JP2005185890A - Catalyst and process for producing hydrogen - Google Patents

Catalyst and process for producing hydrogen Download PDF

Info

Publication number
JP2005185890A
JP2005185890A JP2003427491A JP2003427491A JP2005185890A JP 2005185890 A JP2005185890 A JP 2005185890A JP 2003427491 A JP2003427491 A JP 2003427491A JP 2003427491 A JP2003427491 A JP 2003427491A JP 2005185890 A JP2005185890 A JP 2005185890A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
shift
reforming
containing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003427491A
Other languages
Japanese (ja)
Inventor
Tomoaki Kobayashi
智明 小林
Hiroshi Akama
弘 赤間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003427491A priority Critical patent/JP2005185890A/en
Publication of JP2005185890A publication Critical patent/JP2005185890A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for producing a hydrogen containing gas excellent in hydrogen forming rate even at a low temperature. <P>SOLUTION: The catalyst for producing the hydrogen containing gas includes a reforming catalyst for forming hydrogen and carbon monoxide from a hydrocarbon in the presence of water and/or oxygen, and a shift catalyst for reacting carbon monoxide contained in the reformed gas with water to form hydrogen in the same casing. Since the catalyst remarkably enhances a hydrogen yield even at a low temperature and can simultaneously suppress methanation consuming hydrogen, hydrogen productivity is high. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水素製造触媒であって、より詳細には、改質触媒とシフト触媒とを同一筐体に含む水素触媒、および該触媒を用いる水素製造方法に関する。   The present invention relates to a hydrogen production catalyst, and more particularly to a hydrogen catalyst including a reforming catalyst and a shift catalyst in the same casing, and a hydrogen production method using the catalyst.

近年、エネルギー・環境問題を背景とした社会的要求や動向と呼応して、常温でも作動し高出力密度が得られる固体高分子型燃料電池が電気自動車用電源、定置型電源として注目されている。このような固体高分子燃料電池の水素源としては、純水素を利用するシステムのほかに、メタン、メタノール、LPガス、都市ガス、天然ガス、軽油、灯油等などの炭化水素やアルコール類から水素を取りだして使う方法もある。炭化水素を原料として水素を生成するには、改質反応、シフト反応およびCO除去反応を行うことが一般的である。   In recent years, in response to social demands and trends against the background of energy and environmental issues, polymer electrolyte fuel cells that can operate at room temperature and obtain high output density have attracted attention as power sources for electric vehicles and stationary power sources. . As a hydrogen source of such a polymer electrolyte fuel cell, in addition to a system using pure hydrogen, hydrogen from hydrocarbons and alcohols such as methane, methanol, LP gas, city gas, natural gas, light oil, kerosene, etc. There is also a method of taking out and using. In order to generate hydrogen using hydrocarbon as a raw material, it is common to perform a reforming reaction, a shift reaction, and a CO removal reaction.

ここでメタンの改質反応では、メタンなどの炭化水素と酸素と水蒸気とにより、下記式で示される酸化および水蒸気改質反応とが並行して進行すると考えられる。   Here, in the reforming reaction of methane, it is considered that the oxidation and steam reforming reaction represented by the following formula proceed in parallel by a hydrocarbon such as methane, oxygen, and steam.

Figure 2005185890
Figure 2005185890

上記式で示すように、改質ガス中にはCOが副生するが、このCOは燃料電池の電極に用いられている白金系触媒の触媒毒として作用する。このため、このCOを白金電極触媒に無害なCOに転化する必要があり、下記に示すいわゆるシフト反応を利用して、改質ガス中に含まれるCO濃度を1体積%程度にまで低減する。 As shown by the above formula, CO is by-produced in the reformed gas, and this CO acts as a catalyst poison of the platinum-based catalyst used for the electrode of the fuel cell. For this reason, it is necessary to convert this CO into CO 2 that is harmless to the platinum electrode catalyst, and the so-called shift reaction shown below is used to reduce the CO concentration contained in the reformed gas to about 1% by volume. .

Figure 2005185890
Figure 2005185890

しかしながら、シフト反応によってもわずかのCOが残存するため、更に、貴金属を担持したアルミナ等のCO選択酸化触媒を用いてCOをCOに転化しており、これがシフト反応に続くCO除去反応である。 However, since a small amount of CO remains even after the shift reaction, CO is further converted to CO 2 using a CO selective oxidation catalyst such as alumina supporting a noble metal, and this is the CO removal reaction following the shift reaction. .

Figure 2005185890
Figure 2005185890

上記した改質反応に使用する触媒としては種々存在し、例えば、チタン、アルミニウム、シリコン、ジルコニウム、ニッケル、鉄、コバルト、銅、亜鉛、白金、パラジウム、ルテニウム、ロジウムからなる群から選ばれる1種以上からなる触媒を触媒成分とし、これを金属ハニカムモノリス担体上に被覆してなる炭化水素改質触媒がある(特許文献1)。該特許文献においてハニカムモノリス担体上に上記触媒成分を被覆したのは、炭化水素に水や酸素を供給して触媒反応を介して改質して水素を得るといずれも加熱または発熱をもたらすため、熱の授受の制御を容易にするため、空隙の多いハニカムモノリス担体を使用したためである。なお、改質触媒は、上記文献1のようにハニカムモノリス担体に触媒成分を担持させるものが使用されるが、これに限定されるものでなく、アルミナなどに触媒成分を担持させ、粒子状に調製した触媒を改質反応層に充填して使用することもできる。   Various catalysts exist for the above-described reforming reaction. For example, one type selected from the group consisting of titanium, aluminum, silicon, zirconium, nickel, iron, cobalt, copper, zinc, platinum, palladium, ruthenium, and rhodium. There is a hydrocarbon reforming catalyst in which the above catalyst is used as a catalyst component and this is coated on a metal honeycomb monolith support (Patent Document 1). In the patent document, the above-mentioned catalyst component is coated on the honeycomb monolith support because water or oxygen is supplied to the hydrocarbon and reformed through a catalytic reaction to obtain hydrogen, both of which cause heating or heat generation. This is because a honeycomb monolith support having many voids is used to facilitate control of heat transfer. As the reforming catalyst, a catalyst in which the catalyst component is supported on the honeycomb monolith carrier as in the above-mentioned document 1 is used, but the present invention is not limited to this, and the catalyst component is supported in alumina or the like to form particles. The prepared catalyst can be used by filling the reforming reaction layer.

このような燃料電池向けの水素生成を目的とした炭化水素の改質反応においては、反応温度を600℃以上の高温にして高活性を得て一酸化炭素の生成を抑制するが(特許文献2)、自動車などの移動体に用いる際の起動停止安定性等を考えると、より低温での高い改質反応が求められる。
特開2000−126595号公報 特開2002−104809号公報
In such a hydrocarbon reforming reaction for the purpose of producing hydrogen for fuel cells, the reaction temperature is set to a high temperature of 600 ° C. or higher to obtain high activity and suppress the production of carbon monoxide (Patent Document 2). ), High reforming reaction at a lower temperature is required in consideration of starting / stopping stability when used for a moving body such as an automobile.
JP 2000-126595 A JP 2002-104809 A

上記したように、炭化水素を燃料として部分酸化すると水素ガスとCOとが生成する。この場合、改質温度を500℃以下に下げると、平衡して一酸化炭素生成量を抑えることができるが水素濃度が低下し、更にメタンが増る。このため、高収率で水素を製造することができず、特に自動車などに使用する場合には、起動時の水素供給性が極めて低下する。   As described above, hydrogen gas and CO are generated when partial oxidation is performed using hydrocarbon as fuel. In this case, when the reforming temperature is lowered to 500 ° C. or lower, the amount of carbon monoxide produced can be balanced and suppressed, but the hydrogen concentration decreases and methane further increases. For this reason, hydrogen cannot be produced in a high yield, and particularly when used in an automobile or the like, the hydrogen supply capability at the time of startup is extremely lowered.

上記現状に鑑みて、炭化水素を原料として水素を製造するに際して、本発明は低温で高収率に水素を製造しうる触媒を提供することを目的とする。   In view of the above situation, the present invention has an object to provide a catalyst capable of producing hydrogen at a low temperature and in a high yield when producing hydrogen using a hydrocarbon as a raw material.

また本発明は、このような触媒によって水素を製造する方法を提供する。   The present invention also provides a method for producing hydrogen using such a catalyst.

上記目的を達成するため、改質触媒およびシフト触媒について詳細に検討した結果、400〜550℃で低温改質でメタン量が低減しないのは、下記に示すメタネーション反応によって一酸化炭素と水素とが反応した結果、メタンが生成するためと判明した。   As a result of detailed examination of the reforming catalyst and the shift catalyst in order to achieve the above object, the low methane reforming at 400 to 550 ° C. does not reduce the amount of methane because of the methanation reaction shown below. As a result of the reaction, it was found that methane was produced.

Figure 2005185890
Figure 2005185890

メタネーションを抑え、かつ一酸化炭素を減らすためには、上記した一酸化炭素と水とによるシフト反応を促進させることが有効と考えられるが、一旦、一酸化炭素生成が起こった後にシフト触媒で水素を生成させても平衡の制約を受け、実際にはメタネーションを抑制することができない。よって、このメタネーションによって水素が消費され、かつ水素生成率が低下し、低温での起動性に欠ける結果となる。   In order to suppress methanation and reduce carbon monoxide, it is considered effective to promote the shift reaction between carbon monoxide and water as described above. Even if hydrogen is generated, the methanation cannot actually be suppressed because of equilibrium restrictions. Therefore, hydrogen is consumed by this methanation, and the hydrogen production rate is lowered, resulting in lack of startability at low temperatures.

しかしながら驚いたことに、従来のハニカム担体や触媒充填型の改質触媒とシフト触媒とを用いて、温度350〜550℃という低温の改質触媒条件で改質反応とシフト反応とを行ったところ、水素収率が著しく向上し、同時にメタネーションを抑制することができたのである。本発明は、上記知見に基づいて完成したものである。   Surprisingly, however, the reforming reaction and the shift reaction were carried out under the reforming catalyst conditions at a low temperature of 350 to 550 ° C. using the conventional honeycomb carrier or the catalyst-filled reforming catalyst and the shift catalyst. The hydrogen yield was significantly improved and at the same time the methanation could be suppressed. The present invention has been completed based on the above findings.

本発明の水素含有ガス製造触媒によれば、低温で効率的に水素を生成しうる。このため、たとえ自動車などに搭載された場合でも、起動性に優れる水素生成装置を構成しうる。   According to the hydrogen-containing gas production catalyst of the present invention, hydrogen can be efficiently produced at a low temperature. For this reason, even when mounted on an automobile or the like, a hydrogen generator excellent in startability can be configured.

本発明の水素含有ガス製造触媒は、改質触媒とシフト触媒とを用いて、同一筐体に収納することで調製することができ、触媒自体の製造が容易である。   The hydrogen-containing gas production catalyst of the present invention can be prepared by using a reforming catalyst and a shift catalyst and housed in the same casing, and the production of the catalyst itself is easy.

本発明の水素含有ガス製造触媒を使用すると、原料ガスを供給し、同一条件で反応させることで水素を効率的に製造することができるため、製造工程を簡略化することができる。   When the hydrogen-containing gas production catalyst of the present invention is used, hydrogen can be efficiently produced by supplying a raw material gas and reacting under the same conditions, so that the production process can be simplified.

本発明によれば、高濃度の水素含有改質ガスを製造することができるため、搭載体積の少ない自動車などの燃料電池用改質反応装置として好適である。   According to the present invention, a high-concentration hydrogen-containing reformed gas can be produced, which is suitable as a reforming reaction device for a fuel cell such as an automobile having a small mounting volume.

本発明の第一は、水および/または酸素の存在下で炭化水素から水素と一酸化炭素とを生成する改質触媒と、前記改質ガスに含まれる一酸化炭素を水と反応させて水素を生成させるシフト触媒とを同一筐体に含む、水素含有ガス製造触媒である。   In the first aspect of the present invention, a reforming catalyst that generates hydrogen and carbon monoxide from hydrocarbons in the presence of water and / or oxygen, and carbon monoxide contained in the reformed gas react with water to generate hydrogen. This is a hydrogen-containing gas production catalyst that includes a shift catalyst that generates hydrogen in the same housing.

改質触媒とシフト触媒とを同一筐体に含める態様としては、(1)ハニカム担体に前記改質触媒と前記シフト触媒とを担持させる方法があり、より詳細には、(2)ハニカム担体に、前記改質触媒層と前記シフト触媒層とを積層して担持させる方法(図1、図2参照)、(3)ハニカム担体に、前記改質触媒層と前記シフト触媒層との混合物を担持させる方法(図3参照)、(4)ハニカム担体に、前記改質触媒層と前記シフト触媒層とを、炭化水素ガスの上流と下流とに区分して担持させる方法、(5)前記改質触媒がハニカム担体に触媒成分を担持させたものであり、前記シフト触媒がハニカム担体に触媒成分を担持させたものであり、同一筐体中にハニカム担持改質触媒とハニカム担持シフト触媒とを配置する方法(図4、図5参照)、(6)ハニカム担体に、炭化水素ガスの上流から下流に向かうガス流に平行して改質触媒層とシフト触媒層とを担持される方法(図6参照)、その他、ハニカム担体の各セルを構成する隔壁に改質触媒とシフト触媒とを交互に担持する方法(図7参照)などによって行うことができる。   As an aspect in which the reforming catalyst and the shift catalyst are included in the same casing, there is (1) a method of supporting the reforming catalyst and the shift catalyst on a honeycomb carrier, and more specifically, (2) a honeycomb carrier. A method of stacking and supporting the reforming catalyst layer and the shift catalyst layer (see FIGS. 1 and 2), and (3) supporting a mixture of the reforming catalyst layer and the shift catalyst layer on a honeycomb carrier. (4) A method of supporting the reforming catalyst layer and the shift catalyst layer on the honeycomb carrier separately from upstream and downstream of hydrocarbon gas, (5) The reforming The catalyst is a catalyst carrier having a catalyst component supported on a honeycomb carrier, and the shift catalyst is a honeycomb carrier having a catalyst component supported thereon, and the honeycomb-supported reforming catalyst and the honeycomb-supported shift catalyst are disposed in the same casing. (See FIGS. 4 and 5) 6) A method in which the reforming catalyst layer and the shift catalyst layer are supported on the honeycomb carrier in parallel with the gas flow from the upstream to the downstream of the hydrocarbon gas (see FIG. 6), and other cells of the honeycomb carrier are configured. For example, the reforming catalyst and the shift catalyst may be alternately supported on the partition wall (see FIG. 7).

また、ハニカム担体を使用しない場合には、(1)前記改質触媒と前記シフト触媒とが粒状に成型され、これら粒状改質触媒と粒状シフト触媒とを同一筐体に充填する方法(図8参照)、(2)粒状の同一担体上に改質触媒成分とシフト触媒成分とを担持させる方法(図9参照)、(3)粒状の担体に、改質触媒成分とシフト触媒成分とを積層させる方法(図10、図11)によっても行うことができる。   When the honeycomb carrier is not used, (1) the reforming catalyst and the shift catalyst are formed into a granular shape, and the granular reforming catalyst and the granular shift catalyst are filled in the same casing (FIG. 8). (Refer to Fig. 9) (3) Laminating the reforming catalyst component and the shift catalyst component on the granular carrier. It can also be performed by the method (FIGS. 10 and 11).

本発明の特徴は、同一筐体に改質触媒とシフト触媒とが含まれている点に特徴があり、このような改質触媒やシフト触媒としては従来公知触媒を使用することができる。好ましくは、本発明で使用する改質触媒としては、担体に活性金属として貴金属を担持させたもの(以下、これを「触媒成分」と称する。)を、スラリー状に調製し、これをハニカム担体に担持させたものである。なお、改質には、部分酸化改質、水蒸気改質、オートサーマル改質が知られているが、本発明ではそのいずれであってもよい。   A feature of the present invention is that a reforming catalyst and a shift catalyst are included in the same housing, and a conventionally known catalyst can be used as such a reforming catalyst or shift catalyst. Preferably, as the reforming catalyst used in the present invention, a catalyst in which a support is supported with a noble metal as an active metal (hereinafter referred to as “catalyst component”) is prepared in a slurry form, and this is prepared as a honeycomb support. It is carried on. In addition, although partial oxidation reforming, steam reforming, and autothermal reforming are known as reforming, any of them may be used in the present invention.

貴金属としては、白金、ロジウム、パラジウムおよびルテニウムから選ばれる少なくとも1種類の貴金属元素、特に好ましくはロジウムを担持および焼成させて得たものがある。このような貴金属元素は水蒸気改質反応(例えば、CH+HO→CO+3H)に優れ、特にロジウムは耐久性や触媒活性にも優れるため好ましい。 As the noble metal, there is one obtained by supporting and firing at least one noble metal element selected from platinum, rhodium, palladium and ruthenium, particularly preferably rhodium. Such a noble metal element is excellent in a steam reforming reaction (for example, CH 4 + H 2 O → CO + 3H 2 ), and rhodium is particularly preferable because it is excellent in durability and catalytic activity.

該貴金属元素の担持量は、元素換算でそれぞれ改質触媒成分当たり0.1〜10質量%、より好ましくは0.5〜5質量%である。この範囲で貴金属元素の担体上での分散性が優れ、その結果高い触媒活性を確保することができる。   The amount of the noble metal element supported is 0.1 to 10% by mass, more preferably 0.5 to 5% by mass, in terms of element, per reforming catalyst component. Within this range, the dispersibility of the noble metal element on the carrier is excellent, and as a result, high catalytic activity can be ensured.

該貴金属を担持させる触媒の担体としては、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化ケイ素、酸化セリウム、セリウム−ジルコニウム複合酸化物などを使用することができ、好ましくは酸化アルミニウム、酸化ジルコニウムおよび/または酸化チタンである。   As the catalyst carrier for supporting the noble metal, aluminum oxide, zirconium oxide, titanium oxide, silicon oxide, cerium oxide, cerium-zirconium composite oxide and the like can be used, preferably aluminum oxide, zirconium oxide and / or Titanium oxide.

上記酸化アルミナなどへの貴金属の担持は、貴金属元素を含有する触媒調製溶液を用いて、含浸法、共沈法、競争吸着法など各種公知技術を用いて調製することができる。処理条件は各種方法に応じて適宜選択することができ、通常は、20〜70℃で0.5〜20時間、担体と該触媒調製液とを接触させる。例えば、上記貴金属元素を含む化合物を溶解または分散した触媒調製溶液を用い、該担体を含浸させ、これを乾燥および焼成して焼成物を得てもよい。このような溶液としては水のほか、メタノール、エタノールなどのアルコール類、ジエチルエーテルなどのエーテル類、カルボン酸類、一般的有機溶剤等、上記元素を含む化合物が溶解できる溶媒を広く使用することができる。   The loading of the noble metal on the alumina oxide can be prepared by using various known techniques such as an impregnation method, a coprecipitation method, and a competitive adsorption method using a catalyst preparation solution containing a noble metal element. The treatment conditions can be appropriately selected according to various methods. Usually, the support is brought into contact with the catalyst preparation solution at 20 to 70 ° C. for 0.5 to 20 hours. For example, a catalyst preparation solution in which a compound containing the noble metal element is dissolved or dispersed may be used to impregnate the carrier, and then dried and fired to obtain a fired product. As such a solution, water, alcohols such as methanol and ethanol, ethers such as diethyl ether, carboxylic acids, general organic solvents, and the like, which can dissolve a compound containing the above elements, can be widely used. .

その後、触媒担持担体を乾燥するが、乾燥方法としては、例えば自然乾燥、蒸発乾固法、ロータリーエバポレーター、噴霧乾燥機、ドラムドライヤーによる乾燥などを用いることができる。これらの手段を施した後焼成する。該焼成温度は、300〜600℃で、焼成時間は30〜600分で十分である。   Thereafter, the catalyst-supported carrier is dried. As a drying method, for example, natural drying, evaporation to dryness, rotary evaporator, spray dryer, drying with a drum dryer, or the like can be used. After applying these means, firing is performed. The firing temperature is 300 to 600 ° C., and the firing time is 30 to 600 minutes.

本発明では、貴金属と共に、マンガン、鉄、コバルト、ニッケル、亜鉛、クロム、または銅から選ばれる少なくとも1種類の元素を担持させたものであってもよい。これらの添加によってH生成率が向上するからである。これらの添加成分は、上記貴金属元素の担持と同時に行ってもよく、別個に担持させてよい。別個に貴金属元素を担持させるには、添加成分を担持させた担体を、貴金属元素を含有する化合物を溶解しまたは分散させた溶媒中で含浸させ、その後に焼成すればよい。なお、含浸法のほか、共沈法、競争吸着法など各種公知技術を用いることができる。 In this invention, you may carry | support the at least 1 sort (s) of element chosen from manganese, iron, cobalt, nickel, zinc, chromium, or copper with a noble metal. This is because the addition of these improves the H 2 production rate. These additional components may be carried out simultaneously with the loading of the noble metal element or may be loaded separately. In order to carry the noble metal element separately, the carrier carrying the additive component may be impregnated in a solvent in which a compound containing the noble metal element is dissolved or dispersed, and then fired. In addition to the impregnation method, various known techniques such as a coprecipitation method and a competitive adsorption method can be used.

一方、本発明で好ましく使用できるシフト触媒とは、下記式で示すシフト反応を触媒できるものであればいずれのシフト触媒であってもよい。しかしながら本発明では、チタン、ジルコニウム、バナジウム、ニオブおよびタンタルからなる群から選ばれる少なくとも1種類の元素、セリウム元素、白金、ロジウム、パラジウム、ルテニウム、イリジウムおよびオスミウムから選ばれる少なくとも1種類の元素を含むシフト触媒であることが好ましい。本発明で使用するシフト触媒としては、ハニカム形状に限定されず粒状であってもよいが、ハニカム形状の場合には、以下の触媒成分をハニカムモノリスに担持することで製造することができる。   On the other hand, the shift catalyst that can be preferably used in the present invention may be any shift catalyst as long as it can catalyze the shift reaction represented by the following formula. However, the present invention includes at least one element selected from the group consisting of titanium, zirconium, vanadium, niobium and tantalum, cerium element, platinum, rhodium, palladium, ruthenium, iridium and osmium. A shift catalyst is preferred. The shift catalyst used in the present invention is not limited to a honeycomb shape but may be granular. In the case of a honeycomb shape, the shift catalyst can be produced by supporting the following catalyst components on a honeycomb monolith.

Figure 2005185890
Figure 2005185890

本発明のシフト触媒は、白金、ロジウム、パラジウム、ルテニウム、イリジウムおよびオスミウムから選ばれる少なくとも1種類の元素を含有することが好ましい。より好ましいくは白金である。COを酸化してCOに変換する能力に優れるからである。更にセリウム元素を含むとよい。セリウムは酸素運搬能に優れるためである。セリウムの含有量は、シフト触媒成分中に5モル%以上であることが好ましく、より好ましくは10〜90モル%、特に好ましくは20〜80モル%である。なお、白金と共にチタン、ジルコニウム、バナジウム、ニオブおよびタンタルからなる群から選ばれる少なくとも1種類の元素を含んでもよい。HOからHを取り出すことのできる活性種として有効だからである。 The shift catalyst of the present invention preferably contains at least one element selected from platinum, rhodium, palladium, ruthenium, iridium and osmium. More preferred is platinum. This is because the ability to oxidize CO and convert it to CO 2 is excellent. Furthermore, it is good to contain a cerium element. This is because cerium is excellent in oxygen carrying ability. The content of cerium is preferably 5 mol% or more in the shift catalyst component, more preferably 10 to 90 mol%, and particularly preferably 20 to 80 mol%. In addition to platinum, at least one element selected from the group consisting of titanium, zirconium, vanadium, niobium, and tantalum may be included. This is because it is effective as an active species that can extract H 2 from H 2 O.

本発明で使用するシフト触媒としては上記のようにチタン、ジルコニウム、バナジウム、ニオブ、タンタル、セリウム、白金、ロジウム、パラジウム、ルテニウム、イリジウムおよびオスミウムから選ばれる少なくとも1種類の元素を使用することができ、このような元素の供給源としても特に制限されず広くこれらの元素を含有する化合物を使用することができる。このような化合物としては、これらの硝酸塩、硫酸塩、アンモニウム塩、アミン、炭酸塩、重炭酸塩、ハロゲン塩、亜硝酸塩、蓚酸などの無機塩類、ギ酸塩などのカルボン酸塩および水酸化物、アルコキサイド、酸化物などが例示でき、これらを溶解する溶媒の種類やpHなどによって適宜選択することができる。これらの中でも、工業的に使用するには硝酸塩、炭酸塩、酸化物、水酸化物などが好ましい。   As described above, at least one element selected from titanium, zirconium, vanadium, niobium, tantalum, cerium, platinum, rhodium, palladium, ruthenium, iridium and osmium can be used as the shift catalyst used in the present invention. The source of such elements is not particularly limited, and compounds containing these elements can be used widely. Such compounds include nitrates, sulfates, ammonium salts, amines, carbonates, bicarbonates, halogen salts, nitrites, inorganic salts such as oxalic acid, carboxylates and hydroxides such as formate, Examples include alkoxides and oxides, which can be appropriately selected depending on the type and pH of the solvent in which these are dissolved. Among these, nitrates, carbonates, oxides, hydroxides and the like are preferable for industrial use.

白金、ロジウム、パラジウム、ルテニウム、イリジウムおよびオスミウムから選ばれる元素(以下、白金族元素とも称する。)に関していえば、白金原料としてジニトロジアミン白金、塩化白金などを用いることができ、特にジニトロジアミン白金が好ましい。分散性に優れるからである。同様に、ロジウム、パラジウム、ルテニウム、イリジウムおよびオスミウム等は、硝酸塩、アンモニウム塩等を使用することが好ましい。これらの元素の配合量は質量換算で、該シフト触媒成分中に0.01〜20.0質量%であることが好ましく、より好ましくは1.0〜20.0質量%、特に好ましくは10.0〜15.0質量%である。0.01質量%を下回ると、CO転化率が十分でない場合がある。これらの元素は該触媒の活性成分と考えられ、CO転化率を向上させるにはこれらいわゆる白金族元素を触媒表面に分布させることが好ましい。低温でもCOとの接触率が向上し、CO転化率が向上するからである。   Regarding elements selected from platinum, rhodium, palladium, ruthenium, iridium and osmium (hereinafter also referred to as platinum group elements), dinitrodiamine platinum, platinum chloride, etc. can be used as platinum raw materials. preferable. It is because it is excellent in dispersibility. Similarly, rhodium, palladium, ruthenium, iridium and osmium are preferably nitrates, ammonium salts and the like. The compounding amount of these elements is preferably 0.01 to 20.0% by mass, more preferably 1.0 to 20.0% by mass, and particularly preferably 10.2% by mass in the shift catalyst component in terms of mass. It is 0-15.0 mass%. If it is less than 0.01% by mass, the CO conversion may not be sufficient. These elements are considered to be active components of the catalyst, and it is preferable to distribute these so-called platinum group elements on the catalyst surface in order to improve the CO conversion. This is because the contact rate with CO is improved even at low temperatures, and the CO conversion rate is improved.

該チタン、ジルコニウム、バナジウム、ニオブおよびタンタルからなる群から選ばれる元素を含有する場合には、元素換算で該シフト触媒成分中に5モル%以上であることが好ましく、より好ましくは10〜90モル%、特に好ましくは20〜80モル%である。なお、2種類以上の元素を併用する場合にはその合計量で算出する。   When an element selected from the group consisting of titanium, zirconium, vanadium, niobium and tantalum is contained, it is preferably 5 mol% or more, more preferably 10 to 90 mol in the shift catalyst component in terms of element. %, Particularly preferably 20 to 80 mol%. In addition, when using together 2 or more types of elements, it calculates with the total amount.

なお、本発明で使用するシフト触媒は、更にアルミ元素および/または珪素元素を含んでもよい。これ等の元素の供給源となるアルミニウム化合物としては、α−アルミナ、β−アルミナ、γ−アルミナなどの酸化アルミニウム、ギブサイトやベーマイトなどの水酸化アルミニウム、硝酸アルミニウム、硫酸アルミニウムなどのアルミニウム塩等の他、焼成することで酸化物となるアルミニウム化合物を用いることができる。特にアルミナゾルなど、コロイド状のアルミナが好適に用いられる。同様に、ケイ素化合物としては、コロイド状シリカの他、酸化ケイ素、窒化ケイ素、炭化ケイ素、シラン、硫化ケイ素などの共有結合化合物:ケイ酸ナトリウム、ケイ酸アンモニウム、アルミノケイ酸ナトリウム、アルミノケイ酸アンモニウム、リンケイ酸ナトリウム、リンケイ酸アンモニウム等のケイ酸塩類、長石等のケイ素を含有するシリカの複塩:およびシリカ混合物を使用することができる。上記以外に、シリカ−アルミナ、さらにムライト、ゼオライトなどの粘土鉱物をアルミニウム化合物、ケイ素化合物として使用することができる。これらの含有量は触媒成分中に0.1〜50.0質量%が適当である。多く添加することにより高い耐熱性が期待できるが、多く存在することが好ましい、セリウムやチタン、ジルコニウム、バナジウム、ニオブおよびタンタルからなる群から選ばれる少なくとも1種類の元素存在比が低下してしまい、触媒作用として必ずしも好ましい結果をもたらさない場合がある。   The shift catalyst used in the present invention may further contain an aluminum element and / or a silicon element. Examples of aluminum compounds that supply these elements include aluminum oxides such as α-alumina, β-alumina, and γ-alumina, aluminum hydroxides such as gibbsite and boehmite, and aluminum salts such as aluminum nitrate and aluminum sulfate. In addition, an aluminum compound that becomes an oxide by firing can be used. In particular, colloidal alumina such as alumina sol is preferably used. Similarly, as the silicon compound, in addition to colloidal silica, covalently bonded compounds such as silicon oxide, silicon nitride, silicon carbide, silane, silicon sulfide, etc .: sodium silicate, ammonium silicate, sodium aluminosilicate, ammonium aluminosilicate, phosphorous silicate Silicates containing sodium silicates such as sodium phosphate, ammonium phosphosilicate, and silica containing silicon such as feldspar: and silica mixtures can be used. In addition to the above, silica-alumina, and clay minerals such as mullite and zeolite can be used as the aluminum compound and silicon compound. The content of these is suitably 0.1 to 50.0% by mass in the catalyst component. High heat resistance can be expected by adding a large amount, but it is preferable that a large amount exist, and the abundance ratio of at least one element selected from the group consisting of cerium, titanium, zirconium, vanadium, niobium, and tantalum decreases, In some cases, the catalytic action does not necessarily produce a favorable result.

上記シフト触媒を調製する方法としては特に制限はなく、一般的な触媒調製方法で製造できる。例えば、予め上記白金族元素以外の化合物を含む複合体を形成、乾燥、焼成し、ついで該焼成物に上記白金族元素を担持させる方法が採用できる。   There is no restriction | limiting in particular as a method of preparing the said shift catalyst, It can manufacture with a general catalyst preparation method. For example, a method in which a composite containing a compound other than the platinum group element is previously formed, dried and fired, and then the platinum group element is supported on the fired product can be employed.

上記触媒は、ハニカムモノリスに担持させることが好ましい。改質装置の触媒充填部への触媒の充填が容易であり、かつハニカム構造によって原料ガスや改質ガスの通気性が確保できるからである。また、原料ガスを供給した際に、該触媒を熱や焼成から防ぐことができ、触媒寿命および触媒活性を向上させることができる。   The catalyst is preferably supported on a honeycomb monolith. This is because it is easy to fill the catalyst in the catalyst filling portion of the reformer and the air permeability of the raw material gas and the reformed gas can be secured by the honeycomb structure. Further, when the raw material gas is supplied, the catalyst can be prevented from being heated and calcined, and the catalyst life and the catalytic activity can be improved.

改質触媒成分やシフト触媒成分を担持するハニカムモノリスを構成する素材としては、セラハニカム(セラミックス、400セル〜3000セル、直径35mmφ)、メタルフォーム(Ni−Cr、20pores/inch〜50pores/inch、直径100mmφ)および/またはセラフォーム(セラミックス、9pores/inch〜30pores/inch、直径75mmφ)等があり、いずれを使用してもよい。セラハニカム、メタルフォーム、セラフォームは圧力損失に優れコーティング技術が容易であり好ましい。   As a material constituting the honeycomb monolith carrying the reforming catalyst component and the shift catalyst component, ceramic honeycomb (ceramics, 400 cells to 3000 cells, diameter 35 mmφ), metal foam (Ni-Cr, 20 pores / inch to 50 pores / inch, 100 mmφ) and / or ceramic foam (ceramics, 9 pores / inch to 30 pores / inch, diameter 75 mmφ) and the like may be used. Cera honeycomb, metal foam, and Cera foam are preferable because they are excellent in pressure loss and easy in coating technology.

ハニカムモノリスへの触媒の担持は、予め上記触媒成分を1〜10倍の水で攪拌及び粉砕して触媒スラリーを調製し、これをハニカムモノリスに塗布し、該ハニカムモノリスを乾燥および焼成しても製造することができる。   The catalyst is supported on the honeycomb monolith by preliminarily stirring and pulverizing the catalyst component with 1 to 10 times water to prepare a catalyst slurry, which is applied to the honeycomb monolith, and dried and fired. Can be manufactured.

この際、図1に示すようにハニカム担体に改質触媒とシフト触媒とを積層するには、予め改質触媒スラリーを調製し、これをハニカムモノリス担体に塗布し、乾燥および焼成してからシフト触媒スラリーを担持させればよい。このように配置することで、下層の改質触媒で生成されたCOが空間中に開放される前にシフト触媒に接触することができ、きわめて優位に反応を進行することができる。。積層の態様としては、図2に示すようにハニカム担体にシフト触媒を塗布し、乾燥および焼成して、次いでシフト触媒層上に改質触媒を担持させてもよい。   At this time, as shown in FIG. 1, in order to stack the reforming catalyst and the shift catalyst on the honeycomb carrier, the reforming catalyst slurry is prepared in advance, applied to the honeycomb monolith carrier, dried and fired, and then shifted. What is necessary is just to carry | support a catalyst slurry. By arranging in this way, the CO produced by the lower reforming catalyst can come into contact with the shift catalyst before being released into the space, and the reaction can proceed extremely advantageously. . As a mode of lamination, as shown in FIG. 2, a shift catalyst may be applied to a honeycomb carrier, dried and fired, and then the reforming catalyst may be supported on the shift catalyst layer.

また、図3に示すように改質触媒とシフト触媒とを混合してハニカム触媒に担持するには、両者の混合物スラリーを調製し、これをハニカム担体に塗布、乾燥および焼成すればよい。これによって、図12に示すように、改質触媒粒子とシフト触媒粒子とが混合した触媒コート層が担持される。なお、改質触媒とシフト触媒との混合物としては、上記態様に限定されず、例えば、同一担体(不活性粒子)に改質触媒成分とシフト触媒成分とを担持させたものをハニカム担体に担持させてもよい。この態様を図13に示す。図12に示すように改質触媒とシフト触媒とを混合すると、改質触媒成分とシフト触媒成分との混合状態が不均一になる場合があるが、図13に示すように同一担体に改質触媒成分とシフト触媒成分とが担持されている場合には、使用経過によるこのような不均一性を緩和するこができより好ましい。   Further, as shown in FIG. 3, in order to mix the reforming catalyst and the shift catalyst and carry them on the honeycomb catalyst, it is only necessary to prepare a mixture slurry of the two, apply it to the honeycomb carrier, dry it, and fire it. As a result, as shown in FIG. 12, the catalyst coat layer in which the reforming catalyst particles and the shift catalyst particles are mixed is supported. Note that the mixture of the reforming catalyst and the shift catalyst is not limited to the above-described embodiment, and for example, a support in which the reforming catalyst component and the shift catalyst component are supported on the same support (inert particles) is supported on the honeycomb support. You may let them. This aspect is shown in FIG. When the reforming catalyst and the shift catalyst are mixed as shown in FIG. 12, the mixed state of the reforming catalyst component and the shift catalyst component may become uneven, but as shown in FIG. When the catalyst component and the shift catalyst component are supported, such non-uniformity due to the course of use can be reduced, which is more preferable.

また、図4に示すように、ガス流の上流から下流に向かって改質触媒をハニカム担体に担持したモノリス型改質触媒と、シフト触媒をハニカム担体に担持したモノリス型シフト触媒とを同一筐体内に配置してもよい。図4では、上流に改質触媒が配置されているが、シフト触媒と改質触媒の順はいずれが上流に配位されてもよく、図5のようにシフト触媒が上流であってもよい。なお、図4、図5では、異なるハニカム担体に改質触媒とシフト触媒とを担持させる態様であるが、同一のハニカム担体を用いてガス流の上流側と下流側に分けてシフト触媒と改質触媒とを担持させてもよい。   In addition, as shown in FIG. 4, a monolith type reforming catalyst in which a reforming catalyst is supported on a honeycomb carrier and a monolith type shift catalyst in which a shift catalyst is supported on the honeycomb carrier from the upstream side to the downstream side of the gas flow. It may be placed in the body. In FIG. 4, the reforming catalyst is arranged upstream, but the order of the shift catalyst and the reforming catalyst may be arranged upstream, and the shift catalyst may be upstream as shown in FIG. 5. . 4 and 5 show a mode in which the reforming catalyst and the shift catalyst are supported on different honeycomb carriers, but the shift catalyst and the shift catalyst are modified separately on the upstream side and the downstream side of the gas flow using the same honeycomb carrier. A quality catalyst may be supported.

また、図6に示すように、ガス流に平行して改質触媒とシフト触媒とを担持させてもい。図6は、ハニカム担体の断面を四分割した場合に交互に改質触媒とシフト触媒とを担持させているが、4分割に限定されず、8分割、12分割などより分割の程度を高めてもよい。このような担体を調製するには、例えば担持させたくない側にマスキングを施すなどとする。更に、図7に示すように、ハニカムのセルを交互に改質触媒とシフト触媒とを担持してもよい。このような担体を調製するにも、例えば担持させたくない側にマスキングを施すなどとする。   Further, as shown in FIG. 6, a reforming catalyst and a shift catalyst may be supported in parallel with the gas flow. In FIG. 6, when the cross section of the honeycomb carrier is divided into four parts, the reforming catalyst and the shift catalyst are alternately supported. However, it is not limited to four parts, and the degree of division is increased more than eight parts, twelve parts, etc. Also good. In order to prepare such a carrier, for example, masking is performed on the side that is not desired to be supported. Further, as shown in FIG. 7, the cells of the honeycomb may be alternately loaded with the reforming catalyst and the shift catalyst. For preparing such a carrier, for example, masking is performed on the side that is not desired to be carried.

一方、筐体に改質触媒とシフト触媒とを充填する態様として、ハニカムモノリスを使用せず、改質触媒とシフト触媒とを粒状に成型し、これら粒状改質触媒と粒状シフト触媒とを同一筐体に充填してもよい(図8参照)。改質触媒とシフト触媒とは均一混合されることが改質反応直後にCOがシフト反応により除去される点で好ましい。   On the other hand, as a mode in which the casing is filled with the reforming catalyst and the shift catalyst, the honeycomb monolith is not used, the reforming catalyst and the shift catalyst are molded into a granular shape, and the granular reforming catalyst and the granular shift catalyst are the same. The housing may be filled (see FIG. 8). It is preferable that the reforming catalyst and the shift catalyst are uniformly mixed in that CO is removed by the shift reaction immediately after the reforming reaction.

一方、本発明では、図9に示すように同一担体に改質触媒成分とシフト触媒成分とを担持させ、このような触媒を充填してもよい。このような触媒を使用すると、長持間の使用によっても改質触媒成分とシフト触媒成分との不均一が発生しないからである。   On the other hand, in the present invention, as shown in FIG. 9, a reforming catalyst component and a shift catalyst component may be supported on the same carrier and filled with such a catalyst. This is because when such a catalyst is used, nonuniformity between the reforming catalyst component and the shift catalyst component does not occur even when used for a long time.

具体的には、改質触媒成分として少なくとも白金、ロジウム、パラジウムおよびルテニウムから選ばれる少なくとも1種類の貴金属元素と、マンガン、鉄、コバルト、ニッケル、亜鉛、クロム、または銅から選ばれる少なくとも1種類の元素と、シフト触媒成分である、白金、ロジウム、パラジウム、ルテニウム、イリジウムおよびオスミウムから選ばれる少なくとも1種類の元素と、チタン、ジルコニウム、バナジウム、ニオブおよびタンタルからなる群から選ばれる少なくとも1種類、およびセリウムをアルミナなどの担体に担持させて調製することができる。この場合の各成分の好ましい範囲は、上記した改質触媒成分やシフト触媒成分に準じて算出することができる。   Specifically, as the reforming catalyst component, at least one kind of noble metal element selected from at least platinum, rhodium, palladium and ruthenium, and at least one kind selected from manganese, iron, cobalt, nickel, zinc, chromium, or copper. And at least one element selected from the group consisting of titanium, zirconium, vanadium, niobium and tantalum, and at least one element selected from platinum, rhodium, palladium, ruthenium, iridium and osmium, which are shift catalyst components, and It can be prepared by supporting cerium on a support such as alumina. The preferable range of each component in this case can be calculated according to the above-described reforming catalyst component and shift catalyst component.

更に本発明では、同一担体に上記改質触媒成分とシフト触媒成分とをそれぞれ積層してもよい。図10では、改質触媒成分が下層にシフト触媒成分が上層に積層されているが、図11に示すように、改質触媒成分が上層にシフト触媒成分が下層に積層されていてもよい。   In the present invention, the reforming catalyst component and the shift catalyst component may be laminated on the same carrier. In FIG. 10, the reforming catalyst component is laminated on the lower layer and the shift catalyst component is laminated on the upper layer. However, as shown in FIG. 11, the reforming catalyst component may be laminated on the upper layer and the shift catalyst component may be laminated on the lower layer.

本発明の水素含有ガス製造触媒においては、改質触媒とシフト触媒の配合量は、改質触媒成分100質量部に対してシフト触媒成分10〜1000質量部となるようにハニカム担体に担持することが好ましく、より好ましくは50〜200質量部である。また、水素含有ガス製造触媒の単位体積当たりの白金含有量は、ハニカム形状であるか触媒充填型であるかを問わず、0.1〜20g/Lである。また、水素含有ガス製造触媒の単位体積当たりのロジウム含有量も同様に、0.1〜20g/Lである。この範囲であれば、低温での水素製造効率に優れるからである。   In the hydrogen-containing gas production catalyst of the present invention, the reforming catalyst and the shift catalyst are supported on the honeycomb carrier so that the amount of the reforming catalyst and the shift catalyst is 10 to 1000 parts by mass with respect to 100 parts by mass of the reforming catalyst component. Is more preferable, and it is 50-200 mass parts more preferably. Moreover, the platinum content per unit volume of the hydrogen-containing gas production catalyst is 0.1 to 20 g / L regardless of whether it is a honeycomb shape or a catalyst-filled type. Similarly, the rhodium content per unit volume of the hydrogen-containing gas production catalyst is 0.1 to 20 g / L. This is because the hydrogen production efficiency at a low temperature is excellent within this range.

本発明の第二は、上記水素含有ガス製造触媒に、炭化水素を供給し、触媒層内温度を350〜550℃に制御して反応させることを特徴とする、水素製造方法である。   A second aspect of the present invention is a method for producing hydrogen, characterized in that hydrocarbon is supplied to the hydrogen-containing gas production catalyst and the reaction is carried out while controlling the temperature in the catalyst layer at 350 to 550 ° C.

本発明の改質触媒に供給する原料ガスは、炭素数1〜20の炭化水素、例えば、メタン、エタン、プロパン、ブタン、イソブタン、ペンタン、イソペンタン、ヘキサン、イソへキサン、オクタン、イソオクタン、ノナン、イソノナン、デカン、イソデカン等がある。改質装置に供給する際の炭化水素の濃度は、1〜10体積%であることが好ましく、より好ましくは1〜5体積%である。また、原料ガスの供給量は、触媒充填部に対してGHSVが2,000〜200,000h−1である。 The feed gas supplied to the reforming catalyst of the present invention is a hydrocarbon having 1 to 20 carbon atoms, such as methane, ethane, propane, butane, isobutane, pentane, isopentane, hexane, isohexane, octane, isooctane, nonane, Examples include isononane, decane, and isodecane. It is preferable that the hydrocarbon concentration at the time of supplying to the reformer is 1 to 10% by volume, more preferably 1 to 5% by volume. The supply amount of the raw material gas is 2,000 to 200,000 h −1 for GHSV with respect to the catalyst filling portion.

また、酸素の供給量は、酸素/炭化水素カーボン比が0.1〜1.5、好ましくは0.5〜1.5に制御して反応させることが好ましい。同様に水の供給量は、水/炭化水素カーボン比を1〜3である。   Further, the oxygen supply amount is preferably controlled such that the oxygen / hydrocarbon carbon ratio is 0.1 to 1.5, preferably 0.5 to 1.5. Similarly, the amount of water supplied is a water / hydrocarbon carbon ratio of 1 to 3.

本発明の水素含有ガス製造触媒は、上記条件で、触媒層内温度を350〜550℃、より好ましくは450〜550℃に制御して反応させることができる。従来の改質反応よりも低温であるが、本発明の水素含有ガス製造触媒を使用することでメタネーションを効率的に抑制し、高濃度の水素を製造することができる。このため、搭載範囲の制限される自動車などでも有効に使用することができる。   The hydrogen-containing gas production catalyst of the present invention can be reacted under the above conditions by controlling the temperature in the catalyst layer at 350 to 550 ° C, more preferably 450 to 550 ° C. Although it is at a lower temperature than the conventional reforming reaction, by using the hydrogen-containing gas production catalyst of the present invention, methanation can be efficiently suppressed and high concentration hydrogen can be produced. For this reason, it can be used effectively even in an automobile or the like whose mounting range is limited.

以下、実施例により本発明を説明する。   Hereinafter, the present invention will be described by way of examples.

本発明で使用する改質触媒の調製方法は以下の通りである。   The method for preparing the reforming catalyst used in the present invention is as follows.

(実施例1)
酸化アルミニウム粉末上に5質量%に相当するロジウムが担持されているロジウムアルミナ触媒100gに対し、焼成後重量にして10gに相当するアルミナゾル、水を加えて3時間分散、乳化して改質触媒スラリーを得た。この触媒スラリーを400セルの100mlコージェライトハニカムモノリスに塗布し、触媒上下端が均一になるように乾燥焼成し、触媒コート層を均一にした。
(Example 1)
To 100 g of rhodium alumina catalyst in which rhodium equivalent to 5% by mass is supported on aluminum oxide powder, alumina sol equivalent to 10 g in weight after calcination and water are added and dispersed and emulsified for 3 hours to give a reforming catalyst slurry. Got. This catalyst slurry was applied to a 100-ml cordierite honeycomb monolith of 400 cells, dried and fired so that the upper and lower ends of the catalyst were uniform, and the catalyst coat layer was made uniform.

その後に、酸化セリウム粉末上に5質量%に相当する白金が担持されている白金セリア触媒100gに対し、焼成後重量にして10gに相当するアルミナゾル、水を加えて3時間分散、乳化してシフト触媒スラリーを得た。該触媒スラリーを先のコージェライトハニカムモノリスに塗布し、触媒上下端が均一になるように乾燥焼成し、シフト触媒の下層に改質触媒が塗布された図1に示す態様のハニカムモノリスを得た。   Thereafter, 100 g of platinum ceria catalyst on which platinum corresponding to 5% by mass is supported on cerium oxide powder is added with alumina sol and water equivalent to 10 g in terms of weight after calcination, and dispersed, emulsified and shifted for 3 hours. A catalyst slurry was obtained. The catalyst slurry was applied to the above cordierite honeycomb monolith, dried and fired so that the upper and lower ends of the catalyst were uniform, and the honeycomb monolith shown in FIG. 1 in which the reforming catalyst was applied to the lower layer of the shift catalyst was obtained. .

(実施例2)
酸化セリウム粉末上に5質量%に相当する白金が担持されている白金セリア触媒100gに対し、焼成後重量にして10gに相当するアルミナゾル、水を加えて3時間分散、乳化して改質触媒スラリーを得た。該触媒スラリーを400セルの100mlコージェライトハニカムモノリスに塗布後、触媒上下端が均一になるように、乾燥焼成することで触媒コート層が均一なものを得た。
(Example 2)
To 100 g of platinum ceria catalyst on which platinum equivalent to 5 mass% is supported on cerium oxide powder, alumina sol equivalent to 10 g in weight after calcination and water are added and dispersed and emulsified for 3 hours to give a reforming catalyst slurry. Got. The catalyst slurry was applied to a 400-ml 100 ml cordierite honeycomb monolith, and then dried and fired so that the upper and lower ends of the catalyst were uniform to obtain a uniform catalyst coat layer.

次いで、酸化アルミニウム粉末上に5質量%に相当するロジウムが担持されているロジウムアルミナ触媒100gに対し、焼成後重量にして10gに相当するアルミナゾル、水を加えて3時間分散、乳化したシフト触媒スラリーを得た。該触媒スラリーを前記ハニカムモノリスに塗布し、触媒上下端が均一になるように乾燥焼成して、改質触媒の下層にシフト触媒が塗布された図2に示した態様の触媒を得た。   Next, a shift catalyst slurry obtained by dispersing and emulsifying for 3 hours by adding alumina sol and water corresponding to 10 g in terms of weight after calcination to 100 g of rhodium alumina catalyst in which rhodium corresponding to 5 mass% is supported on aluminum oxide powder. Got. The catalyst slurry was applied to the honeycomb monolith, dried and fired so that the upper and lower ends of the catalyst were uniform, and the catalyst of the embodiment shown in FIG. 2 in which the shift catalyst was applied to the lower layer of the reforming catalyst was obtained.

(実施例3)
酸化セリウム粉末上に5質量%に相当する白金が担持されている白金セリア触媒50gに対し、酸化アルミニウム粉末上に5質量%に相当するロジウムが担持されているロジウムアルミナ触媒50gを混合し、焼成後重量にして10gに相当するアルミナゾル、水を加えて3時間分散、乳化して改質触媒とシフト触媒との混合触媒スラリーを得た。該触媒スラリーを400セルの100mlコージェライトハニカムモノリスに塗布し触媒上下端が均一になるように乾燥焼成して図3に示す態様の触媒を得た。
(Example 3)
50 g of rhodium alumina catalyst in which rhodium corresponding to 5% by mass is supported on aluminum oxide powder is mixed with 50 g of platinum ceria catalyst in which platinum corresponding to 5% by mass is supported on cerium oxide powder. Thereafter, alumina sol corresponding to 10 g in weight and water were added and dispersed and emulsified for 3 hours to obtain a mixed catalyst slurry of a reforming catalyst and a shift catalyst. The catalyst slurry was applied to a 100-ml cordierite honeycomb monolith of 400 cells, dried and fired so that the upper and lower ends of the catalyst were uniform, and the catalyst of the embodiment shown in FIG. 3 was obtained.

(実施例4)
実施例1で得た改質触媒スラリーを実施例1で使用したモノリスに実施例1と同量担持させた改質触媒と、実施例1で得たシフト触媒スラリーを実施例1で使用したモノリスに実施例1と同量担持させたシフト触媒とを用い、改質触媒をシフト触媒の上流側に配置することで、図4に示す態様の触媒を得た。
Example 4
A reforming catalyst obtained by carrying the same amount of the reforming catalyst slurry obtained in Example 1 on the monolith used in Example 1 as in Example 1, and a monolith using the shift catalyst slurry obtained in Example 1 in Example 1 4 was used in the same manner as in Example 1 and the reforming catalyst was disposed upstream of the shift catalyst, whereby a catalyst having the mode shown in FIG. 4 was obtained.

(実施例5)
実施例1で得た改質触媒スラリーを実施例1で使用したモノリスに実施例1と同量担持させた改質触媒と、実施例1で得たシフト触媒スラリーを実施例1で使用したモノリスに実施例1と同量担持させたシフト触媒とを用い、シフト触媒を改質触媒の上流側に配置することで、図5に示す態様の触媒を得た。
(Example 5)
A reforming catalyst obtained by carrying the same amount of the reforming catalyst slurry obtained in Example 1 on the monolith used in Example 1 as in Example 1, and a monolith using the shift catalyst slurry obtained in Example 1 in Example 1 The shift catalyst supported in the same amount as in Example 1 was used, and the shift catalyst was disposed on the upstream side of the reforming catalyst to obtain a catalyst having the mode shown in FIG.

(実施例6、7)
酸化アルミニウム粉末上に5質量%に相当するロジウムが担持されているロジウムアルミナ触媒100gに対し、焼成後重量にして10gに相当するアルミナゾル、水を加えて3時間分散、乳化して改質触媒スラリーを得た。該触媒スラリーを図6のシフト触媒相をあらかじめ部分的にマスキングした400セルの100mlコージェライトハニカムモノリスに塗布し触媒上下端が均一になるように乾燥焼成した。次いでマスキングを除去し、コートされた部分を再度マスキングした。
(Examples 6 and 7)
To 100 g of rhodium alumina catalyst in which rhodium equivalent to 5% by mass is supported on aluminum oxide powder, alumina sol equivalent to 10 g in weight after calcination and water are added and dispersed and emulsified for 3 hours to give a reforming catalyst slurry. Got. The catalyst slurry was applied to a 400-cell 100 ml cordierite honeycomb monolith partially masked in advance with the shift catalyst phase of FIG. 6 and dried and fired so that the upper and lower ends of the catalyst were uniform. The masking was then removed and the coated part was masked again.

その後、酸化セリウム粉末上に5質量%に相当する白金が担持されている白金セリア触媒100gに対し、焼成後重量にして10gに相当するアルミナゾル、水を加えて3時間分散、乳化して改質触媒スラリーを得た。該触媒スラリーを先のコージェライトハニカムモノリスに塗布し、触媒上下端が均一になるように乾燥焼成し、先のマスキングを除去した。これで図6に示す態様の触媒を得た。また、マスキング部を図7に示す改質触媒部とシフト触媒部とに変更することで、図7に示す形態の触媒を得た。   Thereafter, 100 g of platinum ceria catalyst on which platinum corresponding to 5% by mass is supported on cerium oxide powder is added and dispersed and emulsified by adding alumina sol and water equivalent to 10 g in weight after calcination for 3 hours. A catalyst slurry was obtained. The catalyst slurry was applied to the previous cordierite honeycomb monolith, dried and fired so that the upper and lower ends of the catalyst were uniform, and the previous masking was removed. Thus, a catalyst having the embodiment shown in FIG. 6 was obtained. Moreover, the catalyst of the form shown in FIG. 7 was obtained by changing a masking part into the reforming catalyst part and shift catalyst part which are shown in FIG.

(実施例8)
担体に実施例1で使用したシフト触媒スラリーを被覆して粒状に調製し、同様に実施例1で使用した改質触媒スラリーから粒状の改質触媒を調製し、各粒状改質触媒とシフト触媒とを十分に混合した後に触媒層に充填して図8に示す態様の触媒を得た。
(Example 8)
The support is coated with the shift catalyst slurry used in Example 1 to prepare granules, and similarly, a granular reforming catalyst is prepared from the reforming catalyst slurry used in Example 1, and each granular reforming catalyst and shift catalyst are prepared. And the catalyst layer was filled into a catalyst layer to obtain a catalyst having an embodiment shown in FIG.

(実施例9)
担体上に同時に実施例1で使用した改質触媒スラリーとシフト触媒スラリーとを塗布して図9に示す形態の触媒を得た。
Example 9
The reforming catalyst slurry and shift catalyst slurry used in Example 1 were simultaneously coated on the support to obtain a catalyst having the form shown in FIG.

(実施例10)
触媒担体上に実施例1で使用した改質触媒スラリーを塗布し、その後にシフト触媒スラリーを塗布して図10に示した形態を得た。
(Example 10)
The reforming catalyst slurry used in Example 1 was applied on the catalyst carrier, and then the shift catalyst slurry was applied to obtain the form shown in FIG.

(実施例11)
触媒担体上に実施例1で使用したシフト触媒スラリーを塗布し、その後に改質触媒スラリーを塗布して図11に示す態様の触媒を得た。
(Example 11)
The shift catalyst slurry used in Example 1 was applied on the catalyst carrier, and then the reforming catalyst slurry was applied to obtain the catalyst having the mode shown in FIG.

本願発明の好ましい態様の一例であって、ハニカム触媒に改質触媒(下層)とシフト触媒(上層)とを積層した態様を示す図である。FIG. 3 is a diagram showing an example of a preferred embodiment of the present invention, in which a reforming catalyst (lower layer) and a shift catalyst (upper layer) are stacked on a honeycomb catalyst. 本願発明の好ましい態様の一例であって、ハニカム触媒に改質触媒(上層)とシフト触媒(下層)とを積層した態様を示す図である。FIG. 3 is a view showing an example of a preferred embodiment of the present invention, in which a reforming catalyst (upper layer) and a shift catalyst (lower layer) are stacked on a honeycomb catalyst. 本願発明の好ましい態様の一例であって、ハニカム触媒に改質触媒とシフト触媒との混合物層を担持した態様を示す図である。FIG. 3 is a view showing an example of a preferred embodiment of the present invention, in which a honeycomb catalyst is loaded with a mixture layer of a reforming catalyst and a shift catalyst. 本願発明の好ましい態様の一例であって、ハニカム触媒の上流に改質触媒層を、下流側にシフト触媒層を配置した態様を示す図である。FIG. 3 is a view showing an example of a preferred embodiment of the present invention, in which a reforming catalyst layer is disposed upstream of a honeycomb catalyst and a shift catalyst layer is disposed downstream. 本願発明の好ましい態様の一例であって、ハニカム触媒の上流にシフト触媒層を、下流側に改質触媒層を配置した態様を示す図である。It is an example of a preferred embodiment of the present invention, and is a view showing an embodiment in which a shift catalyst layer is disposed upstream of a honeycomb catalyst and a reforming catalyst layer is disposed downstream. 本願発明の好ましい態様の一例であって、ハニカム触媒のガス流に平行してシフト触媒層と改質触媒層を分割して配置した態様を示す図である。It is an example of a preferred embodiment of the present invention, and is a view showing an embodiment in which a shift catalyst layer and a reforming catalyst layer are divided and arranged in parallel with the gas flow of the honeycomb catalyst. 本願発明の好ましい態様の一例であって、ハニカム触媒のガス流に平行してシフト触媒層と改質触媒層を各セルに交互に担持した態様を示す図である。FIG. 3 is a view showing an example of a preferred embodiment of the present invention, in which a shift catalyst layer and a reforming catalyst layer are alternately supported in each cell in parallel with a gas flow of a honeycomb catalyst. 本願発明の好ましい態様の一例であって、筐体に粒状シフト触媒と粒状改質触媒とを混合して充填した態様を示す図である。It is a figure which is an example of the preferable aspect of this invention, Comprising: The aspect which mixed and filled the housing | casing with the granular shift catalyst and the granular reforming catalyst. 同一担体にシフト触媒成分と改質触媒成分とを担持した触媒を示す図である。It is a figure which shows the catalyst which carry | supported the shift catalyst component and the reforming catalyst component on the same support | carrier. 同一担体にシフト触媒成分(上層)と改質触媒成分(下層)と積層した触媒を示す図である。It is a figure which shows the catalyst which laminated | stacked the shift catalyst component (upper layer) and the reforming catalyst component (lower layer) on the same support | carrier. 同一担体にシフト触媒成分(下層)と改質触媒成分(上層)と積層した触媒を示す図である。It is a figure which shows the catalyst which laminated | stacked the shift catalyst component (lower layer) and the reforming catalyst component (upper layer) on the same support | carrier. ハニカム触媒にシフト触媒と改質触媒とを混合して担持した場合の混合状態を模式的に示す図である。It is a figure which shows typically the mixed state at the time of mixing and supporting the shift catalyst and the reforming catalyst on the honeycomb catalyst. ハニカム触媒に、同一担体にシフト触媒成分と改質触媒成分とを担持した触媒を担持した状態を示す図である。It is a figure which shows the state which carry | supported the catalyst which carry | supported the shift catalyst component and the reforming catalyst component on the same support | carrier in the honeycomb catalyst.

Claims (15)

水および/または酸素の存在下で炭化水素から水素と一酸化炭素とを生成する改質触媒と、前記改質ガスに含まれる一酸化炭素を水と反応させて水素を生成させるシフト触媒とを同一筐体に含む、水素含有ガス製造触媒。   A reforming catalyst that generates hydrogen and carbon monoxide from hydrocarbons in the presence of water and / or oxygen, and a shift catalyst that generates hydrogen by reacting carbon monoxide contained in the reformed gas with water. Hydrogen-containing gas production catalyst in the same housing. 前記水素含有ガス製造触媒がハニカム担体に前記改質触媒と前記シフト触媒とを担持したものである、請求項1記載の水素含有ガス製造触媒。   The hydrogen-containing gas production catalyst according to claim 1, wherein the hydrogen-containing gas production catalyst is a honeycomb carrier on which the reforming catalyst and the shift catalyst are supported. 前記ハニカム担体に、前記改質触媒層と前記シフト触媒層とが積層して担持されたものである、請求項2記載の水素含有ガス製造触媒。   The hydrogen-containing gas production catalyst according to claim 2, wherein the reforming catalyst layer and the shift catalyst layer are stacked and supported on the honeycomb carrier. 前記ハニカム担体に、前記改質触媒層と前記シフト触媒層との混合物が担持されたものである、請求項2記載の水素含有ガス製造触媒。   The hydrogen-containing gas production catalyst according to claim 2, wherein a mixture of the reforming catalyst layer and the shift catalyst layer is supported on the honeycomb carrier. 前記ハニカム担体に、前記改質触媒層と前記シフト触媒層とが、炭化水素ガスの上流と下流とに区分して担持させることを特徴とする、請求項2記載の水素含有ガス製造触媒。   The hydrogen-containing gas production catalyst according to claim 2, wherein the reforming catalyst layer and the shift catalyst layer are supported on the honeycomb carrier separately from upstream and downstream of hydrocarbon gas. 前記ハニカム担体に、炭化水素ガスの上流から下流に向かうガス流に平行して改質触媒層とシフト触媒層とが担持されることを特徴とする、請求項2記載の水素含有ガス製造触媒。   The hydrogen-containing gas production catalyst according to claim 2, wherein a reforming catalyst layer and a shift catalyst layer are supported on the honeycomb carrier in parallel with a gas flow from upstream to downstream of the hydrocarbon gas. 前記改質触媒とシフト触媒とがそれぞれハニカム担体に触媒成分を担持させたものであり、同一筐体中にハニカム担持改質触媒とハニカム担持シフト触媒とが配置されることを特徴とする、請求項1記載の水素含有ガス製造触媒。   The reforming catalyst and the shift catalyst each have a catalyst component supported on a honeycomb carrier, and the honeycomb supported reforming catalyst and the honeycomb supported shift catalyst are disposed in the same casing. Item 2. The hydrogen-containing gas production catalyst according to Item 1. 前記改質触媒と前記シフト触媒とがそれぞれ粒状に成型され、これら粒状改質触媒と粒状シフト触媒とが同一筐体に充填されることを特徴とする、請求項1記載の水素含有ガス製造触媒。   2. The hydrogen-containing gas production catalyst according to claim 1, wherein the reforming catalyst and the shift catalyst are each formed into a granular shape, and the granular reforming catalyst and the granular shift catalyst are filled in the same casing. . 前記改質触媒と前記シフト触媒とが同一担体上に改質触媒成分とシフト触媒成分とを担持したものである、請求項1記載の水素含有ガス製造触媒。   The hydrogen-containing gas production catalyst according to claim 1, wherein the reforming catalyst and the shift catalyst carry the reforming catalyst component and the shift catalyst component on the same carrier. 前記改質触媒と前記シフト触媒とが同一担体上にそれぞれ改質触媒成分とシフト触媒成分と積層して担持したものである、請求項9記載の水素含有ガス製造触媒。   The hydrogen-containing gas production catalyst according to claim 9, wherein the reforming catalyst and the shift catalyst are supported by laminating the reforming catalyst component and the shift catalyst component on the same carrier, respectively. 前記改質触媒が、ロジウムを含むことを特徴とする、請求項1〜10のいずれかに記載の水素含有ガス製造触媒。   The hydrogen-containing gas production catalyst according to claim 1, wherein the reforming catalyst contains rhodium. 前記シフト触媒が、白金を含むことを特徴とする、請求項1〜10のいずれかに記載の水素含有ガス製造触媒。   The hydrogen-containing gas production catalyst according to any one of claims 1 to 10, wherein the shift catalyst contains platinum. 請求項1〜12のいずれかに記載の水素含有ガス製造触媒に、炭化水素を供給し、触媒層内温度を350〜550℃に制御して反応させることを特徴とする、水素製造方法。   A hydrogen production method, comprising supplying a hydrocarbon to the hydrogen-containing gas production catalyst according to any one of claims 1 to 12, and controlling the temperature in the catalyst layer at 350 to 550 ° C to cause a reaction. 請求項1〜12のいずれかに記載の水素含有ガス製造触媒に、水/炭化水素カーボン比を1〜3に制御して反応させることを特徴とする、水素製造方法。   A method for producing hydrogen, comprising reacting the hydrogen-containing gas production catalyst according to any one of claims 1 to 12 with a water / hydrocarbon carbon ratio of 1 to 3. 請求項1〜12のいずれかに記載の水素含有ガス製造触媒に、酸素/炭化水素カーボン比を0.1〜1.5に制御して反応させることを特徴とする、水素製造方法。   A method for producing hydrogen, comprising reacting the hydrogen-containing gas production catalyst according to any one of claims 1 to 12 with an oxygen / hydrocarbon carbon ratio of 0.1 to 1.5.
JP2003427491A 2003-12-24 2003-12-24 Catalyst and process for producing hydrogen Withdrawn JP2005185890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003427491A JP2005185890A (en) 2003-12-24 2003-12-24 Catalyst and process for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003427491A JP2005185890A (en) 2003-12-24 2003-12-24 Catalyst and process for producing hydrogen

Publications (1)

Publication Number Publication Date
JP2005185890A true JP2005185890A (en) 2005-07-14

Family

ID=34786751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427491A Withdrawn JP2005185890A (en) 2003-12-24 2003-12-24 Catalyst and process for producing hydrogen

Country Status (1)

Country Link
JP (1) JP2005185890A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001632A1 (en) * 2007-06-25 2008-12-31 Ngk Insulators, Ltd. Ethanol reforming catalyst for use in the production of hydrogen, and method for production of hydrogen
JP2013063405A (en) * 2011-09-20 2013-04-11 Japan Aerospace Exploration Agency Apparatus and method for vapor-phase reduction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001632A1 (en) * 2007-06-25 2008-12-31 Ngk Insulators, Ltd. Ethanol reforming catalyst for use in the production of hydrogen, and method for production of hydrogen
JP2009000667A (en) * 2007-06-25 2009-01-08 Ngk Insulators Ltd Catalyst for reforming ethanol to produce hydrogen and method for producing hydrogen
JP2013063405A (en) * 2011-09-20 2013-04-11 Japan Aerospace Exploration Agency Apparatus and method for vapor-phase reduction

Similar Documents

Publication Publication Date Title
KR100981517B1 (en) Article for carbon monoxide removal
US20020147103A1 (en) Enhanced stability water-gas shift reaction catalysts
JP5105420B2 (en) Water-gas shift noble metal catalyst having oxide support modified with rare earth elements
JP2010528834A (en) Catalyst for hydrogen production by autothermal reforming, its production and use
JP5702910B2 (en) Treatment conditions for Pt-Re bimetallic water gas shift catalyst
MX2008006912A (en) Process conditions for pt-re bimetallic water gas shift catalysts
JP5544634B2 (en) Platinum catalyst for oxidation / reduction reaction and its use
JP2004057869A (en) Fuel reforming catalyst and manufacturing method of hydrogen enriched gas
JP2008189540A (en) Oxygen permeable membrane and system for generating hydrogen
JP2004196646A (en) Fuel reforming apparatus
WO2003051493A2 (en) Platinum group metal promoted copper oxidation catalysts and methods for carbon monoxide remediation
JP2005185890A (en) Catalyst and process for producing hydrogen
JP4172139B2 (en) CO removal catalyst and CO removal method using the same
JP2004066170A (en) Monolithic fuel reforming catalyst, and manufacturing method thereof
JP2005177624A (en) Reforming catalyst
JP2007160254A (en) Catalyst for selectively oxidizing carbon monoxide and its manufacturing method
JP2006231132A (en) Fuel reforming catalyst
JP2003146615A (en) Method for manufacturing hydrogen
JP2005035867A (en) Fuel reforming apparatus
JP2003236379A (en) Reforming catalyst and method for manufacturing the same
JP2004344752A (en) Foam-carried catalyst
JP2005125137A (en) Monolithic catalyst for shift reaction
JP2004121960A (en) Shift catalyst
JP2003135960A (en) Shift catalyst
JP2006181475A (en) Carbon monoxide selective oxidation catalyst and its manufacturing method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070306