyst, powdering, etc. This will prevent any inconvenience from occurring.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による燃料改質装置の一実施例を示す断
面図、第2図は本発明をより詳細に示したー実施例の断
面図、第3図は第2図の■−■線に沿う断面図、第4図
は燃料改質装置運転中の各負荷における触媒層上端面の
レベル変動と本発明による上部多孔板のレベル変動を並
記したグラフ、第5図は従来の燃料改質装置を示す断面
図である。 1・・・容器 2a・・・外管 3・・・反応室 4b・・・下部多孔板 6・・・断熱キャップ 2l・・・ラック 23・・・ラック 2・・・反応管 2b・・・内管 4a・・・上部多孔板 5・・・改質触媒 20・・・付勢機構 22・・・歯車 24・・・サポート
Fig. 1 is a sectional view showing an embodiment of a fuel reformer according to the present invention, Fig. 2 is a sectional view of an embodiment showing the invention in more detail, and Fig. 3 is a sectional view of the embodiment shown in Fig. 2. 4 is a graph showing the level fluctuation of the upper end surface of the catalyst layer and the level fluctuation of the upper perforated plate according to the present invention at each load during operation of the fuel reformer, and FIG. 5 is a graph showing the level fluctuation of the upper perforated plate according to the present invention. It is a sectional view showing a reforming device. 1... Container 2a... Outer tube 3... Reaction chamber 4b... Lower porous plate 6... Insulating cap 2l... Rack 23... Rack 2... Reaction tube 2b... Inner tube 4a...Upper perforated plate 5...Reforming catalyst 20...Biasing mechanism 22...Gear 24...Support

Claims (1)

【特許請求の範囲】 1、中空の容器と、この容器内に燃焼ガスを供給するバ
ーナと、上記容器内に鉛直に配設されると共に外管と内
管とを同心に配置して二重管に構成されかつ頂部にキャ
ップを備える反応管と、上記外管と上記内管との間に形
成された反応室と、この反応室内に充填された改質触媒
と、この改質触媒が上方に飛散しないように支持する上
部多孔板と、上記改質触媒が下方に落下しないように支
持する下部多孔板とを備え、上記容器内に供給され上記
反応室内を上昇する過程で上記燃焼ガスとの熱交換によ
り改質される原料ガスを、上記反応管内の上端部にて反
転させて、上記内管の内部を下降する間にその保有する
熱を、上記反応室内を上昇する原料ガスへ回収させるよ
うにした燃料改質装置において、上記反応管の内部に上
記上部多孔板が上記改質触媒側に向けて付勢する付勢機
構を設けたことを特徴とする燃料改質装置。 2、上記改質触媒の上部に反応外管と反応内管の熱膨張
差を利用し、あらゆる運転領域で該改質触媒上端面と上
記上部多孔板の間隙を常に最小に保持する機構を有する
ことを特徴とする請求項1記載の燃料改質装置。
[Scope of Claims] 1. A hollow container, a burner for supplying combustion gas into the container, and a double-walled structure arranged vertically in the container and having an outer tube and an inner tube arranged concentrically. A reaction tube configured as a tube and equipped with a cap at the top, a reaction chamber formed between the outer tube and the inner tube, a reforming catalyst filled in the reaction chamber, and a reforming catalyst arranged above. an upper perforated plate that supports the reforming catalyst so that it does not scatter, and a lower perforated plate that supports the reforming catalyst so that it does not fall downward; The raw material gas to be reformed by heat exchange is reversed at the upper end of the reaction tube, and the heat retained while descending inside the inner tube is recovered to the raw material gas rising within the reaction chamber. 1. A fuel reforming device characterized in that a biasing mechanism for biasing the upper perforated plate toward the reforming catalyst is provided inside the reaction tube. 2. The upper part of the reforming catalyst has a mechanism that utilizes the difference in thermal expansion between the outer reaction tube and the inner reaction tube to always keep the gap between the upper end surface of the reforming catalyst and the upper perforated plate to a minimum in all operating ranges. The fuel reformer according to claim 1, characterized in that:
JP24186189A 1989-09-20 1989-09-20 Fuel reforming apparatus Pending JPH03106434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24186189A JPH03106434A (en) 1989-09-20 1989-09-20 Fuel reforming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24186189A JPH03106434A (en) 1989-09-20 1989-09-20 Fuel reforming apparatus

Publications (1)

Publication Number Publication Date
JPH03106434A true JPH03106434A (en) 1991-05-07

Family

ID=17080612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24186189A Pending JPH03106434A (en) 1989-09-20 1989-09-20 Fuel reforming apparatus

Country Status (1)

Country Link
JP (1) JPH03106434A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9651016B2 (en) 2012-09-12 2017-05-16 Robert Bosch Gmbh Ignition system for an internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9651016B2 (en) 2012-09-12 2017-05-16 Robert Bosch Gmbh Ignition system for an internal combustion engine

Similar Documents

Publication Publication Date Title
RU2424847C2 (en) Internal combustion heat exchange reactor for endothermic reaction in fixed bed
US3607125A (en) Reformer tube construction
US5254318A (en) Lined reformer tubes for high pressure reformer reactors
RU2673527C2 (en) Steam reforming
JP6606091B2 (en) Catalytic device
CA2038289C (en) Endothermic reaction apparatus
JPH03106434A (en) Fuel reforming apparatus
RU2286308C2 (en) Radial type device for production of the synthesis gas
JP2567055B2 (en) Fuel reformer
JP4147521B2 (en) Self-oxidation internal heating type reforming method and apparatus
JPH03238037A (en) Fuel reforming apparatus
JPH03238036A (en) Fuel reforming apparatus
JPS63197534A (en) Reaction device
JPH05305229A (en) Reformer
JP5145566B2 (en) Externally heated hydrogen production apparatus and fuel cell power generation system using the same
JPH04119902A (en) Method for operating fuel reformer
JPS61232203A (en) Generation of hydrogen containing gas
JPH03275501A (en) Fuel reformer
JPS59102804A (en) Device for modifying fuel
JP2712766B2 (en) Fuel reformer
JPH0431243Y2 (en)
JPH0124533B2 (en)
JP2004075416A (en) Hydrocarbon reformer and process for manufacturing reforming catalyst therefor
JPS61186201A (en) Process for forming hydrogen-containing gas
JPH01320201A (en) Fuel reformer