JP5862147B2 - Carbon dioxide hydrogen reduction apparatus and carbon dioxide hydrogen reduction method - Google Patents

Carbon dioxide hydrogen reduction apparatus and carbon dioxide hydrogen reduction method Download PDF

Info

Publication number
JP5862147B2
JP5862147B2 JP2011204580A JP2011204580A JP5862147B2 JP 5862147 B2 JP5862147 B2 JP 5862147B2 JP 2011204580 A JP2011204580 A JP 2011204580A JP 2011204580 A JP2011204580 A JP 2011204580A JP 5862147 B2 JP5862147 B2 JP 5862147B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
catalyst
temperature
hydrogen reduction
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011204580A
Other languages
Japanese (ja)
Other versions
JP2013063405A (en
Inventor
明日香 島
明日香 島
誠人 桜井
誠人 桜井
理嗣 曽根
理嗣 曽根
阿部 孝之
孝之 阿部
佐藤 元彦
元彦 佐藤
克彦 福井
克彦 福井
晶子 米田
晶子 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Toyama University
Japan Aerospace Exploration Agency JAXA
Original Assignee
Nippon Pillar Packing Co Ltd
Toyama University
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd, Toyama University, Japan Aerospace Exploration Agency JAXA filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2011204580A priority Critical patent/JP5862147B2/en
Publication of JP2013063405A publication Critical patent/JP2013063405A/en
Application granted granted Critical
Publication of JP5862147B2 publication Critical patent/JP5862147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本願発明は、粉末状触媒を用いて二酸化炭素を水素還元反応させ、メタンと水を生成させる二酸化炭素の水素還元装置および二酸化炭素の水素還元方法に関する。 Present invention, the powdery catalyst by the hydrogen reduction reaction carbon dioxide with methane and relates to a hydrogen reduction process of hydrogen reduction apparatus and carbon dioxide of carbon dioxide to produce water.

近年、化石燃料の燃焼に由来する大気中への二酸化炭素排出が、生態系や地球環境に大きな影響を与える可能性があることから、世界的にも二酸化炭素の排出抑制が求められている。
このため、二酸化炭素を排出しない、あるいは、二酸化炭素の排出量を削減する技術の開発が行われており、その一環として二酸化炭素を固定化したり他の物質へ変換する技術の開発も行われている。
また、国際宇宙ステーションやロケット等の完全な閉空間では、物質の補給が容易ではなく、元素レベルで必要最低限の補給、排出に留める必要がある。
このため、発生した二酸化炭素を他の物質に変換して回収できる物質を増加させ、補給、排出する物質を元素レベルで極力減らすことが求められている。
In recent years, carbon dioxide emissions into the atmosphere derived from the combustion of fossil fuels can have a significant impact on ecosystems and the global environment, and therefore, suppression of carbon dioxide emissions has been demanded worldwide.
For this reason, technology that does not emit carbon dioxide or that reduces carbon dioxide emissions has been developed, and as part of this, technology that fixes carbon dioxide or converts it to other substances has also been developed. Yes.
In a completely closed space such as the International Space Station and rockets, replenishment of materials is not easy, and it is necessary to keep the replenishment and discharge to the minimum necessary at the elemental level.
For this reason, it is required to increase substances that can be recovered by converting the generated carbon dioxide into other substances, and to reduce substances that are replenished and discharged as much as possible at the elemental level.

そこで、これらの要求に対する解決策の1つとして、触媒を用いて二酸化炭素を水素還元させてメタンと水を得るサバティエ反応、すなわち、
CO+4H → CH+2H
で表される還元反応を、効率良く実現するための研究開発が行われている。
例えば、一般に高温(300〜400℃程度)、常圧〜10気圧程度の反応条件が必要であったものを、触媒を粉末状の担体にナノ粒子が高分散担持されたものとすることによって、200℃程度、大気圧でも効率よく反応させることが可能な技術が公知となっている(特許文献1)。
Therefore, as one of the solutions to these demands, the Sabatier reaction in which carbon dioxide is reduced with hydrogen using a catalyst to obtain methane and water, that is,
CO 2 + 4H 2 → CH 4 + 2H 2 O
R & D is being conducted to efficiently realize the reduction reaction represented by
For example, in general, the reaction conditions of high temperature (about 300 to 400 ° C.) and normal pressure to about 10 atm are required. A technique capable of efficiently reacting even at about 200 ° C. and atmospheric pressure is known (Patent Document 1).

特開2009−131835号公報JP 2009-131835 A

しかしながら、公知の前記特許文献1による触媒は、実験設備で最適な環境を与えた場合の効率は高いものの、触媒が粉末状で粒子径が非常に小さいため、反応容器に充填すると稠密に保持せざるを得ず、実用的な設備で連続的に反応を行わせる場合、気体である二酸化炭素と水素を連続的に大量に通過させることが困難となり、実用的な処理量を得るために気体の圧力を高め、装置を大型化せざるを得ないという問題があった。
また、触媒を加熱することで反応させる還元反応であることから、粉末状のまま充填されると温度管理が困難であり、局所的な温度のばらつきが発生し反応の効率が低下するという問題があった。
However, although the known catalyst according to Patent Document 1 is highly efficient when an optimum environment is given in the experimental facility, the catalyst is powdery and the particle size is very small. When it is unavoidable that the reaction is carried out continuously with practical equipment, it becomes difficult to pass a large amount of carbon dioxide and hydrogen, which are gases, in order to obtain a practical throughput. There was a problem that the pressure was increased and the apparatus had to be enlarged.
Further, the catalyst since it is - reducing reaction that reacted by heating the, when it is filled as a powder-like temperature control is difficult, that variations in the local temperature decreases the efficiency of the generated reaction There was a problem.

そこで、本発明は、前記した問題点を解決するものであり、粉末状触媒を利用して二酸化炭素を水素還元反応させる技術において、小型の装置で実用的な処理量が得られ、反応温度の管理が容易で反応効率の高い二酸化炭素の水素還元装置および二酸化炭素の水素還元方法を提供することを目的とするものである。 Therefore, the present invention solves the above-mentioned problems, and in a technology for performing a hydrogen reduction reaction of carbon dioxide using a powdered catalyst, a practical throughput can be obtained with a small apparatus, and the reaction temperature can be reduced. It is an object of the present invention to provide a carbon dioxide hydrogen reduction apparatus and a carbon dioxide hydrogen reduction method that are easy to manage and have high reaction efficiency.

本請求項1に係る発明は、粉末状触媒が内包される反応容器と、該反応容器内の粉末状触媒を加熱する加熱機構とを有する二酸化炭素の水素還元装置であって、前記粉末状触媒は多孔質構造体に担持されて固定化触媒を構成し、該固定化触媒が、前記反応容器の内部に複数積層して固定保持されるよう構成され、前記加熱機構が、前記固定化触媒を加熱するヒータと、前記固定化触媒の温度をそれぞれ個別に調節可能な温度調節手段を有していることにより、前記課題を解決するものである。 The invention according to claim 1 is a carbon dioxide hydrogen reduction apparatus having a reaction vessel containing a powdered catalyst and a heating mechanism for heating the powdered catalyst in the reaction vessel, wherein the powdered catalyst Is supported on a porous structure to constitute an immobilized catalyst, and a plurality of the immobilized catalysts are stacked and fixed inside the reaction vessel, and the heating mechanism includes the immobilized catalyst. The object is solved by having a heater for heating and a temperature adjusting means capable of individually adjusting the temperature of the immobilized catalyst.

本請求項2に係る発明は、請求項1に係る二酸化炭素の水素還元装置の構成に加え、前記温度調節手段が、前記反応容器の内部の固定化触媒の温度をそれぞれ個別に検出する温度検出部と、該温度検出部により検出された温度に応じて前記ヒータの温度を制御する温度制御部を有していることにより、前記課題を解決するものである。 In addition to the structure of the carbon dioxide hydrogen reduction apparatus according to claim 1, the invention according to claim 2 is a temperature detection in which the temperature adjusting means individually detects the temperature of the immobilized catalyst inside the reaction vessel. And the temperature control unit that controls the temperature of the heater in accordance with the temperature detected by the temperature detection unit.

本請求項3に係る発明は、請求項2に係る二酸化炭素の水素還元装置の構成に加え、前記反応容器が、前記ヒータを複数設けた加熱炉内に収容され、前記複数のヒータが、それぞれ前記反応容器内部の複数の固定化触媒を個別に加熱可能な位置に設けられていることにより、前記課題を解決するものである。 The invention according to claim 3 includes, in addition to the configuration of the hydrogen reduction apparatus for carbon dioxide according to claim 2, the reaction vessel is housed in a heating furnace provided with a plurality of the heaters, and the plurality of heaters are respectively The said subject is solved by providing in the position which can heat the some fixed catalyst inside the said reaction container individually.

本請求項4に係る発明は、請求項3に係る二酸化炭素の水素還元装置の構成に加え、前記反応容器が、容器ユニットを複数連結して構成され、該容器ユニットが、それぞれ内部に1つの固定化触媒を保持可能に構成され、前記温度検出部が、前記容器ユニットにそれぞれ設けられていることにより、前記課題を解決するものである。 In addition to the structure of the carbon dioxide hydrogen reduction device according to claim 3, the invention according to claim 4 is configured such that the reaction container is formed by connecting a plurality of container units, and each of the container units has one inside. The above-described problem is solved by being configured to be able to hold an immobilized catalyst, and by providing each of the temperature detection units in the container unit.

本請求項5に係る発明は、請求項2に係る二酸化炭素の水素還元装置の構成に加え、前記反応容器が、容器ユニットを複数連結して構成され、該容器ユニットが、それぞれ内部に1つの固定化触媒を保持可能に構成され、前記ヒータおよび温度検出部が、前記容器ユニットにそれぞれ設けられていることにより、前記課題を解決するものである。 In addition to the structure of the carbon dioxide hydrogen reduction device according to claim 2, the invention according to claim 5 is configured such that the reaction container is formed by connecting a plurality of container units, each of which has one container unit inside. The above-mentioned problem is solved by being configured to be able to hold the immobilized catalyst, and by providing the heater and the temperature detection unit in the container unit, respectively.

本請求項6に係る発明は、請求項5に係る二酸化炭素の水素還元装置の構成に加え、前記ヒータが、前記反応容器の内部に設けられていることにより、前記課題を解決するものである。 In addition to the structure of the carbon dioxide hydrogen reduction device according to claim 5, the invention according to claim 6 solves the above problem by providing the heater inside the reaction vessel. .

本請求項7に係る発明は、反応容器内に粉末状触媒を内包し、該粉末状触媒を加熱しながら原料気体を前記反応容器内に供給して生成物を得る二酸化炭素の水素還元方法であって、前記粉末状触媒を多孔質構造体に担持させ固定化触媒を、前記反応容器の内部に複数積層して固定保持し、前記複数の固定化触媒の温度をそれぞれ個別に調節することにより、前記課題を解決するものである。 The invention according to claim 7 is a carbon dioxide hydrogen reduction method in which a powdered catalyst is contained in a reaction vessel and a raw material gas is supplied into the reaction vessel while heating the powdered catalyst to obtain a product. A plurality of immobilized catalysts supported on a porous structure and stacked and fixed inside the reaction vessel, and the temperatures of the plurality of immobilized catalysts are individually adjusted. The above-mentioned problem is solved.

本請求項8に係る発明は、請求項7に係る二酸化炭素の水素還元方法の構成に加え、前記粉末状触媒が、粉末状担体にナノ粒子状のルテニウムを担持させたものであり、前記生成物が、メタンガスおよび水であることにより、前記課題を解決するものである。 The invention according to the claims 8, in addition to the configuration of the hydrogen reduction method of carbon dioxide according to claim 7, which prior Symbol powdery catalyst was powdered carrier are carried a nanoparticulate ruthenium, the The product is methane gas and water to solve the above-mentioned problems.

本請求項9に係る発明は、請求項7または請求項8に係る二酸化炭素の水素還元方法の構成に加え、前記固定触媒の温度が、300℃未満に調節され、前記原料気体が、大気圧で反応容器内に供給されることにより、前記課題を解決するものである。 The invention according to claim 9 includes, in addition to the constitution of the hydrogen reduction method for carbon dioxide according to claim 7 or claim 8, the temperature of the fixed catalyst is adjusted to less than 300 ° C., and the raw material gas is at atmospheric pressure. Thus, the above-mentioned problem is solved by being supplied into the reaction vessel.

本請求項1に係る二酸化炭素の水素還元装置、および、請求項7に係る二酸化炭素の水素還元方法よれば、粉末状触媒を多孔質構造体に担持して固定化触媒を構成した上で反応容器の内部に保持することにより、粉末状触媒が稠密に保持されることなく、気体が低い圧力でも最適な流速で通過できるため、気体の圧力を高めることなく、また、装置を大型化することなく連続的に最適な処理量を得ることができる。
また、粉末状触媒が多孔質構造体の内部空間も含めた表面に担持されて固定化触媒を構成しているため、固定化触媒を加熱して温度管理することで粉末状触媒の温度を最適に管理することが可能となる。
さらに、固定化触媒が複数積層され個別に温度が調節されるため、局所的な温度のばらつきが抑制され、反応温度以下の部分や過度に加熱される部分が発生することがなく、少ないエネルギーで高い反応効率を維持することができる。
According to the carbon dioxide hydrogen reduction apparatus according to claim 1 and the carbon dioxide hydrogen reduction method according to claim 7, the reaction is performed after the powdered catalyst is supported on the porous structure to constitute the immobilized catalyst. By holding inside the container, the powdered catalyst is not held dense, and gas can pass at an optimal flow rate even at low pressure, so the gas pressure is not increased and the apparatus is enlarged. The optimum throughput can be obtained continuously.
In addition, since the powdered catalyst is supported on the surface including the internal space of the porous structure to constitute the immobilized catalyst, the temperature of the powdered catalyst is optimized by heating and controlling the temperature of the immobilized catalyst. It becomes possible to manage.
Furthermore, since multiple immobilized catalysts are stacked and the temperature is adjusted individually, local temperature variations are suppressed, and there are no parts below the reaction temperature or excessively heated parts. High reaction efficiency can be maintained.

本請求項2に記載の構成によれば、固定化触媒の温度をそれぞれ個別に温度検出してフィードバック制御で温度管理が可能となるため、さらに局所的な温度のばらつきを抑制可能となる。
本請求項3に記載の構成によれば、固定化触媒をそれぞれ個別に最適な温度に加熱できるため、より正確な温度管理が可能となる。
本請求項4に記載の構成によれば、固定化触媒と容器をユニット単位で適宜増減することができるため、必要な処理能力に応じて最適な反応速度となるような流路を構成可能となり、求められる処理能力や使用環境に応じた最適な設計が可能となる。
According to the configuration of the second aspect of the present invention, the temperature of the immobilized catalyst can be individually detected and the temperature can be managed by feedback control, so that local temperature variations can be further suppressed.
According to the configuration of the third aspect of the present invention, each of the immobilized catalysts can be individually heated to an optimum temperature, so that more accurate temperature management is possible.
According to the configuration of the present invention, since the immobilized catalyst and the container can be appropriately increased or decreased in units, it is possible to configure a flow path that provides an optimum reaction rate according to the required processing capacity. This makes it possible to design optimally according to the required processing capacity and usage environment.

本請求項5に記載の構成によれば、ヒータを含めて固定化触媒と容器をユニット単位で適宜増減することができるため、加熱炉に収容可能であればその構成を変更する必要がないため、求められる処理能力や使用環境に応じた最適な設計をより容易に行うことができる。
本請求項6に記載の構成によれば、固定化触媒をさらに効率よく加熱できるため、より少ないエネルギーで高い反応効率を維持することができる。
本請求項8に記載の構成によれば、いわゆるサバティエ反応をより効率的に行うことができる。
本請求項9に記載の構成によれば、二酸化炭素の水素還元反応のための高温高圧に耐える環境条件を準備することなく実施することが可能となり、例えば国際宇宙ステーションやロケット等の限られた閉空間においてもスペースやエネルギーを無駄にすることなく二酸化炭素の水素還元反応を実施することができる。
According to the configuration described in claim 5, since the fixed catalyst and the container including the heater can be appropriately increased or decreased in units, it is not necessary to change the configuration as long as it can be accommodated in the heating furnace. Therefore, it is possible to more easily carry out an optimum design according to the required processing capacity and usage environment.
According to the configuration described in claim 6, since the immobilized catalyst can be heated more efficiently, high reaction efficiency can be maintained with less energy.
According to the configuration described in claim 8, so-called Sabatier reaction can be performed more efficiently.
According to the configuration described in claim 9, it is possible to carry out without preparing environmental conditions that can withstand high temperature and high pressure for the hydrogen reduction reaction of carbon dioxide . Even in a closed space , hydrogen reduction of carbon dioxide can be carried out without wasting space or energy.

本発明の二酸化炭素の水素還元装置および二酸化炭素の水素還元方法の基本構成概略図。The basic structure schematic of the hydrogen reduction device of carbon dioxide and the hydrogen reduction method of carbon dioxide of the present invention. 本発明の第1実施例である二酸化炭素の水素還元装置の反応容器の概略説明図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic explanatory drawing of the reaction container of the hydrogen reduction apparatus of the carbon dioxide which is 1st Example of this invention. 図2の概略断面説明図。FIG. 3 is a schematic cross-sectional explanatory diagram of FIG. 2. 本発明の第2実施例である二酸化炭素の水素還元装置の反応容器の概略説明図。The schematic explanatory drawing of the reaction container of the hydrogen reduction apparatus of the carbon dioxide which is 2nd Example of this invention. 図4の概略断面説明図。FIG. 5 is a schematic cross-sectional explanatory diagram of FIG. 4. 本発明の実験例の固定化触媒の模式図。The schematic diagram of the fixed catalyst of the experiment example of this invention. 二酸化炭素の還元率の温度依存性を示すグラフ。The graph which shows the temperature dependence of the reduction rate of a carbon dioxide. 温度分布の実験説明図。Explanatory drawing of experiment of temperature distribution. 温度分布の実験結果を示すグラフ。The graph which shows the experimental result of temperature distribution.

本発明の二酸化炭素の水素還元装置および二酸化炭素の水素還元方法の基本的な構成を、図1に模式的に示す。
原料ガスである水素ガスおよび二酸化炭素ガスは、それぞれ水素タンク101および二酸化炭素タンク102から供給され、それぞれ流量制御バルブ103を経て最適な混合比に混合され、該混合ガスがメインバルブ104を経て加熱機構120が備えられた反応容器110に供給される。
反応容器110で還元された生成物である水およびメタンガス(若干の未反応の原料ガスを含む)は、反応容器110の下流に排出され凝縮器105を経て回収される。
凝縮器105においては、生成物である水およびメタンガスを分離するため、氷温で冷却して水を凝縮している。
なお、図示以外にも、圧力、流量を調整するバルブ類、監視、制御、安全等のための補助装置類やフィルタ類等が適宜の場所に設けられてもよい。
A basic configuration of the carbon dioxide hydrogen reduction apparatus and the carbon dioxide hydrogen reduction method of the present invention is schematically shown in FIG.
Hydrogen gas and carbon dioxide gas, which are raw material gases, are supplied from a hydrogen tank 101 and a carbon dioxide tank 102, respectively, and are mixed to an optimum mixing ratio via a flow control valve 103, and the mixed gas is heated via a main valve 104. It is supplied to the reaction vessel 110 provided with the mechanism 120.
Water and methane gas (including some unreacted raw material gas), which are products reduced in the reaction vessel 110, are discharged downstream of the reaction vessel 110 and collected through the condenser 105.
In the condenser 105, in order to separate water and methane gas which are products, the water is condensed by cooling at an ice temperature.
In addition to the illustrations, valves for adjusting the pressure and flow rate, auxiliary devices for monitoring, control, safety, etc., filters, and the like may be provided at appropriate places.

本発明の第1実施例に係る二酸化炭素の水素還元装置100の反応容器110は、図2および図3に示すように、複数(本実施例では5つ)の容器ユニット111が積層されており、各容器ユニット111の内部には、それぞれ、多孔質構造体に粉末状触媒を担持した固定化触媒130が固定保持されている。
加熱機構120は、反応容器110が収容される加熱炉140に各容器ユニット111の外周に位置するように設けられた複数のヒータ141と、固定化触媒130の温度をそれぞれ個別に調節可能な温度調節手段とからなる。
温度調節手段は、各容器ユニット111に設けられた固定化触媒130の温度をそれぞれ個別に検出する温度検出部123と、温度検出部123により検出された温度に応じて当該温度検出部123を有する容器ユニット111の位置にあるヒータ141の温度を制御する温度制御部121とを有している。
As shown in FIGS. 2 and 3, the reaction vessel 110 of the carbon dioxide hydrogen reduction apparatus 100 according to the first embodiment of the present invention has a plurality of (in this embodiment, five) container units 111 stacked. In each container unit 111, an immobilized catalyst 130 in which a powdered catalyst is supported on a porous structure is fixedly held.
The heating mechanism 120 is a temperature at which the temperature of the plurality of heaters 141 provided in the heating furnace 140 in which the reaction vessel 110 is accommodated so as to be positioned on the outer periphery of each vessel unit 111 and the temperature of the immobilized catalyst 130 can be individually adjusted. And adjusting means.
The temperature adjusting means includes a temperature detection unit 123 that individually detects the temperature of the immobilized catalyst 130 provided in each container unit 111, and the temperature detection unit 123 according to the temperature detected by the temperature detection unit 123. And a temperature control unit 121 that controls the temperature of the heater 141 at the position of the container unit 111.

また、本実施例では、全体制御部124が設けられ、各温度制御部121からの信号を受け、あるいは指令を出すことで、各部の温度・制御状況等の監視や、全体の横断的な制御・操作を行うことが可能に構成されている。
なお、図示では、各温度制御部121および全体制御部124を、それぞれ独立して設けているが、それらの機能を有する制御装置であれば、装置自体が分割されている必要はない。
また、温度検出部123を、容器ユニット111ごとに2箇所ずつ設けているが、1箇所でも良く、3箇所以上であっても良い。
Further, in this embodiment, an overall control unit 124 is provided, and by receiving a signal from each temperature control unit 121 or issuing a command, monitoring of the temperature and control status of each unit and overall cross-sectional control are provided.・ It is configured to allow operation.
In the figure, each temperature control unit 121 and the overall control unit 124 are provided independently, but the device itself does not need to be divided as long as it is a control device having these functions.
Moreover, although the temperature detection part 123 is provided in two places for every container unit 111, one place may be sufficient and three or more places may be sufficient.

さらに、本実施例では、反応容器110は5個の容器ユニット111からなるが、求められる処理能力や使用環境に応じて4個以下、あるいは6個以上の容器ユニット111を用いても良い。
容器ユニット111同士の結合は、フランジ部をボルト等で締め付けることにより、取り外し可能とすれば良く、同一設計の容器ユニット111を複数準備すれば、必要に応じて容易に増減させることが可能である。
また、1つの容器ユニットに複数の固定化触媒130を積層させ、固定化触媒130ごとに温度をそれぞれ個別に調節可能となるように温度検出部、ヒータを設けて、容器ユニットの数を積層される固定化触媒130よりも少なくしても良く、反応容器110全体が1つの容器ユニットかならように構成されても良い。
Furthermore, in this embodiment, the reaction vessel 110 is composed of five vessel units 111, but four or less vessel units, or six or more vessel units 111 may be used depending on the required processing capacity and use environment.
The container units 111 may be connected to each other by detaching them by tightening the flange portion with a bolt or the like. If a plurality of container units 111 having the same design are prepared, they can be easily increased or decreased as necessary. .
In addition, a plurality of immobilized catalysts 130 are stacked in one container unit, and a temperature detection unit and a heater are provided so that the temperature can be individually adjusted for each fixed catalyst 130, and the number of container units is stacked. The number of the immobilized catalysts 130 may be less, and the entire reaction vessel 110 may be configured as one vessel unit.

本発明の第2実施例に係る二酸化炭素の水素還元装置の反応容器210は、図4および図5に示すように、複数(本実施例では5つ)の容器ユニット211が積層されており、各容器ユニット211の内部には、それぞれ、多孔質構造体に粉末状触媒を担持した固定化触媒230が固定保持されている。
加熱機構は、各容器ユニット211の外周に設けられたヒータ222と、固定化触媒230の温度をそれぞれ個別に調節可能な温度調節手段とからなる。
温度調節手段は、各容器ユニット211に設けられた固定化触媒230の温度をそれぞれ個別に検出する温度検出部223と、温度検出部223により検出された温度に応じて当該温度検出部223を有する容器ユニット211に設けられたヒータ222の温度を制御する温度制御部221とを有している。
As shown in FIGS. 4 and 5, the reaction vessel 210 of the carbon dioxide hydrogen reduction device according to the second embodiment of the present invention has a plurality of (in this embodiment, five) vessel units 211 laminated, Inside each container unit 211, an immobilized catalyst 230 in which a powdered catalyst is supported on a porous structure is fixedly held.
The heating mechanism includes a heater 222 provided on the outer periphery of each container unit 211 and temperature adjusting means capable of individually adjusting the temperature of the immobilized catalyst 230.
The temperature adjusting means includes a temperature detection unit 223 that individually detects the temperature of the immobilized catalyst 230 provided in each container unit 211, and the temperature detection unit 223 according to the temperature detected by the temperature detection unit 223. And a temperature control unit 221 that controls the temperature of the heater 222 provided in the container unit 211.

また、第1実施例同様に、全体制御部224が設けられ、各温度制御部221からの信号を受け、あるいは指令を出すことで、各部の温度・制御状況等の監視や、全体の横断的な制御・操作を行うことが可能に構成されている。
また、第1実施例と同様に、様々な変形例が可能である。
In addition, as in the first embodiment, an overall control unit 224 is provided, and by receiving a signal from each temperature control unit 221 or issuing a command, monitoring of the temperature / control status of each unit and the entire cross-section are performed. It is possible to perform various controls and operations.
Further, as in the first embodiment, various modifications are possible.

次に、本発明の二酸化炭素の水素還元装置および二酸化炭素の水素還元方法による実験結果について、以下に説明する。
本発明の実験例では、図6に模式的に示すように、粉末状の二酸化チタンの表面に触媒金属であるルテニウムをナノ粒子状に担持させた粉末状触媒132(NPJ−002:特許文献1に記載のもの)を、炭化ケイ素からなる多孔質構造体131の内部空間を含めた表面に担持させて固定化触媒130(NPJ−002/SiC)としたものを使用した。
Next, experimental results of the carbon dioxide hydrogen reduction apparatus and the carbon dioxide hydrogen reduction method of the present invention will be described below.
In the experimental example of the present invention, as schematically shown in FIG. 6, a powdered catalyst 132 (NPJ-002: Patent Document 1) in which ruthenium as a catalytic metal is supported in the form of nanoparticles on the surface of powdered titanium dioxide. In the porous structure 131 made of silicon carbide was used as an immobilized catalyst 130 (NPJ-002 / SiC).

まず、本発明で使用する固定化触媒(NPJ−002/SiC)と、比較例としての粉末状触媒(NPJ−002)および酸化アルミ担体にルテニウムを担持させたペレット状触媒(Ru/Al:市販品)の二酸化炭素の還元率の温度依存性を、図7にグラフで示す。
固定化触媒(NPJ−002/SiC)および粉末状触媒(NPJ−002)は、従来のペレット状触媒(Ru/Al)よりも低い温度で還元率が上昇し、かつ、本発明で使用する固定化触媒(NPJ−002/SiC)は同一温度で常に粉末状触媒(NPJ−002)よりも高い還元率を示している。
このことから、本発明の構成である、粉末状触媒を多孔質構造体に担持して固定化触媒としたことによって、反応効率を高めることができることがわかる。
First, an immobilized catalyst (NPJ-002 / SiC) used in the present invention, a powder catalyst (NPJ-002) as a comparative example, and a pellet catalyst (Ru / Al 2 O) in which ruthenium is supported on an aluminum oxide carrier. The temperature dependence of the reduction rate of carbon dioxide of ( 3 : commercial product) is shown in a graph in FIG.
The reduction rate of the immobilized catalyst (NPJ-002 / SiC) and the powdered catalyst (NPJ-002) increases at a temperature lower than that of the conventional pellet-shaped catalyst (Ru / Al 2 O 3 ). The immobilized catalyst used (NPJ-002 / SiC) always shows a higher reduction rate than the powdery catalyst (NPJ-002) at the same temperature.
From this, it can be seen that the reaction efficiency can be increased by forming the immobilized catalyst by supporting the powdered catalyst on the porous structure, which is the constitution of the present invention.

次に、本発明で使用する固定化触媒(NPJ−002/SiC)と、比較例としての粉末状触媒(NPJ−002)および酸化アルミ担体にルテニウムを担持させたペレット状触媒(Ru/Al:市販品)を反応容器に入れて加熱したときの温度分布について説明する。
図8に示すように、固定化触媒(NPJ−002/SiC)は、本発明の反応容器110の内部に複数積層して固定保持し本発明の温度調節を行い、粉末状触媒(NPJ−002)およびペレット状触媒(Ru/Al)は、通常の反応容器510の内部に保持し、従来方法で加熱した。
それぞれ、全体として最大還元率が得られるように設定し、両反応容器110、210ともに、触媒層入口A、入口から約1/3の触媒層内部B、約2/3の触媒層内部Cおよび触媒層出口Dの4点の温度と加熱用のヒータの温度を測定した。
Next, an immobilized catalyst (NPJ-002 / SiC) used in the present invention, a powdery catalyst (NPJ-002) as a comparative example, and a pellet catalyst (Ru / Al 2 ) in which ruthenium is supported on an aluminum oxide support. The temperature distribution when O 3 : commercial product) is put in a reaction vessel and heated will be described.
As shown in FIG. 8, a plurality of immobilized catalysts (NPJ-002 / SiC) are laminated and fixed inside the reaction vessel 110 of the present invention, the temperature of the present invention is adjusted, and a powdered catalyst (NPJ-002) is obtained. ) And the pellet-shaped catalyst (Ru / Al 2 O 3 ) were held in a normal reaction vessel 510 and heated by a conventional method.
Each is set so that the maximum reduction rate can be obtained as a whole, and both the reaction vessels 110 and 210 have a catalyst layer inlet A, a catalyst layer inside B of about 1/3 from the inlet, a catalyst layer inside C of about 2/3, and The temperature at four points at the catalyst layer outlet D and the temperature of the heater for heating were measured.

その結果を、図9に示す。
ペレット状触媒(Ru/Al)は、元々高い還元率を得るために高い温度を要することから、ヒータ温度を300℃としなければならず、かつ、反応容器510の温度分布は入口で非常に高く、かつ出口に向かってかなりの割合で低くなり、全体として最大還元率を得るために必要とするエネルギー効率が悪いものとなっている。
粉末状触媒(NPJ−002)は、ヒータ温度を240℃でペレット状触媒(Ru/Al)と比較するとエネルギー効率は高いが、反応容器510の温度分布に依然としてばらつきがある。
The result is shown in FIG.
Since the pellet catalyst (Ru / Al 2 O 3 ) originally requires a high temperature to obtain a high reduction rate, the heater temperature must be 300 ° C., and the temperature distribution of the reaction vessel 510 is at the inlet. It is very high and decreases at a considerable rate toward the outlet, and the overall energy efficiency required to obtain the maximum reduction rate is poor.
The powdered catalyst (NPJ-002) is higher in energy efficiency than the pelletized catalyst (Ru / Al 2 O 3 ) at a heater temperature of 240 ° C., but the temperature distribution in the reaction vessel 510 still varies.

これに対し、本発明の固定化触媒(NPJ−002/SiC)は、本発明の反応容器110を用いて温度調節を行うことで、ヒータ温度が225℃〜240℃の間に制御されて反応容器110の温度分布がほぼ均一となっており、少ないエネルギーで全体を還元効率の最も高い温度領域に維持している。
なお、固定化触媒は、粉末状触媒を担持する多孔質構造体として炭化珪素からなるものを使用しているが、原料ガス、生成物および使用温度に対して安定な材質であればいかなる材料でも良い。
また、多孔質構造体は、反応容器内に保持可能で、気体が通過可能なものであれば、スポンジ状、格子状、フェルト状等、いかなる構造のものであっても良い。
On the other hand, the immobilized catalyst (NPJ-002 / SiC) of the present invention is controlled by using the reaction vessel 110 of the present invention to control the heater temperature between 225 ° C. and 240 ° C. The temperature distribution of the container 110 is substantially uniform, and the whole is maintained in the temperature region where the reduction efficiency is the highest with less energy.
The immobilization catalyst is made of silicon carbide as the porous structure supporting the powdered catalyst, but any material can be used as long as it is stable to the raw material gas, the product, and the operating temperature. good.
The porous structure may have any structure such as a sponge shape, a lattice shape, or a felt shape as long as the porous structure can be held in the reaction vessel and gas can pass therethrough.

本発明に係る二酸化炭素の水素還元装置および二酸化炭素の水素還元方法は、二酸化炭素を水素還元反応させ、メタンと水を生成させるサバティエ反応に有利であり、宇宙空間等において、スペースやエネルギーを無駄にすることなく、限られた物質の循環、再利用を少ないエネルギーで達成するものとして格別の効果を有するものである。 Hydrogen reduction method of the hydrogen reduction system and carbon dioxide carbon dioxide according to the present invention, the carbon dioxide is hydrogen reduction reaction is advantageously Sabatier reaction to produce methane and water, in space or the like, the space and energy It has a special effect as achieving limited circulation and reuse of materials with less energy without wasting.

100 ・・・ 二酸化炭素の水素還元装置
101 ・・・ 水素タンク
102 ・・・ 二酸化炭素タンク
103 ・・・ 流量制御バルブ
104 ・・・ メインバルブ
105 ・・・ 凝縮器
110、210 ・・・ 反応容器
111、211 ・・・ 容器ユニット
120 ・・・ 加熱機構
121、212 ・・・ 温度制御部
222 ・・・ ヒータ
123、223 ・・・ 温度検出部
124、224 ・・・ 全体制御部
130 ・・・ 固定化触媒
131 ・・・ 多孔質構造体
132 ・・・ 粉末触媒
140 ・・・ 加熱炉
141 ・・・ ヒータ
510 ・・・ 反応容器(従来例)
DESCRIPTION OF SYMBOLS 100 ... Carbon dioxide hydrogen reduction apparatus 101 ... Hydrogen tank 102 ... Carbon dioxide tank 103 ... Flow control valve 104 ... Main valve 105 ... Condensers 110, 210 ... Reaction container 111, 211 ... container unit 120 ... heating mechanism 121, 212 ... temperature control unit 222 ... heater 123, 223 ... temperature detection unit 124, 224 ... overall control unit 130 ... Immobilized catalyst 131 ... porous structure 132 ... powder catalyst 140 ... heating furnace 141 ... heater 510 ... reaction vessel (conventional example)

Claims (9)

粉末状触媒が内包される反応容器と、該反応容器内の粉末状触媒を加熱する加熱機構とを有する二酸化炭素の水素還元装置であって、
前記粉末状触媒は多孔質構造体に担持されて固定化触媒を構成し、
該固定化触媒が、前記反応容器の内部に複数積層して固定保持されるよう構成され、
前記加熱機構が、前記固定化触媒を加熱するヒータと、前記固定化触媒の温度をそれぞれ個別に調節可能な温度調節手段を有していることを特徴とする二酸化炭素の水素還元装置。
A hydrogen reduction apparatus for carbon dioxide having a reaction vessel containing a powdered catalyst and a heating mechanism for heating the powdered catalyst in the reaction vessel,
The powdered catalyst is supported on a porous structure to constitute an immobilized catalyst,
A plurality of the immobilized catalysts are configured to be stacked and fixed inside the reaction vessel,
The carbon dioxide hydrogen reduction apparatus, wherein the heating mechanism includes a heater for heating the immobilized catalyst and a temperature adjusting means capable of individually adjusting the temperature of the immobilized catalyst.
前記温度調節手段が、前記反応容器の内部の固定化触媒の温度をそれぞれ個別に検出する温度検出部と、該温度検出部により検出された温度に応じて前記ヒータの温度を制御する温度制御部を有していることを特徴とする請求項1に記載の二酸化炭素の水素還元装置。 The temperature adjusting unit individually detects the temperature of the immobilized catalyst inside the reaction vessel, and the temperature control unit controls the temperature of the heater according to the temperature detected by the temperature detecting unit. The hydrogen reduction apparatus for carbon dioxide according to claim 1, comprising: 前記反応容器が、前記ヒータを複数設けた加熱炉内に収容され、
前記複数のヒータが、それぞれ前記反応容器内部の複数の固定化触媒を個別に加熱可能な位置に設けられていることを特徴とする請求項2に記載の二酸化炭素の水素還元装置。
The reaction vessel is accommodated in a heating furnace provided with a plurality of the heaters,
The carbon dioxide hydrogen reduction apparatus according to claim 2, wherein the plurality of heaters are provided at positions where the plurality of immobilized catalysts inside the reaction vessel can be individually heated.
前記反応容器が、容器ユニットを複数連結して構成され、
該容器ユニットが、それぞれ内部に1つの固定化触媒を保持可能に構成され、
前記温度検出部が、前記容器ユニットにそれぞれ設けられていることを特徴とする請求項3に記載の二酸化炭素の水素還元装置。
The reaction vessel is constituted by connecting a plurality of vessel units,
Each of the container units is configured to hold one immobilized catalyst therein;
The carbon dioxide hydrogen reduction apparatus according to claim 3, wherein the temperature detection unit is provided in each of the container units.
前記反応容器が、容器ユニットを複数連結して構成され、
該容器ユニットが、それぞれ内部に1つの固定化触媒を保持可能に構成され、
前記ヒータおよび温度検出部が、前記容器ユニットにそれぞれ設けられていることを特徴とする請求項2に記載の二酸化炭素の水素還元装置。
The reaction vessel is constituted by connecting a plurality of vessel units,
Each of the container units is configured to hold one immobilized catalyst therein;
The hydrogen reduction apparatus for carbon dioxide according to claim 2, wherein the heater and the temperature detection unit are respectively provided in the container unit.
前記ヒータが、前記反応容器の内部に設けられていることを特徴とする請求項5に記載の二酸化炭素の水素還元装置。 The carbon dioxide hydrogen reduction apparatus according to claim 5, wherein the heater is provided inside the reaction vessel. 反応容器内に粉末状触媒を内包し、該粉末状触媒を加熱しながら原料気体を前記反応容器内に供給して生成物を得る二酸化炭素の水素還元方法であって、
前記粉末状触媒を多孔質構造体に担持させた固定化触媒を前記反応容器の内部に複数積層して固定保持し、
前記複数の固定化触媒の温度をそれぞれ個別に調節することを特徴とする二酸化炭素の水素還元方法。
A method for hydrogen reduction of carbon dioxide which encloses a powdered catalyst in a reaction vessel and supplies a raw material gas into the reaction vessel while heating the powdery catalyst to obtain a product,
A plurality of immobilized catalysts in which the powdery catalyst is supported on a porous structure are stacked and fixed inside the reaction vessel,
A method for hydrogen reduction of carbon dioxide, wherein the temperature of each of the plurality of immobilized catalysts is individually adjusted.
前記粉末状触媒が、粉末状担体にナノ粒子状のルテニウムを担持させたものであり、
前記生成物が、メタンガスおよび水であることを特徴とする請求項7に記載の二酸化炭素の水素還元方法。
The powdery catalyst is a powdery carrier on which nanoparticulate ruthenium is supported,
The method for hydrogen reduction of carbon dioxide according to claim 7, wherein the products are methane gas and water.
前記固定触媒の温度が、300℃未満に調節され、
前記原料気体が、大気圧で反応容器内に供給されることを特徴とする請求項7または請求項8に記載の二酸化炭素の水素還元方法。
The temperature of the fixed catalyst is adjusted to less than 300 ° C .;
The method for hydrogen reduction of carbon dioxide according to claim 7 or 8, wherein the source gas is supplied into the reaction vessel at atmospheric pressure.
JP2011204580A 2011-09-20 2011-09-20 Carbon dioxide hydrogen reduction apparatus and carbon dioxide hydrogen reduction method Active JP5862147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011204580A JP5862147B2 (en) 2011-09-20 2011-09-20 Carbon dioxide hydrogen reduction apparatus and carbon dioxide hydrogen reduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011204580A JP5862147B2 (en) 2011-09-20 2011-09-20 Carbon dioxide hydrogen reduction apparatus and carbon dioxide hydrogen reduction method

Publications (2)

Publication Number Publication Date
JP2013063405A JP2013063405A (en) 2013-04-11
JP5862147B2 true JP5862147B2 (en) 2016-02-16

Family

ID=48187435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011204580A Active JP5862147B2 (en) 2011-09-20 2011-09-20 Carbon dioxide hydrogen reduction apparatus and carbon dioxide hydrogen reduction method

Country Status (1)

Country Link
JP (1) JP5862147B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7109015B2 (en) * 2017-09-07 2022-07-29 国立研究開発法人宇宙航空研究開発機構 Catalyst for hydrogen reduction of carbon dioxide, method for producing the same, method for hydrogen reduction of carbon dioxide, and apparatus for hydrogen reduction of carbon dioxide
JP7181551B2 (en) * 2019-01-08 2022-12-01 株式会社北陸精機 methanation system
JP2022117836A (en) * 2021-02-01 2022-08-12 国立研究開発法人宇宙航空研究開発機構 Method for producing molded body of functional material, molded body of functional material, and reactor
JP2023103557A (en) * 2022-01-14 2023-07-27 株式会社日立製作所 Methanation reactor, and method for producing methane-containing gas

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615138A (en) * 1992-07-06 1994-01-25 Babcock Hitachi Kk Catalyst block
JP2001219033A (en) * 1999-11-30 2001-08-14 Japan Pionics Co Ltd Method and device for cleaning harmful gas
JP2005185890A (en) * 2003-12-24 2005-07-14 Nissan Motor Co Ltd Catalyst and process for producing hydrogen
JP5392812B2 (en) * 2007-10-30 2014-01-22 国立大学法人富山大学 Catalyst for hydrogen reduction of carbon dioxide and method for hydrogen reduction of carbon dioxide
JP5529374B2 (en) * 2007-12-26 2014-06-25 中部電力株式会社 Chemical treatment method of gas

Also Published As

Publication number Publication date
JP2013063405A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
RU2673527C2 (en) Steam reforming
EP2708507B1 (en) Method for manufacturing nanocarbon and manufacturing device
US8273314B2 (en) Internal combustion exchanger-reactor for fixed bed endothermic reaction
JP5862147B2 (en) Carbon dioxide hydrogen reduction apparatus and carbon dioxide hydrogen reduction method
KR101094077B1 (en) Method of making a catalyst by coating cobalt catalyst powder on a metallic foam surface, the cobalt metallic foam catalyst, heat-exchanger typed reactor with the catalyst, and method of liquid oil production in Fischer-Tropsch synthesis using the reactor
JP6803920B2 (en) Methods and equipment for catalytic methanation of reaction gas
NO330499B1 (en) Catalytic reactor
EP1789171A1 (en) Membrane steam reformer
JP2023515643A (en) Ultralight hydrogen production reactor equipped with high-efficiency composite materials
CN102481539A (en) Reactor for exothermic or endothermic catalytic reactions
KR20160140603A (en) Pseudo-isothermal reactor
NO333822B1 (en) Procedure for performing Fisher-Tropsch synthesis
US20220401941A1 (en) Catalyst, structures, reactors, and methods of forming same
JP2024023988A (en) Sodium borohydride manufacturing method and sodium borohydride manufacturing device
KR20160140713A (en) Hydrogen production system and hydrogen production method
JP2022511475A (en) Methods and equipment for releasing gas from a liquid medium
JP2020124665A (en) Catalyst reactor for vapor phase reaction, and catalytic reaction method
JP2017190275A (en) Byproduct hydrogen generation device
JP5860224B2 (en) Method for producing synthesis gas that does not emit CO2
Zhang et al. Performance of a tubular oxygen-permeable membrane reactor for partial oxidation of CH4 in coke oven gas to syngas
JP4301362B2 (en) Lower hydrocarbon direct cracking catalyst, lower hydrocarbon direct cracking reactor, and lower hydrocarbon direct cracking reactor
US20050204626A1 (en) Reforming module for converting hydrocarbon-containing fuel gases to hydrogen-containing process gases
JP2015171711A (en) Hydrogen production catalyst, hydrogen production apparatus and hydrogen production process
CN105129732B (en) A kind of use fluid bed carries out deep removal CO preferential oxidation method and device
JP5369656B2 (en) Hydrogen generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R150 Certificate of patent or registration of utility model

Ref document number: 5862147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250