JP4301362B2 - Lower hydrocarbon direct cracking catalyst, lower hydrocarbon direct cracking reactor, and lower hydrocarbon direct cracking reactor - Google Patents

Lower hydrocarbon direct cracking catalyst, lower hydrocarbon direct cracking reactor, and lower hydrocarbon direct cracking reactor Download PDF

Info

Publication number
JP4301362B2
JP4301362B2 JP2003292342A JP2003292342A JP4301362B2 JP 4301362 B2 JP4301362 B2 JP 4301362B2 JP 2003292342 A JP2003292342 A JP 2003292342A JP 2003292342 A JP2003292342 A JP 2003292342A JP 4301362 B2 JP4301362 B2 JP 4301362B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
lower hydrocarbon
reactor
direct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003292342A
Other languages
Japanese (ja)
Other versions
JP2005058908A (en
Inventor
諭 中村
秀明 伊藤
旭男 多田
芳孝 東郷
美佐男 岩田
真示 加藤
裕之 高砂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Japan Steel Works Ltd
Kitami Institute of Technology NUC
Original Assignee
Kajima Corp
Japan Steel Works Ltd
Kitami Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp, Japan Steel Works Ltd, Kitami Institute of Technology NUC filed Critical Kajima Corp
Priority to JP2003292342A priority Critical patent/JP4301362B2/en
Publication of JP2005058908A publication Critical patent/JP2005058908A/en
Application granted granted Critical
Publication of JP4301362B2 publication Critical patent/JP4301362B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Description

この発明は、メタンなどの低級炭化水素を直接分解して、高純度水素とナノサイズ機能性炭素とを製造する技術分野に関するものであって、前記炭素の微粒子がその場で生成されることにより担体が変形、特に相似的に膨張する特徴を持つ触媒および、その触媒を収容した低級炭化水素直接分解反応器ならびにその触媒を備える低級炭化水素直接分解反応装置に関するものである。   The present invention relates to a technical field for producing high-purity hydrogen and nano-size functional carbon by directly decomposing lower hydrocarbons such as methane, and the fine particles of carbon are generated in situ. The present invention relates to a catalyst in which the support is deformed, in particular, a similar expansion characteristic, a lower hydrocarbon direct cracking reactor containing the catalyst, and a lower hydrocarbon direct cracking reaction apparatus including the catalyst.

従来、メタン及び低級炭化水素の直接分解反応に用いられる触媒は、シリカ、アルミナなどの素材から成る粒子状担体又は、ハニカム状などの形状をもつ多孔質モノリス担体にニッケルなどの触媒金属を担持させることで調製されてきた。例えば、特許文献1で開示されている「二酸化炭素固定化装置」では、メタンを分解する触媒としてSiOやAlを担体とし、Ni、Coなどを触媒金属とするものを使用している。なお上記触媒の多孔質モノリス担体の素材は無機系素材に限定されない。また、例えば、特許文献2に開示されている「炭化水素分解用触媒及びそれを用いた水素製造方法」ではフラーレン等の炭素質物質を担体として、ニッケル化合物及びアルカリ金属とアルカリ土類金属などを担持させてメタン直接分解触媒を調製している。 Conventionally, the catalyst used for the direct decomposition reaction of methane and lower hydrocarbons is such that a catalytic metal such as nickel is supported on a particulate carrier made of a material such as silica or alumina or a porous monolith carrier having a honeycomb shape or the like. Have been prepared. For example, in the “carbon dioxide fixing device” disclosed in Patent Document 1, a catalyst that decomposes methane using SiO 2 or Al 2 O 3 as a carrier and Ni, Co, or the like as a catalyst metal is used. Yes. The material of the porous monolith support of the catalyst is not limited to inorganic materials. Further, for example, in “hydrocarbon decomposition catalyst and hydrogen production method using the same” disclosed in Patent Document 2, a nickel compound, an alkali metal, an alkaline earth metal, and the like are used with a carbonaceous material such as fullerene as a carrier. A methane direct cracking catalyst is prepared by supporting it.

メタン及び低級炭化水素の直接分解プロセスは未だ研究開発途上の技術であり、従来技術として取り上げることには異論があるかもしれないが、ここでは例としてメタンの直接分解反応について説明する。
メタン直接分解反応は、原料であるメタンを、温度300〜900℃程度の範囲で、前記メタン及び炭化水素分解用触媒と反応管内で接触させ、熱分解することで水素及び炭素を製造するものである。反応によって生成する炭素は触媒と一体になって反応管内部に留まり、気体成分は水素と未反応メタンのみである。反応の進行とともに炭素が触媒周辺に蓄積されるので、反応管を縦に設置し、その内部に触媒粒子を充填静置すると圧力損失が増し早晩、反応管が閉塞する。したがってそれを防ぐ工夫が必要であり、実験室段階の実験では、反応管を横に設置し、その底部に触媒粒子を置き、その上部に、炭素蓄積による体積増加に見合う適正空間を残す方式が多用され、実用化を視野に入れた実験では、反応管を縦に設置し、触媒粒子を運動させてその隙間をメタンガスが通り抜けられるようにする流動床反応器などが使用されている。
特開2000−226205号公報 特許第2838192号明細書
Although the direct decomposition process of methane and lower hydrocarbons is still a research and development technology and may be disputed as being taken up as a conventional technology, the direct decomposition reaction of methane will be described here as an example.
In the methane direct decomposition reaction, hydrogen and carbon are produced by bringing methane, which is a raw material, into contact with the methane and hydrocarbon decomposition catalyst in a reaction tube in a temperature range of about 300 to 900 ° C. and thermally decomposing them. is there. The carbon produced by the reaction stays inside the reaction tube together with the catalyst, and the gas components are only hydrogen and unreacted methane. Since carbon accumulates in the vicinity of the catalyst as the reaction proceeds, if the reaction tube is installed vertically and filled with catalyst particles, the pressure loss increases and the reaction tube closes quickly. Therefore, it is necessary to devise measures to prevent this, and in the experiment at the laboratory stage, there is a method in which a reaction tube is installed sideways, catalyst particles are placed on the bottom, and an appropriate space corresponding to the volume increase due to carbon accumulation is left on the top. In experiments that are frequently used and put into practical use, a fluidized bed reactor is used in which reaction tubes are installed vertically and catalyst particles are moved so that methane gas can pass through the gaps.
JP 2000-226205 A Japanese Patent No. 2838192

しかし、従来の横置き方式では、(1)触媒粒子の分布が不均一である、(2)メタン直接分解装置内での反応器設置場所が限定される、(3)メタンガスと触媒との接触効率が悪いなどの問題点がある。また、従来の流動床反応器方式では、触媒粒子のサイズ・重量を一定範囲に保って流動状態を維持する必要があるため、(1)触媒・炭素混合物を定期的に反応器外に抜き出し、新品触媒を供給する装置、作業が不可欠である、(2)触媒利用効率が低いなどの問題点がある。   However, in the conventional horizontal system, (1) the distribution of the catalyst particles is non-uniform, (2) the location of the reactor in the methane direct cracking device is limited, (3) contact between methane gas and the catalyst There are problems such as poor efficiency. In addition, in the conventional fluidized bed reactor method, it is necessary to maintain the fluidized state by keeping the size and weight of the catalyst particles in a certain range. (1) The catalyst / carbon mixture is periodically extracted outside the reactor, There are problems such as a device for supplying a new catalyst, work is indispensable, and (2) catalyst utilization efficiency is low.

この発明は上記のような、反応管を横置きしてその底部に触媒粒子を置き、上部に適正空間を残す方式の問題点ならびに流動床反応器方式の問題点を解決するためになされたものであり、触媒の設置方式に拘わらず所定時間安定的に反応を進行させることができ、流動などの特別な操作が不要である低級炭化水素直接分解反応用触媒および低級炭化水素直接分解反応器ならびに低級炭化水素直接分解反応装置を提供することを目的とする。   The present invention was made to solve the problems of the above-described method of placing the reaction tube horizontally, placing catalyst particles at the bottom, and leaving an appropriate space at the top, and the problem of the fluidized bed reactor method. The catalyst for lower hydrocarbon direct cracking reaction and the lower hydrocarbon direct cracking reactor capable of allowing the reaction to proceed stably for a predetermined time regardless of the catalyst installation method and requiring no special operation such as flow, and An object is to provide a lower hydrocarbon direct cracking reaction apparatus.

上記課題を解決するため、本発明の低級炭化水素直接分解反応用触媒のうち、請求項1記載の発明は、多孔性の担体に触媒材料が担持されており、低級炭化水素の直接分解により高純度水素及びナノサイズ機能性炭素を製造する反応に用いられる触媒であって、前記担体は、三次元網目構造を有するとともに、前記直接分解反応によって生成される前記炭素の蓄積によって相似的に膨張変形して通気性を確保する機能を有することを特徴とする。 In order to solve the above problems, among the catalysts for direct decomposition reaction of lower hydrocarbons of the present invention, the invention according to claim 1 is characterized in that a catalyst material is supported on a porous carrier, A catalyst used in a reaction for producing pure hydrogen and nano-size functional carbon, wherein the support has a three-dimensional network structure and is similarly expanded and deformed by accumulation of the carbon generated by the direct decomposition reaction. And has a function of ensuring air permeability.

請求項記載の低級炭化水素直接分解反応用触媒の発明は、請求項記載の発明において、前記担体の表面に表層用セラミック粒子によって形成した凹凸表面層が設けられており、該凹凸表面層に前記触媒材料が担持されていることを特徴とする。 The invention for a catalyst for direct decomposition reaction of lower hydrocarbon according to claim 2 is the invention according to claim 1 , wherein the surface of the carrier is provided with an uneven surface layer formed of surface ceramic particles, and the uneven surface layer The catalyst material is supported on the substrate.

請求項記載の低級炭化水素直接分解反応用触媒の発明は、請求項請求項1または2に記載の発明において、前記触媒材料が、ニッケル、鉄、コバルトまたはいずれかの混合物であることを特徴とする。 The invention for a catalyst for direct cracking of a lower hydrocarbon according to claim 3 is the invention according to claim 1 or 2 , wherein the catalyst material is nickel, iron, cobalt, or a mixture thereof. And

請求項記載の低級炭化水素直接分解反応用触媒の発明は、請求項1〜3のいずれかに記載の発明において、前記ナノサイズ機能性炭素が、バルク炭素以外の形状を有することを特徴とする。 The invention for a catalyst for direct cracking of lower hydrocarbon according to claim 4 is characterized in that, in the invention according to any one of claims 1 to 3 , the nano-sized functional carbon has a shape other than bulk carbon. To do.

請求項記載の低級炭化水素直接分解反応器の発明は、ガス入口とガス出口とを備える反応器本体を有し、該反応器本体内に請求項1〜4のいずれかに記載の触媒が収容され、前記ガス入口が外部の低級炭化水素供給部に脱着可能に通気接続され、前記ガス出口が外部の反応後ガス取り入れ部に脱着可能に通気接続される構造を有することを特徴とする。 The invention of a lower hydrocarbon direct cracking reactor according to claim 5 has a reactor body provided with a gas inlet and a gas outlet, and the catalyst according to any one of claims 1 to 4 is placed in the reactor body. It is housed, and has a structure in which the gas inlet is detachably connected to an external lower hydrocarbon supply unit and the gas outlet is detachably connected to an external post-reaction gas intake unit.

請求項記載の低級炭化水素直接分解反応装置の発明は、請求項1〜4のいずれかに記載の低級炭化水素直接分解反応用触媒を備え、該触媒に対し低級炭化水素を供給する低級炭化水素供給部と、前記触媒で低級炭化水素が直接分解されることによって発生する反応ガスと未反応ガスとが取り入れられる反応後ガス取り入れ部とを備えることを特徴とする。 The invention of a lower hydrocarbon direct cracking reaction apparatus according to claim 6 comprises the lower hydrocarbon direct cracking reaction catalyst according to any one of claims 1 to 4 and supplies lower hydrocarbons to the catalyst. A hydrogen supply unit, and a post-reaction gas intake unit into which a reaction gas generated by the direct decomposition of lower hydrocarbons by the catalyst and an unreacted gas are provided.

請求項記載の低級炭化水素直接分解反応装置の発明は、請求項6記載の発明において、前記低級炭化水素供給部には、低級炭化水素直接分解反応用触媒が収容された反応器のガス入口が脱着可能に通気接続される構造を有し、前記反応後ガス取り入れ部には、前記反応器のガス出口が脱着可能に通気接続される構造を有することを特徴とする。 Invention of lower hydrocarbons directly decomposition reaction apparatus according to claim 7 is the invention of claim 6, wherein the lower the hydrocarbon feed section, a lower hydrocarbon direct decomposition reaction catalyst is housed the reactor gas inlet The post-reaction gas intake part has a structure in which a gas outlet of the reactor is connected to be detachably ventilated.

請求項記載の低級炭化水素直接分解反応装置の発明は、請求項記載の発明において、前記反応器をカートリッジ方式にして脱着可能とすることを特徴とする。 The invention of the lower hydrocarbon direct cracking reaction apparatus according to claim 8 is characterized in that, in the invention according to claim 7 , the reactor is detachable in a cartridge system.

すなわち、本発明の低級炭化水素直接分解反応用触媒によれば、多孔性担体に触媒材料が担持されており、該触媒に低級炭化水素を供給することで担体の多数の孔が通気孔として機能して低級炭化水素と触媒材料とが効果的に接触して該低級炭化水素の直接分解が起こり、高純度水素及びナノサイズ機能性炭素が製造される。この低級炭化水素の分解に伴って製造される炭素は、次第に担体に蓄積し、この蓄積によって担体を変形させることで担体の孔での圧力損失の増加、閉塞を抑制して良好な通気性を確保したままで長期に亘って触媒として良好な性能を維持することができる。そして触媒と炭素とが渾然一体となった有孔複合体が反応器などの内部を埋め尽くすまで反応が順調に進行することを可能とする。
前記担体は、特徴的な変形として相似的に膨張する。触媒が相似的に膨張すると連続通気孔はその径がむしろ広がるので炭素微粒子によって閉塞されない。また元の触媒の形状の特徴を残しつつ膨張した触媒と炭素との複合体は自己崩壊が起こらない程度の機械的強度を有する。したがって、所定形状を与えた触媒を縦型反応器などに収めることができ、配置の制約が少ない。
That is, according to the catalyst for direct decomposition reaction of lower hydrocarbons of the present invention, the catalyst material is supported on the porous carrier, and by supplying the lower hydrocarbons to the catalyst, many holes of the carrier function as vent holes. Then, the lower hydrocarbon and the catalyst material are effectively brought into contact with each other to cause direct decomposition of the lower hydrocarbon to produce high-purity hydrogen and nano-size functional carbon. The carbon produced with the decomposition of the lower hydrocarbons gradually accumulates in the carrier, and by deforming the carrier due to this accumulation, the pressure loss in the pores of the carrier is increased and the blockage is suppressed, thereby providing good air permeability. It is possible to maintain good performance as a catalyst over a long period of time while ensuring. Then, the reaction can proceed smoothly until the porous composite in which the catalyst and carbon are united with each other fills the interior of the reactor or the like.
The carrier expands similarly as a characteristic deformation. When the catalyst expands in a similar manner, the diameter of the continuous air vent is rather widened so that it is not blocked by the carbon fine particles. In addition, the composite of the catalyst and carbon expanded while leaving the characteristics of the shape of the original catalyst has a mechanical strength that does not cause self-collapse. Therefore, a catalyst having a predetermined shape can be accommodated in a vertical reactor or the like, and there are few restrictions on arrangement.

上記機能を果たす担体としては三次元網目構造を有するもの(例えばノリタケカンパニーリミテド製SOLACLEA(商標名))が用いられる。この三次元網目構造の担体は、例えばセラミック繊維の配列によって得ることができる。該三次元網目構造の担体の製造方法は特に限定されるものではなく、適宜の方法により得ることができる。例えば担体となる繊維同士の交点を結合することで三次元網目構造としてもよく、また、三次元網目構造を有する型内で担体を成型することでモノリス担体として得ることもできる。前記三次元網目構造では、担体内部の空隙で成長する炭素の力が担体を構成する粒子間の結合力よりも強くなって空隙を押し広げることになり、このような現象が担体全体において均等に起こって相似的膨張が起こる。この際、担体の孔の孔径は次第に広がるので炭素微粒子による孔の閉塞や圧力損失の増加が確実に抑制される。なお、セラミック繊維の径や網目の大きさは、通気性、触媒材料とガスとの接触面積、炭素蓄積による変形能などを考慮して適宜定めることができる。 A carrier having a three-dimensional network structure (for example, SOLACLEA (trade name) manufactured by Noritake Company Limited) is used as the carrier that performs the above function. The carrier having this three-dimensional network structure can be obtained by, for example, an array of ceramic fibers. The method for producing the three-dimensional network structure carrier is not particularly limited, and can be obtained by an appropriate method. For example, a three-dimensional network structure may be obtained by bonding the intersections of fibers serving as a carrier, or a monolith carrier may be obtained by molding the carrier in a mold having a three-dimensional network structure. In the three-dimensional network structure, the force of carbon growing in the voids inside the carrier is stronger than the bonding force between the particles constituting the carrier, and the voids are expanded. A similar expansion occurs. At this time, since the pore diameter of the carrier pores gradually increases, the pore clogging due to the carbon fine particles and the increase in pressure loss are reliably suppressed. The diameter and the mesh size of the ceramic fiber can be appropriately determined in consideration of the air permeability, the contact area between the catalyst material and the gas, the deformability due to carbon accumulation, and the like.

上記担体には、ニッケル、鉄、コバルトまたはこれらの混合物などからなる触媒材料が担持される。触媒材料の担持は、担体の表面に触媒材料を固定することで行ってもよく、また、担体を製造する際に担体中に触媒材料を含有させることによって触媒材料が担体に混入して担体とともに同時に製造されるものであってもよい。なお、触媒材料の担体表面への固定は、含浸法や沈殿法、イオン交換法またはこれらの方法に限定されない方法により行うことができる。さらに、触媒における有効表面積を増大させるため、三次元網目構造の担体の表面に表層用セラミック粒子によって凹凸表面層を形成し、この凹凸表面層に触媒材料を担持させるものであってもよい。   A catalyst material made of nickel, iron, cobalt or a mixture thereof is supported on the carrier. The catalyst material may be supported by fixing the catalyst material on the surface of the carrier. In addition, when the carrier is produced, the catalyst material is mixed with the carrier so that the catalyst material is mixed with the carrier. It may be manufactured at the same time. The catalyst material can be fixed to the support surface by an impregnation method, a precipitation method, an ion exchange method, or a method not limited to these methods. Furthermore, in order to increase the effective surface area of the catalyst, an uneven surface layer may be formed on the surface of the support having a three-dimensional network structure with ceramic particles for the surface layer, and the catalyst material may be supported on the uneven surface layer.

上記触媒は、多くの場合、ガス入口とガス出口とを有する反応器内に収容され、ガス入口から導入されて該反応器内を流れる低級炭化水素との接触およびガスの通気が可能になっている。反応によって生成される反応ガスと未反応のガスとは、ガス出口から反応器外部に取り出される。この反応器は、低級炭化水素直接分解反応装置内に固定されているものでもよいが、該反応器をカートリッジ式にして脱着可能とするのが望ましい。これにより反応によって生成した炭素が次第に蓄積して機能の低下した触媒を容易に取り替えることができ、また、機能性炭素を容易に回収することができる。なお本発明は、低級炭化水素を原料ガスとして使用する。その種別は特定のものに限定されないが、代表的にはメタンが挙げられる。また、原料となる低級炭化水素は単一種の他、複数種からなるものであってもよい。   The catalyst is often housed in a reactor having a gas inlet and a gas outlet, allowing contact with lower hydrocarbons introduced from the gas inlet and flowing through the reactor, and allowing gas to flow. Yes. The reaction gas generated by the reaction and the unreacted gas are taken out from the reactor through the gas outlet. Although this reactor may be fixed in the lower hydrocarbon direct cracking reaction apparatus, it is desirable that the reactor is removable by making it a cartridge type. As a result, the carbon produced by the reaction is gradually accumulated and the catalyst having a reduced function can be easily replaced, and the functional carbon can be easily recovered. In the present invention, lower hydrocarbons are used as a raw material gas. The type is not limited to a specific type, but typically includes methane. Further, the lower hydrocarbon as a raw material may be composed of a plurality of types in addition to a single type.

以上のように、この発明によれば炭素の蓄積によって相似的に膨張変形可能な多孔性担体に触媒材料を担持した触媒を使用することで、低級炭化水素直接分解反応生成物である炭素微粒子の生成蓄積による圧力損失やガス通路閉塞を回避できるので所定時間、反応を継続することが可能になり、高純度水素とフィラメント状などの形状に特徴を有するナノサイズ炭素微粒子とを計画的に製造することができる効果がある。またこの触媒を反応器と一体にしてカートリッジ式反応器として使用することにより、装置全体を小型化、簡素化でき、メンテナンスが不要となるなどの効果があり、例えば流動床反応器と比べた場合の優位性は極めて大きくなる。また、上記触媒を使用することで、プロセスからのCO排出がなく、反応器の縦置きも可能で、反応器ごと触媒を交換できるなどした、新規な家庭用小規模水素発生装置を提供することを可能にする。 As described above, according to the present invention, by using a catalyst in which a catalyst material is supported on a porous support that can be similarly expanded and deformed by the accumulation of carbon, carbon fine particles that are products of direct decomposition of lower hydrocarbons can be obtained. Since pressure loss and gas passage blockage due to generation and accumulation can be avoided, it is possible to continue the reaction for a predetermined time, and systematically produce high-purity hydrogen and nano-sized carbon microparticles characterized by a filament shape. There is an effect that can. Also, by using this catalyst as a cartridge type reactor integrated with the reactor, the entire device can be reduced in size and simplified, and there is an effect that no maintenance is required. For example, when compared with a fluidized bed reactor The advantage of is extremely large. In addition, by using the above catalyst, there is provided a novel small-scale hydrogen generator for home use in which there is no CO 2 emission from the process, the reactor can be installed vertically, and the catalyst can be replaced with the reactor. Make it possible.

以下に、本発明の実施形態を添付図に基づいて説明する。
この実施形態の触媒1は、図1に示すように、セラミック繊維で構成される3次元網目構造のモノリス担体2にニッケル、鉄、コバルトまたはいずれかの混合物からなる触媒金属微粒子3を触媒材料として担持したものである。担体2の網目で得られる多数の孔2aによって連続した通気路が確保されている。なお、図1では、模擬的に整列した四角形の孔2aを有するものとして担体2を示しているが、この実施形態では、図2、3に示すように前記担体2の孔2aは略六角形の形状を有し、網目も三次元においてランダムに交錯しているものである。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
As shown in FIG. 1, the catalyst 1 of this embodiment has, as a catalyst material, catalytic metal fine particles 3 made of nickel, iron, cobalt, or a mixture thereof on a monolithic carrier 2 having a three-dimensional network structure made of ceramic fibers. It is supported. A continuous air passage is secured by a large number of holes 2 a obtained by the mesh of the carrier 2. In FIG. 1, the carrier 2 is shown as having a square hole 2a that is arranged in a simulated manner, but in this embodiment, the hole 2a of the carrier 2 is substantially hexagonal as shown in FIGS. The mesh is also randomly interlaced in three dimensions.

上記三次元網目構造を有するモノリス担体2は、例えば以下の手順によって製造することができる。
すなわち、アルミナなどのセラミック微粉末に溶剤として水および分散剤を加えて攪拌混合しセラミック微粉末を含む泥しょうを得る。次に、上記泥しょうに、三次元網目構造を有する有機多孔体であるウレタンフォームを投入し、ウレタンフォームの多孔内に上記泥しょうを浸透させる。これを乾燥後、焼成を行なうことにより、上記ウレタンフォームを焼失させるととともに、上記セラミック微粉末を焼結させる。これにより、三次元網目構造を有するセラミック繊維のモノリス担体2が得られる。なお、この実施形態では、担体2を構成するセラミック繊維の径は100〜1000μmであり、厚さ5mmの担体2で光透過率が30%になる網目を有している。
The monolith carrier 2 having the three-dimensional network structure can be manufactured, for example, by the following procedure.
That is, water and a dispersing agent as a solvent are added to ceramic fine powder such as alumina and mixed by stirring to obtain a slurry containing the ceramic fine powder. Next, urethane foam which is an organic porous material having a three-dimensional network structure is put into the slurry, and the slurry is infiltrated into the pores of the urethane foam. This is dried and fired to burn the urethane foam and sinter the ceramic fine powder. As a result, a monolithic carrier 2 of ceramic fibers having a three-dimensional network structure is obtained. In this embodiment, the diameter of the ceramic fiber constituting the carrier 2 is 100 to 1000 μm, and the carrier 2 having a thickness of 5 mm has a mesh with a light transmittance of 30%.

該モノリス担体2への触媒材料3の担持では、含浸法や沈殿法、イオン交換法などの適宜の方法を採用することができる。また、上記泥しょうに触媒材料3の微粉末を混合することで、担体2と一体に触媒材料3を含有させることによって触媒材料3の担持を行うものであってもよい。
上記触媒1では、メタンなどの低級炭化水素を接触させることによって低級炭化水素の直接分解が生じ、高純度水素と、フィラメント状、オニオン状など、バルク炭素とは異なるナノサイズ機能性炭素C(図3参照)とが形成される。このナノサイズ機能性炭素Cは、次第に触媒1に堆積し、図3に示すように触媒1における担体2を相似的に膨張変形させる。この際に、孔2aの径も大きくなるため、孔2aにおける圧力損失の増加や閉塞が長期に亘って抑制される。図4は、従来のハニカム構造の担体30を有する触媒31を示している。この触媒31では、反応の進行に伴ってガス流路である孔30a内にナノサイズ機能性炭素Cが次第に蓄積するものの、担体30は構造上変形がほとんどなされないため、蓄積するナノサイズ機能性炭素Cによって圧力損失が次第に増加し、最終的にはガス流路である孔30aが閉塞されてしまう。なお、炭素微粒子の取り込みによる担体30全体の膨張もわずかに起こるが、それは不均等に起こるためハニカム構造の崩壊を招くことになる。
For supporting the catalyst material 3 on the monolith support 2, an appropriate method such as an impregnation method, a precipitation method, or an ion exchange method can be employed. Further, the catalyst material 3 may be supported by mixing the fine powder of the catalyst material 3 with the slurry so that the catalyst material 3 is contained integrally with the carrier 2.
In the catalyst 1, lower hydrocarbons are directly decomposed by contacting with lower hydrocarbons such as methane, and high-purity hydrogen and nano-sized functional carbon C such as filaments and onions, which are different from bulk carbon (see FIG. 3). The nano-sized functional carbon C gradually accumulates on the catalyst 1 and causes the carrier 2 in the catalyst 1 to expand and deform similarly as shown in FIG. At this time, since the diameter of the hole 2a is also increased, an increase in pressure loss and blockage in the hole 2a are suppressed over a long period of time. FIG. 4 shows a catalyst 31 having a conventional honeycomb structure carrier 30. In this catalyst 31, nanosize functional carbon C gradually accumulates in the holes 30 a that are gas flow paths with the progress of the reaction, but the support 30 is hardly deformed structurally, so that the nanosize functional carbon that accumulates. The carbon C gradually increases the pressure loss and eventually closes the hole 30a, which is a gas flow path. In addition, although the expansion | swelling of the whole support | carrier 30 by the uptake | capture of carbon microparticles | fine-particles also occurs slightly, since it occurs unevenly, it will cause collapse of a honeycomb structure.

上記触媒1は、図5に示すように筒状の反応器5本体内に収容される。その際には、触媒が膨張変形できるように、反応器5本体内の内容積は、触媒1の容積に対し、十分に大きなものとなっている。反応器5の形状は筒状が好ましいが、必ずしも筒状に限定されるものではい。
反応器5の端部にはそれぞれ、ガス入口5aとガス出口5bとが形成されており、ガス入口5aは、外部の低級炭化水素供給部、ガス出口5bは、外部の反応後ガス取り入れ部に通気接続可能で、かつ脱着可能な構造となっている。
The catalyst 1 is accommodated in a cylindrical reactor 5 main body as shown in FIG. At that time, the internal volume in the main body of the reactor 5 is sufficiently larger than the volume of the catalyst 1 so that the catalyst can be expanded and deformed. The shape of the reactor 5 is preferably a cylindrical shape, but is not necessarily limited to a cylindrical shape.
A gas inlet 5a and a gas outlet 5b are formed at the ends of the reactor 5, respectively. The gas inlet 5a is an external lower hydrocarbon feed section, and the gas outlet 5b is an external post-reaction gas intake section. It has a structure that allows ventilation connection and is detachable.

上記反応器5を備える反応装置10は、図6のシステムイメージに示すように、原料低級炭化水素として原料メタン11が供給される原料供給管12に接続され、該原料供給管12は反応装置10内の低級炭化水素供給部10aに接続されている。この低級炭化水素供給部10aに前記反応器5のガス入口5aが脱着可能に接続されている。また、反応装置10には、反応後ガス移送管13の一端が接続されており、該反応後ガス移送管13は、反応装置10内の反応後ガス取り入れ部10bに接続されている。この反応後ガス取り入れ部10bには反応器5のガス出口5bが脱着可能に接続されている。上記反応後ガス移送管13の他端は、水素/メタン分離装置14に接続されている。該水素/メタン分離装置14は、例えば水素分離装置とメタン分離装置との混成によって構成することができる。例えば、水素分離装置は、PSAや水素を透過させる膜分離方法などの適宜の方法を採用した装置により構成することができる。また、メタン分離装置においても同様にPSAや分離膜を備える装置により構成することができる。   As shown in the system image of FIG. 6, the reaction apparatus 10 including the reactor 5 is connected to a raw material supply pipe 12 to which a raw material methane 11 is supplied as a raw material lower hydrocarbon, and the raw material supply pipe 12 is connected to the reaction apparatus 10. It is connected to the lower hydrocarbon feed section 10a. A gas inlet 5a of the reactor 5 is detachably connected to the lower hydrocarbon supply unit 10a. One end of a post-reaction gas transfer pipe 13 is connected to the reaction apparatus 10, and the post-reaction gas transfer pipe 13 is connected to a post-reaction gas intake portion 10 b in the reaction apparatus 10. A gas outlet 5b of the reactor 5 is detachably connected to the post-reaction gas intake 10b. The other end of the post-reaction gas transfer pipe 13 is connected to a hydrogen / methane separator 14. The hydrogen / methane separator 14 can be constituted by, for example, a hybrid of a hydrogen separator and a methane separator. For example, the hydrogen separation apparatus can be configured by an apparatus that employs an appropriate method such as a membrane separation method that allows PSA or hydrogen to permeate. Similarly, the methane separation apparatus can be constituted by an apparatus including a PSA and a separation membrane.

上記水素/メタン分離装置14のメタン分離側は、メタン移送管15に接続されており、メタン移送管15は、燃料管15aと、還流管15bとに分岐している。燃料管15aは、メタンを燃料にして反応装置10の反応に必要な熱に利用できるように反応装置10にメタンを供給する。還流管15bは、反応装置10の低級炭化水素供給管12に接続して反応装置10にメタンを還流させる。なお、本発明としては、未反応ガスの利用方法は特に限定されるものではなく、燃料、還流に用いる他、他の改質に供したりするものであってもよい。
また、上記水素/メタン分離装置14の水素分離側は、燃料電池20に水素を供給する水素供給管16に接続されている。なお、本発明としては、水素の利用方法は特に限定されるものではなく、例えば燃料として用いたり、貯蔵したりするものであってもよい。
The methane separation side of the hydrogen / methane separation device 14 is connected to a methane transfer pipe 15, and the methane transfer pipe 15 branches into a fuel pipe 15a and a reflux pipe 15b. The fuel pipe 15a supplies methane to the reaction apparatus 10 so that methane can be used as fuel for the heat required for the reaction of the reaction apparatus 10. The reflux pipe 15 b is connected to the lower hydrocarbon supply pipe 12 of the reaction apparatus 10 to cause the reaction apparatus 10 to reflux methane. In the present invention, the method of using the unreacted gas is not particularly limited, and it may be used for fuel or reflux, or may be used for other reforming.
The hydrogen separation side of the hydrogen / methane separation device 14 is connected to a hydrogen supply pipe 16 that supplies hydrogen to the fuel cell 20. In the present invention, the method of using hydrogen is not particularly limited, and for example, it may be used as fuel or stored.

次に、メタンの直接分解を例にして本発明の上記システムの作用について説明する。
相似的に膨張可能なモノリス担体2に触媒金属微粒子3を担持した触媒1を反応器5内で温度300℃〜900℃(好ましくは500℃〜700℃)に加熱し、前記原料メタン11をメタン供給管12を通して反応装置10に供給する。メタンは、反応装置10内で低級炭化水素供給部10aを通してガス入口5aから反応器5内に供給される。反応器5内では、圧力1〜9.99atmの条件でメタンを反応させると、触媒金属微粒子3上でメタンの水素−炭素結合の切断が起こり、生成した水素原子は水素ガスになり、炭素原子はフィラメント状、オニオン状などの、バルク(塊状)炭素と異なる特別な形状を有するナノサイズの炭素微粒子になる。フィラメント状炭素微粒子が生成する場合には、その成長末端部に触媒金属微粒子3が位置することが多い。炭素微粒子は触媒外表面から気相に向かって成長するだけではなく、担体2内部の空隙においても成長するのでその力が担体2を構成する粒子間の結合力よりも強い場合には空隙を押し広げることになる。このような現象が担体2全体において均等に起こることにより担体2の相似的膨張が起こる。この際、担体2の連続流通孔2aの孔径も次第に広がるので炭素微粒子による流通孔2aの閉塞は起こらない。すなわち相似的に膨張可能なモノリス担体2を用いる触媒1ではガス流路が閉塞することはなく、触媒1と炭素Cが渾然一体となった有孔複合体が膨張して反応管5内部を埋め尽くすまで反応が進行し続けることが可能となる。
Next, the operation of the above system of the present invention will be described by taking the direct decomposition of methane as an example.
The catalyst 1 in which the catalytic metal fine particles 3 are supported on the similarly expandable monolith support 2 is heated in the reactor 5 to a temperature of 300 ° C. to 900 ° C. (preferably 500 ° C. to 700 ° C.). It is supplied to the reactor 10 through the supply pipe 12. Methane is supplied into the reactor 5 from the gas inlet 5a through the lower hydrocarbon supply unit 10a in the reactor 10. In the reactor 5, when methane is reacted under a pressure of 1 to 9.99 atm, the hydrogen-carbon bond of methane is broken on the catalytic metal fine particles 3, and the generated hydrogen atoms become hydrogen gas, and carbon atoms Becomes nano-sized carbon fine particles having a special shape different from bulk (bulk) carbon, such as filament-like or onion-like. When filamentous carbon fine particles are produced, the catalyst metal fine particles 3 are often located at the growth end portion. The carbon fine particles not only grow from the outer surface of the catalyst toward the gas phase, but also grow in the voids inside the carrier 2, so when the force is stronger than the bonding force between the particles constituting the carrier 2, the voids are pushed. Will spread. When such a phenomenon occurs uniformly in the entire support 2, similar expansion of the support 2 occurs. At this time, since the pore diameter of the continuous flow hole 2a of the carrier 2 gradually increases, the flow hole 2a is not blocked by the carbon fine particles. That is, in the catalyst 1 using the similarly expandable monolith support 2, the gas flow path is not blocked, and the perforated complex in which the catalyst 1 and carbon C are naturally integrated expands to fill the inside of the reaction tube 5. The reaction can continue to proceed until exhausted.

反応器5で生成された反応ガス(水素)と未反応ガス(メタン)とは、反応器5のガス出口5bから排出され、反応後ガス取り入れ部10b、反応後ガス移送管13を通して水素/メタン分離装置14に供給される。水素/メタン分離装置14では、未反応ガス中からメタンが分離される。この未反応ガスのメタンは、例えば原料メタン11に対し約50%となる。メタン移送管15を通して移送されるメタンの一部は燃料管15aを介して反応装置10の加熱用に供され、残余のメタンは、還流管15bを介して反応装置10に還流されて反応器5における直接分解効率を高めてメタンの転化率を向上させる。また、水素/メタン分離装置14から分離された高純度の水素は、水素供給管16を通して燃料電池20に供給されて発電に利用される。   The reaction gas (hydrogen) and the unreacted gas (methane) generated in the reactor 5 are discharged from the gas outlet 5b of the reactor 5, and hydrogen / methane is passed through the post-reaction gas intake 10b and the post-reaction gas transfer pipe 13. It is supplied to the separation device 14. In the hydrogen / methane separator 14, methane is separated from the unreacted gas. This unreacted gas methane is, for example, about 50% of the raw material methane 11. A part of the methane transferred through the methane transfer pipe 15 is used for heating the reaction apparatus 10 through the fuel pipe 15a, and the remaining methane is refluxed to the reaction apparatus 10 through the reflux pipe 15b. Improve the conversion efficiency of methane by increasing the direct cracking efficiency. Further, the high purity hydrogen separated from the hydrogen / methane separator 14 is supplied to the fuel cell 20 through the hydrogen supply pipe 16 and used for power generation.

以下、この発明の一実施例を説明する。
相似的に膨張可能なモノリス触媒1として、セラミック繊維が三次元網目構造を有するノリタケカンパニーリミテド製SOLACLEA(商標;以下SOLACと略記)に、1、5、10、15wt%のニッケルを担持した触媒(1〜15%Ni/SOLAC)約0.7〜0.8gを、反応器5として25mm径の石英製直管に入れ、反応温度600℃、全圧1atm、無希釈メタン流量60ml/minの条件下でメタン直接分解を行った。そのときのメタン転化率を図7に示した。転化率はニッケル担持率に依存するが、転化率60%程度で長時間安定的に直接分解を行うことが可能である。
An embodiment of the present invention will be described below.
As a monolithic catalyst 1 that can be expanded in a similar manner, a catalyst in which 1, 5, 10, 15 wt% nickel is supported on SOLACLEA (trademark; hereinafter abbreviated as SOLAC) manufactured by Noritake Company Limited whose ceramic fibers have a three-dimensional network structure. 1 to 15% Ni / SOLAC) of about 0.7 to 0.8 g is placed in a 25 mm diameter quartz straight tube as the reactor 5 under the conditions of a reaction temperature of 600 ° C., a total pressure of 1 atm, and an undiluted methane flow rate of 60 ml / min. Under the direct methane decomposition. The methane conversion at that time is shown in FIG. Although the conversion rate depends on the nickel loading rate, direct decomposition can be performed stably for a long time at a conversion rate of about 60%.

また、10wt%Ni/SOLACと、炭素蓄積による変形(相似的膨張)が可能ではないハニカム構造多孔性のセラミックスモノリス担体(イソライト工業製Isolite:Isoと略記、松下電器製Ceramic Honeycomb:CHと略記)にニッケルをそれぞれ5wt%、3wt%担持した触媒(ニッケル含有量は1.0×10−3molに統一した)を使用して上記同様の実験を行った。その結果を図8に示した。結果からSOLACを担体2にすることにより、他の担体を用いたものに比べ長時間安定的にメタン直接分解が起こることが明らかである。 Also, 10 wt% Ni / SOLAC and a honeycomb structure porous ceramic monolith support that cannot be deformed (similar expansion) due to carbon accumulation (Isolite manufactured by Isolite Industry, abbreviated as Iso, Ceramic Honeycomb: abbreviated as CH) The same experiment as above was carried out using a catalyst carrying 5 wt% and 3 wt% of nickel (the nickel content was unified to 1.0 × 10 −3 mol). The results are shown in FIG. From the results, it is apparent that by using SOLAC as the carrier 2, direct methane decomposition occurs stably for a long time as compared with those using other carriers.

次に、他の実施例として、図6に示すシステムイメージフローによって家庭用燃料電池に水素を供給するシステムにおいて、10wt%Ni(59g)/SOLAC(531g)触媒を反応温度600℃、全圧1atm、SV値:51000ml/g−Ni/h、無希釈メタン流量60ml/minの条件でメタン直接分解反応を行うものとした。なお、このシステムでは、担体2の体積が反応前と反応後では約4倍に相似的膨張をすることを利用して、初期の触媒体積を2.3Lとし、この触媒を入れる反応器5の容積を9.2Lに設定した。これにより無希釈メタンを3Nm/h(50l/min)流した時、3Nm/hの水素を10時間程度発生することが可能となった。現在の家庭用燃料電池として普及が予想される1kW家庭用燃料電池を使用し、3Nm/hの水素で燃料電池を発電すると、一般家庭(4人家族)の1日の必要電である約3kWの電力を得ることが可能となる。
なお所定時間経過すると反応器5内部は触媒1を含む炭素微粒子で満たされるので触媒1と反応器5を一体化したカートリッジ式反応器を使用することにより、触媒交換と炭素微粒子排出とを容易に行うことができる。また、このカートリッジの体積は将来触媒改良や燃料電池性能の向上で大幅に小さくできる可能性がある。
Next, as another embodiment, in a system for supplying hydrogen to a household fuel cell according to the system image flow shown in FIG. 6, a 10 wt% Ni (59 g) / SOLAC (531 g) catalyst is reacted at a reaction temperature of 600 ° C. and a total pressure of 1 atm. SV value: 51000 ml / g-Ni / h, methane direct decomposition reaction was performed under the conditions of undiluted methane flow rate 60 ml / min. In this system, by utilizing the fact that the volume of the carrier 2 expands approximately four times before and after the reaction, the initial catalyst volume is 2.3 L, and the reactor 5 in which the catalyst is put is used. The volume was set to 9.2L. As a result, when undiluted methane was allowed to flow at 3 Nm 3 / h (50 l / min), 3 Nm 3 / h of hydrogen could be generated for about 10 hours. Using a 1kW household fuel cell, which is expected to become popular as a current household fuel cell, and generating electricity with 3Nm 3 / h of hydrogen, it is about one day's required electricity for a general household (family of 4) It becomes possible to obtain power of 3 kW.
In addition, since the inside of the reactor 5 is filled with carbon fine particles including the catalyst 1 after a predetermined time has elapsed, it is easy to exchange the catalyst and discharge the carbon fine particles by using a cartridge type reactor in which the catalyst 1 and the reactor 5 are integrated. It can be carried out. In addition, there is a possibility that the volume of this cartridge can be significantly reduced by improving the catalyst and improving the fuel cell performance in the future.

本発明の一実施形態の触媒を模式的に示す図である。It is a figure which shows typically the catalyst of one Embodiment of this invention. 同じく、一部拡大図である。Similarly, it is a partially enlarged view. 同じく、メタン直接分解反応を行う前後の均等膨張の様子を示す図である。Similarly, it is a figure which shows the mode of the uniform expansion before and behind performing a methane direct decomposition reaction. 従来のセラミックハニカムを担体にした触媒をメタン直接分解反応に使用した前後のハニカム内部の様子を示す図である。It is a figure which shows the mode inside the honeycomb before and behind using the catalyst which made the conventional ceramic honeycomb the support | carrier for methane direct decomposition reaction. 同じく、触媒を収容した反応器を示す図である。Similarly, it is a figure which shows the reactor which accommodated the catalyst. 本発明の反応装置を備えるシステムイメージフロー図である。It is a system image flow figure provided with the reaction apparatus of this invention. SOLAC担持触媒のメタン転化率とニッケル担持率の関係を示したグラフである。It is the graph which showed the relationship between the methane conversion rate of a SOLAC carrying catalyst, and a nickel carrying rate. 各種ニッケル触媒のメタン転化率と担体の関係を示したグラフである。It is the graph which showed the relationship of the methane conversion rate and support | carrier of various nickel catalysts.

符号の説明Explanation of symbols

1 触媒
2 担体
2a 孔
3 触媒金属微粒子(触媒材料)
5 反応器
5a ガス入口
5b ガス出口
10 反応装置
10a 低級炭化水素供給部
10b 反応後ガス取り入れ部
11 原料メタン
1 catalyst 2 carrier 2a hole 3 catalyst metal fine particles (catalyst material)
5 Reactor 5a Gas inlet 5b Gas outlet 10 Reactor 10a Lower hydrocarbon supply part 10b Post-reaction gas intake part 11 Raw material methane

Claims (8)

多孔性の担体に触媒材料が担持されており、低級炭化水素の直接分解により高純度水素及びナノサイズ機能性炭素を製造する反応に用いられる触媒であって、前記担体は、三次元網目構造を有するとともに、前記直接分解反応によって生成される前記炭素の蓄積によって相似的に膨張変形して通気性を確保する機能を有することを特徴とする低級炭化水素直接分解反応用触媒。 A catalyst material is supported on a porous carrier, and is a catalyst used in a reaction for producing high-purity hydrogen and nano-sized functional carbon by direct decomposition of lower hydrocarbons. The carrier has a three-dimensional network structure. And a catalyst for direct decomposition reaction of a lower hydrocarbon, characterized by having a function of expanding and deforming similarly due to accumulation of the carbon produced by the direct decomposition reaction and ensuring air permeability. 前記担体の表面に表層用セラミック粒子によって形成した凹凸表面層が設けられており、該凹凸表面層に前記触媒材料が担持されていることを特徴とする請求項記載の低級炭化水素直接分解反応用触媒。 And uneven surface layer formed by the surface ceramic particles provided on the surface of the support, lower hydrocarbons direct decomposition reaction of claim 1 wherein the catalytic material to the irregular surface layer is characterized in that it is carried Catalyst. 前記触媒材料が、ニッケル、鉄、コバルトまたはいずれかの混合物であることを特徴とする請求項1または2に記載の低級炭化水素直接分解反応用触媒。 The catalyst for direct decomposition reaction of a lower hydrocarbon according to claim 1 or 2 , wherein the catalyst material is nickel, iron, cobalt or a mixture thereof. 前記ナノサイズ機能性炭素が、バルク炭素以外の形状を有することを特徴とする請求項1〜3のいずれかに記載の低級炭化水素直接分解反応用触媒。 The catalyst for direct decomposition reaction of a lower hydrocarbon according to any one of claims 1 to 3 , wherein the nano-sized functional carbon has a shape other than bulk carbon. ガス入口とガス出口とを備える反応器本体を有し、該反応器本体内に請求項1〜4のいずれかに記載の触媒が収容され、前記ガス入口が外部の低級炭化水素供給部に脱着可能に通気接続され、前記ガス出口が外部の反応後ガス取り入れ部に脱着可能に通気接続される構造を有することを特徴とする低級炭化水素直接分解反応器。 A reactor main body having a gas inlet and a gas outlet, wherein the catalyst according to any one of claims 1 to 4 is accommodated in the reactor main body, and the gas inlet is desorbed to an external lower hydrocarbon feed section. A lower hydrocarbon direct cracking reactor characterized by having a structure in which the gas outlet can be vented and connected so that the gas outlet can be vented and connected to an external post-reaction gas intake. 請求項1〜のいずれかに記載の低級炭化水素直接分解反応用触媒を備え、該触媒に対し低級炭化水素を供給する低級炭化水素供給部と、前記触媒で低級炭化水素が直接分解されることによって発生する反応ガスと未反応ガスとが取り入れられる反応後ガス取り入れ部とを備えることを特徴とする低級炭化水素直接分解反応装置。 5. A lower hydrocarbon direct cracking reaction catalyst according to any one of claims 1 to 4 , wherein the lower hydrocarbon is directly cracked by the lower hydrocarbon feed section for feeding the lower hydrocarbon to the catalyst and the catalyst. A lower hydrocarbon direct cracking reaction apparatus, comprising a post-reaction gas intake portion into which a reaction gas generated by the reaction and an unreacted gas are taken. 前記低級炭化水素供給部には、低級炭化水素直接分解反応用触媒が収容された反応器のガス入口が脱着可能に通気接続される構造を有し、前記反応後ガス取り入れ部には、前記反応器のガス出口が脱着可能に通気接続される構造を有することを特徴とする請求項6記載の低級炭化水素直接分解反応装置。 The lower hydrocarbon supply unit has a structure in which a gas inlet of a reactor in which a catalyst for direct decomposition reaction of lower hydrocarbons is accommodated is removably connected, and the post-reaction gas intake unit includes the reaction 7. The lower hydrocarbon direct cracking reaction apparatus according to claim 6 , wherein the gas outlet of the vessel is structured to be detachably ventilated. 前記反応器をカートリッジ方式にして脱着可能とすることを特徴とする請求項記載の低級炭化水素直接分解反応装置。 8. The lower hydrocarbon direct cracking reaction apparatus according to claim 7, wherein said reactor is detachable by a cartridge system.
JP2003292342A 2003-08-12 2003-08-12 Lower hydrocarbon direct cracking catalyst, lower hydrocarbon direct cracking reactor, and lower hydrocarbon direct cracking reactor Expired - Lifetime JP4301362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003292342A JP4301362B2 (en) 2003-08-12 2003-08-12 Lower hydrocarbon direct cracking catalyst, lower hydrocarbon direct cracking reactor, and lower hydrocarbon direct cracking reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003292342A JP4301362B2 (en) 2003-08-12 2003-08-12 Lower hydrocarbon direct cracking catalyst, lower hydrocarbon direct cracking reactor, and lower hydrocarbon direct cracking reactor

Publications (2)

Publication Number Publication Date
JP2005058908A JP2005058908A (en) 2005-03-10
JP4301362B2 true JP4301362B2 (en) 2009-07-22

Family

ID=34369723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003292342A Expired - Lifetime JP4301362B2 (en) 2003-08-12 2003-08-12 Lower hydrocarbon direct cracking catalyst, lower hydrocarbon direct cracking reactor, and lower hydrocarbon direct cracking reactor

Country Status (1)

Country Link
JP (1) JP4301362B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254180A (en) * 2006-03-22 2007-10-04 Japan Steel Works Ltd:The Self-sustained lower hydrocarbon direct decomposition process and process system thereof
US9061909B2 (en) * 2009-09-10 2015-06-23 The University Of Tokyo Method for simultaneously producing carbon nanotubes and hydrogen, and device for simultaneously producing carbon nanotubes and hydrogen
JP5339547B2 (en) * 2011-03-04 2013-11-13 株式会社日本製鋼所 Energy self-supporting lower hydrocarbon direct cracking process system
JP2019075263A (en) * 2017-10-16 2019-05-16 国立研究開発法人産業技術総合研究所 System for generating power by decomposing methane into carbon and hydrogen and charging decomposed hydrogen into fuel cell
JPWO2021079660A1 (en) 2019-10-23 2021-04-29
US11401163B2 (en) * 2020-10-19 2022-08-02 Xenophon Verykios Catalytic materials for pyrolysis of methane and production of hydrogen and solid carbon with substantially zero atmospheric carbon emissions

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1035298A (en) * 1973-12-13 1978-07-25 United Aircraft Corporation Catalytic cracking hydrogen generator
JPH06182201A (en) * 1984-07-31 1994-07-05 Hitachi Ltd Catalyst stable at high temperature, its preparation, and method for effecting chemical reaction using this catalyst
JPS61287451A (en) * 1985-06-13 1986-12-17 Nippon Denso Co Ltd Catalytic carrier for purifying exhaust gas
JPH01203201A (en) * 1988-02-09 1989-08-16 Mitsubishi Heavy Ind Ltd Method for thermally decomposing gaseous hydrocarbon at high temperature
JPH0966208A (en) * 1995-08-31 1997-03-11 Toyota Autom Loom Works Ltd Nonwoven fabric filter and manufacture thereof
JP3211666B2 (en) * 1996-06-25 2001-09-25 トヨタ自動車株式会社 Method for simultaneous production of hydrogen and carbon black
JP3044280B2 (en) * 1998-09-05 2000-05-22 工業技術院長 Method for synthesizing ultrafine carbon tube and catalyst used therefor
JP2000189800A (en) * 1998-12-25 2000-07-11 Sumitomo Metal Mining Co Ltd Catalyst for catalytic cracking of hydrocarbon and production of hydrogen and carbon using the same
FR2790750B1 (en) * 1999-03-10 2001-04-20 Air Liquide PROCESS AND DEVICE FOR PRODUCING HYDROGEN BY THERMOCATALYTIC DECOMPOSITION OF HYDROCARBONS
JP3491747B2 (en) * 1999-12-31 2004-01-26 喜萬 中山 Method for producing carbon nanocoil and catalyst
AUPR421701A0 (en) * 2001-04-04 2001-05-17 Commonwealth Scientific And Industrial Research Organisation Process and apparatus for the production of carbon nanotubes

Also Published As

Publication number Publication date
JP2005058908A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
JP5863668B2 (en) Reactor with gas supply device at the bottom
JP6056904B2 (en) Simultaneous production method of carbon nanotube and hydrogen, and simultaneous production apparatus of carbon nanotube and hydrogen
JP5914638B2 (en) Process for methanol synthesis
US6315977B1 (en) Process and apparatus for producing hydrogen by thermocatalytic decomposition of hydrocarbons
CA2610724C (en) Improved preferential oxidation catalyst containing platinum, copper and iron
JP2010525120A (en) Gasification apparatus and method for producing synthesis gas from gasifiable raw materials
CN113896171A (en) Steam reforming
CN104401942A (en) System and method for preparing hydrogen and nano-carbon, use of system, and gas station device
JP2007519592A (en) Method
CN111989289B (en) Hydrogen generator, method for separating solid product, and system for discharging and recovering solid product
US8946111B2 (en) Fibrous composite catalytic structure having at least three solid phases
JP4301362B2 (en) Lower hydrocarbon direct cracking catalyst, lower hydrocarbon direct cracking reactor, and lower hydrocarbon direct cracking reactor
US7985704B2 (en) Method of regenerating absorbent
JP2002211909A (en) Carbon manufacturing apparatus and manufacturing method using the same
JP7178049B2 (en) Solid product discharge recovery system and method
JPH0640703A (en) Steam reforming reactor
JP5862147B2 (en) Carbon dioxide hydrogen reduction apparatus and carbon dioxide hydrogen reduction method
JP2005015294A (en) Chemical reaction apparatus
CN114014268A (en) Coal bed gas cracking catalytic hydrogen production device and method
JP3664860B2 (en) Chemical reactor and main gas recovery method
KR101773653B1 (en) Fluidized bed reactor and process for preparing carbon nanostructures using same
CN106132871A (en) The preparation method of carbon nanostructure and the carbon nanostructure prepared by the method
KR20150143105A (en) Fluidized bed reactor and process for preparing carbon nanostructures using same
JP7565344B2 (en) Simultaneous production of hydrogen-enriched compressed natural gas and carbon nanotubes
JP2001353445A (en) Catalytic reactor equipped with structure for promotion heat conduction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060217

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4301362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150501

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term