JP2004075416A - Hydrocarbon reformer and process for manufacturing reforming catalyst therefor - Google Patents

Hydrocarbon reformer and process for manufacturing reforming catalyst therefor Download PDF

Info

Publication number
JP2004075416A
JP2004075416A JP2002234770A JP2002234770A JP2004075416A JP 2004075416 A JP2004075416 A JP 2004075416A JP 2002234770 A JP2002234770 A JP 2002234770A JP 2002234770 A JP2002234770 A JP 2002234770A JP 2004075416 A JP2004075416 A JP 2004075416A
Authority
JP
Japan
Prior art keywords
catalyst
hydrocarbon
tube
double
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002234770A
Other languages
Japanese (ja)
Inventor
Satonobu Yasutake
安武 聡信
Shigeru Nojima
野島  繁
Satoru Watanabe
渡邊  悟
Hirohisa Yoshida
吉田 博久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002234770A priority Critical patent/JP2004075416A/en
Publication of JP2004075416A publication Critical patent/JP2004075416A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To inhibit damaging of a catalyst placed inside a double-tube hydrocarbon reformer, even when there is a difference in heat expansion between the double tube and the catalyst housed therein. <P>SOLUTION: The double tube 1a is made of a metal such as stainless steel and is composed of a tubular inner tube 3 and an outer tube 4 surrounding this while leaving a gap therebetween. An annular hole 5 formed between the inner tube 3 and the outer tube 4 houses a catalyst molded product 8. Unlike conventionally used granular matters, the catalyst molded product 8 is a porous body having a shape of the molded product itself and has a pore formed inside it through which the hydrocarbon passes through. The catalyst molded product 8 is housed inside the inner tube 3 of the double tube 1a while leaving a clearance C1. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ガスなどの流体を反応させる触媒を充填し、触媒の反応時に容器が熱膨張し、その後常温時において、容器がもとの大きさに戻ってもその熱膨張差により触媒が破損することのない炭化水素の改質装置と炭化水素の改質方法に関する。
【0002】
【従来の技術】
図7は、炭化水素の改質装置としての2重管式触媒装置51を示す。
2重管式触媒装置51の2重管52は、内管54と内管54の外側に同心円上に配設されている外管53から構成されている。外管53及び内管54はステンレス等の金属で形成されている。図7のX−X線方向の断面図として図8のAに示すように、外管53と内管54の間に位置する外孔としての環状孔56には、セラミックからなる粒状の触媒55が充填されている。
このような構成により、2重管52の環状孔56にはガスGが導入され、ガスGは環状孔56の内部に充填した触媒55と反応し、反応した後に内孔57を通って2重管52の外に排出される。
この際、下記の反応式のように反応する。
CH4+HO → CO+3H−49.3Kcal/mol
反応式に示すように、反応が吸熱反応であることから、反応を促進させるために、2重管52は触媒の反応温度、例えば700℃に昇温し、ガスGと反応させるようにしている。
【0003】
図8のAに示すように、触媒55は当初環状孔56の内部に充填されている。しかしながら、2重管52が昇温されると2重管52が金属製であることからセラミックに対し比較的温度による熱膨張が大きく、図8のBに示すように環状孔56の幅(外管53と内管54の間の長さ)が初期の幅Wより大きくなり、隙間tが形成される。一方、触媒55はセラミックであるため金属に比べて比較的熱膨張が小さく、そのままの大きさを維持する。触媒55は粒状であるので、触媒55の粒子が崩れて、図8のCに示すように、その粒子が隙間tを再充填する。
【0004】
触媒55反応が終了し、2重管52は温度が常温に戻ると、隙間tの分だけ孔56の幅が小さくなる。すると、図8のDに示すように、触媒55が内側に外管53及び内管54により押圧されてしまう。この際、触媒55は図8のAの状態に戻ろうとするが、触媒55の下部は自重によりもとの状態に戻ることができない。
その結果、2重管52が熱膨張、収縮を繰り返していくうちに、触媒55の粒子が破損して、発生した微細な触媒破片が触媒粒子間に詰まり、触媒中を流れる流体の圧力損失を著しく増大させて、装置の運転を不可能にし、場合によっては2重管52が破損することもある。
【0005】
【発明が解決しようとする課題】
上述したように、2重管が金属製であると、例えば外管と内管の幅Wが20mmであり、温度差が700℃とすると、材料がステンレスであれば、約1%程度(0.2mm)の熱膨張がある。この熱膨張は、容器径が500mm〜600mmの大型のものであれば、触媒に差ほど問題は生じないか、容器径の小さいものであれば影響が生じる。
また、上述したように、炭化水素をCOとHにする反応が吸熱反応であるため、反応熱をいかに効率よく補うことが必要である。しかし、反応熱を補うために伝熱を促進するように伝熱面を広くした触媒にすると、強度的に触媒が弱くなる傾向があり、伝熱面が広くても強度的に大きな触媒が望まれていた。
【0006】
本発明はこのような事情に鑑みてなされたもので、容器に熱膨張差があっても、その内部に配設された触媒が破損することがなく、触媒への伝熱を促進することができる炭化水素の改質装置とその改質触媒の製造方法を提供することある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の炭化水素の改質装置は、担体と、この担体に担持される触媒成分とを備えた改質触媒を容器に収容し、容器内に導入される炭化水素を改質触媒する炭化水素の改質装置において、炭化水素が流通可能な多孔性の通気孔を有する成形体を改質触媒によって形成し、炭化水素が改質触媒の通気孔を通過する際に、該炭化水素を触媒反応させるようにした。この通気孔の形状については、炭化水素が流通できるものであれば、その形状は問わない。
上記炭化水素の改質装置は、上記容器が、内孔と内孔の周囲に環状の外孔を設けた2重管であるとともに、容器が上記改質触媒よりも熱膨張率が大きい材料で形成され、該改質触媒を2重管の外孔に配設し、改質触媒と2重管との熱膨張差分だけクリアランスを形成して配設することが好ましい。
また、上記炭化水素の改質装置は、上記多孔性の通気孔が網目形状とすることができ、上記改質触媒の成形体を煉瓦状に積み重ねて上記容器内に収容することもできる。ここで、網目状とは一方からのみガスを通気、拡散する単方性のモノリス状ではなく、どこからでもガスを流通拡散する多方性の通気性を有する構造である。
さらに、上記炭化水素改質装置に用いる触媒担体はアルミナ、ジルコニア、シリカ、チタニアのうち少なくとも1種以上を含むようにし、上記触媒成分がニッケル、ルテニウム、ロジウム、パラジウムのうち、少なくとも1種以上を含むようにすることが好ましい。
また、上記目的を達成するために、本発明の炭化水素の改質触媒の製造方法は、軟質の高分子発泡体を所定の形状に切断する工程と、炭化水素の改質触媒粉末を粉砕し、水、バインダを加えスラリー化する工程と、上記スラリーに切断した上記高分子発泡体を浸漬する工程と、高分子発泡体を浸漬させたスラリーを乾燥した後、焼成して多孔質性の触媒を成形する工程とを含む。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態による炭化水素の改質装置とその改質触媒の製造方法について、図面を参照しながら説明する。
図1は、本発明に係る炭化水素の改質装置としての2重管式触媒装置1を示す。この2重管式触媒装置1の2重管1aはステンレス等の金属製であり、円筒状の内管3とこの内管3と同心円上に設けられ、かつ内管3の周囲に間隔を開けて配設した外管4とから構成されている。それらの内管3と外管4との間に設けられている環状孔5には、改質触媒としての触媒成形体8が収容されている。一方、内管3の内部には、中心孔6が設けられ、中心孔6の内部には、熱供給用のバーナ7が配設されている。
【0009】
図2は、図1におけるA−A方向の断面図であり、図1の2重管1aの左側部位の縦断面図である。図に示すように、環状孔5には多孔質状に成形された触媒としての多孔質触媒成形体8が収容されている。触媒成形体8は、環状孔5とほぼ同じ環状形状に一体成形により形成し、図2に示すように常温では、内管3の外周面と触媒成形体8の内周面とに対して僅かなクリアランスC1が開けられている。このクリアランスC1の幅は、2重管式触媒装置1を稼働したときに、内管3と触媒成形体8が径方向外側に熱膨張するときの熱膨張差に等しく、若しくはそれよりも僅かに大きく開けている。
また、同じく常温時では、外管4の内周面と触媒成形体8の外周面との間には、隙間を無くすかできるだけ小さくなるように触媒成形体8を形成する。
触媒成形体8は、炭化水素ガスが流通できる通気孔が形成され、環状孔5の入口側から出口側に炭化水素ガスが流通することができる。本実施の形態では、網目状の通気孔を有する触媒成形体8を用いている。
【0010】
次に、網目状の通気孔を有する触媒成形体8の製造方法について説明する。
全体的な製造工程としては、4工程に区別することができる。第1工程では、軟質のウレタンフォーム発泡体を目的の形状に切断する工程であり、第2の工程は、網目構造にする触媒粉末をさらに粉砕し、水、バインダを加えスラリー化する工程であり、第3の工程は、スラリーを切断したウレタンフォームに浸漬する工程であり、第4の工程は、スラリーを浸漬したウレタンフォームを乾燥した後、焼成する工程である。
【0011】
[第1工程]
本工程では、触媒を網目構造の通気孔を形成するために、ウレタンフォーム発泡体を所定の形状に切断する。材料として、形状が安定しており加工しやすいこと、空気中で燃焼しうること、またスラリーを染み込ませるのに十分な吸水量を有するものを使用することができる。好ましい材料として、高分子の発泡体などウレタン以外(例えばスチロール)のものでも良い。これらの材料の形状を適宜選択することにより、多孔質性の孔の形状を代えることができる。本実施の形態では、ウレタンフォームを繊維状に切断して網目の型となるものを選択する。
【0012】
[第2工程]
本第2工程は、網目構造にする触媒粉末をさらに粉砕し、水、バインダを加えスラリー化する工程である。
スラリー化する触媒(若しくは担体)粉末については、粒径が大きい場合、発泡体に触媒がつきにくくなるため、成型体を保てなくなる場合があり、逆に小さすぎる場合は、発泡体の目開きが小さくなり、後工程で目詰まりが生じる可能性がある。好ましい粒径は5μm〜30μmである。また、使用するバインダは親水性のセラミックゾルが好ましく、使用する担体に応じた種類にすることが好ましい。
担体と担体に担持される触媒成分とからなる改質触媒については、アルミナ、ジルコニア、シリカ、チタニアなどの酸化物、あるいはこれらの複合酸化物を担体とすることができる。そして、触媒成分として、ニッケル、ルテニウム、ロジウム、パラジウムなどを少なくとも一種類を担体に分散担持した触媒を用いる。
【0013】
[第3工程]
こうした、スラリーを、切断したウレタンフォームに浸漬し、乾燥させる。
なお、触媒化には触媒成分を初めに担持せず、担体のみで網目構造を形成し、後で触媒成分を分散担持する方法もあり、どちらを用いても良い。なお触媒成分の量は0.1〜20重量%の間にすることが好ましい。
【0014】
[第4工程]
スラリーを浸漬した発泡体を乾燥した後、焼成する工程では、高温で焼成すると担体及び触媒成分の凝集(シンタリング)が生じ、触媒性能が著しく低下する原因になる。また逆に焼成温度が低すぎる場合は、発泡体が十分に燃焼除去できなくなり、触媒性能に影響を与える場合があり、また、バインダの効果がうすいため製造した網目構造の成型体の強度が低下する可能性がある。好ましい温度は発泡体が燃焼し、バインダの効果がでる500℃から触媒成分のシンタリングが比較的少ない1200℃以下にすることが好ましい。
完成した触媒成形体8は、網目状に通気孔が形成された多孔質体であり、2重管式触媒装置1の環状孔5に収容される。成形体としては、一体成形により形成したものであってもよいし、図4に示すように、ブロック状に形成し、それを積層して用いることも可能である。なお、高さ方向のみならず径方向に分割することも可能である。
【0015】
このような2重管式触媒装置1は、燃料電池の改質装置に用いることができ、2重管1aが700〜800℃の触媒反応温度に昇温させ、炭化水素と水蒸気を環状孔5に流し込むと、これらの気体が網目状の通気孔を通過する間に触媒反応により一酸化炭素と水素を発生する。
2重管1aの昇温過程では、2重管1aの内管3及び外管4と触媒成形体8のそれぞれが熱膨張する。金属壁である2重管1aは熱膨張率が大きく、それに対して触媒成形体8の熱膨張率は小さい。よって、それらの間に熱膨張差が生じる。すなわち、図2に示す常温時に内管3と触媒成形体8との間にあったクリアランスC1が図3に示すようになくなる。一方、外管4と触媒成形体8との間には、クリアランスがなかったものが、それらの熱膨張差として、クリアランスC2が形成される。この際、触媒成形体8は常温時から2重管式触媒装置1の稼働時の昇温状態において、内管3及び外管4の両者から力学的な負荷を受けることがない。
2重管式触媒装置1の稼働を停止し、2重管1aが常温に降下した時には、2重管の内管3及び外管4の径が図2に示すもとの状態に戻る。よって、触媒成形体8が2重管1aの熱膨張差により破損することがない。また、クリアランスの幅は十分小さいので、触媒効果に影響を及ぼすことがない。
【0016】
[実施例]
網目構造の触媒を用いた時の実験データ
<実験手法>
下記条件によりメタンの水蒸気改質試験を行った。実施例として本発明の触媒成形体8を用い、比較例として粒状の触媒を用いた。
使用する2重管はそれぞれ、図1に記載する2重管1aの中心にメタン炊きバーナを内蔵する内径50mm、外径60mmのものを用い、中空の環状孔5に触媒0.1リットル充填し、水蒸気を十分に流通した後、メタンを流通した。
改質反応条件は、表1の通りである。
【0017】
【表1】

Figure 2004075416
反応中は、触媒層のガス流れ方向の温度分布を測定し、さらにガス流量、ガス組成を測定することにより反応率を算出した。
【0018】
<実験結果>
▲1▼温度分布
触媒層のガス流れ方向に対する温度分布を測定した結果、図5に実施例の結果を示し、図6に比較例(従来)の結果を示す。実験結果より、本実施例は比較例と比較して吸熱部分の温度域が狭く、温度分布も少ない結果となった。
なお、図5及び図6の縦軸が2重管の軸方向長さ位置を示し、横軸は温度を示している。
▲2▼メタン反応率
メタン反応率の測定結果は、本実施例では、91%であったのに対し、比較例では77%であった。高温の温度域が広い本実施例の方が高い結果となり、より効率的に反応を進ませることが可能であることが証明された。
▲3▼昇降温に伴う触媒形状の変化
上記反応試験を5回繰り返し、起動、停止に伴い触媒形状が変化するか否かを調べた結果、本実施例の触媒は、形状に殆ど変化がなかったのに対し、比較例の触媒は粉化が起こっていることを確認した。
【0019】
以上、本実施の形態の炭化水素の改質装置について説明したが、この炭化水素の改質装置は、本発明の技術的思想に基づいて、種々の変形及び変更が可能である。
例えば、上記実施の形態では、触媒を2重管について説明したが、2重管以外の容器にも用いることができる。触媒成形体については、その内部の空隙率を適宜変えることにより、触媒の表面積の大きさを変えることができる。2重管の材質については、ステンレスを用いたがこれ以外のものも使用できる。
【0020】
【発明の効果】
以上説明したように、本発明の炭化水素の改質装置とその改質触媒の製造方法によると、担体と、この担体に担持される触媒成分とを備えた改質触媒を容器に収容し、容器内に導入される炭化水素を改質する炭化水素の改質装置において、炭化水素が流通可能な多孔性の通気孔を有する成形体を触媒によって形成し、炭化水素が触媒の通気孔を通過する際に、該炭化水素を触媒反応させるようにしたので、炭化水素が通気孔を通り、炭化水素をCOとHに改質することができる。また、炭化水素と触媒の接触面積を大きくすることができる。
上記炭化水素の改質装置は、上記容器が、内孔と内孔の周囲に環状の外孔を設けた2重管であるとともに、容器が上記触媒よりも熱膨張率が大きい材料で形成され、該触媒を2重管の外孔に、触媒と2重管との熱膨張差分だけクリアランスを形成して配設するようにしたので、2重管と触媒との間に熱膨張差があっても、触媒がそれにより破損することがない。
また、上記多孔性の通気孔が網目形状であるので、複雑な形状の経路となるため、炭化水素と触媒に接触する距離を大きくとることができ、効率の向上を図ることができる。
さらに、上記触媒の成形体を煉瓦状に積み重ねて上記容器内に収容することにより、触媒の成形体が種々の形状の容器に使用でき、汎用性を持たすことができるようになった。
上記触媒の担体がアルミナ、ジルコニア、シリカ、チタニアのうち少なくとも1種以上を含み、上記触媒成分がニッケル、ルテニウム、ロジウム、パラジウムのうち、少なくとも1種以上を含むようにすることにより、より効率のより炭化水素の改質装置を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態による炭化水素の改質装置の2重管の斜視図である。
【図2】図1の常温時における2重管のA−A方向の断面図である。
【図3】図1の昇温時における2重管のA−A方向の断面図である。
【図4】図1の2重管の環状孔に触媒成形体を積層した状態を示す断面図である。
【図5】本発明の実施例による2重管の実験結果のグラフである。
【図6】比較例による2重管の実験結果のグラフである。
【図7】従来の炭化水素の改質装置の斜視図である。
【図8】Aは、常温時における2重管の断面図であり、Bは昇温時において2重管が熱膨張して2重管と触媒との間に隙間が形成された状態を示す断面図であり、Cは昇温時において2重管と触媒との間に形成された隙間に触媒が入り込んだ状態を示す断面図であり、Dは2重管が常温になって収縮して触媒が2重管に押圧されている状態を示す断面図である。なお、A〜Dともに図7におけるX−X線方向の断面図である。
【符号の説明】
1 炭化水素の改質装置
1a 2重管
3 内管
4 外管
5 環状孔
6 中心孔
7 バーナ
8 触媒成形体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention fills a catalyst for reacting a fluid such as gas, and the container thermally expands during the reaction of the catalyst, and then, at room temperature, even if the container returns to its original size, the catalyst is damaged due to the difference in thermal expansion. TECHNICAL FIELD The present invention relates to a hydrocarbon reforming apparatus and a hydrocarbon reforming method that do not need to be performed.
[0002]
[Prior art]
FIG. 7 shows a double-tube catalyst device 51 as a hydrocarbon reforming device.
The double pipe 52 of the double pipe catalyst device 51 is composed of an inner pipe 54 and an outer pipe 53 disposed concentrically outside the inner pipe 54. The outer tube 53 and the inner tube 54 are formed of metal such as stainless steel. As shown in FIG. 8A as a cross-sectional view taken along the line XX of FIG. 7, an annular hole 56 as an outer hole located between the outer tube 53 and the inner tube 54 has a granular catalyst 55 made of ceramic. Is filled.
With such a configuration, gas G is introduced into the annular hole 56 of the double pipe 52, and the gas G reacts with the catalyst 55 filled in the annular hole 56, and after reacting, passes through the inner hole 57 to form the double hole. It is discharged out of the pipe 52.
At this time, they react as shown in the following reaction formula.
CH4 + H 2 O → CO + 3H 2 -49.3Kcal / mol
As shown in the reaction formula, since the reaction is an endothermic reaction, in order to promote the reaction, the temperature of the double tube 52 is raised to the reaction temperature of the catalyst, for example, 700 ° C., so that the reaction with the gas G is performed. .
[0003]
As shown in FIG. 8A, the catalyst 55 is initially filled inside the annular hole 56. However, when the temperature of the double pipe 52 is increased, the thermal expansion due to the temperature is relatively large with respect to the ceramic because the double pipe 52 is made of metal, and as shown in FIG. The length between the pipe 53 and the inner pipe 54) becomes larger than the initial width W, and the gap t is formed. On the other hand, since the catalyst 55 is ceramic, it has a relatively small thermal expansion as compared with metal, and maintains its size as it is. Since the catalyst 55 is granular, the particles of the catalyst 55 collapse, and the particles refill the gap t, as shown in FIG. 8C.
[0004]
When the reaction of the catalyst 55 is completed and the temperature of the double pipe 52 returns to normal temperature, the width of the hole 56 becomes smaller by the gap t. Then, as shown in FIG. 8D, the catalyst 55 is pressed inward by the outer tube 53 and the inner tube 54. At this time, the catalyst 55 attempts to return to the state shown in FIG. 8A, but the lower portion of the catalyst 55 cannot return to the original state due to its own weight.
As a result, as the double tube 52 repeats thermal expansion and contraction, the particles of the catalyst 55 are damaged, and the generated fine catalyst fragments are clogged between the catalyst particles, and the pressure loss of the fluid flowing through the catalyst is reduced. The increase is so great that the operation of the device is not possible and, in some cases, the double tube 52 may be damaged.
[0005]
[Problems to be solved by the invention]
As described above, if the double pipe is made of metal, for example, the width W of the outer pipe and the inner pipe is 20 mm, and if the temperature difference is 700 ° C., if the material is stainless steel, it is about 1% (0%). .2 mm). This thermal expansion does not cause much problem with the catalyst if the container has a large diameter of 500 mm to 600 mm, or has an effect if the container has a small diameter.
Further, as described above, since the reaction of converting hydrocarbons into CO and H 2 is an endothermic reaction, it is necessary to efficiently supplement the reaction heat. However, if a catalyst with a wider heat transfer surface is used to supplement the heat of reaction to promote heat transfer, the catalyst tends to be weaker in terms of strength. Had been rare.
[0006]
The present invention has been made in view of such circumstances, and even if there is a difference in thermal expansion in a container, a catalyst disposed inside the container is not damaged, and heat transfer to the catalyst can be promoted. It is an object of the present invention to provide a hydrocarbon reforming apparatus and a method for producing the reforming catalyst.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a hydrocarbon reforming apparatus of the present invention accommodates a reforming catalyst including a carrier and a catalyst component carried on the carrier in a container, and introduces a hydrocarbon introduced into the container. In a hydrocarbon reformer that reforms hydrogen, a reformed catalyst is used to form a molded body having a porous vent through which hydrocarbons can flow, and the hydrocarbon passes through the vent of the reforming catalyst. Then, the hydrocarbon was subjected to a catalytic reaction. The shape of the vent hole is not particularly limited as long as hydrocarbons can be circulated.
In the hydrocarbon reforming apparatus, the container is a double pipe having an inner hole and an annular outer hole provided around the inner hole, and the container is made of a material having a larger coefficient of thermal expansion than the reforming catalyst. It is preferable that the formed reforming catalyst is disposed in the outer hole of the double pipe, and the clearance is formed by a difference in thermal expansion between the reforming catalyst and the double pipe.
In the hydrocarbon reformer, the porous vents may have a mesh shape, and the reformed catalyst molded bodies may be stacked in a brick shape and housed in the container. Here, the mesh shape is not a monolithic monolithic shape in which gas is passed and diffused from only one side, but a multi-directionally breathable structure in which gas flows and diffuses from anywhere.
Further, the catalyst carrier used in the hydrocarbon reforming device includes at least one of alumina, zirconia, silica, and titania, and the catalyst component includes at least one of nickel, ruthenium, rhodium, and palladium. It is preferable to include it.
In order to achieve the above object, a method for producing a hydrocarbon reforming catalyst of the present invention includes a step of cutting a soft polymer foam into a predetermined shape and a step of pulverizing the hydrocarbon reforming catalyst powder. , A step of forming a slurry by adding water and a binder, a step of immersing the polymer foam cut into the slurry, a step of drying the slurry in which the polymer foam is immersed, and then firing the porous catalyst. And molding the same.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a hydrocarbon reforming apparatus according to an embodiment of the present invention and a method for producing the reforming catalyst thereof will be described with reference to the drawings.
FIG. 1 shows a double-tube catalyst device 1 as a hydrocarbon reforming device according to the present invention. The double tube 1a of the double tube type catalyst device 1 is made of metal such as stainless steel, and is provided on a cylindrical inner tube 3 and concentrically with the inner tube 3 and is spaced around the inner tube 3. And an outer tube 4 arranged in the above manner. An annular hole 5 provided between the inner tube 3 and the outer tube 4 accommodates a formed catalyst body 8 as a reforming catalyst. On the other hand, a center hole 6 is provided inside the inner tube 3, and a burner 7 for supplying heat is provided inside the center hole 6.
[0009]
FIG. 2 is a cross-sectional view in the AA direction in FIG. 1, and is a vertical cross-sectional view of a left portion of the double pipe 1 a in FIG. 1. As shown in the figure, a porous catalyst molded body 8 as a porous catalyst is accommodated in the annular hole 5. The catalyst molded body 8 is formed by integral molding into an annular shape substantially the same as the annular hole 5, and at room temperature, the outer peripheral surface of the inner tube 3 and the inner peripheral surface of the catalyst molded body 8 are slightly Clear clearance C1 is opened. The width of the clearance C1 is equal to or slightly smaller than the thermal expansion difference when the inner tube 3 and the catalyst molded body 8 thermally expand radially outward when the double-tube catalyst device 1 is operated. Wide open.
Similarly, at normal temperature, the catalyst molded body 8 is formed between the inner peripheral surface of the outer tube 4 and the outer peripheral surface of the catalyst molded body 8 so as to eliminate or minimize the gap.
The catalyst molded body 8 has a ventilation hole through which a hydrocarbon gas can flow, and the hydrocarbon gas can flow from the inlet side to the outlet side of the annular hole 5. In the present embodiment, a catalyst molded body 8 having a mesh-like vent is used.
[0010]
Next, a method of manufacturing the catalyst molded body 8 having the mesh-shaped ventilation holes will be described.
The overall manufacturing process can be divided into four processes. The first step is a step of cutting a soft urethane foam into a desired shape, and the second step is a step of further pulverizing a catalyst powder for forming a network structure and adding water and a binder to form a slurry. The third step is a step of immersing the slurry in the cut urethane foam, and the fourth step is a step of drying and sintering the urethane foam in which the slurry is immersed.
[0011]
[First step]
In this step, the urethane foam foam is cut into a predetermined shape in order to form a vent hole having a network structure of the catalyst. As the material, a material having a stable shape, easy to process, combustible in the air, and having a sufficient water absorption to impregnate the slurry can be used. As a preferable material, a material other than urethane (for example, styrene) such as a polymer foam may be used. By appropriately selecting the shape of these materials, the shape of the porous pores can be changed. In the present embodiment, urethane foam is cut into fibrous shapes to select a mesh type.
[0012]
[Second step]
The second step is a step of further pulverizing the catalyst powder for forming a network structure, adding water and a binder to form a slurry.
Regarding the catalyst (or carrier) powder to be slurried, if the particle size is large, the catalyst is difficult to adhere to the foam, and the molded body may not be able to be maintained. , And clogging may occur in a subsequent process. The preferred particle size is between 5 μm and 30 μm. The binder used is preferably a hydrophilic ceramic sol, and is preferably of a type according to the carrier used.
As the reforming catalyst comprising a carrier and a catalyst component carried on the carrier, an oxide such as alumina, zirconia, silica, titania, or a composite oxide thereof can be used as the carrier. Then, a catalyst in which at least one kind of nickel, ruthenium, rhodium, palladium or the like is dispersed and supported on a carrier is used as a catalyst component.
[0013]
[Third step]
The slurry is immersed in the cut urethane foam and dried.
For the catalysis, there is also a method in which the catalyst component is not initially supported, a network structure is formed only by the carrier, and the catalyst component is dispersed and supported later, and either of them may be used. The amount of the catalyst component is preferably between 0.1 and 20% by weight.
[0014]
[Fourth step]
In the step of firing after drying the foam in which the slurry is immersed, firing at a high temperature causes agglomeration (sintering) of the carrier and the catalyst component, which causes a significant decrease in catalyst performance. Conversely, if the firing temperature is too low, the foam cannot be sufficiently burned and removed, which may affect the catalyst performance, and the effect of the binder is weak, and the strength of the manufactured network-structured molded body is reduced. there's a possibility that. The preferred temperature is from 500 ° C., at which the foam burns and the effect of the binder is produced, to 1200 ° C. or less, where sintering of the catalyst component is relatively small.
The completed catalyst molded body 8 is a porous body in which ventilation holes are formed in a mesh shape, and is accommodated in the annular hole 5 of the double-tube catalyst device 1. The molded body may be formed by integral molding, or may be formed in a block shape as shown in FIG. In addition, it is also possible to divide not only in the height direction but also in the radial direction.
[0015]
Such a double-tube catalyst device 1 can be used in a reformer of a fuel cell, and the temperature of the double tube 1a is raised to a catalytic reaction temperature of 700 to 800 ° C. so that hydrocarbons and water vapor are removed from the annular holes 5. When these gases flow through the mesh-shaped ventilation holes, carbon monoxide and hydrogen are generated by a catalytic reaction.
In the process of raising the temperature of the double tube 1a, the inner tube 3 and the outer tube 4 of the double tube 1a and the catalyst molded body 8 thermally expand. The double tube 1a, which is a metal wall, has a large coefficient of thermal expansion, whereas the coefficient of thermal expansion of the molded catalyst 8 is small. Therefore, a difference in thermal expansion occurs between them. That is, the clearance C1 between the inner tube 3 and the catalyst molded body 8 at the normal temperature shown in FIG. 2 disappears as shown in FIG. On the other hand, although there is no clearance between the outer tube 4 and the catalyst molded body 8, a clearance C2 is formed as a difference in thermal expansion between them. At this time, the catalyst molded body 8 does not receive a mechanical load from both the inner pipe 3 and the outer pipe 4 in the temperature rising state from the normal temperature to the time when the double-tube catalyst device 1 is operated.
When the operation of the double tube type catalyst device 1 is stopped and the double tube 1a drops to room temperature, the diameters of the inner tube 3 and the outer tube 4 of the double tube return to the original state shown in FIG. Therefore, the molded catalyst 8 is not damaged by the difference in thermal expansion of the double pipe 1a. Further, since the width of the clearance is sufficiently small, it does not affect the catalytic effect.
[0016]
[Example]
Experimental data when using a network catalyst <Experimental method>
A methane steam reforming test was performed under the following conditions. The catalyst compact 8 of the present invention was used as an example, and a granular catalyst was used as a comparative example.
Each of the double tubes used has an inner diameter of 50 mm and an outer diameter of 60 mm with a built-in methane cooking burner at the center of the double tube 1a shown in FIG. 1, and the hollow annular hole 5 is filled with 0.1 liter of catalyst. After sufficiently flowing steam, methane was passed.
The reforming reaction conditions are as shown in Table 1.
[0017]
[Table 1]
Figure 2004075416
During the reaction, the reaction rate was calculated by measuring the temperature distribution in the gas flow direction of the catalyst layer, and further measuring the gas flow rate and gas composition.
[0018]
<Experimental results>
(1) Temperature distribution As a result of measuring the temperature distribution in the gas flow direction of the catalyst layer, FIG. 5 shows the result of the example, and FIG. 6 shows the result of the comparative example (conventional). From the experimental results, it was found that in this example, the temperature range of the endothermic portion was narrow and the temperature distribution was small compared to the comparative example.
The vertical axis in FIGS. 5 and 6 indicates the axial length position of the double pipe, and the horizontal axis indicates the temperature.
{Circle around (2)} Methane reaction rate The measurement result of the methane reaction rate was 91% in the present example, but was 77% in the comparative example. The results of this example having a wide high temperature range were higher, and it was proved that the reaction could proceed more efficiently.
(3) Change in catalyst shape due to temperature rise / fall The above reaction test was repeated five times, and it was examined whether or not the catalyst shape changed with starting and stopping. As a result, the catalyst of this example showed almost no change in shape. On the other hand, it was confirmed that the catalyst of the comparative example was powdered.
[0019]
The hydrocarbon reformer of the present embodiment has been described above, but various modifications and changes can be made to the hydrocarbon reformer based on the technical idea of the present invention.
For example, in the above-described embodiment, the catalyst is described for a double tube, but the catalyst can be used for a container other than the double tube. With respect to the molded catalyst, the size of the surface area of the catalyst can be changed by appropriately changing the porosity inside. As the material of the double pipe, stainless steel was used, but other materials can also be used.
[0020]
【The invention's effect】
As described above, according to the hydrocarbon reforming apparatus of the present invention and the method for producing the reforming catalyst, a carrier and a reforming catalyst including a catalyst component supported on the carrier are contained in a container, In a hydrocarbon reformer for reforming hydrocarbons introduced into a container, a catalyst is used to form a molded body having porous vents through which hydrocarbons can flow, and the hydrocarbons pass through the vents of the catalyst. when, because the hydrocarbon has to be a catalytic reaction, the hydrocarbon passes through the vent holes can be modified hydrocarbons to CO and H 2. Further, the contact area between the hydrocarbon and the catalyst can be increased.
In the hydrocarbon reformer, the container is a double tube having an inner hole and an annular outer hole provided around the inner hole, and the container is formed of a material having a larger coefficient of thermal expansion than the catalyst. Since the catalyst is disposed in the outer hole of the double pipe with a clearance formed by the difference in thermal expansion between the catalyst and the double pipe, there is no difference in thermal expansion between the double pipe and the catalyst. However, the catalyst is not damaged thereby.
In addition, since the porous ventilation holes have a mesh shape, the paths have a complicated shape. Therefore, the distance of contact between the hydrocarbon and the catalyst can be increased, and the efficiency can be improved.
Further, by stacking the molded bodies of the catalyst in a brick shape and storing them in the container, the molded bodies of the catalyst can be used for containers of various shapes, and can have versatility.
The carrier of the catalyst includes at least one of alumina, zirconia, silica, and titania, and the catalyst component includes at least one of nickel, ruthenium, rhodium, and palladium, thereby increasing the efficiency. A more hydrocarbon reformer can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view of a double pipe of a hydrocarbon reformer according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the double tube taken along the line AA at normal temperature in FIG.
3 is a cross-sectional view of the double pipe taken along the line AA when the temperature is raised in FIG.
FIG. 4 is a cross-sectional view showing a state in which a catalyst molded body is laminated on an annular hole of the double pipe of FIG.
FIG. 5 is a graph of an experimental result of a double tube according to an embodiment of the present invention.
FIG. 6 is a graph of an experimental result of a double tube according to a comparative example.
FIG. 7 is a perspective view of a conventional hydrocarbon reformer.
FIG. 8A is a cross-sectional view of a double pipe at a normal temperature, and FIG. 8B shows a state where a gap is formed between the double pipe and a catalyst due to thermal expansion of the double pipe at a temperature rise. It is sectional drawing, C is sectional drawing which shows the state which the catalyst entered into the clearance gap formed between the double pipe | tube and the catalyst at the time of temperature rise, D is shrink | contracted when the double pipe becomes normal temperature. It is sectional drawing which shows the state in which the catalyst is pressed by the double pipe. It is to be noted that each of A to D is a cross-sectional view taken along line XX in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Hydrocarbon reformer 1a Double pipe 3 Inner pipe 4 Outer pipe 5 Annular hole 6 Center hole 7 Burner 8 Catalyst molded body

Claims (7)

担体と、この担体に担持される触媒成分とを備えた改質触媒を容器に収容し、容器内に導入される炭化水素を改質触媒する炭化水素の改質装置において、
炭化水素が流通可能な多孔性の通気孔を有する成形体を改質触媒によって形成し、炭化水素が改質触媒の通気孔を通過する際に、該炭化水素を触媒反応させるようにしたことを特徴とする炭化水素の改質装置。
A carrier and a reforming catalyst containing a catalyst component supported on the carrier are housed in a container, and a hydrocarbon reforming apparatus that reforms a hydrocarbon introduced into the container into a hydrocarbon reformer,
A molded article having a porous vent through which a hydrocarbon can flow is formed by a reforming catalyst, and when the hydrocarbon passes through a vent of the reforming catalyst, the hydrocarbon is caused to undergo a catalytic reaction. Characteristic hydrocarbon reformer.
上記容器が、内孔と内孔の周囲に環状の外孔を設けた2重管であるとともに、容器が上記改質触媒よりも熱膨張率が大きい材料で形成され、該改質触媒を2重管の外孔に配設し、改質触媒と2重管との熱膨張差分だけクリアランスを形成して配設するようにしたことを特徴とする請求項1に記載の炭化水素の改質装置。The container is a double tube having an inner hole and an annular outer hole provided around the inner hole, and the container is formed of a material having a higher coefficient of thermal expansion than the reforming catalyst. 2. The hydrocarbon reformer according to claim 1, wherein the reformer is disposed in an outer hole of the heavy pipe so as to form a clearance by a thermal expansion difference between the reforming catalyst and the double pipe. apparatus. 上記多孔性の通気孔が網目形状であることを特徴とする請求項1又は2に記載の炭化水素の改質装置。The hydrocarbon reformer according to claim 1 or 2, wherein the porous vents have a mesh shape. 上記改質触媒の成形体を煉瓦状に積み重ねて上記容器内に収容したことを特徴とする請求項1〜3のいずれか1項に記載の炭化水素の改質装置。The hydrocarbon reformer according to any one of claims 1 to 3, wherein the reformed catalyst compacts are stacked in a brick shape and accommodated in the container. 上記担体がアルミナ、ジルコニア、シリカ、チタニアのうち少なくとも1種以上を含むことを特徴とする請求項1〜4のいずれか1項に記載の炭化水素の改質装置。The hydrocarbon reforming apparatus according to any one of claims 1 to 4, wherein the carrier contains at least one of alumina, zirconia, silica, and titania. 上記触媒成分がニッケル、ルテニウム、ロジウム、パラジウムのうち、少なくとも1種以上を含むことを特徴とする請求項1〜5のいずれか1項に記載の炭化水素の改質装置。
炭化水素
The hydrocarbon reforming apparatus according to any one of claims 1 to 5, wherein the catalyst component contains at least one of nickel, ruthenium, rhodium, and palladium.
hydrocarbon
軟質の高分子発泡体を所定の形状に切断する工程と、炭化水素の改質触媒粉末を粉砕し、水、バインダを加えスラリー化する工程と、上記スラリーに切断した上記高分子発泡体を浸漬する工程と、高分子発泡体を浸漬させたスラリーを乾燥した後、焼成して多孔質性の触媒を成形する工程とを含む炭化水素の改質触媒の製造方法。A step of cutting the soft polymer foam into a predetermined shape, a step of pulverizing the hydrocarbon reforming catalyst powder, adding water and a binder to form a slurry, and immersing the cut polymer foam in the slurry And a step of drying the slurry in which the polymer foam is immersed, followed by baking to form a porous catalyst.
JP2002234770A 2002-08-12 2002-08-12 Hydrocarbon reformer and process for manufacturing reforming catalyst therefor Withdrawn JP2004075416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234770A JP2004075416A (en) 2002-08-12 2002-08-12 Hydrocarbon reformer and process for manufacturing reforming catalyst therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002234770A JP2004075416A (en) 2002-08-12 2002-08-12 Hydrocarbon reformer and process for manufacturing reforming catalyst therefor

Publications (1)

Publication Number Publication Date
JP2004075416A true JP2004075416A (en) 2004-03-11

Family

ID=32019482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234770A Withdrawn JP2004075416A (en) 2002-08-12 2002-08-12 Hydrocarbon reformer and process for manufacturing reforming catalyst therefor

Country Status (1)

Country Link
JP (1) JP2004075416A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071229A (en) * 2008-09-19 2010-04-02 Toyota Motor Corp Foreign matter collecting device
JP7021387B1 (en) * 2021-07-30 2022-02-16 三菱化工機株式会社 Double tube type catalytic reaction tube and hydrogen production equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071229A (en) * 2008-09-19 2010-04-02 Toyota Motor Corp Foreign matter collecting device
JP7021387B1 (en) * 2021-07-30 2022-02-16 三菱化工機株式会社 Double tube type catalytic reaction tube and hydrogen production equipment

Similar Documents

Publication Publication Date Title
KR101346465B1 (en) Improved preferential oxidation catalyst containing platinum, copper and iron to remove carbon monoxide from a hydrogen-rich gas
JP6498689B2 (en) Steam reforming
JP6606091B2 (en) Catalytic device
US7776113B2 (en) Catalysts, reactors and methods of producing hydrogen via the water-gas shift reaction
JP2007054826A (en) Reactor sealing method
Twigg et al. Preparation and properties of ceramic foam catalyst supports
US10472235B2 (en) Synthesis gas manufacturing method and synthesis gas manufacturing apparatus
JP2004075416A (en) Hydrocarbon reformer and process for manufacturing reforming catalyst therefor
JP6197301B2 (en) Hydrogen production equipment
JP2003306310A (en) Autothermal reforming device and method of autothermal reforming using the same
JP5351527B2 (en) Cylindrical steam reformer for fuel cells
JP4301362B2 (en) Lower hydrocarbon direct cracking catalyst, lower hydrocarbon direct cracking reactor, and lower hydrocarbon direct cracking reactor
JP4190782B2 (en) Hydrogen purification apparatus and method for producing CO shift catalyst
JP2004051428A (en) Membrane reaction apparatus
US20120248377A1 (en) Catalytic Reactor Including a Catalytic Cellular Structure and at least One Structural Element
US8747769B2 (en) Catalytic reactor including a cell-like structure and elements optimizing the contact thereof with the inner wall of the reactor
JP4278984B2 (en) Membrane reactor for gas extraction
JPH05305229A (en) Reformer
JP4837384B2 (en) Syngas production reactor integrated with waste heat recovery unit
RU2244589C1 (en) Catalyst, method of preparation thereof, and a synthesis gas generation method
JP4226009B2 (en) Hydrogen separation membrane and method for producing the same
JPS6350282B2 (en)
JP2005041728A (en) Hydrogen production apparatus
JPH03106434A (en) Fuel reforming apparatus
JP2005231964A (en) Hydrogen production apparatus and hydrogen production method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101