JP4226009B2 - Hydrogen separation membrane and method for producing the same - Google Patents

Hydrogen separation membrane and method for producing the same Download PDF

Info

Publication number
JP4226009B2
JP4226009B2 JP2006011244A JP2006011244A JP4226009B2 JP 4226009 B2 JP4226009 B2 JP 4226009B2 JP 2006011244 A JP2006011244 A JP 2006011244A JP 2006011244 A JP2006011244 A JP 2006011244A JP 4226009 B2 JP4226009 B2 JP 4226009B2
Authority
JP
Japan
Prior art keywords
metal powder
separation membrane
hydrogen
powder
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006011244A
Other languages
Japanese (ja)
Other versions
JP2007190490A (en
Inventor
ゾン ス パク
ワン レ ユン
ホ テ イ
ドン ウォン キム
ソン ホ ジョ
シン グン イ
スン フン チョイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Energy Research KIER
Original Assignee
Korea Institute of Energy Research KIER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Energy Research KIER filed Critical Korea Institute of Energy Research KIER
Priority to JP2006011244A priority Critical patent/JP4226009B2/en
Publication of JP2007190490A publication Critical patent/JP2007190490A/en
Application granted granted Critical
Publication of JP4226009B2 publication Critical patent/JP4226009B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、多孔性水素分離膜に関し、より具体的には既存のパラジウム系緻密分離膜が有している、少ない水素透過量及びステンレス金属支持体の水素もろさ(HE;hydrogen embrittlement)の問題を同時に解決する水素分離膜及びその製造方法に関する。   The present invention relates to a porous hydrogen separation membrane, and more specifically, the problems of the low hydrogen permeation amount and the hydrogen embrittlement (HE) of a stainless metal support, which existing palladium-based dense separation membranes have. The present invention relates to a hydrogen separation membrane and a method for manufacturing the same.

炭化水素を改質して水素を製造する工程に対する多くの研究が進行され、現在も活発な研究が行われている。炭化水素から合成ガスを製造する工程を見ると、下記反応式(1)、(2)のようなスチーム改質(steam reforming)及び水性ガス転換反応(water gas shift)を通して高分子電解質膜燃料電池(PEMFC)の原料ガスである水素を製造する。例えば、非特許文献1を参照。   Many researches on the process of producing hydrogen by reforming hydrocarbons are in progress, and active research is still in progress. Looking at the process of producing synthesis gas from hydrocarbons, polymer electrolyte membrane fuel cells through steam reforming and water gas shift as shown in the following reaction formulas (1) and (2) Produces hydrogen, which is a raw material gas for (PEMFC). For example, see Non-Patent Document 1.

Figure 0004226009
Figure 0004226009

Figure 0004226009
Figure 0004226009

反応器内で生成された水素は、一酸化炭素と水素の濃度に従って逆水性反応を起すため、メタンの再生成過程を進行することができる。また、メタンの転換率が温度に従って決定され、生成物の中から水素を取り除くことによってメタンの転換率をより高めることができるので、反応器の運転温度をより低下させることができる。
現在、非特許文献2、3に示されるように、パラジウム系緻密分離膜、ゼオライト又はガンマアルミナを利用する多孔性分離膜の開発を目指して様々な研究が進行されつつある。
The hydrogen produced in the reactor undergoes a reverse aqueous reaction in accordance with the concentrations of carbon monoxide and hydrogen, so that the methane regeneration process can proceed. In addition, since the conversion rate of methane is determined according to the temperature, and the conversion rate of methane can be further increased by removing hydrogen from the product, the operating temperature of the reactor can be further reduced.
Currently, as shown in Non-Patent Documents 2 and 3, various researches are being made with the aim of developing a porous separation membrane using a palladium-based dense separation membrane, zeolite, or gamma alumina.

パラジウム系緻密分離膜の場合、水素イオンの伝導による分離が進行するため、高い選択度を得ることができる。反面、単位面積当たり水素の透過量が少なく、かつ製造工程が非常に煩雑であり、特に、ステンレス類の金属支持体を使用する場合、水素もろさの問題を引き起こす。従って関連の分野では耐久性の確保のために刻苦の研究と努力を傾注している。例えば、非特許文献4を参照。   In the case of a palladium-based dense separation membrane, separation by conduction of hydrogen ions proceeds, so that high selectivity can be obtained. On the other hand, the permeation amount of hydrogen per unit area is small, and the manufacturing process is very complicated. In particular, when a stainless steel metal support is used, a problem of hydrogen brittleness is caused. Therefore, in related fields, research and efforts have been devoted to ensuring durability. For example, see Non-Patent Document 4.

一方、多孔性分離膜の場合は、高い水素透過率が得られるため、燃料電池用ガス源としての水素の製造工程のような低い選択度においても、工程の構成が可能なシステムへの適用性が期待される。
しかし、現在まで研究又は開発された多孔性分離膜の場合、大部分がセラミック系(ガンマアルミナ、ゼオライト)支持体を利用している。例えば、非特許文献5を参照。
On the other hand, in the case of a porous separation membrane, a high hydrogen permeability can be obtained, so that it can be applied to a system capable of configuring a process even with a low selectivity such as a process for producing hydrogen as a gas source for a fuel cell. There is expected.
However, most porous separation membranes studied or developed to date use ceramic (gamma alumina, zeolite) supports. For example, see Non-Patent Document 5.

A.Basile, L.Paturzo, An experimental study of multilayered composite palladium membrane reactors for partial oxidation of methane to syngas, Catalysis Today 67(2001)55A. Basile, L. Paturzo, An experimental study of multilayered composite palladium membrane reactors for partial oxidation of methane to syngas, Catalysis Today 67 (2001) 55 R.Checchetto, N.Bazzanella, B.Parron, A.Miotello, Palladium membranes prepared by r.f..magnetron sputtering for hydrogen purification, Surface and Coatings Technology 177-178(2004)73R. Checchetto, N. Bazzanella, B. Parron, A. Miotello, Palladium membranes prepared by r. f. . magnetron sputtering for hydrogen purification, Surface and Coatings Technology 177-178 (2004) 73 T.Tomita, K.Nakayama, H.Sakai, Gas separation characteristics of DDR type zeolite membrane, Microporous and Mesoporous Materials, 68(2004)71T. Tomita, K. Nakayama, H. Sakai, Gas separation characteristics of DDR type zeolite membrane, Microporous and Mesoporous Materials, 68 (2004) 71 D.Lee, Y.Lee, S.Nam, B.Sea, K.Lee, Preparation and characterization of SiO2 composite membrane for purification of hydrogen from methanol steam reforming as an energy carrier system for PEMFC, Separation and Purification Technology 32(2003)45D. Lee, Y. Lee, S. Nam, B. Sea, K. Lee, Preparation and characterization of SiO2 composite membrane for purification of hydrogen from methanol steam reforming as an energy carrier system for PEMFC, Separation and Purification Technology 32 (2003) 45 D.Lee, L.Zang, S.T Oyama, S.Niu, R.F.Saraf, Synthesis, Characterization, and gas permeation properties of a hydrogen permeable silica membrane supported on porous alumina, J.Membrane Science 231(2004)117D. Lee, L. Zang, S. T Oyama, S. Niu, R .; F. Saraf, Synthesis, Characterization, and gas permeation properties of a hydrogen permeable silica membrane supported on porous alumina, J. Membrane Science 231 (2004) 117

しかし、これに関る最も大きな問題点としては、完成された分離膜のシステム化の過程における困難性である。即ち、分離膜の多層構造の為には、シーリングと溶接によるシステムの構成が必修的であるが、現在まではこれに対する技術の開発が未完成のままであるのが実情である。
本発明は、前記従来技術が有する問題を鑑みて成された発明であって、本発明の第1の目的は、既存のパラジウム系緻密分離膜が有する少ない水素透過量及びステンレス金属支持体の水素もろさ(水素脆性)の問題を同時に解決する水素分離膜を提供する。
本発明の第2の目的は、前記第1の目的で提供される水素分離膜に熱的安定性を一層改善した水素分離膜を提供する。
本発明の第3の目的は、工程が簡単で低コストの大量生産に適した水素分離膜の製造方法を提供する。
However, the biggest problem with this is the difficulty in the process of systemizing the completed separation membrane. That is, for the multi-layer structure of the separation membrane, the system configuration by sealing and welding is indispensable, but until now, the development of technology for this is still incomplete.
The present invention has been made in view of the problems of the prior art, and the first object of the present invention is to reduce the hydrogen permeation amount of the existing palladium-based dense separation membrane and the hydrogen of the stainless metal support. Provided is a hydrogen separation membrane that simultaneously solves the problem of brittleness (hydrogen embrittlement).
The second object of the present invention is to provide a hydrogen separation membrane having further improved thermal stability over the hydrogen separation membrane provided for the first object.
The third object of the present invention is to provide a method for producing a hydrogen separation membrane that is simple in process and suitable for mass production at low cost.

前記の目的を達成するために、本発明は、水素に対する吸着特性を有する金属微細粒子を圧着成形して製造される水素分離膜において、前記金属微細粒子は、第1金属粉末0.5〜50重量%及び前記第1金属粉末より平均粒径が相対的に大きい第2金属粉末50〜99.5重量%で構成され、前記第1金属粉末及び前記第2金属粉末はニッケル粉末であり、前記第1金属粉末は粒子の平均粒径が0.01〜0.5μmの微細粒子から選択され、かつ前記第2金属粉末は粒子の平均粒径が0.8〜10μmの微細粒子から選択されるとともに、前記第1金属粉末と前記第2金属粉末とが混合され圧着成形されていることを特徴とする水素分離膜を提供する
前記第1金属粉末は、好ましくはその表面がAl,Si,Pt,Pd,Ru,Rh,Au,Agの群から選択される少なくとも1種の金属で被覆されることを特徴とする。
前記第2金属粉末は、好ましくはその前処理として200〜500℃の水素雰囲気下で還元されることを特徴とする
In order to achieve the above object, the present invention provides a hydrogen separation membrane manufactured by press-molding metal fine particles having an adsorption property for hydrogen, wherein the metal fine particles include first metal powder 0.5 to 50. The second metal powder is 50 to 99.5% by weight and the average particle diameter is relatively larger than that of the first metal powder, and the first metal powder and the second metal powder are nickel powder, The first metal powder is selected from fine particles having an average particle diameter of 0.01 to 0.5 μm, and the second metal powder is selected from fine particles having an average particle diameter of 0.8 to 10 μm. In addition, a hydrogen separation membrane is provided in which the first metal powder and the second metal powder are mixed and compression-molded .
The surface of the first metal powder is preferably coated with at least one metal selected from the group consisting of Al, Si, Pt, Pd, Ru, Rh, Au, and Ag.
The second metal powder is preferably reduced in a hydrogen atmosphere at 200 to 500 ° C. as a pretreatment .

更に本発明は、水素に対する吸着特性を有する金属微細粒子を包含する水素分離膜の製造方法において、第1金属粉末0.5〜50重量%及び前記第1金属粉末より平均粒径が相対的に大きい第2金属粉末50〜99.5重量%を混合する段階と、前記混合粉末を所定の圧力により圧着成形する段階、及び前記成形体を水素雰囲気下で焼成する段階とを含む水素分離膜の製造方法であり、前記第1金属粉末及び前記第2金属粉末はニッケル粉末であり、前記第1金属粉末は粒子の平均粒径が0.01〜0.5μmの微細粒子から選択され、かつ前記第2金属粉末は粒子の平均粒径が0.8〜10μmの微細粒子から選択されることを特徴とする水素分離膜の製造方法を提供する。
本発明の製造方法において、好ましくは前記圧着成形が1〜20tons/cmの圧力下で実施されることを特徴とする。
本発明の製造方法において、好ましくは前記第1金属粉末の表面がAl,Si,Pt,Pd,Ru,Rh,Au,Agの群から選択される少なくとも1種の金属で被覆されることを特徴とする。
本発明の製造方法において、好ましくは前記第1金属粉末と前記第2金属粉末とを混合する段階において、焼結抑制剤として、Al酸化物粉末又は/及びSi酸化物粉末を同時に混合する段階を含むことが望ましい。
本発明の製造方法において、好ましくは前記第2金属粉末はその前処理として200〜500℃の水素雰囲気下で還元されることを特徴とする
Furthermore, the present invention relates to a method for producing a hydrogen separation membrane including metal fine particles having adsorption characteristics for hydrogen, wherein the first metal powder has an average particle size of 0.5 to 50% by weight and a relative average particle diameter than the first metal powder. A hydrogen separation membrane comprising a step of mixing 50 to 99.5% by weight of a large second metal powder, a step of pressure-molding the mixed powder with a predetermined pressure, and a step of firing the compact in a hydrogen atmosphere. The first metal powder and the second metal powder are nickel powders, and the first metal powder is selected from fine particles having an average particle diameter of 0.01 to 0.5 μm, and The second metal powder is selected from fine particles having an average particle size of 0.8 to 10 μm .
In the production method of the present invention, preferably, the pressure-bonding is performed under a pressure of 1 to 20 tons / cm 2 .
In the production method of the present invention, the surface of the first metal powder is preferably coated with at least one metal selected from the group consisting of Al, Si, Pt, Pd, Ru, Rh, Au, and Ag. And
In the production method of the present invention, preferably in the step of mixing the first metal powder and the second metal powder, a step of simultaneously mixing Al oxide powder and / or Si oxide powder as a sintering inhibitor. It is desirable to include.
In the production method of the present invention, the second metal powder is preferably reduced in a hydrogen atmosphere at 200 to 500 ° C. as a pretreatment .

本発明による水素分離膜は、従来のパラジウム系緻密分離膜の有する少ない水素透過量及びステンレス金属支持体の水素もろさの問題を同時に解決することができる。
また、本発明による水素分離膜は、焼結を抑制する効果を有する金属成分を金属粉末に被覆することによって熱的安定性を一層改善することができ、分離膜の製造工程が簡単でコストの低い大量生産に適する長所をも有する。
The hydrogen separation membrane according to the present invention can simultaneously solve the problems of the small hydrogen permeation amount and the hydrogen brittleness of the stainless steel metal support that the conventional palladium-based dense separation membrane has.
In addition, the hydrogen separation membrane according to the present invention can further improve the thermal stability by coating a metal powder with a metal component having an effect of suppressing sintering, and the production process of the separation membrane is simple and cost-effective. It also has the advantage of being suitable for low volume production.

さらに、本発明をより詳細に説明する。
本発明において、水素に対する吸着特性を有する金属微細粒子は、平均粒径が異なる金属粉末群から選択される。
微細粉末を圧着して多孔性媒体を製造するときに使用される粉末の粒径が小さいほど媒体内の微細気孔の存在確率を高めることができるため、水素に対する分離効率もより高く保持するであろうと予想することは一般的に考えられる。このようなことは、後述する比較例1及び2を通じて確認することができる。
即ち、平均粒径が0.15μmの微細粉末を利用して製造した比較例2の水素分離膜の場合、最低圧力差における水素/窒素の選択度が23.3(表6参照)に至る高い結果を示す反面、平均粒径が5μmの粉末が使用された比較例1の水素分離膜の場合、最低圧力差における水素/窒素の選択度が14(表5参照)を示していることによっても確認することができる。
Furthermore, the present invention will be described in more detail.
In the present invention, the metal fine particles having an adsorption characteristic for hydrogen are selected from a group of metal powders having different average particle sizes.
The smaller the particle size of the powder used when producing a porous medium by compressing the fine powder, the higher the probability of the presence of fine pores in the medium, so that the separation efficiency for hydrogen is also kept higher. It is generally considered to expect to be. This can be confirmed through Comparative Examples 1 and 2 described later.
That is, in the case of the hydrogen separation membrane of Comparative Example 2 manufactured using fine powder having an average particle size of 0.15 μm, the hydrogen / nitrogen selectivity at the lowest pressure difference is as high as 23.3 (see Table 6). On the other hand, in the case of the hydrogen separation membrane of Comparative Example 1 in which a powder having an average particle size of 5 μm was used, the selectivity of hydrogen / nitrogen at the minimum pressure difference was 14 (see Table 5). Can be confirmed.

前記の事実から推定するとき、より向上された結果を得るためには、より一層の微細な粉末が要求されると言えるが、微細粉末化の製造工程に限界があるためここには難関がある。しかし、このような限界は、互に異なる粒子のサイズを有する金属粉末を混合して圧着させることによって、緻密度及び選択度を大幅に改善することができる。これは後述する実施例1によって得られた水素分離膜が、図1に示されたように、比較例1及び2による水素分離膜と比べて表面の緻密度が格段に向上されている事実によって確認することができる。   As estimated from the above facts, it can be said that a finer powder is required to obtain a more improved result, but there is a difficulty in this because there is a limit to the production process of fine powder. . However, such limitations can greatly improve the density and selectivity by mixing and pressing metal powders having different particle sizes. This is due to the fact that the hydrogen separation membrane obtained in Example 1 described later has a markedly improved surface density compared to the hydrogen separation membranes in Comparative Examples 1 and 2, as shown in FIG. Can be confirmed.

第1金属粉末と第2金属粉末の平均粒径の差は、特に限定されないが好ましくは、少なくとも0.3μm以上の差がある物から、より好ましくは、第1金属粉末は平均粒径が0.01〜0.5μmから選択され、第2金属粉末の平均粒径は0.8〜10μmから選択される粉末を使用するのが好ましい。
なお、緻密度及び選択度の改善のためには、前記第1金属粉末と第2金属粉末の混合比を、第1金属粉末0.5〜50重量%と第2金属粉末50〜99.5重量%とで構成するのが好ましい。
The difference in the average particle size between the first metal powder and the second metal powder is not particularly limited, but is preferably a material having a difference of at least 0.3 μm or more, more preferably, the first metal powder has an average particle size of 0. It is preferable to use a powder selected from 0.01 to 0.5 [mu] m and an average particle size of the second metal powder selected from 0.8 to 10 [mu] m.
In order to improve the density and selectivity, the mixing ratio of the first metal powder and the second metal powder is 0.5 to 50% by weight of the first metal powder and 50 to 99.5 of the second metal powder. It is preferable that it is composed of% by weight.

前記第1金属粉末及び第2金属粉末として使用される金属は、水素に対する吸着特性を有し、従来の水素分離膜を構成する成分として使用される如何なる金属粉末でも構わないが、代表的な例を挙げればニッケル粉末がこれに該当する。
また、前記第1金属粉末は、金属粉末をそのまま使用しても構わないが、高温における安定性を確保するためには、その外表面に特別な処理を施すことが好ましい。このような処理は、特定の金属成分を第1金属粉末の外表面に被覆することによってなされる。前記の第1金属粉末の外表面を被覆することのできる金属成分の例は、焼結の抑制効果を有する金属で、Al,Si,Pt,Pd,Ru,Rh,Au,Agの群から選択される少なくとも1種の金属を挙げることができる。
The metal used as the first metal powder and the second metal powder has an adsorption characteristic for hydrogen, and any metal powder used as a component constituting a conventional hydrogen separation membrane may be used. This corresponds to nickel powder.
The first metal powder may be used as it is, but it is preferable to perform a special treatment on the outer surface in order to ensure stability at high temperatures. Such treatment is performed by coating a specific metal component on the outer surface of the first metal powder. Examples of the metal component that can coat the outer surface of the first metal powder are metals having a sintering suppressing effect, and are selected from the group of Al, Si, Pt, Pd, Ru, Rh, Au, and Ag. There may be mentioned at least one metal.

後述のように、焼結抑制効果を有する金属(焼結抑制剤)で被覆することなく得られた、実施例2の水素分離膜と、焼結抑制効果を有する金属で被覆して得られた、実施例3の水素分離膜とを対象にして得られた実験の結果によると、水素/窒素に対する選択度が最低圧力差においてそれぞれ11.5と21.5であることから焼結抑制剤の役割を確認することができる。このような現象は、実施例2による図2と、実施例3による図3を参照すると、焼結抑制剤を加えるに従って組織の安定性をもたらすことを確認することができる。また、図3に示される水素分離膜の断面写真を参照すると、焼結抑制剤を使用した場合の平均粒径が相対的に小さい第1金属粉末の微細粒子の形態が完全な状態である反面、平均粒径5μmの相対的に大きい第2金属粉末においては、焼結が進行された点から見て高温における安定性を確保するためには、使用される全ての粒子に焼結抑制剤を被覆することが好ましいと認められる。
なおかつ、このような焼結抑制剤の被覆は、水素に対する吸着力を更に強化させる働きもなす。
As described later, the hydrogen separation membrane of Example 2 obtained without coating with a metal having a sintering suppressing effect (sintering inhibitor) and the metal having a sintering suppressing effect were obtained. According to the results of the experiment obtained for the hydrogen separation membrane of Example 3, the selectivity for hydrogen / nitrogen was 11.5 and 21.5 at the lowest pressure difference, respectively. The role can be confirmed. With reference to FIG. 2 according to Example 2 and FIG. 3 according to Example 3, it can be confirmed that such a phenomenon brings about the stability of the structure as the sintering inhibitor is added. In addition, referring to the cross-sectional photograph of the hydrogen separation membrane shown in FIG. 3, the fine particles of the first metal powder having a relatively small average particle diameter when the sintering inhibitor is used are in a complete state. In order to ensure stability at a high temperature in view of the progress of the sintering in the relatively large second metal powder having an average particle size of 5 μm, a sintering inhibitor is added to all the particles used. It is recognized that coating is preferred.
Moreover, such a coating of the sintering inhibitor also serves to further strengthen the adsorption force for hydrogen.

前記焼結抑制剤の被覆工程は、第1金属粉末を200〜400℃の空気雰囲気下で1〜5時間焼成する段階と、前記焼結抑制剤を含む液状溶液を利用して前記第1金属粉末に初期ウエット法で焼結抑制剤を担持させる段階、及び300〜400℃の空気雰囲気下で焼成することによって担持金属を固着化させる段階とによって行われる。
より簡単な方法としては、還元剤(例えば、NaBH)を利用して焼結抑制物質を前記第1金属粉末の外表面に直接塗布することも可能である。しかしこの場合、還元剤として利用された残存物(前記例の場合、NaBO)の除去のために注意深い洗浄を実施する必要がある。
The coating step of the sintering inhibitor is performed by firing the first metal powder in an air atmosphere at 200 to 400 ° C. for 1 to 5 hours, and using the liquid solution containing the sintering inhibitor. It is performed by a step of supporting a sintering inhibitor on the powder by an initial wet method and a step of fixing the supported metal by firing in an air atmosphere at 300 to 400 ° C.
As a simpler method, it is also possible to apply a sintering inhibitor directly to the outer surface of the first metal powder using a reducing agent (eg, NaBH 4 ). However, in this case, it is necessary to perform careful washing to remove the residue (NaBO 2 in the above example) used as the reducing agent.

また、本発明における焼結抑制剤は、金属粉末に被覆するのが好ましい方法ではあるが、製造工程の単純化のために、Al又は/及びSi酸化物粉末の混合によって代替することも可能である。   In addition, although the sintering inhibitor in the present invention is preferably coated on metal powder, it can be replaced by mixing Al or / and Si oxide powder in order to simplify the manufacturing process. is there.

前記第1金属粉末と第2金属粉末の混合粉末は、一定の形状に加圧成形され成形体として製造される。前記加圧(又は圧着)成形は混合金属粉末をモールドを使用して、好ましくは1〜20tons/cmの圧力下で行われることが好ましい。
前記加圧成形をより円滑に進行させるために、平均粒径が相対的に大きい第2金属粉末は200〜500℃の水素雰囲気下で還元されることができる。
前記の過程を経て得られた成形体は、特に限定されないが、好ましくは500〜900℃の水素雰囲気下で焼成されることが好ましい。なお、より詳しくは好適な実施例の説明で補完する。
The mixed powder of the first metal powder and the second metal powder is pressure-molded into a certain shape and manufactured as a molded body. The pressurization (or pressure bonding) molding is preferably performed using a mixed metal powder mold, preferably under a pressure of 1 to 20 tons / cm 2 .
In order to make the pressure forming proceed more smoothly, the second metal powder having a relatively large average particle size can be reduced in a hydrogen atmosphere at 200 to 500 ° C.
Although the molded object obtained through the said process is not specifically limited, Preferably it is preferable to bake in 500-900 degreeC hydrogen atmosphere. More details will be supplemented in the description of the preferred embodiment.

以下、本発明の内容を実施例によってより詳細に説明する。ただ、これらの実施例は本発明の理解のために提示される例示であり、本発明の権利範囲がこれらの実施例に限定されると解釈されてはならない。   Hereinafter, the contents of the present invention will be described in more detail with reference to examples. However, these examples are examples provided for understanding of the present invention, and the scope of rights of the present invention should not be construed to be limited to these examples.

第1金属粉末として平均粒径0.15μmのニッケル粉末20重量%と、第2金属粉末として平均粒径5μmのニッケル粉末80重量%をモルタルを使用して30分間均一に混合した。前記混合粉末1.3gを直径12.7mmの円形モールドを利用して多孔性分離膜を製造した。このときのプレスの圧力は9.97tons/cmで、この加圧の状態で1分間維持した。
製造された多孔性分離膜の水素と窒素に対するそれぞれの透過度は、図6のように製作されたガス透過量測定装置を利用して測定した。
水素と窒素とをそれぞれ供給し、分離膜の前・後端に圧力差を2.2psiに維持した状態で多孔性分離膜を透過したガスの流量を測定した。前記の測定装置は、各ガスを供給するガス流量コントロール部1(質量流コントロールバルブ、圧力コントロールバルブ)と、分離膜を透過したガスの流量を測定するための分析部9(ガスクロマトグラフィー)とによって構成された。符号2はガス混合器、3は電気加熱炉、4は単位分離膜、5は温度感知器、6は温度調節器、7は圧力感知器及び調節器セット、8は石鹸バブル流量計を表している。単位分離膜4が装着された部分は、温度を調節することができる電気加熱炉3内に設置して透過膜の温度を200℃で一定に維持した。また、供給された未透過ガスの排出ラインに圧力コントロールバルブを設けて分離膜両端の圧力差を求めることによって各圧力変数による透過量を測定した。
20% by weight of nickel powder having an average particle diameter of 0.15 μm as the first metal powder and 80% by weight of nickel powder having an average particle diameter of 5 μm as the second metal powder were uniformly mixed for 30 minutes using a mortar. A porous separation membrane was manufactured using 1.3 g of the mixed powder using a circular mold having a diameter of 12.7 mm. The press pressure at this time was 9.97 tons / cm 2 , and this pressure was maintained for 1 minute.
The permeabilities of the produced porous separation membrane with respect to hydrogen and nitrogen were measured using a gas permeation measuring device manufactured as shown in FIG.
Hydrogen and nitrogen were respectively supplied, and the flow rate of the gas that permeated through the porous separation membrane was measured with the pressure difference maintained at 2.2 psi between the front and rear ends of the separation membrane. The measuring apparatus includes a gas flow rate control unit 1 (mass flow control valve, pressure control valve) for supplying each gas, and an analysis unit 9 (gas chromatography) for measuring the flow rate of the gas that has passed through the separation membrane. Consists of. Reference numeral 2 is a gas mixer, 3 is an electric heating furnace, 4 is a unit separation membrane, 5 is a temperature sensor, 6 is a temperature controller, 7 is a pressure sensor and controller set, and 8 is a soap bubble flow meter. Yes. The portion where the unit separation membrane 4 was mounted was installed in an electric heating furnace 3 capable of adjusting the temperature, and the temperature of the permeable membrane was kept constant at 200 ° C. Further, the amount of permeation due to each pressure variable was measured by providing a pressure control valve in the discharge line of the supplied non-permeated gas and obtaining the pressure difference between both ends of the separation membrane.

前記のように測定された水素及び窒素に対するそれぞれの透過量のデータを利用して下記の式(3)によって透過選択度(perm−selectivity)を決定した。このとき、各ガスの透過量(ML、Lはリットルを表しており、以下同じ)は分離膜の面積(cm)、測定時間(min)、圧力の差(psi)が同一に換算された状態での単一成分の透過量を意味する。また、分離膜の下端部から分離膜透過ガスを排出するための移送用ガスとしてアルゴン(Ar)を供給した。 The perm-selectivity was determined by the following equation (3) using the data of the permeation amounts for hydrogen and nitrogen measured as described above. At this time, the permeation amount of each gas (ML, L represents liters, the same applies hereinafter) was converted to the same separation membrane area (cm 2 ), measurement time (min), and pressure difference (psi). It means the amount of transmission of a single component in the state. In addition, argon (Ar) was supplied as a transfer gas for discharging the separation membrane permeating gas from the lower end of the separation membrane.

Figure 0004226009
Figure 0004226009

実験の結果が下記表1に示すように、水素に対する透過量は圧力変数2.2〜14.7psiの範囲で33.6〜10.5ML/cm.min.atm、窒素1.0〜1.7ML/cm.min.atmで、水素/窒素の選択度は、32.0〜6.0である。 As shown in Table 1 below, the hydrogen permeation amount is 33.6 to 10.5 ML / cm 2 in the pressure variable range of 2.2 to 14.7 psi. min. atm, nitrogen 1.0-1.7 ML / cm 2 . min. Atm, the hydrogen / nitrogen selectivity is 32.0-6.0.

Figure 0004226009
Figure 0004226009

実施例1で製造された分離膜を600℃の水素雰囲気下で5時間焼成した後、水素と窒素に対する透過度をそれぞれ測定した。その他の分離膜製造条件及びガス流量条件は実施例1と同様にして実施した。
ガス透過量の測定結果は表2に示すように、水素の透過量は181〜84ML/cm.min.atm、窒素の透過量は15〜26ML/cm.min.atmで、水素/窒素の選択度は、11.5〜3.2のレベルである。
実施例1と比較するとき、各ガスの透過量は6倍以上増加された反面、選択度は1/2〜1/3程度に減少しており、分離膜内の細孔直径の増加現象が発生したことが分かる。
The separation membrane produced in Example 1 was baked for 5 hours in a hydrogen atmosphere at 600 ° C., and then the permeability to hydrogen and nitrogen was measured. Other separation membrane production conditions and gas flow rate conditions were the same as in Example 1.
As shown in Table 2, the gas permeation amount measurement results are as follows: hydrogen permeation amount is 181 to 84 ML / cm 2 . min. atm, nitrogen permeation is 15-26 ML / cm 2 . min. Atm, hydrogen / nitrogen selectivity is at a level of 11.5-3.2.
Compared with Example 1, while the permeation amount of each gas was increased by 6 times or more, the selectivity decreased to about 1/2 to 1/3, and the phenomenon of increase in pore diameter in the separation membrane was observed. You can see that it occurred.

Figure 0004226009
Figure 0004226009

実施例2と同様にして分離膜を製造し熱処理を施した。ただ、平均粒径0.15μmの粉末の外表面にはアルミニウムをコーティングした。コーティングの方法は次のように実施した。
硝酸アルミニウムを蒸留水に溶解し、ニッケル粉末を添加して10分間撹拌した後、0.1mol%のNaBH水溶液を徐々に滴下し溶液のpHを8に増加させアルミニウム成分をニッケル粉末の外表面にコーティングした。コーティングされたニッケル粉末は蒸留水によって3回に亘り洗浄した後、乾燥して使用した。
ガス透過量の測定結果は表3に示すように、水素の透過量は45.1〜15.8ML/cm.min.atm,窒素の透過量は2.1〜3.4ML/cm.min.atmで、水素/窒素の選択度は、21.5〜4.6のレベルである。
In the same manner as in Example 2, a separation membrane was produced and subjected to heat treatment. However, the outer surface of the powder having an average particle diameter of 0.15 μm was coated with aluminum. The coating method was performed as follows.
Aluminum nitrate is dissolved in distilled water, nickel powder is added and stirred for 10 minutes, then 0.1 mol% NaBH 4 aqueous solution is gradually added dropwise to increase the pH of the solution to 8, and the aluminum component is added to the outer surface of the nickel powder. Coated. The coated nickel powder was washed 3 times with distilled water and then dried before use.
The measurement results of the gas permeation amount are as shown in Table 3, and the hydrogen permeation amount is 45.1 to 15.8 ML / cm 2 . min. The amount of permeation of atm and nitrogen is 2.1 to 3.4 ML / cm 2 . min. Atm, the hydrogen / nitrogen selectivity is at a level of 21.5 to 4.6.

実施例1と比較するとき、各ガスの透過量は1.5倍以上増加された反面、ガス選択度は2/3程度に減少しており、このことは、分離膜の焼結に対する安定性100%の確保は不可能ではあるが、実施例2と比較するとき選択度の減少の幅が非常に少なく表れていることが分かる。従って、このような事実から見て、ニッケル粉末の外表面にアルミニウムをコーティングする方法は、ニッケル系多孔性分離膜に熱的安定性を付与する技法として評価される。   When compared with Example 1, the permeation amount of each gas was increased by 1.5 times or more, but the gas selectivity was reduced to about 2/3, indicating that the separation membrane was stable against sintering. Although it is impossible to secure 100%, it can be seen that the range of decrease in selectivity appears very small when compared with Example 2. Therefore, in view of such facts, the method of coating the outer surface of the nickel powder with aluminum is evaluated as a technique for imparting thermal stability to the nickel-based porous separation membrane.

Figure 0004226009
Figure 0004226009

前記実施例3の分離膜に対して二酸化炭素、プロパン、メタンに対する透過量を測定した。
各ガスの透過量を測定して水素に対する選択度を計算した結果を表4に示すように、二酸化炭素の選択度が最も高い43〜6.7を表す反面、最も少ない分子量を有するメタンの選択度が最も低い8.6〜3.4を示している。
ここで、注目すべきことは、分離膜両側の圧力差が14.7psiの高い状態においても、測定された全てのガスに対するクヌーセン拡散(Knudsen diffusion)の範囲を大きく上回る性能を得ることができた結果である。
The permeation amount for carbon dioxide, propane, and methane was measured for the separation membrane of Example 3.
As shown in Table 4, the permeation amount of each gas was measured and the selectivity for hydrogen was calculated. As shown in Table 4, the selectivity for carbon dioxide was 43 to 6.7, while the methane having the smallest molecular weight was selected. The lowest degree is 8.6 to 3.4.
Here, it should be noted that even when the pressure difference between both sides of the separation membrane was high at 14.7 psi, it was possible to obtain performance far exceeding the range of Knudsen diffusion for all the measured gases. It is a result.

Figure 0004226009
Figure 0004226009

〔比較例1〕
前記実施例1のようにして多孔性分離膜を製造し、水素、窒素に対する透過量を測定した。ただ、ニッケル粉末を5μmの単一粒径粉末にして多孔性分離膜を製造した(図4参照)。
ガス透過量の測定結果は表5に示すように、水素の透過量は58.8〜24.8ML/cm.min.atm,窒素の透過量は4.2〜6.7ML/cm.min.atmで、水素/窒素の選択度は、14.0〜3.6の低いレベルにある。特に、窒素の透過量は実施例1と比較するとき低圧状態(2.2psi)においても非常に大きい透過量を見せることから、平均気孔の分布が非常に大きいことを確認することができる。従って、マイクロン−サイズ単一粒径のニッケル粉末の圧着による多孔性分離膜の製造においてその限界を確かめることにもなる。
[Comparative Example 1]
A porous separation membrane was produced as in Example 1, and the permeation amount for hydrogen and nitrogen was measured. However, a porous separation membrane was produced by changing the nickel powder to a powder having a single particle diameter of 5 μm (see FIG. 4).
As shown in Table 5, the gas permeation amount measurement results are as follows. Hydrogen permeation amount is 58.8 to 24.8 ML / cm 2 . min. The amount of permeation of atm and nitrogen is 4.2 to 6.7 ML / cm 2 . min. At atm, the hydrogen / nitrogen selectivity is at a low level of 14.0-3.6. In particular, the nitrogen permeation amount shows a very large permeation amount even in a low pressure state (2.2 psi) when compared with Example 1, so that it can be confirmed that the distribution of average pores is very large. Therefore, the limit is confirmed in the production of a porous separation membrane by pressure bonding of nickel powder having a micron-size single particle size.

Figure 0004226009
Figure 0004226009

〔比較例2〕
前記比較例1のようにして多孔性分離膜を製造し、水素、窒素に対する透過量を測定した。ただ、ニッケル粉末を平均粒径0.15μmの単一成分を使用して多孔性分離膜を製造した(図5参照)。
ガス透過量の測定結果は表6に示すように、水素の透過量は73.5〜17.9ML/cm.min.atm,窒素の透過量は3.1〜3.7ML/cm.min.atmで、水素/窒素の選択度は、23.3〜4.7の低いレベルにある。
比較例1で使用されたニッケル粉末と比較して平均粒径が1/33レベルの超微細粉末を使用したにも拘わらず、実施例1の混合粉末を使用して製造された分離膜に比べて低い選択度を表している。従って、本発明のように、圧着による水素分離膜の製造工程において、多粒径の分布を有する粉末を使用することは、要求される選択度を得るためには絶対的な条件であることを示す結果として評価される。
[Comparative Example 2]
A porous separation membrane was produced as in Comparative Example 1, and the permeation amount for hydrogen and nitrogen was measured. However, a porous separation membrane was produced using a single component of nickel powder having an average particle size of 0.15 μm (see FIG. 5).
As shown in Table 6, the gas permeation amount measurement results are as follows. Hydrogen permeation amount is 73.5 to 17.9 ML / cm 2 . min. The amount of permeation of atm and nitrogen is 3.1 to 3.7 ML / cm 2 . min. At atm, the hydrogen / nitrogen selectivity is at a low level of 23.3 to 4.7.
Compared to the separation membrane produced using the mixed powder of Example 1 despite the use of ultrafine powder having an average particle size of 1/33 level compared to the nickel powder used in Comparative Example 1. Represents low selectivity. Therefore, as in the present invention, in the manufacturing process of the hydrogen separation membrane by pressure bonding, it is an absolute condition to obtain the required selectivity to use a powder having a multi-particle size distribution. It is evaluated as the result shown.

Figure 0004226009
Figure 0004226009

上述のように、本発明を好適な実施例を参照して説明したが、当該技術分野の当業者であれば別添特許請求範囲に記載された本発明の思想及び領域の範囲内で本発明を多様に修正並びに変更することができることは、容易に理解されるであろう。   As described above, the present invention has been described with reference to the preferred embodiments. However, those skilled in the art will recognize that the present invention is within the spirit and scope of the present invention described in the appended claims. It will be readily understood that various modifications and changes can be made.

平均粒径0.15μmのニッケル粉末20重量%と、平均粒径5μmのニッケル粉末80重量%とを混合した多粒径分布を有する粉末を圧着して製造した多孔性分離膜のSEM(走査型電子顕微鏡)写真である。SEM (scanning type) of a porous separation membrane produced by pressure-bonding a powder having a multi-particle size distribution in which 20% by weight of nickel powder having an average particle size of 0.15 μm and 80% by weight of nickel powder having an average particle size of 5 μm are mixed. It is an electron microscope photograph. 平均粒径0.15μmのニッケル粉末20重量%と、平均粒径5μmのニッケル粉末80重量%とを混合した多粒径分布を有する粉末を圧着して製造した後、600℃の水素雰囲気で焼成された多孔性分離膜のSEM写真である。A powder having a multi-particle size distribution in which 20% by weight of nickel powder having an average particle size of 0.15 μm and 80% by weight of nickel powder having an average particle size of 5 μm is pressed and manufactured, and then fired in a hydrogen atmosphere at 600 ° C. It is a SEM photograph of the made porous separation membrane. アルミニウム成分が被覆された、平均粒径0.15μmのニッケル粉末20重量%と、平均粒径5μmのニッケル粉末80重量%とを混合した多粒径分布を有する粉末を圧着して製造した後、600℃の水素雰囲気で焼成された多孔性分離膜のSEM写真である。After pressure-bonding and producing a powder having a multi-particle size distribution in which an aluminum component is coated and nickel powder having an average particle size of 0.15 μm and 20% by weight of nickel powder and 80% by weight of nickel powder having an average particle size of 5 μm are mixed, It is a SEM photograph of the porous separation membrane baked in 600 degreeC hydrogen atmosphere. 平均粒径5μmの単一粒径ニッケル粉末を圧着して製造した多孔性分離膜のSEM写真である。It is a SEM photograph of the porous separation membrane manufactured by press-bonding single particle size nickel powder having an average particle size of 5 μm. 平均粒径0.15μmの単一粒径ニッケル粉末を圧着して製造した多孔性分離膜のSEM写真である。It is a SEM photograph of the porous separation membrane manufactured by press-bonding single particle size nickel powder having an average particle size of 0.15 μm. 本発明の実施例で使用した多孔性分離膜の性能評価装置の構成図である。It is a block diagram of the performance evaluation apparatus of the porous separation membrane used in the Example of this invention.

符号の説明Explanation of symbols

1…ガス流量コントロール部(質量流コントロールバルブ、圧力コントロールバルブ)、2…ガス混合器、3…電気加熱炉、4…単位分離膜、5…温度感知器、6…温度調節器、7…圧力感知器及び調節器セット、8…石鹸バブル流量計、9…分析部(ガスクロマトグラフィー)   DESCRIPTION OF SYMBOLS 1 ... Gas flow control part (mass flow control valve, pressure control valve), 2 ... Gas mixer, 3 ... Electric heating furnace, 4 ... Unit separation membrane, 5 ... Temperature sensor, 6 ... Temperature controller, 7 ... Pressure Sensor and controller set, 8 ... soap bubble flow meter, 9 ... analysis unit (gas chromatography)

Claims (8)

水素に対する吸着特性を有する金属微細粒子を圧着成形して製造される水素分離膜において、
前記金属微細粒子は、第1金属粉末0.5〜50重量%及び前記第1金属粉末より平均粒径が相対的に大きい第2金属粉末50〜99.5重量%で構成され、
前記第1金属粉末及び前記第2金属粉末はニッケル粉末であり、
前記第1金属粉末は粒子の平均粒径が0.01〜0.5μmの微細粒子から選択され、かつ前記第2金属粉末は粒子の平均粒径が0.8〜10μmの微細粒子から選択されるとともに、前記第1金属粉末と前記第2金属粉末とが混合され圧着成形されていることを特徴とする水素分離膜。
In hydrogen separation membranes produced by pressure forming metal fine particles with adsorption properties for hydrogen,
The fine metal particles are composed of 0.5 to 50% by weight of the first metal powder and 50 to 99.5% by weight of the second metal powder having an average particle size relatively larger than that of the first metal powder.
The first metal powder and the second metal powder are nickel powders,
The first metal powder is selected from fine particles having an average particle diameter of 0.01 to 0.5 μm, and the second metal powder is selected from fine particles having an average particle diameter of 0.8 to 10 μm. The hydrogen separation membrane is characterized in that the first metal powder and the second metal powder are mixed and compression-molded .
前記第1金属粉末は、その表面がAl,Si,Pt,Pd,Ru,Rh,Au,Agの群から選択される少なくとも1種の金属で被覆されていることを特徴とする請求項1に記載の水素分離膜。   The surface of the first metal powder is coated with at least one metal selected from the group consisting of Al, Si, Pt, Pd, Ru, Rh, Au, and Ag. The hydrogen separation membrane as described. 前記第2金属粉末は、前処理として200〜500℃の水素雰囲気下で還元されることを特徴とする請求項1に記載の水素分離膜。   The hydrogen separation membrane according to claim 1, wherein the second metal powder is reduced in a hydrogen atmosphere at 200 to 500 ° C. as a pretreatment. 水素に対する吸着特性を有する金属微細粒子を包含する水素分離膜の製造方法において、
第1金属粉末0.5〜50重量%及び前記第1金属粉末より平均粒径が相対的に大きい第2金属粉末50〜99.5重量%を混合して混合粉末を得る段階と、
前記混合粉末を所定の圧力により圧着成形して成形体を得る段階と、及び
前記成形体を水素雰囲気下で焼成する段階とを含めてなることを特徴とする水素分離膜の製造方法であり、
前記第1金属粉末及び前記第2金属粉末はニッケル粉末であり、
前記第1金属粉末は粒子の平均粒径が0.01〜0.5μmの微細粒子から選択され、かつ前記第2金属粉末は粒子の平均粒径が0.8〜10μmの微細粒子から選択されることを特徴とする水素分離膜の製造方法
In a method for producing a hydrogen separation membrane including fine metal particles having adsorption characteristics for hydrogen,
Mixing 0.5 to 50% by weight of the first metal powder and 50 to 99.5% by weight of the second metal powder having a relatively larger average particle diameter than the first metal powder to obtain a mixed powder;
A method for producing a hydrogen separation membrane, comprising: a step of pressure-molding the mixed powder with a predetermined pressure to obtain a molded body; and a step of firing the molded body in a hydrogen atmosphere .
The first metal powder and the second metal powder are nickel powders,
The first metal powder is selected from fine particles having an average particle diameter of 0.01 to 0.5 μm, and the second metal powder is selected from fine particles having an average particle diameter of 0.8 to 10 μm. A method for producing a hydrogen separation membrane .
前記圧着成形は、1〜20tons/cmの圧力下において実施されることを特徴とする請求項に記載の水素分離膜の製造方法。 The method for producing a hydrogen separation membrane according to claim 4 , wherein the compression molding is performed under a pressure of 1 to 20 tons / cm 2 . 前記第1金属粉末は、その表面がAl,Si,Pt,Pd,Ru,Rh,Au,Agの群から選択される少なくとも1種の金属で被覆されていることを特徴とする請求項に記載の水素分離膜の製造方法。 Wherein the first metal powder has a surface Al, Si, Pt, Pd, Ru, Rh, Au, to claim 4, characterized in that it is coated with at least one metal selected from the group of Ag The manufacturing method of the hydrogen separation membrane of description. 前記第1金属粉末と前記第2金属粉末を混合する段階において、焼結抑制剤として、Al酸化物粉末又は/及びSi酸化物粉末を同時に混合する段階を含めてなることを特徴とする請求項に記載の水素分離膜の製造方法。 The step of mixing the first metal powder and the second metal powder includes a step of simultaneously mixing Al oxide powder and / or Si oxide powder as a sintering inhibitor. 4. The method for producing a hydrogen separation membrane according to 4 . 前記第2金属粉末は、前処理として200〜500℃の水素雰囲気下で還元されることを特徴とする請求項に記載の水素分離膜の製造方法。 The method for producing a hydrogen separation membrane according to claim 4 , wherein the second metal powder is reduced in a hydrogen atmosphere at 200 to 500 ° C. as a pretreatment.
JP2006011244A 2006-01-19 2006-01-19 Hydrogen separation membrane and method for producing the same Expired - Fee Related JP4226009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006011244A JP4226009B2 (en) 2006-01-19 2006-01-19 Hydrogen separation membrane and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006011244A JP4226009B2 (en) 2006-01-19 2006-01-19 Hydrogen separation membrane and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007190490A JP2007190490A (en) 2007-08-02
JP4226009B2 true JP4226009B2 (en) 2009-02-18

Family

ID=38446584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006011244A Expired - Fee Related JP4226009B2 (en) 2006-01-19 2006-01-19 Hydrogen separation membrane and method for producing the same

Country Status (1)

Country Link
JP (1) JP4226009B2 (en)

Also Published As

Publication number Publication date
JP2007190490A (en) 2007-08-02

Similar Documents

Publication Publication Date Title
CN107073427B (en) Shell-and-tube reactor for reforming natural gas and method for producing synthesis gas or hydrogen using the same
Bosko et al. Dry reforming of methane in membrane reactors using Pd and Pd–Ag composite membranes on a NaA zeolite modified porous stainless steel support
Maneerung et al. Triple-layer catalytic hollow fiber membrane reactor for hydrogen production
Li et al. Preparation of thin Pd-based composite membrane on planar metallic substrate: Part I: Pre-treatment of porous stainless steel substrate
Kurungot et al. Rh/γ-Al 2 O 3 catalytic layer integrated with sol–gel synthesized microporous silica membrane for compact membrane reactor applications
US7524361B2 (en) Porous hydrogen separation membrane and method for preparing the same
WO2005070519A1 (en) Selectively permeable membrane type reactor
Chai et al. Promotion of hydrogen permeation on metal-dispersed alumina membranes and its application to a membrane reactor for methane steam reforming
JP2011206612A (en) Membrane separation type reactor and method of producing hydrogen
Santucci et al. Alternatives to palladium in membranes for hydrogen separation: Nickel, niobium and vanadium alloys, ceramic supports for metal alloys and porous glass membranes
Liu et al. A La2NiO4-zeolite membrane reactor for the CO2 reforming of methane to syngas
JPH05317708A (en) Membrane reactor for dehydrogenation reaction
JPWO2011071138A1 (en) Silica-based hydrogen separation material and method for producing the same, and hydrogen separation module and hydrogen production apparatus including the same
Basile et al. Inorganic membrane reactors for hydrogen production: an overview with particular emphasis on dense metallic membrane materials
Ryi et al. Formation of a defect-free Pd–Cu–Ni ternary alloy membrane on a polished porous nickel support (PNS)
JP2004290805A (en) Composite catalyst membrane, reformer, and fuel cell
Kim et al. Towards an integrated ceramic micro-membrane network: Electroless-plated palladium membranes in cordierite supports
JP5031616B2 (en) Oxygen separator and method for producing the same
KR100614974B1 (en) Porous Membrane for Hydrogen Separation and Preparation Method thereof
JP4226009B2 (en) Hydrogen separation membrane and method for producing the same
WO2007108543A1 (en) Process for producing hydrogen using permselective membrane reactor and permselective membrane reactor
JP6358839B2 (en) Hydrogen production apparatus and production method thereof
Lambert et al. Sol-gel preparation and thermal stability of Pd/γ-Al2O3 catalysts
KR101424340B1 (en) Manufacturing method of porous catalytic membrane
JP2003190792A (en) Catalyzed ceramic composite material and method for producing synthesis gas using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4226009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees